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Chapter 1

Laplace operator on a Riemannian
manifold

18.10.16

We introduce in this Chapter the notions of smooth and Riemannian manifolds, Rie-
mannian measure, and the Riemannian Laplace operator.

1.1 Smooth manifolds

Recall that a topological space is a couple (M,O) where M is any set and O is a
collection of subsets of M that are called open and satisfy the following axioms:

• ∅ and M are open;

• union of any family of open sets is open;

• intersection of two open sets is open.

A subset F of M is called closed if its complement F c := M \ F is open. A subset
K of M is called compact if any open covering {Ωα} of K contains a finite subcover.
It is useful to observe that any closed set, that is a subset of a compact set, is also
compact.

A topological space M is called Hausdorff if, for any two disjoint points x, y ∈M ,
there exist two disjoint open sets U, V ⊂ M containing x and y, respectively. In a
Hausdorff space M , any compact subset K of M is closed1.

We say that M has a countable base if there exists a countable family {Bj}
∞
j=1 of

open sets in M such that any other open set is a union of some sets Bj . The family
{Bj} is called a base of the topology of M .

Any metric space (M,d) has a standard topology: a subset Ω ⊂ M is called open
if for any x ∈ Ω there is a metric ball B (x, r) with radius r > 0 that is a subset of
Ω. The topology of a metric space is automatically Hausdorff. A metric space has a
countable base if and only if it is separable, that is, contains a countable dense subset
D. Indeed, by all balls of rational radii centered at the points of D form a countable
base.

1Indeed, the Hausdorff property implies that, for any x ∈ Kc there is an open set Ux containing x
and disjoint from K. Since Kc =

⋃
x∈Kc Ux, it follows that Kc is open.

1



2 CHAPTER 1. LAPLACE OPERATOR ON A RIEMANNIAN MANIFOLD

For example, Rn as a metric space with the Euclidean distance is an example of a
Hausdorff topological space with a countable base.

Definition. A n-dimensional chart on a topological space M is any couple (U,ϕ) where
U is an open subset of M and ϕ is a homeomorphism of U onto an open subset of Rn

(which is called the image of the chart).

Any chart (U,ϕ) on M gives rise to the local coordinate system x1, x2, ..., xn in U
by taking the ϕ-pullback of the Cartesian coordinate system in Rn. Hence, we can say
that a chart is an open set U ⊂ M with a local coordinate system. Normally, we will
identify U with its image so that the coordinates x1, x2, ..., xn can be regarded as the
Cartesian coordinates in a region in Rn.

Definition. A C-manifold of dimension n is a Hausdorff topological space M with
a countable base such that any point of M belongs to a n-dimensional chart. The
collection of all n-dimensional charts on M is called an atlas.

For example, Rn is a C-manifold and U = Rn is a single n-dimensional chart that
covers Rn. If U is any open subset of Rn and f : U → Rk is a continuous function then
its graph

Γ =
{
(x, y) ∈ Rn+k : x ∈ U , y = f (x)

}

is a C-manifold because it is covered by a single n-dimensional chart (Γ, ϕ) with
ϕ (x, y) = x.

A hypersurface M in Rn+1 is a subset of Rn such that for any point x ∈ M , there
exists an open set Ω ⊂ Rn+1 containing x such that Ω ∩M is a graph of a continuous
function defined on an open subset of Rn, with respect to one of the coordinates
x1, ..., xn+1. Clearly, any hypersurface is a C-manifold. For example, the unit sphere

Sn :=
{
x ∈ Rn+1 : ‖x‖ = 1

}

is a C-manifold of dimension n.
If (U,ϕ) and (V, ψ) are two charts on a C-manifold M then in the intersection U∩V

two coordinate systems are defined, say x1, x2, ..., xn and y1, y2, ..., yn. The change of
the coordinates is given then by continuous functions yi = yi(x1, ..., xn) and xi =
xi (y1, ..., yn), because the functions yi(x1, ..., xn) are the components of the mapping
ψ ◦ ϕ−1 and the functions xi (y1, ..., yn) are the components of the mapping ϕ ◦ ψ−1

(see Fig. 1.1).

Definition. A family A of charts on a C-manifold is called a Ck-atlas (where k is a
positive integer or +∞) if the charts from A covers all M and the change of coordinates
in the intersection of any two charts from A is given by Ck-functions. Two Ck-atlases
are said to be compatible if their union is again a Ck-atlas. The union of all compatible
Ck-atlases determines a Ck-structure on M .

Definition. A Ck-manifold is a C-manifold endowed with a Ck-structure. A smooth
manifold is a C∞-manifold.

Alternatively, one can say that a Ck-manifold is a couple (M,A), where M is a
C-manifold and A is a Ck-atlas on M . However, if the two Ck-atlases A and A′ are
compatible then (M,A) and (M,A′) determine the same Ck-manifold.

In this course we are going to consider mostly smooth manifolds. By default, the
term “manifold” will be used as a synonymous of “smooth manifold”. By a chart on a
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Figure 1.1: The mapping ϕ ◦ ψ−1

smooth manifold we will always mean a chart from its C∞-structure, that is, any chart
compatible with the defining atlas A.

A trivial example of a smooth manifold is Rn with the C∞-atlas consisting of a
single chart (Rn, id). Also, the graph of any C∞-function f : U → Rk (where U is
an open subset of Rn) is a smooth manifold. Any C∞-hypersurface (that is locally a
graph of a C∞-function) is a smooth manifold. In particular, the unit sphere Sn is a
smooth manifold.

If f is a (real valued) function on a smooth manifold M and k is a non-negative
integer or ∞ then we write f ∈ Ck(M) (or f ∈ Ck) if the restriction of f to any chart
is a Ck function of the local coordinates x1, x2, ..., xn. The set Ck (M) is a linear space
over R with respect to the usual addition of functions and multiplication by constant.

For any function f ∈ C (M), its support is defined by

supp f = {x ∈M : f (x) 6= 0},

where the bar stands for the closure of the set in M . Denote by Ck
0 (M) the subspace

of Ck (M), which consists of functions whose support is compact.
It follows from the definition of supp f that if f vanishes outside a closed set F ⊂M

then supp f ⊂ F .
If Ω is an open subset of M then Ω naturally inherits all the above structures of

M and becomes a smooth manifold if M is so. Indeed, the open sets in Ω are defined
as the intersections of open sets in M with Ω, and in the same way one defines charts
and atlases in Ω.

The hypothesis of a countable base will be mostly used via the next simple lemma.

Lemma 1.1 For any manifold M , there is a countable family {Ui}
∞
i=1 of relatively

compact charts covering all M and such that the closure U i is contained in a chart.

Before the proof, let us clarify some topological issues. If Ω ⊂ M is an open set
and E ⊂ M then the relation E b Ω (compact inclusion) means that the closure E
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of E in M is compact and E ⊂ Ω. The compact inclusion will be frequently used but
it may become ambiguous if Ω is a chart on M because in this case E b Ω can be
understood also in the sense of the topology of Rn, when Ω is identified as a subset of
Rn. Let us show that the two meanings of E b Ω are identical. Assume E ⊂ Ω and
denote by Ẽ the closure of E in Rn. If E b Ω in the topology of Rn then Ẽ is compact
in Rn and, hence, its pullback to M (also denoted by Ẽ) is compact in M . Since M is

Hausdorff, Ẽ is also closed in M . Since E ⊂ Ẽ ⊂ Ω, it follows that E ⊂ Ẽ and, hence,
E is compact and is a subset of Ω also in M . The converse statement is proved in the
same way.

Proof of Lemma 1.1. Any point x ∈ M is contained in a chart, say Vx. Choose
Ux b Vx to be a small open ball around x so that Ux is also a chart. By definition,
manifold M has a countable base, say {Bj}

∞
j=1. Let us mark each set Bj which is

contained in some set Ux. Since Ux is open, it is a union of some marked sets Bj .
It follows that all marked Bj cover M . Select for each marked Bj exactly one set
Ux containing Bj . Thus, we obtain a countable family of sets Ux covering M , which
finishes the proof.

In particular, we see that a manifold M is a locally compact topological space.

1.2 Partition of unity
20.10.16

We say that a function ϕ ∈ C∞
0 (Rn) is a mollifier if supp ϕ ⊂ B1 (0), ϕ ≥ 0, and

∫

Rn

ϕdμ = 1. (1.1)

For example, the following function

ϕ (x) =





c exp

(

− 1

( 1
4
−|x|2)

2

)

, |x| < 1/2

0, |x| ≥ 1/2
(1.2)

is a mollifier, for a suitable normalizing constant c > 0 (see Fig. 1.2).
If ϕ is a mollifier then, for any 0 < ε < 1, the function

ϕε := ε−nϕ
(x

ε

)

is also a mollifier, and supp ϕε ⊂ Bε (0).

Theorem 1.2 (Partition of unity) Let K be a compact subset of Rn and {Uj}
k
j=1

be a finite family of open sets covering K. Then there exist non-negative functions
ϕj ∈ C∞

0 (Uj) such that
∑k

j=1 ϕj ≡ 1 in an open neighbourhood of K and
∑k

j=1 ϕj ≤ 1
in Rn.

Such a family of functions ϕj is called a partition of unity at K subordinate to the
covering {Uj}.

Proof. Consider first the case k = 1, that is, when the family {Uj} consists of a single
set U covering K. Then we will construct a function ψ ∈ C∞

0 (U) such that 0 ≤ ψ ≤ 1
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Figure 1.2: The mollifier (1.2) in R.

and ψ ≡ 1 in an open neighbourhood of K. Such a function ψ is called a cutoff function
of K in U .

Let V be an open neighborhood of K such that V b U , and set f = 1V . Fix a
mollifier ϕ, ε > 0 and consider the convolution

f ∗ ϕε (x) =

∫

Rn

f (x− y) ϕε (y) dy =

∫

Bε(x)

f (z) ϕε (x− z) dz.

Since f ∈ L1 (Rn), we have f ∗ ϕε ∈ C∞ (Rn) . Clearly, f ∗ ϕε ≥ 0 and

f ∗ ϕε (x) ≤ sup |f |
∫

Rn

ϕε (y) dy = sup |f | = 1.

If ε is small enough then f ∗ ϕε is supported in U so that f ∗ ϕε ∈ C∞
0 (U). Besides,

for small enough ε and for any x ∈ K, we have Bε (x) ⊂ V , whence f |Bε(x) = 1 and

f ∗ ϕε (x) =

∫

Bε(x)

f (z) ϕε (x− z) dz =

∫

Bε(x)

ϕε (x− z) dz = 1.

Hence, the function ψ = f ∗ ϕε is a cutoff function of K in U , provided ε is small
enough.

Consider now the general case of an arbitrary finite family {Uj}
k
j=1. Any point

x ∈ K belongs to a set Uj . Hence, there is a ball Bx centered at x and such that
Bx b Uj . The family of balls {Bx}x∈K obviously covers K. Since K is compact, there
is a finite subfamily {Bi}

m
i=1 covering K. For any j = 1, ..., k, consider the set

Vj :=
⋃

{i:BibUj}
Bi

(see Fig. 1.3).
By construction, the set Vj is open, Vj b Uj, and the union of all sets Vj covers K.

By the first part of the proof, there exists a cutoff function ψj of Vj in Uj . Define now
functions ϕj , j = 1, ..., k, by

ϕj = ψj (1− ψ1) ...
(
1− ψj−1

)
, (1.3)
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Figure 1.3: Function ψj is a cutoff function of Vj in Uj .

that is,

ϕ1 = ψ1, ϕ2 = ψ2 (1− ψ1) , ..., ϕk = ψk (1− ψ1) ...
(
1− ψk−1

)
.

Obviously, ϕj ∈ C∞
0 (Uj) and ϕj ≥ 0. It is easy to check by induction in k the following

identity

1−
k∑

j=1

ϕj = (1− ψ1) ... (1− ψk) . (1.4)

Indeed, for k = 1 it is trivial. If it is true for some k, then

1−
k+1∑

j=1

ϕj = (1− ψ1) ... (1− ψk)− ϕk+1

= (1− ψ1) ... (1− ψk)− ψk+1 (1− ψ1) ... (1− ψk)

= (1− ψ1) ... (1− ψk)
(
1− ψk+1

)
,

which proves the induction step. It follows from (1.4) that
∑

ϕj ≤ 1. Since 1−ψj = 0
on Vj , (1.4) implies also that

∑
j ϕj ≡ 1 on the union of sets Vj and, in particular, on

K, which was to be proved.

The following statement extends Theorem 1.2 and provides a convenient vehicle for
transporting the local properties of Rn to manifolds.

Theorem 1.3 Let K be a compact subset of a smooth manifold M and {Uj}
k
j=1 be a

finite family of open sets covering K. Then there exist non-negative functions ϕj ∈
C∞

0 (Uj) such that
∑k

j=1 ϕj ≡ 1 in an open neighbourhood of K and
∑k

j=1 ϕj ≤ 1 in
M .

A sequence of functions
{
ϕj

}
as in Theorem 1.3 is called a partition of unity at K

subordinate to the cover {Uj}.
A particular case of Theorem 1.3 with k = 1 says that, for any compact K and any

open set U ⊃ K, there exists a function ϕ ∈ C∞
0 (U) such that ϕ ≡ 1 in a neighborhood

of K and, besides, 0 ≤ ϕ ≤ 1. Such a function ϕ is called a cutoff function of K in U .
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Proof. Assume first that each set Uj is a chart. In this case the proof of Theorem 1.2
goes through unchanged. Indeed, as in the proof of Theorem 1.2, we construct first
open subsets Vj b Uj such that {Vj} is a covering of K and then use a cutoff function
ψj of Vj in Uj . Note that most essentially the properties of Rn (like convolution etc)
were used only in order to prove the existence of a cutoff function. As Uj is a chart, we
can identify Uj with an open subset of Rn, construct the cutoff function ψj ∈ C∞

0 (Uj)
in Rn and then transplant ψj to M by extending ψj to the whole M by setting ψj = 0
in M \Uj (recall that the meaning of the relation b inside Uj is the same regardless of
whether Uj is regarded as a subset of M or that of Rn). After we have obtained the
cutoff functions

{
ψj

}
, the partition of unity

{
ϕj

}
is constructed by means of the same

formula (1.3).
Consider now the general case, when Uj are arbitrary open subsets of M . For any

point x ∈ K, there is a chart Wx containing x. Since x is also covered by one of the
sets Uj , by reducing Wx we can assume that Wx ⊂ Uj for some j. Since the family
{Wx}x∈K covers K, there exists a finite subfamily {Wi}

m
i=1 also covering K. Since each

Wi is a chart, by the first part of the proof there exists a partition of unity {ψi}
m
i=1 at

K subordinate to {Wi}. Now define the sequence
{
ϕj

}k

j=1
as follows:

ϕ1 =
∑

{i:supp ψi⊂U1}

ψi,

ϕ2 =
∑

{i:supp ψi⊂U2, supp ψi 6⊂U1}

ψi,

...

ϕk =
∑

{i:supp ψi⊂Uk, supp ψi 6⊂Ul ∀l<k.}

ψi.

Clearly, each ϕj is non-negative and belongs to C∞
0 (Uj). Since Wi is covered by some

Uj , each ψi is supported in some Uj and, hence, each ψi has been used in the above
construction exactly once. It follows that

∑

j

ϕj ≡
∑

i

ψi,

which implies that
{
ϕj

}
is a partition of unity at K subordinate to {Uj}.

Corollary 1.4 Let {Ωα} be an arbitrary covering of M by open sets. Then, for any
function f ∈ C∞

0 (M), there exists a finite sequence {fj}
k
j=1 of functions from C∞

0 (M)
such that each fj is supported in one of the sets Ωα and

f = f1 + ... + fk on M. (1.5)

Proof. Let K = supp f and let Ω1, ..., Ωk be a finite subfamily of {Ωα} that covers

K. By Theorem 1.3, there exists a partition of unity
{
ϕj

}k

j=1
at K subordinate to

{Ωj}
k
j=1. Set fj = fϕj so that fj ∈ C∞

0 (Ωj) . Then we have

k∑

j=1

fj = f on M,

because on K we have
∑

j ϕj = 1, while outside K all the functions f and fj vanish.
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1.3 Tangent vectors
25.10.16

Let M be a smooth manifold and x0 be a point on M .

Definition. A mapping ξ : C∞ (M)→ R is called an R-differentiation at x0 ∈M if

• ξ is linear;

• ξ satisfies the product rule in the following form:

ξ (fg) = ξ (f) g (x0) + ξ (g) f (x0) ,

for all f, g ∈ C∞.

The set of all R-differentiations at x0 is denoted by Tx0M . For any ξ, η ∈ Tx0M one
defines the sum ξ + η as the sum of two functions on C∞, and similarly one defined λξ
for any λ ∈ R. It is easy to check that both ξ + η and λξ are again R-differentiations,
so that Tx0M is a linear space over R.

Definition. The linear space Tx0M is called the tangent space of M at x0, and its
elements (that is, R-differentiations) are also called tangent vectors at x0.

In Rn we have the following example of R-differentiation:

ξ (f) =
∂f

∂xi
(x0) ,

that is clearly linear and satisfies the product rule. In particular, Tx0R
n contains n

linearly independent R-differentiations ∂
∂x1 , ...,

∂
∂xn . Moreover, for any vector v ∈ Rn,

the directional derivative ∂f
∂v

(x0) is also a R-differentiation, which allows us to identify
Rn as a subspace of Tx0R

n. Since

∂f

∂v
= vi ∂f

∂xi

(where we assume summation over the repeated index i), it follows that

∂

∂v
= vi ∂

∂xi
.

Theorem 1.5 If M is a smooth manifold of dimension n then the tangent space Tx0M
is a linear space of the same dimension n.

Consequently, dim Tx0R
n = n, which implies that every R-differentiation in Rn has

the form ∂
∂v

for some v ∈ Rn.
We will prove Theorem 1.5 after a series of claims.

Claim 1. Let U ⊂ M be an open set and U0 b U be its open subset. Then, for any
function f ∈ C∞ (U), there exists a function F ∈ C∞ (M) such that f ≡ F in U0.

Proof. Indeed, let ψ be a cutoff function of U0 in U (see Theorem 1.3). Then define
function F by {

F = ψf in U,
F = 0 in M \ U,
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which clearly satisfies all the requirements.

Claim 2. Let f ∈ C∞ (M) and let f ≡ 0 in an open neighbourhood U of a point
x0 ∈ M . Then ξ (f) = 0 for any ξ ∈ Tx0M . Consequently, if f1 and f2 are smooth
functions on M such that f1 ≡ f2 in an open neighbourhood of a point x0 ∈ M then
ξ (f1) = ξ (f2) for any ξ ∈ Tx0M .

Proof. Let U0 be a neighborhood of x0 such that U0 b U and let ψ be a cutoff function
of U0 in U . Then we have fψ ≡ 0 on M , which implies ξ (fψ) = 0. On the other hand,
we have by the product rule

ξ (fψ) = ξ (f) ψ(x0) + ξ (ψ) f(x0) = ξ (f) ,

because ψ (x0) = 1 and f(x0) = 0. Hence, ξ (f) = 0. The second part follows from the
first one applied to the function f = f1 − f2.

Remark. Originally a tangent vector ξ ∈ Tx0M is defined as a functional on C∞ (M).
The results of Claims 1 and 2 imply that ξ can be regarded as a functional on C∞ (U)
where U is any neighbourhood of x0. Indeed, by Claim 1, for any f ∈ C∞ (U) there
exists a function F ∈ C∞ (M) such that f = F in a neighborhood U0 of x0; hence, set
ξ (f) := ξ (F ). By Claim 2, this definition of ξ (f) does not depend on the choice of F .

Claim 3. Let f be a smooth function in a ball B = BR(o) in Rn where o is the origin
of Rn. Then there exist smooth functions h1, h2, ..., hn in B such that, for any x ∈ B,

f(x) = f(o) + xihi(x), (1.6)

where we assume summation over the repeated index i. Also, we have

hi(o) =
∂f

∂xi
(o). (1.7)

Proof. By the fundamental theorem of calculus applied to the function t 7→ f (tx) on
the interval t ∈ [0, 1], we have

f(x) = f(o) +

∫ 1

0

d

dt
f(tx) dt, (1.8)

whence it follows

f(x) = f(o) +

∫ 1

0

xi ∂f

∂xi
(tx)dt.

Setting

hi(x) =

∫ 1

0

∂f

∂xi
(tx)dt

we obtain (1.6). Clearly, hi ∈ C∞(B). The identity (1.7) follows from the line above
by substitution x = o.
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Claim 4. Under the hypothesis of Claim 3, there exist smooth functions hij in B
(where i, j = 1, 2, ..., n) such that, for any x ∈ B,

f(x) = f(o) + xi ∂f

∂xi
(o) + xixjhij(x). (1.9)

Proof. Applying (1.6) to the function hj instead of f we obtain that there exist smooth
functions hij in B, such that

hj(x) = hj(o) + xihij(x).

Substituting this into the representation (1.6) for f and using hj(o) = ∂f
∂xj (o) we obtain

f(x) = f(o) + xihi(x) = f(o) + xi ∂f

∂xi
(o) + xixjhij(x).

Now we can prove Theorem 1.5.

Proof of Theorem 1.5. Let x1, x2, ..., xn be local coordinates in a chart U containing
x0. All the partial derivatives ∂

∂xi evaluated at x0 are R-differentiations at x0, and they
are linearly independent. We will prove that any tangent vector ξ ∈ Tx0M can be
represented in the form

ξ = ξi ∂

∂xi
where ξi = ξ

(
xi
)
. (1.10)

Note that, by the above Remark, the R-differentiation ξ applies also to smooth func-
tions defined in a neighborhood of x0; in particular, ξ (xi) is well-defined. The iden-
tity (1.10) implies that

{
∂

∂xi

}n

i=1
is a basis in the linear space Tx0M and, hence,

dim Tx0M = n.
Without loss of generality, we can assume that x0 is the origin o of the chart U .

For any smooth function f on M , we have by (1.9) the following representation in a
ball B ⊂ U centred at o:

f(x) = f(o) + xi ∂f

∂xi
(o) + xixjhij(x) ,

where hij are some smooth functions in B. Using the linearity of ξ, we obtain

ξ (f) = ξ (1) f(o) + ξ
(
xi
) ∂f

∂xi
(o) + ξ

(
xixjhij

)
. (1.11)

By the product rule, we have

ξ (1) = ξ (1 ∙ 1) = ξ (1) 1 + ξ (1) 1 = 2ξ (1) ,

whence ξ (1) = 0. Set ui = xjhij . By the linearity and the product rule, we have

ξ
(
xiui

)
= ξ

(
xi
)
ui(o) + ξ (ui) xi(o) = 0,
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because xi (o) = 0 and ui (o) = xj (o) hij (o) = 0. Hence, in the right hand side of
(1.11), the first and the third term vanish. Setting ξi = ξ (xi), we obtain

ξ (f) = ξi ∂f

∂xi
, (1.12)

which is equivalent to (1.10).

The numbers ξi are referred to as the components of the vector ξ in the coordinate
system x1, ..., xn. One often uses the following alternative notation for ξ (f):

ξ (f) ≡
∂f

∂ξ
.

Then the identity (1.12) takes the form

∂f

∂ξ
= ξi ∂f

∂xi
, (1.13)

which allows to think of ξ as a direction at x0 and to interpret ∂f
∂ξ

as a directional
derivative.

As any other finite dimensional linear space, TxM possesses the dual space T ∗
xM

that consists of all linear functionals on TxM . That is, any element ω ∈ T ∗
xM is defined

as a linear mapping ω : TxM → R. The value ω (ξ) for ξ ∈ TxM will be also denoted
by 〈ω, ξ〉 and referred to as the pairing of ω and ξ. It is known from linear algebra
that the dual space is also a linear space of the same dimension; hence, dim T ∗

xM = n.

Definition. The linear space T ∗
xM is referred to as the cotangent space of M at x.

The elements of T ∗
xM are called tangent covectors.

Note that the dual space to T ∗
xM is TxM , that is, every vector ξ ∈ TxM can be

regarded as a linear functional on covectors given by ξ (ω) = 〈ω, ξ〉, and all linear
functionals on T ∗

xM have this form.
Fix a point x ∈M and let f be a smooth function in a neighborhood of x.

Definition. Define the notion of the differential df at x as follows: df is a tangent
covector given by its values on tangent vectors as follows:

〈df, ξ〉 := ξ (f) =
∂f

∂ξ
for any ξ ∈ TxM. (1.14)

27.10.16

Given the local coordinates x1, ..., xn, we can consider each xi as a function in the
chart. In particular, dxi is a tangent covector. Let us verify that {dxi} is a basis in
T ∗

xM . Indeed, any basis {e1, ..., en} in TxM has a dual basis {e1, ..., en} in the dual
space T ∗

xM that is defined by

〈ei, ej〉 = δi
j :=

{
1, j = i,
0, j 6= i.

Since
{

∂
∂xi

}
is a basis in TxM and

〈dxi,
∂

∂xj
〉 =

∂

∂xj
xi = δi

j ,
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it follows that {dxi} is the dual basis in T ∗
xM . Consequently, any tangent covector

ω ∈ T ∗
xM has an expansion in this basis:

ω = ωidxi,

where ωi are called the components of ω. Hence, for any ξ ∈ TxM, we obtain

〈ω, ξ〉 = ωiξ
i.

In particular, applying this with ξ = ∂
∂xi , we obtain

ωi = 〈ω,
∂

∂xi
〉.

For example, for the covector df we obtain from (1.14) that

(df)i =
∂f

∂xi

and, hence,

df =
∂f

∂xi
dxi.

A vector field on a smooth manifold M is a family {ξ (x)}x∈M of tangent vectors
such that ξ (x) ∈ TxM for any x ∈ M . In the local coordinates x1, ..., xn, it can be
represented in the form

ξ (x) = ξi (x)
∂

∂xi
.

The vector field ξ (x) is called smooth if all the functions ξi (x) are smooth in any chart.
Similarly one defined a covector field.

1.4 Riemannian metric

Let M be a smooth n-dimensional manifold. A Riemannian metric (or a metric tensor )
on M is a family g = {g(x)}x∈M such that, for any x ∈M , g(x) is a symmetric, positive
definite, bilinear form on the tangent space TxM , smoothly depending on x ∈M .

Using the metric tensor, one defines an inner product 〈∙, ∙〉g in any tangent space
TxM by

〈ξ, η〉g := g (x) (ξ, η) ,

for all tangent vectors ξ, η ∈ TxM . Hence, TxM becomes a Euclidean space. In the
local coordinates x1, ..., xn, we have

〈ξ, η〉g =

〈

ξi ∂

∂xi
, ηj ∂

∂xj

〉

g

= gij (x) ξiηj

where

gij (x) = 〈
∂

∂xi
,

∂

∂xj
〉g . (1.15)
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Clearly, (gij (x))n
i,j=1 is a symmetric positive definite n × n matrix. The functions

gij (x) are called the components of the metric tensor g in the coordinates x1, ..., xn.
The condition that g (x) smoothly depends on x means that all the components gij (x)
are C∞-functions in the all charts.

The metric tensor can be represented in the following form:

g = gijdxidxj , (1.16)

where dxidxj stands for the tensor product of the covectors dxi and dxj sometimes also
denoted by dxi ⊗ dxj ; the latter is a bilinear functional on TxM defined by

dxidxj(ξ, η) = 〈dxi, ξ〉〈dxj , η〉 ∀ξ, η ∈ TxM,

where 〈∙, ∙〉 is the pairing of covectors and vectors (note that the tensor product is not
commutative). Indeed, since

〈dxi, ξ〉 = ξ
(
xi
)

= ξi,

we obtain
gijdxidxj (ξ, η) = gijξ

iηj = g (ξ, η) ,

which proves (1.16).

Definition. A Riemannian manifold is a couple (M, g) where g is a Riemannian metric
on a smooth manifold M .

A trivial example of a Riemannian manifold is Rn with the canonical Euclidean
metric gRn defined in the Cartesian coordinates x1, ..., xn by

gRn =
(
dx1
)2

+ ... + (dxn)2 .

For this metric, we have (gij) = id.
Let (M, g) be a Riemannian manifold. The metric tensor g can be regarded as a

linear mapping from TxM to T ∗
xM . Indeed, for any vector ξ ∈ TxM , define g (x) ξ ∈

T ∗
xM by the identity

〈g (x) ξ, η〉 = 〈ξ, η〉g for all η ∈ TxM, (1.17)

Observe that if ξ 6= 0 then also g (x) ξ 6= 0 because 〈g (x) ξ, ξ〉 > 0.Therefore, the
mapping

g (x) : TxM → T ∗
xM (1.18)

is injective and, hence, also bijective.
Rewriting (1.17) in the local coordinates, we obtain

(g (x) ξ)j ηj = gijξ
iηj .

which implies
(g (x) ξ)j = gijξ

i.

In particular, the components of the linear operator g (x) are gij – the same as the
components of the metric tensor.
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If the Riemannian metric g is fixed then it is customary to drop g from all the
notations. For example, the notation of the inner product of two tangent vectors ξ, η
becomes 〈ξ, η〉. Moreover, the notation for the covector g (x) ξ becomes just ξ; that
is, the same as for the vector. However, the notation ξi is still used to denote the
components of the vector ξ in the basis

{
∂

∂xi

}
, while ξj will be used to denote the

components of the covector ξ in the basis {dxj}. The relation between the vector
components ξi and the covector components ξj is given then by

ξj := (g (x) ξ)j = gijξ
i.

The operation of passing from ξi to ξj is called lowering the index.
Since the mapping (1.18) is a bijection, it has the inverse mapping

g−1 (x) : T ∗
xM → TxM.

Since g−1 (x) is linear, it has in the coordinates the following form: for any covector
ω ∈ T ∗

xM , (
g−1 (x) ω

)i
= gijωj, (1.19)

where the coefficients gij are called the components of g−1 (x). Since g−1 is inverse to
g, we see that the matrix (gij) is inverse to (gij), that is

(gij) = (gij)
−1 .

Denoting the vector g−1 (x) ω also by ω, we obtain the following relation between the
vector and covector components of ω:

ωi :=
(
g−1 (x) ω

)i
= gijωj .

The operation of passing from ωj to ωi is called raising the index.
The operator g−1 (x) determines an inner product in T ∗

xM as follows: for all υ, ω ∈
T ∗

xM , set
〈υ, ω〉g−1 := 〈g−1 (x) υ, g−1 (x) ω〉g = 〈υ, g−1 (x) ω〉. (1.20)

It follows that, in the local coordinates,

〈υ, ω〉g−1 = υi

(
g−1 (x) ω

)i
= gijυiωj .

For any smooth function f on M , define its gradient ∇f (x) at a point x ∈M by

∇f (x) = g−1 (x) df (x) (1.21)

that is, ∇f (x) is a vector that is obtained from the covector df (x) by raising the index.
Applying (1.17) with ξ = ∇f (x), we obtain, for any η ∈ TxM ,

〈∇f, η〉g = 〈df, η〉 =
∂f

∂η
, (1.22)

which can be considered as an alternative definition of the gradient. In the local
coordinates x1, ..., xn, we obtain by (1.19) and (1.21)

(∇f)i = gij ∂f

∂xj
. (1.23)

If h is another smooth function on M then we obtain from (1.20)

〈∇f,∇h〉g = 〈g−1 (x) df, g−1 (x) dh〉g = 〈df, dh〉g−1 . (1.24)
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1.5 Submanifolds

If M is a smooth manifold then any open subset Ω ⊂ M trivially becomes a smooth
manifold by restricting all charts to Ω. Also, if g is a Riemannian metric on M then
g|Ω is a Riemannian metric on Ω. Hence, any open subset Ω of M can be considered
as a (Riemannian) submanifold of a (Riemannian) manifold M of the same dimension.

Consider a more interesting notion of a submanifold of smaller dimension. Any
subset S of a smooth manifold M can be regarded as a topological space with induced
topology. It is easy to see that S inherits from M the properties of being Hausdorff
and having a countable base.

Definition. A set S ⊂M is called an (embedded) submanifold of dimension m if, for
any point x0 ∈ S, there is a chart (U,ϕ) on M covering x0 such that the intersection
S ∩ U is given in U by the system of equations

xm+1 = xm+2 = ... = xn = 0,

where x1, x2, ..., xn are the local coordinates in U (see Fig. 1.4).

Figure 1.4: The image ϕ (S ∩ U)

More precisely, this means the following:

ϕ (S ∩ U) =
{
x ∈ ϕ (U) : xm+1 = ... = xn = 0

}

= ϕ (U) ∩ Rm,

where we identify Rm with a subspace of Rn as follows:

Rm =
{
x ∈ Rn : xm+1 = ... = xn = 0

}
.

Hence, ϕ|S∩U can be considered as a mapping from S ∩ U to Rm, and this mapping is
an homeomorphism between S∩U and the open set ϕ (U)∩Rm. Hence, (S ∩ U,ϕ|S∩U )
is a m-dimensional chart on S, with the local coordinates x1, x2, ..., xm. With the
atlas consisting of all such charts, the submanifold S becomes a smooth m-dimensional
manifold.

Lemma 1.6 Let M be a smooth manifold of dimension n and F : M → R be a smooth
function on M . Consider the null set of F , that is

S = {x ∈M : F (x) = 0} .
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If
dF 6= 0 on S (1.25)

then S is a submanifold of dimension n− 1.

Proof. For any point x0 ∈ S, there is a chart U on M containing x0 and such that
dF 6= 0 in U . The latter means that the row-vector

(
∂F
∂xi

)
does not vanish in U .

Without loss of generality we can assume that the last component ∂F
∂xn does not vanish

in U . By the implicit function theorem, there exists an open set V ⊂ U , containing x0,
such that the equation F (x) = 0 in V can be resolved with respect to the coordinate
xn; that is, the equation F (x) = 0 is equivalent in V to

xn = f
(
x1, ..., xn−1

)
,

where f is a smooth function. After the change of coordinates

y1 = x1,

...

yn−1 = xn−1,

yn = xn − f
(
x1, ..., xn−1

)
,

the equation of S in V becomes yn = 0 and, hence, S is a (n− 1)-dimensional sub-
manifold.

Let S be a submanifold of M of dimension m and ξ be an R-differentiation on S
at a point x0 ∈ S. For any smooth function f on M , its restriction f |S is a smooth
function on S. Hence, setting

ξ (f) := ξ (f |S) , (1.26)

we see that ξ can be extended to an R-differentiation on M at the same point x0. In
other words, (1.26) defines a linear mapping

Tx0S → Tx0M. (1.27)

Observe that this mapping is injective. Indeed, if ξ ∈ Tx0S is non-zero then there exists
a smooth function h ∈ C∞ (S) such that ξ (h) 6= 0. In the coordinate system x1, ..., xn

that is used in the definition of a submanifold, the function h depends on x1, ..., xm.
Setting

f
(
x1, ...xm, ..., xn

)
= h

(
x1, ..., xm

)
,

we obtain a smooth function f in a neighborhood of x0 in M , such that f |S = h.
Therefore, for the extension of ξ to Tx0M we have

ξ (f) = ξ (f |S) = ξ (h) 6= 0,

that is, ξ is non-zero as element of Tx0M . Therefore, the mapping (1.27) is injective,
and (1.26) provides a natural identification of Tx0S as a subspace of Tx0M .

Let x1, ..., xn be local coordinates in M and y1, ..., ym be local coordinates on S.
Assume that in the intersection of the domains of these coordinate systems we have
the relations

xi = xi
(
y1, ..., ym

)
, i = 1, ..., n.
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Let x0 be a point on S that lies in the intersection of the domains of the both coordinate
systems. For any smooth function f in a neighborhood of x0, we have by the chain
rule

∂f

∂yk
=

∂xi

∂yk

∂f

∂xi

that is
∂

∂yk
=

∂xi

∂yk

∂

∂xi
. (1.28)

Note that
{

∂
∂xi

}
is a basis in Tx0M and

{
∂

∂yk

}
is a basis in Tx0S, so that (1.28) identifies

explicitly Tx0S as a subspace of Tx0M .
Any tangent covector ω ∈ T ∗

x0
M as a linear functional on Tx0M can be restricted

to the subspace Tx0S thus yielding an element of T ∗
x0

S that also will be denoted by ω.
Let us compute dxi|Tx0S in the basis dyj . Since by (1.28)

〈dxi,
∂

∂yj
〉 = 〈dxi,

∂xl

∂yj

∂

∂xl
〉 =

∂xl

∂yj
δi

l =
∂xi

∂yj
,

it follows that the restriction of dxi to Tx0S is given by

dxi =
∂xi

∂yj
dyj . (1.29)

Let g be a Riemannian metric on M . As any point x ∈ S, we can restrict g (x) to
a bilinear functional on TxS thus obtaining a Riemannian metric gS on S. The metric
gS is called the induced metric.

In the local coordinates as above, by restricting g = gkldxkdxl to Tx0S, we obtain
by (1.29)

gS = gkldxkdxl =

(
∂xk

∂yi
dyi

)(
∂xl

∂yj
dyj

)

= gkl
∂xk

∂yi

∂xl

∂yj
dyidyj

that is,
gS = (gS)ij dyidyj

where

(gS)ij = gkl
∂xk

∂yi

∂xl

∂yj
. (1.30)

03.11.16
Alternatively, (1.30) can be proved using (1.28) as follows:

(gS)ij =

〈
∂

∂yi
,

∂

∂yj

〉

g

=

〈
∂xk

∂yi

∂

∂xk
,
∂xl

∂yj

∂

∂xl

〉

g

=
∂xk

∂yi

∂xl

∂yj

〈
∂

∂xk
,

∂

∂xl

〉

g

=
∂xk

∂yi

∂xl

∂yj
gkl.

The identity (1.30) can also be presented in the matrix form as follows. Consider the
Jacobi matrix of the change x = x (y)

J = (Jki) =

(
∂xk

∂yi

)

, (1.31)
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Figure 1.5: The normal N to the hypersurface S and the tangent hyperplane Hx
∼= TxS

where k = 1, ..., n is the row index and i = 1, ...,m is the column index, so that J is an
n×m matrix. Then (1.30) is equivalent to

(gS)ij = JkigklJlj = JT
ikgklJlj =

(
JT gJ

)
ij

that is,

gS = JT gJ. (1.32)

Note that the right hand side of (1.32) is the product of the three matrices of the
following dimensions: m× n, n× n, n×m.

In a particular case m = n, the formula (1.32) was stated in Exercise 3. Indeed,
in this case S is an open subset of M and the induced metric gS coincides with the
original metric g, so that (1.32) provides simply the relation between the matrices of
g in the two coordinate systems.

Example. Consider a smooth function F : Rn → R and its null set

S = {x ∈ Rn : F (x) = 0} .

As in Lemma 1.6, assume that F is non-singular on S, that is, dF 6= 0 on S. Since
(dF )i = ∂F

∂xi , the latter condition means that at any point x ∈ S at least one of the
values ∂F

∂xi (x), i = 1, ..., n, does not vanish. Fix a point x ∈ S. By Exercise 9, the
tangent vector ξ ∈ TxRn belongs to TxS if and only if

〈dF, ξ〉 = 0,

that is, if at x
∂F

∂x1
ξ1 + ... +

∂F

∂xn
ξn = 0.

Geometrically this means that ξ is orthogonal to the vector N =
(

∂F
∂x1 , ...,

∂F
∂xn

)
. On the

other hand, the vector N is known to be the normal of the tangent hyperplane Hx to S
at x. Hence, ξ is identified as an element of Hx and the tangent space TxS is naturally
identified with Hx (see Fig. 1.5).

Example. Consider in Rn+1 the following equation

(
x1
)2

+ ... +
(
xn+1

)2
= 1,
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which defines the unit sphere Sn. Since Sn is the null set of the function

F (x) =
(
x1
)2

+ ... +
(
xn+1

)2
− 1,

whose differential dF = (2x1, ..., 2xn+1) does not vanish on Sn, we conclude that Sn is a
submanifold of Rn+1 of dimension n. Furthermore, considering Rn+1 as a Riemannian
manifold with the canonical Euclidean metric gRn+1 , we see that Sn can be regarded
as Riemannian manifold with the induced metric that is called the canonical spherical
metric and is denoted by gSn .

Let us compute gS1 using the following chart on S1 (see also Exercise 11). The
upper semi-circle U := S1 ∩ {x2 > 0} is the graph of a function f (t) =

√
1− t2 on

the interval (−1, 1). The mapping ϕ : U → (−1, 1) given by ϕ (t, f (t)) = t provides
homeomorphism of U onto the open interval (−1, 1), which means that (U,ϕ) is a
chart2 on S1. This chart has just one coordinate y1 = t, and the metric gS1 has the
form

gS1 = (gS1)11

(
dy1
)2

,

where by (1.30)

(gS1)11 = (gR2)kl

∂xk

∂y1

∂xl

∂y1
=

(
∂x1

∂y1

)2

+

(
∂x2

∂y1

)2

.

Since x1 = y1 and x2 =
√

1− (y1)2, it follows that

(gS1)11 = 1 +
(y1)

2

1− (y1)2 =
1

1− (y1)2 .

Hence,

gS1 =
(dy1)

2

1− (y1)2 .

1.6 Riemannian measure

Let us recall the definition of the notion of measure. Let X be an arbitrary set. A
σ-algebra A on X is a subset of 2X such that A contains ∅, M and A is closed under
taking complement and countable unions (hence, also intersections). A measure μ on
a σ-algebra A is a mapping μ : A → [0,∞] such that μ (∅) = 0 and μ is σ-additive,
that is, μ (

⊔∞
i=1 Ai) =

∑∞
i=1 μ (Ai) for all Ai ∈ A. Given a measure μ, one can define

the notion of the integral
∫

X
fdμ for a class of measurable functions.

The most famous example of a measure is the Lebesgue measure λ defined on the
σ-algebra L (Rn) of Lebesgue measurable subsets of Rn. Recall that the Borel σ-algebra
B (Rn) is defined as the minimal σ-algebra containing all open subsets of Rn, and the
elements of B (Rn) are called Borel sets. It is known that any Lebesgue measurable set
is a union of a Borel set and a null set (=a set of measure zero).

2By rotating the Cartesian coordinate system in R2, we obtain that any semi-circle is a chart, and
such charts cover all S1.
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Let M be a smooth manifold of dimension n. Denote by B (M) the smallest σ-
algebra containing all open sets in M . The elements of B (M) are called Borel sets.
We say that a set E ⊂ M is measurable if, for any chart U , the intersection E ∩ U is
Lebesgue measurable in U . Obviously, the family of all measurable sets in M forms a
σ-algebra, that will be denoted by L (M). Since any open subset of M is measurable,
it follows that also all Borel sets are measurable, that is, B (M) ⊂ L (M).

The purpose of this section is to show that any Riemannian manifold (M, g) features
a canonical measure ν that is defined on L (M) and that is called the Riemannian
measure (or volume). This measure is defined by means of the following theorem.

Theorem 1.7 For any Riemannian manifold (M, g) , there exists a unique measure ν
on L (M) such that, in any chart U ,

dν =
√

det g dλ, (1.33)

where g = (gij) is the matrix of the Riemannian metric g in U and λ is the Lebesgue
measure in U .

Furthermore, the measure ν has the following properties: ν (K) <∞ for any com-
pact set K ⊂M and ν (Ω) > 0 for any non-empty open set Ω ⊂M .

Note that det g > 0 by the positive definiteness of g. The condition (1.33) implies
that, for any non-negative measurable function f on U ,

∫

U

fdν =

∫

U

f
√

det g dλ .

Proof. We need to construct measure ν with the domain L (M) such that, for any
chart U and for any measurable set A ⊂ U ,

ν (A) =

∫

A

√
det g dλ. (1.34)

Let us use (1.34) as definition of ν on the σ-algebra L (U) of Lebesgue measurable sets
in U . Our task is to show that the measure ν defined by (1.34) in each chart, can be
extended to L (M) and, moreover, this extension is unique. However, before that, we
need to ensure that the measures in different charts agree on their intersection.

Claim. If U and V are two charts on M and A is a measurable set in W := U ∩ V
then ν (A) defined by (1.34) has the same values in the both charts.

Let x1, ..., xn and y1, ..., yn be the local coordinate systems in U and V , respectively.
Denote by gx and gy the matrices of g in the coordinates x1, ..., xn and y1, ..., yn,
respectively. We need to show that, for any measurable set A ⊂ W ,

∫

A

√
det gxdx =

∫

A

√
det gydy,

where dx and dy stand for the Lebesgue measures in U and V , respectively.

Let J be the Jacobi matrix of the change x = x (y), that is, J =
(

∂xk

∂yi

)
(cf. (1.31)).

By (1.32) we have
gy = JT gxJ,
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which implies

det gy = det JT det gx det J = det gx (det J)2 . (1.35)

Next, let us use the following formula for change of variables in the Lebesgue integral
in Rn: if f is a non-negative measurable function in W then

∫

W

f (x) dx =

∫

W

f (x (y)) |det J | dy. (1.36)

Applying this for f = 1A

√
det gx and using (1.35), we obtain

∫

A

√
det gxdx =

∫

A

√
det gx |det J | dy =

∫

A

√
det gx (det J)2dy =

∫

A

√
det gydy,

which proves the claim. 08.11.16

Now let us prove the uniqueness of measure ν on L (M) that satisfies (1.33) in all
charts. By Lemma 1.1, there is a countable family {Ui}

∞
i=1 of relatively compact charts

covering M and such that U i is contained in a chart. For any measurable set A on M ,
define the sequence of sets Ai ⊂ Ui by

A1 = A ∩ U1, A2 = A ∩ U2 \ U1, ...., Ai = A ∩ Ui \ U1 \ ... \ Ui−1, ... (1.37)

(see Fig. 1.6). Then we have Ai ∈ L (Ui).

Figure 1.6: Splitting A into disjoint sets Ai.

Clearly,

A =
⊔

i

Ai,

where the sign t means “disjoint union”. Therefore, for any measure ν, we should
have

ν (A) =
∑

i

ν (Ai) . (1.38)

However, the value ν (Ai) is uniquely defined by (1.33) because Ai is contained in the
chart Ui. Hence, ν (A) is also uniquely defined, which was to be proved.

To prove the existence of ν, we use the same construction: for any measurable set
A, define ν (A) by (1.34), using the fact that ν (Ai) is already defined. Let us show
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that ν is a measure, that is, ν is σ-additive. Let
{
Ak
}∞

k=1
be a sequence of disjoint

measurable sets in M and let
A =

⊔

k

Ak.

Defining the sets Ak
i similarly to (1.37), that is,

Ak
i = Ak ∩ Ui \ U1 \ ... \ Ui−1

we obtain that
Ak =

⊔

i

Ak
i

and
Ai =

⊔

k

Ak
i ,

where Ak
i ∈ L (Ui). Since ν is σ-additive in each chart Ui, we obtain

ν (Ai) =
∑

k

ν(Ak
i ).

Adding up in i and interchanging the summation in i and k, we obtain

ν (A) =
∑

i

ν (Ai) =
∑

i

∑

k

ν(Ak
i ) =

∑

k

∑

i

ν(Ak
i ) =

∑

k

ν
(
Ak
)
,

which proves (1.38).
Any compact set K ⊂ M can covered by a finite number of charts Ui. Applying

(1.34) in a chart containing U i and noticing
√

det g is bounded on U i, we obtain
ν (Ui) <∞, which implies ν (K) <∞.

Any non-empty open set Ω ⊂ M contains some non-empty chart U , whence it
follows from (1.34) that

ν (Ω) ≥ ν (U) =

∫

U

√
det gdλ > 0.

The extension of measure ν from the charts to the whole manifold can also be done using the
Carathéodory extension of measures. Consider the following family of subsets of M :

S =
{
A ⊂M : A is a relatively compact measurable set and A is contained in a chart

}
.

Observe that S is a semi-ring and, by the above Claim, ν is defined as a measure on S. Hence, the

Carathéodory extension of ν exists and is a complete measure on M . It is not difficult to check that

the domain of this measure is exactly L (M). Since the union of sets Ui from Lemma 1.1 is M and

ν (Ui) <∞, the measure ν on S is σ-finite and, hence, its extension to L (M) is unique.

Since the Riemannian measure ν is finite on compact sets, any continuous function
with compact support is integrable against ν. Let us record the following simple
property of measure ν, which will be used in the next section.

Lemma 1.8 If f ∈ C (M) and ∫

M

fϕdν = 0 (1.39)

for all ϕ ∈ C∞
0 (M) then f ≡ 0.

Proof. See Exercise 8.
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1.7 Divergence theorem

Recall that the divergence of a smooth vector field v (x) in Rn (or in a domain in Rn)
is a function defined by

div v (x) =
n∑

i=1

∂vi

∂xi
.

The divergence theorem of Gauss says, in particular, that is supp v is compact then

∫

Rn

div v dx = 0.

In fact, in this simple form, this theorem is a consequence of the integration by part
formula and Fubini’s theorem. For a general smooth vector field v and a smooth scalar
function u with compact support in Rn, we can apply this theorem to the vector field
uv and obtain that ∫

Rn

(div v) u dx = −
∫

Rn

v ∙ ∇u dx,

For any smooth vector field v (x) on a Riemannian manifold (M, g), its divergence
div v (x) is a smooth function on M , defined by means of the following statement.

Theorem 1.9 (The divergence theorem) For any smooth vector field v (x) on a Rie-
mannian manifold (M, g), there exists a unique smooth function on M , denoted by
div v, such that the following identity holds

∫

M

(div v) u dν = −
∫

M

〈v,∇u〉dν, (1.40)

for all u ∈ C∞
0 (M).

Both gradient ∇ and divergence div depend on the metric g. In the cases when this
dependence should be emphasized, we will use the extended notations ∇g and divg.

The expression 〈v,∇u〉 = 〈v,∇u〉g is the inner product of the tangent vectors v
and ∇u. By (1.22), we have

〈v,∇u〉g = 〈∇u, v〉g = 〈du, v〉 =
∂u

∂xi
vi,

where 〈du, v〉 is the pairing of the tangent covector du and vector v.

Proof. The uniqueness of div v is simple: if there are two candidates for div v, say
(div v)′ and (div v)′′ then, for all u ∈ C∞

0 (M),

∫

M

(div v)′ u dν =

∫

M

(div v)′′ u dν,

which implies (div v)′ = (div v)′′ by Lemma 1.8.
To prove the existence of div v, let us first show that div v exists in any chart.

Namely, if U is a chart on M with the coordinates x1, ..., xn then, using (1.22), (1.33),
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and the integration-by-parts formula in U as a subset of Rn, we obtain, for any u ∈
C∞

0 (U),

∫

U

〈v,∇u〉dν =

∫

U

〈du, v〉dν

=

∫

U

∂u

∂xi
vi
√

det gdλ

= −
∫

U

∂

∂xi

(
vi
√

det g
)

u dλ

= −
∫

U

1
√

det g

∂

∂xi

(
vi
√

det g
)

u dν. (1.41)

Comparing with (1.40) we see that the divergence in U can be defined by

div v =
1

√
det g

∂

∂xi

(√
det gvi

)
. (1.42)

If U and V are two charts then (1.42) defines the divergences in U and in V , which
agree in U ∩ V by the uniqueness statement. Hence, (1.42) defines div v as a function
on the entire manifold M . Moreover, the divergence defined in this way satisfies the
identity (1.40) for all test functions u compactly supported in one of the charts.

We are left to extend the identity (1.40) to all functions u ∈ C∞
0 (M). Let {Ωα}

be any family of charts covering M . By Corollary 1.4, any function u ∈ C∞
0 (M) can

be represented as a finite sum u1 + ... + um, where each uj is smooth and compactly
supported in one of Ωα. Hence, (1.40) holds for each of the functions uj . By adding
up all such identities, we obtain (1.40) for the function u.

It follows from (1.42) that

div v =
∂vi

∂xi
+ vi ∂

∂xi
ln
√

det g.

In particular, if det g ≡ 1 then we obtain the same formula as in Rn: div v = ∂vi

∂xi .

Corollary 1.10 The identity (1.40) holds also if u (x) is any smooth function on M
and v (x) is a compactly supported smooth vector field on M .

Proof. Let K = supp v. By Theorem 1.3, there exists a cutoff function of K, that is, a
function ϕ ∈ C∞

0 (M) such that ϕ ≡ 1 in a neighbourhood of K. Then uϕ ∈ C∞
0 (M),

and we obtain by Theorem 1.9

∫

M

div v u dν =

∫

M

div v (uϕ) dν = −
∫

M

〈v,∇ (uϕ)〉dν = −
∫

M

〈v,∇u〉dν.

Alternative definition of divergence. Let us define the divergence div v in any chart by

div v =
1

√
det g

∂

∂xi

(√
det gvi

)
, (1.43)
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and show by a direct computation that, in the intersection of any two charts, (1.43) defines the same
function. This approach allows to avoid integration in the definition of divergence but it is more
technically involved (besides, we need integration and Theorem 1.9 anyway).

We will use the following formula: if a = (ai
j) is a non-singular n× n matrix smoothly depending

on a real parameter t and (bi
j) is its inverse (where i is the row index and j is the column index) then

∂

∂t
ln det a = bl

k

∂ak
l

∂t
. (1.44)

In the common domain of two coordinate systems x1, ..., xn and y1, ..., yn, set

Jk
i =

∂yk

∂xi
and Ii

k =
∂xi

∂yk
,

so that the matrices I and J are mutually inverse. Let g be the matrix of the tensor g and vi be
the components of the vector v in coordinates x1, ..., xn, and let g̃ be the matrix of g and ṽk be the
components of the vector v in coordinates y1, ..., yn. Then we have

v = vi ∂

∂xi
= vi ∂yk

∂xi

∂

∂yk
= viJk

i

∂

∂yk

so that
ṽk = viJk

i .

Since by (1.35) √
det g̃ =

√
det g |det J |−1

,

the divergence of v in the coordinates y1, ..., yn is given by

div v =
1

√
det g̃

∂

∂yk

(√
det g̃ṽk

)
=

det J
√

det g
Ij
k

∂

∂xj

(√
det gvi (det J)−1

Jk
i

)

=
1

√
det g

∂

∂xj

(√
det gvi

)
Ij
kJk

i + viIj
kJk

i det J
∂

∂xj
(det J)−1 + viIj

k

∂Jk
i

∂xj

=
1

√
det g

∂

∂xi

(√
det gvi

)
− vi ∂

∂xi
ln det J + viIj

k

∂Jk
i

∂xj
,

where we have used the fact that the matrices J and I are mutually inverse and, hence, Ij
kJk

i = δj
i .

To finish the proof, it suffices to show that, for any index i,

−
∂

∂xi
ln det J + Ij

k

∂Jk
i

∂xj
= 0. (1.45)

By (1.44), we have
∂

∂xi
ln det J = Ij

k

∂Jk
j

∂xi
.

Noticing that
∂Jk

j

∂xi
=

∂2yk

∂xj∂xi
=

∂2yk

∂xi∂xj
=

∂Jk
i

∂xj
,

we obtain (1.45).

1.8 Laplace-Beltrami operator

Recall that the Laplace operator in Rn is given by

Δ =
n∑

i=1

∂2

(∂xi)2 . (1.46)
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It is also easy to see that

Δf =
n∑

i=1

∂

∂xi

(
∂f

∂xi

)

= div (∇f) .

Having defined gradient and divergence, we can now define the Laplace-Beltrami
operator (frequently referred to simply as the Laplace operator) on any Riemannian
manifold (M, g) as follows:

Δ = div ◦∇ .

Strictly speaking, one should use the notations Δg, divg and ∇g but the index g is
usually skipped when there is no danger of confusion.

Hence, for any smooth function f on M, we have

Δf = div (∇f) , (1.47)

so that Δf is also a smooth function on M . In local coordinates, we have

(∇f)i = gij ∂f

∂xj
,

where (gij) = (gij)
−1, which yields

Δf =
1

√
det g

∂

∂xi

(
√

det ggij ∂f

∂xj

)

, (1.48)

For example, if (gij) ≡ id then also (gij) ≡ id, and (1.48) takes the form (1.46).
Hence, the classical Laplace operator in Rn is a particular case of the Laplace-Beltrami
operator. Since the matrix (gij) is symmetric and positive definite, the operator Δ in
(1.48) is an elliptic second order operator in the divergence form.10.11.16

Theorem 1.11 (The Green formula) If u and v are smooth functions on a Riemannian
manifold M and one of them has a compact support then

∫

M

uΔv dν = −
∫

M

〈∇u,∇v〉dν =

∫

M

vΔu dν. (1.49)

Proof. Consider the vector field ∇v. Clearly, supp∇v ⊂ supp v so that either supp u
or supp∇v is compact. By Theorem 1.9, Corollary 1.10, and (1.47), we obtain

∫

M

uΔv dν =

∫

M

u div (∇v) dν = −
∫

M

〈∇u,∇v〉dν.

The second identity in (1.49) is proved similarly.
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1.9 Weighted manifolds

Any smooth positive function D (x) on a Riemannian manifold (M, g) gives rise to a
measure μ on M given by dμ = Ddν and defined on the σ-algebra L (M). The function
D is called the density function of the measure μ. For example, the density function
of the Riemannian measure ν is 1.

Definition. A triple (M, g, μ) is called a weighted manifold (or manifold with density)
if (M, g) is a Riemannian manifold and μ is a measure on M with a smooth positive
density function.

The definition of gradient on a weighted manifold (M, g, μ) is the same as on (M, g),
but the definition of divergence changes. For any smooth vector field v on M , define
its weighted divergence divg,μ v by

divg,μ v =
1

D
divg (Dv) .

It follows immediately from this definition and (1.40) that the following extension of
Theorem 1.9 takes place: for all smooth vector fields v and functions u,

∫

M

divg,μ v u dμ = −
∫

M

〈v,∇u〉gdμ, (1.50)

provided v or u has a compact support.
Define the weighted Laplace operator Δμ by

Δg,μ = divg,μ ◦∇g ,

that is,

Δg,μu =
1

D
divg (D∇gu) .

The Green formulas remain true, that is, if u and v are smooth functions on M and
one of them has a compact support then

∫

M

uΔg,μv dμ = −
∫

M

〈∇u,∇v〉gdμ =

∫

M

vΔg,μu dμ. (1.51)

In the local coordinates x1, ..., xn, we have

divg,μ v =
1

ρ

∂

∂xi

(
ρvi
)

(1.52)

and

Δg,μ =
1

ρ

∂

∂xi

(

ρgij ∂

∂xj

)

. (1.53)

where ρ = D
√

det g. Note also that dμ = ρdλ, where λ is the Lebesgue measure in U .
Sometimes is it useful to know that the right hand side of (1.53) can be expanded

as follows:

Δg,μ = gij ∂2

∂xi∂xj
+

(
1

ρ

∂ρ

∂xi
gij +

∂gij

∂xi

)
∂

∂xj
. (1.54)
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Example. Consider the weighted manifold (R, g, μ) where g is the canonical Euclidean
metric and dμ = Ddλ. Then by (1.53) or (1.54)

Δg,μf =
1

D

d

dx

(

D
df

dx

)

= f ′′ +
D′

D
f ′.

Let (M, g, μ) be a weighted manifold and D be the density function of measure μ.
Define the induced measure μS on a submanifold S by the condition that μS has the
density function D|S with respect to the Riemannian measure of gS. Hence, we obtain
the weighted manifold (S, gS, μS).

1.10 Product of manifolds

Let X,Y be smooth manifolds of dimensions n and m, respectively, and let M = X×Y
be the direct product of X and Y as topological spaces. The space M consists of the
couples (x, y) where x ∈ X and y ∈ Y , and it can be naturally endowed with a structure
of a smooth manifold. Indeed, if U and V are charts on X and Y respectively, with the
coordinates x1, ..., xn and y1, ..., ym then U × V is a chart on M with the coordinates
x1, ..., xn, y1, ..., ym. The atlas of all such charts makes M into a smooth manifold.

We claim that, for any point (x0, y0) ∈ M , the tangent space T(x0,y0)M is natu-
rally identified as the direct sum Tx0X ⊕ Ty0Y of the linear spaces. Indeed, any R-
differentiation ξ ∈ Tx0X can be considered as an R-differentiation on functions f (x, y)
on M by freezing the variable y = y0, that is

ξ (f) = ξ (f (∙, y0)) .

This identifies Tx0X as a subspace of T(x0,y0)M , and the same applied to Ty0Y .
Any ξ ∈ T(x0,y0)M has an expansion in the basis { ∂

∂x1 , ...,
∂

∂xn , ∂
∂y1 , ...,

∂
∂ym} as follows:

ξ =
n∑

i=1

ξi ∂

∂xi
+

m∑

j=1

ξj+n ∂

∂yj
.

Since

ξX := ξi ∂

∂xi
∈ Tx0X and ξY := ξj+n ∂

∂yj
∈ Ty0Y,

we see that any ξ ∈ T(x0,y0)M splits in a unique way into the sum

ξ = ξX + ξY where ξX ∈ Tx0X and ξY ∈ Ty0Y,

which exactly means that

T(x0,y0)M = Tx0X ⊕ Ty0Y. (1.55)

If gX and gY are Riemannian metric tensors on X and Y , respectively, then define
the metric tensor g on M as the direct sum

g = gX + gY , (1.56)
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as follows: for any two tangent vectors ξ, η ∈ T(x0,y0)M , set

〈ξ, η〉g(x0,y0) = 〈ξX , ηX〉gX(x0) + 〈ξY , ηY 〉gY (y0)

In the local coordinates x1, ..., xn, y1, ..., ym, we have then

gX + gY = (gX)ij dxidxj + (gY )kl dykdyl.

The Riemannian manifold (M, g) is called the Riemannian (or direct) product of
(X, gX) and (Y, gY ) .

Before we discuss the Riemannian measure on (M,g), let us first briefly recall the notion of
the product of measures. Given two measure spaces (X,A1, μ1) and (Y,A2, μ2) where μi is a σ-finite
measure defined on the σ-algebra Ai, let us define a product measure μ = μ1 × μ2 on the product set
M = X × Y as follows. First we define μ on the subsets of M of the form A× B where A ∈ A1 and
B ∈ A2 by

μ (A×B) = μ1 (A) μ2 (B) .

Observing that the sets of the type A × B form a semi-ring, one can extend then μ to a σ-algebra
on M by using the Carathéodory extension theorem. One of the most important properties of the
product measure μ is the Fubini theorem: if f (x, y) is a non-negative μ-measurable function on M
then ∫

M

fdμ =
∫

Y

(∫

X

f (x, y) dμ1 (x)

)

dμ2 (y) =
∫

X

(∫

Y

f (x, y) dμ2 (y)

)

dμ1 (x) .

Note that the matrix g of the metric tensor g has the block diagonal form

g =






gX 0

0 gY




 ,

which implies a similar form for g−1. It follows that

det g = det gX det gY . (1.57)

Let νX and νY be the Riemannian measures on X and Y . In the local coordinates we
have

dνX =
√

det gXdx and dνY =
√

det gY dy

where dx and dy are Lebesgue measures in the corresponding charts U ⊂ X and V ⊂ Y ,
respectively. Let λ be the Lebesgue measure in the chart U × V , so that dλ = dxdy.
Then the Riemannian measure ν of M is given by

dν =
√

det gdλ =
√

det gX

√
det gY dxdy = dνXdνY .

Hence, the measure ν is the product of measures νX and νY . This fact can also be
written also as follows:

ν = νX × νY .

Consequently, we obtain by Fubini’ theorem that, for any non-negative measurable
function f = f (x, y) on M ,

∫

M

fdν =

∫

Y

(∫

X

f (x, y) dνX (x)

)

dνY (y) =

∫

X

(∫

Y

f (x, y) dνY (y)

)

dνX (x) .
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Denoting by z1, ..., zn+m the coordinates x1, ..., xn, y1, ..., ym, we obtain the following
expression of the Laplace operator Δg on (M, g):

Δg =
1

√
det g

∂

∂zi

(√
det ggij ∂

∂zj

)

=
1

√
det g

∂

∂xi

(√
det ggij

X

∂

∂xj

)

+
1

√
det g

∂

∂yi

(√
det ggij

Y

∂

∂yj

)

=
1

√
det gX

∂

∂xi

(√
det gXgij

X

∂

∂xj

)

+
1

√
det gY

∂

∂yi

(√
det gY gij

Y

∂

∂yj

)

,

where we have used (1.57) and the fact that det gX depends only in x while det gY

depends only on y. It follows that

Δg = ΔgX
+ ΔgY

. (1.58)

Example. The Riemannian manifold (Rn+m, gRn+m) is the Riemannian product of
(Rn, gRn) and (Rm, gRm) because

gRn+m =
(
dx1
)2

+ ... (dxn)2 +
(
dxn+1

)2
+ ... +

(
dxn+m

)2
= gRn + gRm .

Also, we see directly that

ΔRn+m =
∂2

(∂x1)2 + ... +
∂2

(∂xn)2 +
∂2

(∂xn+1)2 + ... +
∂2

(∂xn+m)2 = ΔRn + ΔRm .

There are other possibilities to define a Riemannian tensor g on the product man-
ifold M = X × Y . For example, if ψ (x) is a smooth positive function on X then
consider the metric tensor

g = gX + ψ2 (x) gY . (1.59)

The Riemannian manifold (M, g) with this metric is called a warped product3 of (X, gX)
and (Y, gY ). In the local coordinates, we have

g = (gX)ij dxidxj + ψ2 (x) (gY )kl dykdyl.

Let (X, gX , μX) and (Y, gY , μY ) be weighted manifold. Setting M = X × Y , g =
gX + gY and μ = μX × μY , we obtain a weighted manifold (M, g, μ) that is the direct
product of the weighted manifolds (X, gX , μX) and (Y, gY , μY ). If DX (x) and DY (y)
are the density functions on X and Y , respectively, then the density function of M is
D (x, y) = DX (x) DY (y).

A computation similar to the above shows that

Δg,μ = ΔgX ,μX
+ ΔgY ,μY

.

3verzerrtes Produkt
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1.11 Polar coordinates in Rn, Sn,Hn

Euclidean space. Set Rn
∗ = Rn \ {o} where o is the origin. Every point x ∈ Rn

∗ can
be represented in the polar coordinates as a couple (r, θ) where r := |x| > 0 is the polar
radius and θ := x

|x| ∈ S
n−1 is the polar angle. Conversely, a couple (r, θ) determines

x ∈ Rn
∗ uniquely by x = rθ, which establishes a homeomorphism between R+ × Sn−1

and Rn
∗ .

The polar coordinates can be considered as local coordinates in Rn
∗ . Indeed, let Ω

be any chart on Sn−1 with coordinates θ1, ..., θn−1. Then U := R+×Ω is a chart in Rn
∗

with coordinates
(
r, θ1, ..., θn−1

)
.

Proposition 1.12 The canonical Euclidean metric gRn has the following representa-
tion in the polar coordinates:

gRn = dr2 + r2gSn−1 , (1.60)

where gSn−1 is the canonical spherical metric and dr2 is the canonical metric in R+.

Proof. Let θ1, ..., θn−1 be local coordinates on Sn−1 and let

gSn−1 = γijdθidθj . (1.61)

Then r, θ1, ..., θn−1 are local coordinates on Rn, and (1.60) means that

gRn = dr2 + r2γijdθidθj . (1.62)

We will first prove (1.62) with some functions γij = γij (θ) and then verify that (1.61)
holds with the same functions γij . 15.11.16

We start with the identity x = rθ, which implies that the Cartesian coordinates
x1, ..., xn can be expressed via the polar coordinates r, θ1, ..., θn−1 as follows:

xi = rf i
(
θ1, ..., θn−1

)
, (1.63)

where f i is the xi-coordinate in Rn of the point θ ∈ Sn−1. Clearly, f 1, ..., fn are smooth
functions of θ1, ..., θn−1 and

(
f 1
)2

+ ... + (fn)2 ≡ 1. (1.64)

Considering xi, r and f i as functions in the chart in question and using the product
rule for d, we obtain

dxi = d
(
rf i
)

= f idr + rdf i.

It follows that

(
dxi
)2

=
(
f i
)2

dr2 + (rdr)
(
f idf i

)
+
(
f idf i

)
(rdr) + r2

(
df i
)2

. (1.65)

Applying d to the identity (1.64), we obtain

∑

i

f idf i = 0. (1.66)
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Adding up the identities (1.65) for all i = 1, ..., n and using (1.64) and (1.66), we obtain

gRn =
∑

i

(
dxi
)2

= dr2 + r2
∑

i

(
df i
)2

.

Next, we have

df i =
∂f i

∂θj dθj ,

(
df i
)2

=
∂f i

∂θj

∂f i

∂θk
dθjdθk,

which implies ∑

i

(
df i
)2

= γjkdθjdθk, (1.67)

where γjk =
∑

i
∂f i

∂θj
∂f i

∂θk are smooth functions of θ1, ..., θn−1. Hence, we have proved the
identity (1.62).

We are left to verify that γijdθidθj is the canonical spherical metric. Indeed, the
metric gSn−1 is obtained restricting of the metric gRn to Sn−1. On Sn−1 we have r ≡ 1
and, hence, dr = 0. Therefore, substituting in (1.62) r = 1 and dr = 0, we obtain
(1.61).

Sphere. Consider now the polar coordinates on the n-dimensional sphere

Sn :=
{
x ∈ Rn+1 : |x| = 1

}
.

For any x = (x1, ..., xn+1) ∈ Rn+1 set

x′ =
(
x1, ..., xn

)
,

that is, x′ is the projection of x onto Rn = {x ∈ Rn+1 : xn+1 = 0}.
Let p = (0, ...0, 1) be the north pole of Sn and q = −p be the south pole of Sn. For

any point x ∈ Sn \ {p, q}, define the polar coordinates of x on Sn as a pair (r, θ) where
r ∈ (0, π) and θ ∈ Sn−1 are given by

cos r = xn+1 and θ =
x′

|x′|
. (1.68)

Clearly, the polar radius r is the angle between the vectors x and p. In fact, r can
be regarded as the latitude of the point x measured from the pole. The polar angle θ
gives direction in the hyperplane Rn and can be regarded as the longitude of the point
x (see Fig. 1.7 and 1.8).

As in the case of the polar coordinates in the Euclidean space, the polar coordinates
(r, θ) on Sn can be regarded as local coordinates r, θ1, ..., θn−1 in a chart U = (0, π)×Ω
where Ω is any chart on Sn−1 with the local coordinates θ1, ..., θn−1.

Proposition 1.13 The canonical spherical metric gSn has the following representation
in the polar coordinates:

gSn = dr2 + sin2 rgSn−1 . (1.69)
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Figure 1.7: Polar coordinates on Sn

Figure 1.8: A picture from Wikipedia: the geographical latitude φ and longitude λ on
the Earth considered as S2. In our notation r = π

2
− φ and θ = λ + const .

Proof. Let θ1, ..., θn−1 are local coordinates on Sn−1 and let us write down the metric
gSn in the local coordinates r, θ1, ..., θn−1. Obviously, for any point x ∈ Sn \ {p, q}, we
have

|x′| =
√

1− (xn+1)2 =
√

1− cos2 r = sin r

whence

x′ = (sin r) θ.

Hence, the Cartesian coordinates x1, ..., xn+1 of the point x can be expressed as follows:

xi = sin r f i
(
θ1, ..., θn−1

)
, i = 1, ..., n,

xn+1 = cos r,

where f i are the same functions as in (1.63). Therefore, we obtain using (1.64), (1.66),
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and (1.67),

gSn =
(
dx1
)2

+ ... + (dxn)2 +
(
dxn+1

)2

=
n∑

i=1

(
f i cos rdr + sin rdf i

)2
+ sin2 rdr2

=
n∑

i=1

[(
f i
)2

cos2 rdr2 + sin2 r
(
df i
)2

+ sin r cos rdrf idf i + f idf i sin r cos rdr
]

+ sin2 rdr2

=
(
cos2 r + sin2 r

)
dr2 + sin2 r

n∑

i=1

(
df i
)2

= dr2 + sin2 r γijdθidθj .

Since we already know that γijdθidθj is the canonical metric on Sn−1, we obtain (1.69).

Hyperbolic space. The hyperbolic space Hn, n ≥ 2, is defined as follows. Consider
in Rn+1 a hyperboloid H given by the equation4

(
xn+1

)2
− (x′)

2
= 1, xn+1 > 0, (1.70)

where as above x′ = (x1, ..., xn) ∈ Rn. By Lemma 1.6, H is a submanifold of Rn+1 of
dimension n.

Consider in Rn+1 the Minkowski metric

gMink =
(
dx1
)2

+ ... + (dxn)2 −
(
dxn+1

)2
, (1.71)

which is a bilinear symmetric form in any tangent space TxRn+1 but not positive
definite. Hence, gMink is not a Riemannian metric, but is a called a pseudo-Riemannian
metric. Nevertheless we can restrict gMink to H, so set

gH = gMink|H .

We will prove below that gH is positive definite so that (H, gH) is a Riemannian
manifold. By definition, this manifold is called the hyperbolic space of dimension n
and is denoted by Hn. The metric gH is called the canonical hyperbolic metric and is
denoted also by gHn .

Our main purpose here is to introduce the polar coordinates in Hn and to represent
gHn in the polar coordinates. As a by-product, we will see that gHn is positive definite.

Consider the point p = (0, ..., 0, 1) that is called the pole of Hn. For any point
x ∈ Hn \ {p}, define its polar coordinates as a pair (r, θ) where r > 0 and θ ∈ Sn−1 are
given by

cosh r = xn+1 and θ =
x′

|x′|
(1.72)

(see Fig. 1.9). The value of r is called the hyperbolic angle between the vectors x and p.
It is possible to prove that the area of the sector bounded by the arc of the hyperbola
between p and x and by the segments [o, p], [o, x] is equal to r/2.

4For comparison, the equation of Sn can be written in the form
(
xn+1

)2
+ (x′)2 = 1.
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Figure 1.9: Polar coordinates on Hn

Proposition 1.14 The canonical hyperbolic metric gHn has the following representa-
tion in the polar coordinates:

gHn = dr2 + sinh2 rgSn−1 . (1.73)

Consequently, gHn is a Riemannian metric.

Proof. Let θ1, ..., θn−1 be local coordinates on Sn−1 and let us write down the metric
gHn in the local coordinates r, θ1, ..., θn−1. For any point x ∈ Hn \ {p}, we have

|x′| =
√
|xn+1|2 − 1 =

√
cosh2 r − 1 = sinh r,

whence
x′ = (sinh r) θ.

Hence, the Cartesian coordinates x1, ..., xn+1 of the point x can be expressed as follows:

xi = sinh rf i
(
θ1, ..., θn−1

)
, i = 1, ..., n,

xn+1 = cosh r,

where f i are the same functions as in (1.63). It follows that

gHn =
(
dx1
)2

+ ... + (dxn)2 −
(
dxn+1

)2

=
n∑

i=1

(
f i cosh rdr + sinh rdf i

)2
− sinh2 rdr2

=
n∑

i=1

[
(f i)2 cosh2 rdr2 + sinh2 r(df i)2 + sinh r cosh rdrf idf i + f idf i sinh r cosh rdr

]

− sinh2 rdr2

=
(
cosh2 r − sinh2 r

)
dr2 + sinh2 r

n∑

i=1

(
df i
)2

= dr2 + sinh2 r γijdθidθj .
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Since γijdθidθj is the canonical metric on Sn−1, we obtain (1.73).

Let us verify that gHn is a Riemannian metric. We see from (1.73) that the tensor
gHn (x) is positive definite on TxHn for any x ∈ Hn \ {p}. For the case x = p, let
us use the local coordinates x1, ..., xn on Hn. Since xn+1 as a function on Hn attains
its minimum at p, we see that dxn+1 (p) = 0 and the restriction of gMink onto TpHn

becomes (dx1)
2
+ ... + (dxn)2 that is positive definite.

17.11.16

1.12 Model manifolds

Definition. An n-dimensional Riemannian manifold (M, g) is called a Riemannian
model if the following two conditions are satisfied:

1. There is a chart on M that covers all M , and the image of this chart in Rn is a
ball

Br0 := {x ∈ Rn : |x| < r0}

of radius r0 ∈ (0, +∞] (in particular, if r0 =∞ then Br0 = Rn).

2. The metric g in the polar coordinates (r, θ) in the above chart has the form

g = dr2 + ψ2 (r) gSn−1 , (1.74)

where ψ (r) is a smooth positive function on (0, r0).

The number r0 is called the radius of the model M .

It follows that M is homeomorphic to Br0 . To simplify the terminology and no-
tation, we usually identify a model M with the ball Br0 . Then the polar coordinates
(r, θ) are defined in M \ {o} where o is the origin of Rn. If θ1, ..., θn−1 are the local
coordinates on Sn−1 and

gSn−1 = γijdθidθj ,

then r, θ1, ..., θn−1 are local coordinates on M \ {o}, and (1.74) is equivalent to

g = dr2 + ψ2 (r) γijdθidθj. (1.75)

Observe also that away from a neighborhood of o, ψ (r) may be any smooth positive
function. However, ψ (r) should satisfy certain conditions near o to ensure that the
metric (1.74) extends smoothly to o.

For example, the results of Section 1.11 imply the following:

• Rn is a model with the radius r0 =∞ and ψ (r) = r;

• Sn \ {q} is a model with the radius r0 = π and ψ (r) = sin r;

• Hn is a model with the radius r0 =∞ and ψ (r) = sinh r.
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Lemma 1.15 On a model manifold (M, g) with metric (1.74), the Riemannian mea-
sure ν is given in the polar coordinates in Br0 \ {o} by

dν = ψ (r)n−1 drdσ, (1.76)

where dr denotes the Lebesgue measure on (0, r0) and dσ denotes the Riemannian
measure on Sn−1.

The Laplace operator Δg has in the polar coordinates the form

Δg =
∂2

∂r2
+

d ln ψn−1

dr

∂

∂r
+

1

ψ2 (r)
ΔSn−1 . (1.77)

Remark. The formula (1.76) can be used to integrate functions over M using the polar
coordinates. Indeed, if f is any non-negative measurable function on M then we have

∫

M

fdν =

∫

M\{0}
fdν =

∫ r0

0

∫

Sn−1

f (r, θ) ψ (r)n−1 drdσ

=

∫ r0

0

(∫

Sn−1

f (r, θ) dσ

)

ψ (r)n−1 dr.

Proof. Let Ω be a chart on Sn−1 with coordinates θ1, ..., θn−1. Then U = (0, r0) × Ω
is a chart on M with coordinates r, θ1, ..., θn−1. For simplicity of notation, set θ0 = r.
Let g = (gij) be the matrix of the tensor g in the chart U , where the indices i, j vary
from 0 to n− 1. It follows from (1.75)

g =








1 0 ∙ ∙ ∙ 0

0
...
0

ψ2 (r) γij








. (1.78)

In particular, we have
det g = ψ2(n−1) det γ, (1.79)

where γ =
(
γij

)
. By (1.33), the Riemannian measure ν on M is given by

dν =
√

det gdλ,

where λ is the Lebesgue measure in the chart U . Denoting by dr the Lebesgue measure
in (0, r0) and by dθ the Lebesgue measure in the chart Ω on Sn−1, we have

dλ = drdθ.

Using also that
dσ =

√
det γdθ.

we obtain
dν = ψn−1

√
det γdrdθ = ψn−1drdσ,

which proves (1.76).
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It follows from (1.78) that

(
gij
)

= g−1 =








1 0 ∙ ∙ ∙ 0

0
...
0

ψ−2 (r) γij








(1.80)

where (γij) =
(
γij

)−1
. By (1.48) of Δg, we have in the local coordinates θ0, ..., θn−1

Δg =
1

√
det g

n−1∑

i,j=0

∂

∂θi

(√
det ggij ∂

∂θj

)

. (1.81)

Since g00 = 1, g0i = 0 for i ≥ 1, it follows that

Δg =
1

√
det g

∂

∂r

(√
det g

∂

∂r

)

+
n−1∑

i,j=1

1
√

det g

∂

∂θi

(√
det ggij ∂

∂θj

)

. (1.82)

Applying (1.80) and (1.79) and noticing that ψ depends only on r and γij depend only

on θ1, ..., θn−1, we obtain

1
√

det g

∂

∂r

(√
det g

∂

∂r

)

=
∂2

∂r2
+

(
∂

∂r
ln
√

det g

)
∂

∂r

=
∂2

∂r2
+

(
d

dr
ln ψn−1

)
∂

∂r

and

n−1∑

i,j=1

1
√

det g

∂

∂θi

(√
det ggij ∂

∂θj

)

=
n−1∑

i,j=1

ψ−2 (r)
√

det γ

∂

∂θi

(√
det γγij ∂

∂θj

)

=
1

ψ2 (r)
ΔSn−1 .

Substituting into (1.82), we obtain (1.77).

Example. In Rn, we have ψ(r) = r. In this case the Riemannian measure ν coincides
with the Lebesgue measure λn, and we obtain

dλ = rn−1drdσ. (1.83)

It follows from (1.77) that

ΔRn =
∂2

∂r2
+

n− 1

r

∂

∂r
+

1

r2
ΔSn−1 . (1.84)

Consider the case n = 2. If θ denotes the angle on S1 then we have gS1 = dθ2 (Exercise
11) and, hence, ΔSn−1 = ∂2

∂θ2 . It follows that in the planar polar coordinates

ΔR2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2 .
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In Sn, we have ψ (r) = sin r and, hence,

dν = sinn−1 r drdσ (1.85)

and

ΔSn =
∂2

∂r2
+ (n− 1) cot r

∂

∂r
+

1

sin2 r
ΔSn−1 . (1.86)

In Hn, we have ψ (r) = sinh r and, hence,

dν = sinhn−1 r drdσ

and

ΔHn =
∂2

∂r2
+ (n− 1) coth r

∂

∂r
+

1

sinh2 r
ΔSn−1 . (1.87)

The formula (1.86) can be iterated in dimension to obtain a full expansion of ΔSn in
the polar coordinates.

Example. Denote by σn the Riemannian measure on Sn. The measure σn is frequently
referred to as an area. Then (1.85) can be rewritten as follows:

dσn = sinn−1 r drdσn−1.

In particular, using Fubini’s theorem, we obtain

σn (Sn) =

∫

Sn

dσn =

∫ π

0

∫

Sn−1

sinn−1 r drdσn−1

=

∫ π

0

sinn−1 r dr

∫

Sn−1

dσn−1

= σn−1

(
Sn−1

) ∫ π

0

sinn−1 r dr.

Set

ωn := σn−1

(
Sn−1

)
=

∫

Sn−1

dσn−1, (1.88)

that is, ωn is the total area of the unit sphere on Rn. Hence, we obtain the inductive
formula

ωn+1 = ωn

∫ π

0

sinn−1 r dr. (1.89)

For n = 2 we now that gS1 = dθ2 and, hence, dσ1 = dθ, which implies that

ω2 =

∫ 2π

0

dθ = 2π.

By (1.89) we obtain

ω3 = 2π

∫ π

0

sin rdr = 4π,

ω4 = 4π

∫ π

0

sin2 r = 2π2.
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Remark. Let us explain the meaning of the term ψn−1 (r) in (1.76). Consider for any
R ∈ (0, r0) the sphere

SR = {x ∈ Rn : |x| = R}

as a submanifold of M of dimension n − 1. It follows from (1.74) that the induced
metric on SR in the coordinates θ1, ..., θn−1 is given by

(gSR
)ij = ψ (R)2 γij (θ) dθidθj .

Denoting by σR the corresponding Riemannian measure on SR (that is also called an
area), we obtain

dσR =
√

det
(
ψ (R)2 γij (θ)

)
dθ = ψ (R)n−1

√
det γdθ = ψ (R)n−1 dσ.

Using a chart Ω on Sn−1 that covers almost all Sn−1, we obtain that the total measure
of SR is

σR (SR) =

∫

SR

dσR =

∫

Ω

ψ (R)n−1
√

det γdθ = ψ (R)n−1

∫

Sn−1

dσ = ωnψ (R)n−1 .

(1.90)
Hence, ωnψ (R)n−1 is the total area of SR.

Definition. A weighted manifold (M,μ, g) is called a weighted model if (M , g) is a
Riemannian model as above, and the density function D of the measure μ depends
only on the polar angle r.

Lemma 1.16 On a weighted model manifold (M, g, μ) with metric (1.74) and the den-
sity function D (r), the measure μ is given in the polar coordinates by

dμ = D (r) ψn−1 (r) drdσ, (1.91)

where dr denotes the Lebesgue measure on (0, r0) and dσ denotes the Riemannian
measure on Sn−1. The weighted Laplace operator Δg,μ has in the polar coordinates the
form

Δg,μ =
∂2

∂r2
+

d

dr
ln
(
Dψn−1

) ∂

∂r
+

1

ψ2 (r)
ΔSn−1 . (1.92)

Proof. Since
dμ = Ddν,

the identity (1.91) follows immediately from the identity (1.76) of Lemma 1.15.
By definition of the weighted Laplacian, we have

Δg,μf = divg,μ (∇f) =
1

D
divg (D∇f) = Δgf +

1

D
〈∇D,∇f〉

= Δgf + 〈∇ ln D,∇f〉 .

Using the notation θ0 = r and the matrix (gij) given by (1.80), we obtain

〈∇ ln D,∇f〉 =
n−1∑

i,j=0

gij ∂ ln D

∂θi

∂f

∂θj =
∂ ln D

∂r

∂f

∂r
+

n−1∑

i,j=1

gij ∂ ln D

∂θi

∂f

∂θj

=
d ln D

dr

∂f

∂r
,
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because ∂ ln D
∂θi = 0 for all i ≥ 1. Using the representation of Δg from Lemma 1.15, we

obtain

Δg,μf =
∂2f

∂r2
+

d ln ψn−1

dr

∂f

∂r
+

1

ψ2 (r)
ΔSn−1f +

d ln D

dr

∂f

∂r
.

Observing that
ln ψn−1 + ln D = ln

(
Dψn−1

)
,

we obtain (1.92).

Let (M, g, μ) be any weighted manifold with the density function D. For any
submanifold S of M , we have defined the induced Riemannian metric gS on S. Let us
define the induced measure μS as the measure on S with the density function D|S with
respect to the Riemannian measure νS of S. Then (S, gS, μS) is a weighted manifold.

If (M, g, μ) is a weighted model as above then the sphere

SR = {x ∈ Rn : |x| = R}

where R ∈ (0, r0), is a submanifold, so we obtain the induced metric gSR
and the

corresponding Riemannian measure σR as above, as well as the induced measure μSR

that we denote simply by μR and refer to as a weighted area. Since on SR we have
D ≡ D (R), it follows from the definition of μR that

dμR = D (R) dσR.

In particular, the total weighted area of SR is given by

μR (SR) = D (R) σR (SR) = ωnD (R) ψ (R)n−1 ,

which gives a geometric meaning to the term Dψn−1 that appears in (1.91) and (1.92). 22.11.16

The function
S (r) := ωnD (r) ψn−1 (r) , (1.93)

that coincides with μR (SR), is called the area function of the weighted model (M, g, μ).
We can rewrite (1.92) in terms of this function as follows:

Δg,μ =
∂2

∂r2
+

S ′ (r)

S (r)

∂

∂r
+

1

ψ2 (r)
ΔSn−1 . (1.94)

We see that the Laplace operator is directly related to such a geometric property of
the manifold as the area function.

For any R ∈ (0, r0) consider the Euclidean ball

BR = {x ∈ Rn : |x| < R} .

as a subset of M . In the polar coordinates, we have

BR \ {o} =
{
(r, θ) ∈M : r ∈ (0, R) , θ ∈ Sn−1

}
.

It follows from (1.91) that

μ (BR) =

∫ R

0

∫

Sn−1

Dψn−1drdσ = ωn

∫ R

0

Dψn−1dr =

∫ R

0

S (r) dr. (1.95)
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The function V (R) := μ (BR) is called the volume function of the model manifold.
Hence, we obtain

V (R) =

∫ R

0

S (r) dr .

For example, in Rn we have ψ (r) = rn−1 and D = 1, which implies

S (r) = ωnrn−1

and
V (R) =

ωn

n
Rn. (1.96)

1.13 Length of paths and the geodesic distance

Let M be a smooth manifold.

Definition. A path (or parametric curve) on M is any continuous mapping γ : I →M
where I is any interval in R.

In the local coordinates x1, ..., xn, the path is given by its components xi = γi (t).
If γi (t) are Ck functions of t then the path γ is also called Ck.

Definition. For any C1 path γ : I →M and for any t ∈ I, define the velocity γ̇ (t) as
the following R-differentiation at x = γ (t):

γ̇ (t) : C∞ (M)→ R

γ̇ (t) (f) =
d

dt
f (γ (t)) for any f ∈ C∞ (M) . (1.97)

Indeed, it is easy to see that the mapping γ̇ (t) defined by (1.97) satisfies the defini-
tion of an R-differentiation at the point x = γ (t): it is linear and satisfies the product
rule, because so does the ordinary derivative d

dt
. Hence, γ̇ (t) ∈ Tγ(t)M.

Let us express the tangent vector γ̇ (t) in the local coordinates x1, ..., xn. Applying
the chain rule, we obtain

γ̇ (t) (f) =
d

dt
f
(
γ1 (t) , ..., γn (t)

)
=

∂f

∂xi

dγi

dt
= γ̇i ∂f

∂xi
, (1.98)

where using the notation

γ̇i ≡
dγi

dt
.

Rewriting (1.98) in the operator form as follows

γ̇ = γ̇i ∂

∂xi
, (1.99)

we see that γ̇ (t) has in the basis
{

∂
∂xi

}
the components γ̇i (t).

As one of the consequences of (1.99), we obtain that any tangent vector ξ ∈ TxM
can be represented as the velocity of a path; for example, one can take the path
γi (t) = xi + tξi.
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Let now (M, g) be a Riemannian manifold. Recall that length of a tangent vector
ξ ∈ TxM is defined by |ξ|g =

√
〈ξ, ξ〉g.

Definition. For any C1 path γ : I →M , define its length `g (γ) by

`g (γ) =

∫

I

|γ̇ (t)|g dt. (1.100)

If the interval I is bounded and closed then clearly ` (γ) <∞. If the image of γ is
contained in a chart U with coordinates x1, ..., xn then

|γ̇ (t)|g =
√

gij (γ (t)) γ̇i (t) γ̇j (t)

and hence

`g (γ) =

∫

I

√
gij γ̇

iγ̇jdt.

For example, if (gij) ≡ id then

`g (γ) =

∫

I

√(
γ̇1
)2

+ ... + (γ̇n)2dt.

Assume in what follows that the interval I is bounded and closed, say, I = [a, b],
and extend the definition of `g (γ) to piecewise C1 paths γ. A path γ : [a, b] → M is
called piecewise C1 if it is continuous on [a, b] and there is a finite partition a = t0 <
t1 < ... < tN = b of the interval [a, b] so that γ is C1 on each of the intervals [tk, tk+1].
Then the velocity γ̇ (t) is defined for all t 6= tk and the integral (1.100) still makes
sense, so that the length `g (γ) is well defined for piecewise C1 paths and, moreover, is
finite.

Let us use the paths to define a distance function on the manifold (M, g). We say
that a path γ : [a, b]→M connects points x and y if γ (a) = x and γ (b) = y.

Definition. The geodesic distance d (x, y) between any two points x, y ∈M is defined
by

d (x, y) = inf
{
`g (γ) : γ is a piecewise C1-path connecting x and y

}
. (1.101)

If the infimum in (1.101) is attained on a path γ then γ is called a shortest (or a
minimizing) geodesics between x and y. If there is no path connecting x and y then,
by definition, d (x, y) = +∞.

For example, consider Rn with the canonical metric gRn . Then the geodesic distance
of (Rn, gRn) coincides with the Euclidean distance |x− y|, and the straight line segment
[x, y] between x, y ∈ Rn is the shortest geodesic (see Exercise 33).

Our purpose is to show that the geodesic distance is a metric5 on M , and the
topology of the metric space (M,d) coincides with the original topology of the smooth
manifold M (see Theorem 1.20 below). We start with the following observation.

5We allow a metric d (x, y) to take value +∞. It can always be replaced by a finite metric

d̃ (x, y) :=
d (x, y)

1 + d (x, y)
,

which determines the same topology as d (x, y).
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Lemma 1.17 The geodesic distance satisfies the following properties.

(i) d (x, y) ∈ [0, +∞] and d (x, x) = 0.

(ii) Symmetry: d (x, y) = d (y, x).

(iii) The triangle inequality: d (x, y) ≤ d (x, z) + d (y, z).

Proof. (i) That d (x, y) ∈ [0,∞] is obvious from (1.101). Given x ∈ M , consider a
constant path γ : [0, 1] → M defined by γ (t) ≡ x. Clearly, γ̇ (t) ≡ 0 and `g (γ) = 0
whence d (x, x) = 0 follows.

(ii) If γ : [a, b]→M connects x and y, that is, γ (a) = x and γ (b) = y then consider
a path

γ̃ (t) = γ (a + b− t)

that is also defined on [a, b]. Clearly, γ̃ (a) = y and γ̃ (b) = x so that γ̃ connects y and
x. It is obvious from the definition that ` (γ̃) = ` (γ), which implies by (1.101) that
d (x, y) = d (y, x).

(iii) Consider any piecewise C1 path γ1 : [a1, b1] → M connecting x and z, and a
piecewise C1 path γ2 : [a2, b2] connecting z and y. By a shift of the variable t, we can
always assume that b1 = a2. Define the path γ : [a1, b2] connecting x and y, as follows:

γ (t) =

{
γ1 (t) , t ∈ [a1, b1] ,
γ2 (t) , t ∈ [a2, b2] .

This path is continuous because b1 = a2 and γ1 (b1) = z = γ2 (a2), and piecewise C1

because so are γ1 and γ2. It follows from (1.101) that

d (x, y) ≤ ` (γ) = ` (γ1) + ` (γ2) .

Taking infimum with respect to γ1 and γ2, we obtain

d (x, y) ≤ d (x, z) + d (z, y) ,

which finishes the proof.

We still need to verify that d (x, y) > 0 for all distinct points x, y. A crucial step
towards that is contained in the following lemma.

Lemma 1.18 For any point p ∈ M , there is a chart U 3 p and C ≥ 1 such that, for
all x, y ∈ U ,

C−1 |x− y| ≤ d (x, y) ≤ C |x− y| , (1.102)

where |x− y| is the Euclidean distance in U .

Proof. Fix a point p ∈ M and a chart W around p with local coordinates x1, ..., xn.
Let V be the Euclidean ball Br (p) of radius r centered at p where r > 0 is so small
that V ⊂ W .

For any x ∈ V and any tangent vector ξ ∈ TxM , its length |ξ|g in the metric g is
given by

|ξ|2g = gij (x) ξiξj .
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Denoting for simplicity the Euclidean metric gRn in W by e, we have

|ξ|2e =
n∑

i=1

(
ξi
)2

.

Since the matrix (gij (x)) is positive definite and continuously depends on x, there is a
constant C ≥ 1 such that

C−2

n∑

i=1

(
ξi
)2
≤ gij (x) ξiξj ≤ C2

n∑

i=1

(
ξi
)2

,

for all x ∈ V and ξ ∈ TxM . Hence, we obtain

C−1 |ξ|e ≤ |ξ|g ≤ C |ξ|e .

It follows that, for any piecewise C1 path γ in V ,

C−1`e (γ) ≤ `g (γ) ≤ C`e (γ) . (1.103)

24.11.16

Connecting two points x, y ∈ V by a straight line segment γ and noticing that the
image of γ is contained in V and `e (γ) = |x− y| we obtain

d (x, y) ≤ `g (γ) ≤ C`e (γ) = C |x− y| ,

which proves the upper bound in (1.102).
Define now the set U by U = B 1

3
r (p). Let γ be any piecewise C1 path on M

connecting points x, y ∈ U . If γ stays in V then we have `e (γ) ≥ |x− y|. Combining
with (1.103), we obtain

`g (γ) ≥ C−1 |x− y| . (1.104)

If γ does not stay in V then γ intersects the sphere ∂V , say at a point z (see Fig.
1.10). Denoting by γ̃ be the part of γ that connects in V the point x to the point
z ∈ ∂V , we obtain

`g (γ) ≥ `g (γ̃) ≥ C−1 |x− z| ≥ C−1 2

3
r ≥ C−1 |x− y| ,

where we have used (1.104) for the path γ̃ and |x− y| ≤ 2
3
r. Hence, (1.104) holds for

all paths γ connecting x and y, which implies

d (x, y) ≥ C−1 |x− y| .

Corollary 1.19 We have d (x, y) > 0 for all distinct points x, y ∈ M . Consequently,
the geodesic distance d (x, y) satisfies the axioms of a metric and, hence, (M,d) is a
metric space.
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Figure 1.10: Path γ connecting the points x, y intersects ∂V at a point z.

In fact, if the manifold M is connected then the metric d is finite, that is, d (x, y) <
∞ for all x, y ∈M (see Exercise 32).

Proof. Fix a point p ∈ M and let us prove that d (p, x) > 0 for any x 6= p. Let U be
a chart around p as in Lemma 1.18. We can assume that U is a Euclidean ball Bε (p)
of some radius ε > 0. If x ∈ U then by (1.102)

d (p, x) ≥ C−1 |p− x| > 0.

Assume that x /∈ U . Then any path γ connecting p and x must intersect the boundary
∂U , say at a point z, which implies by (1.102) that

`g (γ) ≥ d (p, z) ≥ C−1 |p− z| = C−1ε

(see Fig. 1.11)

Figure 1.11: If x /∈ U then any path γ connecting p and x contains a point z ∈ ∂U
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Taking inf in all such γ, we obtain that d (p, x) ≥ C−1ε > 0, which finishes the
proof.

Definition. For any x ∈M and r > 0, denote by B (x, r) the geodesic ball of radius r
centered at x ∈M , that is

B (x, r) = {y ∈M : d (x, y) < r} .

In other words, B (x, r) are the metric balls in the metric space (M,d). By definition,
the topology of any metric space is generated by metric balls, which form a base of
this topology. Note that the metric balls are open sets in this topology.

Theorem 1.20 The topology of the metric space (M,d) coincides with the original
topology of the smooth manifold M .

Proof. Recall that the topology of M inside any chart U coincides with the Euclidean
topology of U that is determined by the Euclidean distance function. Denote by TM

the original topology of M and by Td – the topology of the metric space (M,d). To
prove the identity of the two topologies, it suffices to prove that their local bases at any
point are equivalent. A local base of Td at a point p ∈M is given by the geodesic balls
B (p, r) with small radii r > 0, and a local base of TM at p is given by the Euclidean
balls Br (p) in any chart U containing p, also with small enough r > 0.

Hence, in order to obtained the identity of the two topologies, it suffices to prove
the following: for any p ∈M there is a chart U containing p and C > 1 such that, for
any small enough r > 0,

BC−1r (p) ⊂ B (p, r) ⊂ BCr (p) . (1.105)

Fix a point p ∈ M and let U be a chart constructed in Lemma 1.18, where (1.102)
holds. We can assume that U coincides with the Euclidean ball Bε (p) of some radius
ε > 0. Then we will prove the inclusions (1.105) for any r < C−1ε, where C is the
constant from (1.102).

Indeed, if x ∈ BC−1r (p) then x ∈ U and

d (x, p) ≤ C |x− p| < r,

whence x ∈ B (p, r).
To prove the second inclusion in (1.105), let us first verify that B (p, r) ⊂ U . Indeed,

if x /∈ U then any path γ connecting p and x contains a point z ∈ ∂U (see Fig. 1.11).
By (1.102), we obtain

`g (γ) ≥ d (z, p) ≥ C−1 |y − p| = C−1ε ≥ r,

whence d (x, p) ≥ r and x /∈ B (p, r). Therefore, if x ∈ B (p, r) then x ∈ U and, hence,

|x− p| ≤ Cd (x, p) < Cr,

which implies x ∈ BCr (p).
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1.14 Smooth mappings and isometries

Let X and Y be two smooth manifolds of dimension n and m, respectively. A con-
tinuous mapping Φ : Y → X is called smooth if it is represented in any charts of X
and Y by smooth functions. More precisely, this means the following. Let x1, ..., xn

be the local coordinates in a chart U ⊂ X, and y1, ..., ym be the local coordinates in a
chart V ⊂ Y , and let Φ (V ) ⊂ U . Then the mapping Φ in V is given by n equations
xi = Φi (y1, ..., ym), where all functions Φi are smooth6.

The mapping Φ : Y → X allows to transfer various objects and structures either
from Y to X, or back from X to Y . The corresponding operators in the case “from Y
to X” are called “push-forward” operators and are also denoted by Φ, and in the case
“from X to Y ” they are called “pullback” operators and are denoted by Φ∗.

Definition. For any function f : X → R define the pullback function Φ∗f : Y → R by

Φ∗f = f ◦ Φ,

that is

(Φ∗f) (y) = f (Φ (y)) for any y ∈ Y .

Clearly, if f is smooth then Φ∗f is also smooth. For example, pulling back the
coordinate function xi in chart of X, we obtain

Φ∗x
i = xi ◦ Φ = Φi.

Now fix a point b ∈ Y and set a = Φ (b) ∈ X.

Definition. For any tangent vector ξ ∈ TbY , define its push-forward Φξ ∈ TaV by

(Φξ) (f) = ξ (Φ∗f) for any f ∈ C∞ (X) . (1.106)

Clearly, Φξ is a linear mapping from C∞ (X) to R. The fact that it satisfies the
product rule and, hence, is an R-differentiation, can be verified easily from (1.106).
Alternatively, we will see that by computing Φξ in the local coordinates as follows.29.11.16

Considering f as a function of x1, ..., xn and Φ∗f as a function of y1, ..., ym, we
obtain, for any tangent vector ξ = ξj ∂

∂yj at b, that

(Φξ) (f) = ξj ∂

∂yj
(Φ∗f)

∣
∣
∣
∣
y=b

= ξj ∂

∂yj
f (Φ (y))

∣
∣
∣
∣
y=b

= ξj ∂Φi

∂yj
(b)

∂f

∂xi
(a) .

that is,

Φξ = ξj ∂Φi

∂yj

∂

∂xi
,

6By the continuity of Φ, for any y ∈ Y and for any chart U in X containing x := Φ (y), there
is a chart V in Y containing y such that Φ (V ) ⊂ U . Hence, the mapping Φ can be written in the
coordinate form in a neighborhood of any point y ∈ Y .
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where ∂Φi

∂yj is taken at b and ∂
∂xi is taken at a. In particular, we see that Φξ ∈ TaX. It

follows also that the components of Φξ in the basis
{

∂
∂xi

}
in TaX are

(Φξ)i =
∂Φi

∂yj
ξj . (1.107)

Denote by J the Jacobi matrix
(

∂Φi

∂yj

)
where i = 1, ..., n is the row index, j = 1, ...,m is

the column index. Denoting by ξcol the column vector with components ξ1, ..., ξm and
understanding (Φξ)col similarly, (1.107) can be written in terms of matrix multiplication
as follows:

(Φξ)col = Jξcol. (1.108)

Definition. The push-forward mapping

TbY 3 ξ 7→ Φξ ∈ TaX (1.109)

is called the tangent map of Φ at b.

For convenience we use for the tangent map the same notation Φ. There are other
commonly used notation for the tangent map such as TbΦ or dΦ. The tangent map
(1.109) is also called the differential of Φ at b. The reason for the latter is the identity

(1.107), where the Jacobi matrix
(

∂Φi

∂yj

)
is used.

Definition. For any tangent covector v ∈ T ∗
a X, define its pullback Φ∗v ∈ T ∗

b Y by the
following duality relation:

〈Φ∗v, ξ〉 = 〈v, Φξ〉 ∀ξ ∈ TbY.

The pull-back mapping
T ∗

a X 3 v 7→ Φ∗v ∈ T ∗
b Y

is called the cotangent map of Φ at a.

Figure 1.12: The pullback objects are red, the push-forward objects are blue.

Observe that, for any f ∈ C∞ (X),

Φ∗df = d (Φ∗f)



50 CHAPTER 1. LAPLACE OPERATOR ON A RIEMANNIAN MANIFOLD

because
〈Φ∗df, ξ〉 = 〈df, Φξ〉 = (Φξ) f = ξ (Φ∗f) = 〈d (Φ∗f) , ξ〉 .

In the local coordinates, we obtain

Φ∗dxi = d
(
Φ∗x

i
)

= dΦi =
∂Φi

∂yj
dyj .

It follows that, for any covector v ∈ vidxi ∈ T ∗
a X,

Φ∗v = viΦ∗dxi = vi
∂Φi

∂yj
dyj ,

which implies that the pullback Φ∗v has in the basis {dyj} in T ∗
b Y the following com-

ponents:

(Φ∗v)j = vi
∂Φi

∂yj
.

Denoting by vrow the row vector with components (v1, ..., vn) and understanding (Φ∗v)row

similarly, we obtain the matrix identity

(Φ∗v)row = vrowJ.

Suppose that we have three manifolds X,Y, Z and two smooth maps

Z
Ψ
→ Y

Φ
→ X.

Then pullback of functions satisfies the following identity

(Φ ◦Ψ)∗ f = Ψ∗ (Φ∗f) ∀f ∈ C∞ (M) ,

because
(Φ ◦Ψ)∗ f = f ◦ (Φ ◦Ψ) = (f ◦ Φ) ◦Ψ = Ψ∗ (Φ∗f) .

Similarly, the push-forward operation for tangent vectors satisfies the identity

(Φ ◦Ψ) ξ = Φ (Ψξ) ∀ξ ∈ TcZ,

because for any f ∈ C∞ (X), we have

(Φ ◦Ψ) ξ (f) = ξ ((Φ ◦Ψ)∗ f) = ξ (Ψ∗ (Φ∗f)) = (Ψξ) (Φ∗f) = Φ (Ψξ) (f) .

In the same way, we obtain

(Φ ◦Ψ)∗ v = Ψ∗ (Φ∗v) ∀v ∈ T ∗
a X.

We notice that the push-forward of a composition is the composition of push-forwards,
while the pullback of composition is the composition of pullbacks in the opposite order.

Returning to the case of one smooth mapping Φ : Y → X, assume that we are
given a Riemannian metric tensor g on X. Then define its pullback Φ∗g as a bilinear
form on TbY by

Φ∗g (ξ, η) = g (Φξ, Φη) for all ξ, η ∈ TbY, (1.110)
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where g is taken at the point a = Φ (b) and Φ∗g – at b. Obviously, Φ∗g is a symmetric,
non-negative definite, bilinear form on TbY . Clearly, Φ∗g at b is positive definite if and
only if the tangent map Φ : TbY → TaX is injective (that is, ξ 6= 0⇒ Φξ 6= 0).

By the choice of the basis
{

∂
∂xi

}
in TaX and

{
∂

∂yj

}
in TbY , these spaces are identified

with Rn and Rm, respectively. By (1.108), the tangent map then is given by the Jacobi
matrix

J =

(
∂Φi

∂yj

)

,

where i = 1, ..., n is the row index and j = 1, ...,m is the column index. Recall that the
linear mapping J : Rm → Rn is injective if and only if rank J = m. Recall also that
the rank of a matrix does not exceed the number of columns as well as the number of
rows. If the rank of a matrix is equal to one of these numbers then the matrix is called
non-singular. The condition rank J = m means that J is non-singular and m ≤ n.
Hence, we obtain the following statement.

Claim. If m ≤ n and the Jacobi matrix J of Φ : Y → X is non-singular at all points of
Y then, for any Riemannian metric g on X, its pullback Φ∗g is a Riemannian metric
on Y .

In the local coordinates, using g = gijdxidxj, we obtain

Φ∗g = gijΦ∗

(
dxi
)
Φ∗

(
dxj
)

= gij
∂Φi

∂yk

∂Φj

∂yl
dykdyl,

whence

(Φ∗g)kl = gij
∂Φi

∂yk

∂Φj

∂yl
. (1.111)

This identity can be rewritten in the form of matrix multiplication as follows:

Φ∗g = JT gJ

where g = (gij) is an n× n matrix and Φ∗g = ((Φ∗g)kl) is an m×m matrix.
Assume from now on that Y and X have the same dimension n. A mapping Φ :

Y → X is called a diffeomorphism if it is smooth and the inverse mapping Φ−1 : X → Y
exists and is also smooth. In this case, the tangent maps

Φ : TbY → TaX and Φ−1 : TaX → TbY

are also mutually inverse, which implies that the tangent map Φ is injective. Conse-
quently, the pullback Φ∗g of a Riemannian metric g on X is a Riemannian metric on
Y .

Definition. Two Riemannian manifolds (X, gX) and (Y, gY ) and are called isometric
if there is a diffeomorphism Φ : Y → X such that

Φ∗gX = gY .

Such a mapping Φ is called a Riemannian isometry.

The relation “isometric” is denoted by the symbol ∼=. It is easy to see that the
relation ∼= between Riemannian manifolds is reflexive (the identity map is isometry),
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symmetric (because if Φ is an isometry then also Φ−1 is an isometry) and transitive
(since the composition of two isometries is isometry). Hence, the relation ∼= is an equiv-
alence relation between Riemannian manifolds. Two manifolds that are isometric have
exactly the same properties as Riemannian manifolds and frequently can be regarded
as the same manifold.

Definition. Two weighted manifolds (Y, gY , μY ) and (X, gX , μX) are called isometric
if there is a Riemannian isometry Φ : Y → X such that

Φ∗DX = DY ,

where DX and DY are the density functions of μX and μY , respectively.

Lemma 1.21 Let Φ be an isometry of two weighted manifolds as above. Then the
following is true:

(a) For any non-negative measurable function f on X,

∫

Y

(Φ∗f) dμY =

∫

X

f dμX . (1.112)

(b) For any f ∈ C∞ (X),
Φ∗ (ΔXf) = ΔY (Φ∗f) , (1.113)

where ΔY and ΔX are the weighted Laplace operators on Y and X, respectively.

Remark. The identity (1.112) can be rewritten as follows:

∫

X

f (x) dμX (x) =

∫

Y

f (Φ (y)) dμY (y) ,

and in this form it can be regarded as change of variables x = Φ (y) in integration.
Note that this identity does not contain the determinant of the Jacobi matrix like in
the classical formula (1.36) because the determinant is hidden in the definitions of the
measures μX and μY .

01.12.16

Proof. Because of a partition of unity, it suffices to prove the both identities (1.112) and
(1.113) when f is supported in a chart U on X. Let ϕ : U → Rn be a homeomorphism
from U onto an open set W ⊂ Rn that exists by the definition of a chart. Denoting by
x1, ..., xn the Cartesian coordinates in W , we obtain the local coordinates x1, ..., xn in
U .

Consider the set V = Φ−1 (U) ⊂ Y . Since both mappings

V
Φ
→ U

ϕ
→ W

are homeomorphisms, we obtain a homeomorphism V
ψ
→ W where ψ = ϕ ◦ Φ, so that

the Cartesian coordinates x1, ..., xn serve also as local local coordinates in V (see Fig.
1.13).

Using in the both charts the coordinates x1, ..., xn, we obtain that the mapping
Φ : V → U in these coordinates is identical. Indeed, if a point p ∈ V has coordinates
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Figure 1.13: Mappings Φ, ϕ, ψ

x1, ..., xn then ψ (p) has in W the same coordinates, which implies that the point
ϕ−1 (ψ (p)) = Φ (p) has in U the same coordinates.

Hence, the Riemannian metrics gX and gY in the local coordinates x1, ..., xn are
identical, and so are the density functions. Then both equalities (1.112) and (1.113)
are trivially satisfied.

Let Φ : M → M be a diffeomorphism of a smooth manifold M . Then Φ is an
isometry of a weighed manifold (M, g, μ) provided

Φ∗g = g and Φ∗D = D.

The first of these conditions can be rewritten in the local coordinates in terms of
matrices as follows:

JT gJ = g. (1.114)

If Φ is an isometry of (M, g, μ) then we obtain by (1.113) that Δg,μ commutes with
Φ∗. Alternatively, (1.113) can be written in the form

(Δg,μf) ◦ Φ = Δg,μ (f ◦ Φ) .

The set of all isometries of (M, g, μ) is called the group of isometries of (M, g, μ),
because this set forms obviously a group with respect to operation of composition.

Example. Any translation Φ (x) = x + a in Rn is an isometry of the Riemannian
manifold (Rn, gRn), because the Jacobi matrix of the translation is id. Consider the
orthogonal group O (n), that is, the set of all n × n matrices A such that AT A = id
(in particular, this includes all the rotations in Rn). If A ∈ O (n) then the orthogonal
transformation Φ (x) = Ax of Rn has the Jacobi matrix J = A. Since gRn = id,
we see that (1.114) is satisfied, so that the orthogonal transformation is an isometry
of (Rn, gRn). Consequently, the Laplace operator in Rn commutes with orthogonal
transformations.

Since A is invariant on Sn−1, we see that the orthogonal transformation is also an
isometry of (Sn−1, gSn−1).

Example. Let (M, g, μ) be a weighted model with polar coordinates (r, θ) (see Section
1.12) and let Φ be an isometry of Sn−1. Then Φ induces an isometry of (M, g, μ) by

Φ (r, θ) = (r, Φ (θ)) .

In particular, Δg,μ commutes with the rotations of the polar angle θ.
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Chapter 2

Weak Laplace operator and
spectrum

2.1 Regularity theory in Rn

Consider in a domain Ω ⊂ Rn an operator

Lu =
n∑

i,j=1

∂i (aij∂ju) +
n∑

i=1

bj∂ju + cu, (2.1)

where the coefficients aij , bj , c are C∞ smooth functions in Ω. Assume that (aij) is uni-
formly elliptic with the ellipticity constant λ and that the coefficients bj , c are bounded
in Ω, say, also by λ.

Definition. For any u ∈ W 1,2
loc (Ω) and f ∈ L2

loc (Ω), we say that the equation Lu = f
holds weakly in Ω if, for any ϕ ∈ D (Ω) := C∞

0 (Ω),

−
∫

Ω

n∑

i,j=1

aij∂ju ∂iϕdx +

∫

Ω

n∑

i=1

bj∂juϕdx +

∫

Ω

cudx =

∫

Ω

fϕdx.

The following theorem was proved in EDE, Theorems 2.1, 2.8, 2.10.

Theorem 2.1 Let L be the operator (2.1). If u ∈ W 1,2
loc (Ω) and Lu ∈ W k,2

loc (Ω) then

u ∈ W k+2,2
loc (Ω) . Moreover, for any open set U b Ω,

‖u‖W k+2,2(U) ≤ C
(
‖u‖W 1,2(Ω) + ‖Lu‖W k,2(Ω)

)
, (2.2)

where C = C (U, Ω, n, λ) .

Consider a more general operator

Lu =
1

ρ (x)

n∑

i,j=1

∂i (aij∂ju) +
n∑

i=1

bj∂ju + cu, (2.3)

55
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where aij , bj and c are as above and ρ is a smooth positive function in Ω that is bounded
between two positive constants. We say that the equation Lu = f holds weakly in Ω
if, for any ϕ ∈ D (Ω),

−
∫

Ω

n∑

i,j=1

aij∂ju ∂i

(
1

ρ
ϕ

)

dx +

∫

Ω

n∑

i=1

bj∂juϕdx +

∫

Ω

cudx =

∫

Ω

fϕdx. (2.4)

Consider also an auxiliary operator

L̃u =
n∑

i,j=1

∂i (aij∂ju) +
n∑

i=1

ρbj∂ju + ρcu,

where all terms are obtain by multiplying those of Lu by ρ. Then Lu = f is equivalent
to L̃u = ρf , which can be seen by replacing the test function ϕ in (2.4) by ψ = ϕ/ρ.

Corollary 2.2 Let L be the operator (2.3). If u ∈ W 1,2
loc (Ω) and Lu ∈ W k,2

loc (Ω) then

u ∈ W k+2,2
loc (Ω) . Moreover, for any open set U b Ω,

‖u‖W k+2,2(U) ≤ C
(
‖u‖W 1,2(Ω) + ‖Lu‖W k,2(Ω)

)
, (2.5)

where C = C (U, Ω, n, k, λ, ρ) .

Proof. If Lu = f where f ∈ W k,2
loc then also L̃u = ρf ∈ W k,2

loc . Since Theorem 2.1

applies to the operator L̃, we conclude that u ∈ W k+2,2
loc (Ω). Choose an open set V

such that U b V b Ω. Applying (2.2) to the operator L̃ in V , we obtain

‖u‖W k+2,2(U) ≤ C
(
‖u‖W 1,2(V ) + ‖ρf‖W k,2(V )

)
. (2.6)

Since the function ρ and all its derivatives are bounded in V , it follows that

‖ρf‖W k,2(V ) ≤ C ′ ‖f‖W k,2(V ) ,

where C ′ depends on ‖ρ‖Ck(V ) <∞. Substituting into (2.6), we obtain

‖u‖W k+2,2(U) ≤ C ′′
(
‖u‖W 1,2(V ) + ‖f‖W k,2(V )

)
,

whence (2.5) follows.

In what follows we use the notation

Lku := L (L (...Lu))
︸ ︷︷ ︸

k times L

.

Assuming u ∈ W 1,2
loc (Ω) and f ∈ L2

loc (Ω), let us define by induction in k ∈ N what it
means that Lku = f weakly in Ω. If k = 1 then Lku = f is the same as Lu = f that
was defined above. If k > 1 then Lku = f means that Lk−1u ∈ W 1,2

loc (Ω) (which is
defined by the inductive hypotheses), and Lku = f means that L

(
Lk−1u

)
= f.

Consequently, the equality Lku = f assumes that all the functions u, Lu, ..., Lk−1u
belong to W 1,2

loc (Ω), and L
(
Lk−1u

)
= f .
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Corollary 2.3 Let L be the operator (2.3). If

u, Lu, ..., Lku ∈ W 1,2
loc (Ω)

then
u ∈ W 2k+1,2

loc (Ω) .

Moreover, for any open U b Ω,

‖u‖W 2k+1,2(U) ≤ C
k∑

j=0

∥
∥Lju

∥
∥

W 1,2(Ω)
, (2.7)

where C = C (U, Ω, n, k, λ, ρ).

Proof. Induction in k. If k = 0 then the statement is trivial. Induction step from k−1
to k, where k ≥ 1. Set v = Lu. Then we have Lk−1v ∈ W 1,2

loc (Ω), and by the inductive

hypothesis we conclude that v ∈ W 2k−1,2
loc (Ω). Moreover, choosing an open set V such

that U b V b Ω, we obtain

‖v‖W 2k−1,2(V ) ≤ C
k−1∑

j=0

∥
∥Ljv

∥
∥

W 1,2(Ω)
= C

k∑

j=1

∥
∥Lju

∥
∥

W 1,2(Ω)
.

Therefore, Lu = v ∈ W 2k−1,2
loc (Ω), and by Corollary 2.2 we conclude that u ∈ W 2k+1,2

loc (Ω)
and

‖u‖W 2k+1,2(U) ≤ C
(
‖u‖W 1,2(V ) + ‖v‖W 2k−1,2(V )

)
≤ C ′

k∑

j=0

∥
∥Lju

∥
∥

W 1,2(Ω)
,

which was to be proved.

Corollary 2.4 Let L be the operator (2.3). If

u, Lu, ..., Lku ∈ W 1,2
loc (Ω)

and, for some non-negative integer m,

2k + 1 >
n

2
+ m,

then
u ∈ Cm (Ω) .

Moreover, for any compact set K ⊂ Ω,

‖u‖Cm(K) ≤ C
k∑

j=0

∥
∥Lju

∥
∥

W 1,2(Ω)
, (2.8)

where C = C (K, Ω, n, k,m, λ, ρ) .
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Proof. Recall the Sobolev Embedding Theorem (PDE, Theorem 4.15): if U is an open
subset of Rn and l > m + n

2
then we have an embedding

W l,2
loc (U) ↪→ Cm (U) .

Moreover, if u ∈ W l,2 (Ω) then, for any compact K ⊂ U ,

‖u‖Cm(K) ≤ C ‖u‖W l,2(U) . (2.9)

Since u ∈ W 2k+1,2
loc (Ω), applying the first statement with l = 2k + 1 and U = Ω, we

obtain u ∈ Cm (Ω). Now let U be any open neighborhood of K such that U b Ω. By
(2.7) we have

‖u‖W 2k+1,2(U) ≤ C
k∑

j=0

∥
∥Lju

∥
∥

W 1,2(Ω)
,

which together with (2.9) implies (2.8).
06.12.16

2.2 Weak gradient and Sobolev spaces

Let (M, g, μ) be a weighted manifold. Denote for simplicity by D (M) the space

C∞
0 (M) and by ~D (M) the space of smooth vector fields on M with compact sup-

ports. Denote by ~L2 (M,μ) the space of all vector fields v (x) on M such that all
the components of v are measurable functions in all charts, and |∇v|g ∈ L2(M,μ).

Similarly we define ~L2
loc.

In what follows we write for simplicity ∇g = ∇ and divg,μ = div.

The space ~L2 (M,μ) admits an inner product

(v, w)~L2 :=

∫

M

〈v, w〉g dμ,

and the corresponding norm is

‖v‖2~L2 =

∫

M

|∇v|2g dμ.

It is easy to prove that ~L2 is complete with respect to this norm and, hence, is a Hilbert
space.

Definition. Fix a function u ∈ L2
loc. A weak gradient of u is a vector field v ∈ ~L2

loc

(denoted also ∇u) such that, for any ψ ∈ ~D,

∫

M

u div ψ dμ = −
∫

M

〈v, ψ〉g dμ. (2.10)

Or, equivalently, ∇u is defined by the identity

(u, div ψ)L2 = − (∇u, ψ)~L2 .
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It follows from this definition that the weak gradient is uniquely defined. Note u is
a smooth function then the classical gradient v = ∇u satisfies (2.10) by the divergence
theorem, so that in this case the weak gradient exists and coincides with the classical
gradient.

Definition. Define the Sobolev space:

W 1 (M) = W 1 (M, g, μ) =
{

u ∈ L2 (M,μ) : ∇u ∈ ~L2 (M,μ)
}

and the inner product in W 1:

(u, v)W 1 := (u, v)L2 + (∇u,∇v)~L2 =

∫

M

uv dμ +

∫

M

〈∇u,∇v〉g dμ. (2.11)

The associated norm given by

‖u‖2W 1 = ‖u‖2L2 + ‖∇u‖2L2 =

∫

M

u2dμ +

∫

M

|∇u|2g dμ. (2.12)

Lemma 2.5 W 1 (M) is a Hilbert space.

Proof. It follows from (2.12) that the convergence uk
W 1

−→ u in W 1 (M) is equivalent
to

uk
L2

−→ u and ∇uk
L2

−→ ∇u. (2.13)

Let {uk} be a Cauchy sequence in W 1 (M). Then the sequence {uk} is Cauchy also
in L2 (M) and, hence, converges in L2-norm to a function u ∈ L2 (M). Similarly, the

sequence {∇uk} is Cauchy in ~L2 (M) and, hence, converges in ~L2-norm to a vector

field v ∈ ~L2 (M). It follows from the definition of the weak gradient that ∇u = v and,
hence, (2.13) is satisfied.

Since any open set U ⊂ M is itself a manifold, we can define all the above spaces
L2 and W 1 also in U .

If U is in addition a chart, then we can define the spaces L2 and W 1 considering
U as a subset of Rn, that is, using the Euclidean metric e = gRn and the Lebesgue
measure λ. Denote these spaces by L2

e and W 1
e , respectively.

We say that a chart U on M is precompact if U as a set is precompact and U is
contained in a larger chart.

Lemma 2.6 If U is a precompact chart then

L2 (U) = L2
e (U)

W 1 (U) = W 1
e (U)

and

‖u‖L2(U) ' ‖u‖L2
e(U)

‖u‖W 1(U) ' ‖u‖W 1
e (U) .
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The sign ' between two expressions means that the two expressions are comparable,
that is, their ratio is bounded from above and below by positive constants.

Proof. In the chart U we have

dμ = D
√

det gdλ = ρdλ

where λ is the Lebesgue measure in U and D is the density function. Since the function
ρ := D

√
det g is bounded between two positive constants in U , we see that

‖u‖L2(U) ' ‖u‖L2
e(U)

and, hence,
L2 (U) = L2

e (U) .

Let v be a measurable vector field on U . Denote by vi be the coordinates of v in the
basis

{
∂

∂xi

}
. Let also vi = gijv

j be the covector coordinates of v. Note that

‖v‖2~L2 =

∫

U

|v|2g dμ =

∫

U

gijvivjρdλ.

Since on U the matrix (ρgij) is uniformly elliptic, we obtain that in U

ρgijvivj ' v2
1 + ... + v2

n,

whence

‖v‖2~L2 '
∫

U

(
v2

1 + ... + v2
n

)
dλ = ‖v‖2~L2

e.

Hence, identifying each vector field v in U with the Euclidean vector field {v1, ..., vn},
we obtain the identity

~L2 (U) = ~L2
e (U) .

Let u ∈ W 1 (U) and let v = ∇u be its weak gradient. For any ψ = ψi ∂
∂xi ∈ ~D (U),

we have ∫

M

u div ψ dμ =

∫

U

u
1

ρ

∂

∂xi

(
ρψi
)
ρdλ =

∫

U

u
∂

∂xi

(
ρψi
)
dλ

and ∫

M

〈v, ψ〉g dμ =

∫

U

gijv
jψiρdλ =

∫

U

viψ
idλ.

By (2.10) we obtain
∫

U

u
∂

∂xi

(
ρψi
)
dλ = −

∫

U

vi

(
ρψi
)
dλ. (2.14)

Fix ϕ ∈ D (U) and an index i. Choose then the vector field ψ as follows: ψi = ϕ/ρ
and ψj = 0 for all j 6= i. It follows from (2.14) that

∫

U

u
∂ϕ

∂xi
dλ = −

∫

U

viϕdλ,

that is, the function vi satisfies the definition of the the weak derivative ∂u
∂xi (in U ⊂ Rn),

so that
∂u

∂xi
= vi.
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Since u ∈ L2
e (U) and {vi} ∈ ~L2

e, we obtain that u ∈ W 1
e (U) and

‖u‖2W 1
e

= ‖u‖2L2
e
+ ‖{vi}‖

2
~L2
e
' ‖u‖2L2 + ‖v‖2~L2 = ‖u‖2W 1 .

Conversely, if u ∈ W 1
e (U) then

{
∂u
∂xi

}
∈ ~L2

e (U) and

∫

U

u
∂

∂xi

(
ρψi
)
dλ = −

∫

U

∂u

∂xi

(
ρψj
)
dλ.

Hence, the vector field v with covector components

vi =
∂u

∂xi

belongs to ~L2 (U) and yields the weak gradient ∇u, which implies u ∈ W 1 (U). We
conclude that

W 1
e (U) = W 1 (U) .

2.3 Weak Laplacian

Here we write for simplicity Δg,μ = Δ.

Definition. Let u ∈ W 1
loc (Ω) and f ∈ L2

loc (Ω). We say that the equation Δu = f is
satisfied weakly in Ω, if, for any ϕ ∈ D (Ω),

∫

Ω

〈∇u,∇ϕ〉g dμ = −
∫

Ω

f ϕdμ, (2.15)

that is,
(∇u,∇ϕ)~L2 = − (f, ϕ)L2 .

Of course, if u is a smooth function and Δu = f is satisfied in the classical sense,
then it is also satisfied in the weak sense, as it follows from the Green formula.

Theorem 2.7 Let k,m be non-negative integers such that

2k + 1 > m +
n

2
.

Let Ω be an open subset of a weighted manifold M and assume that

u, Δu, ..., Δku ∈ W 1
loc (Ω) . (2.16)

Then u ∈ Cm (Ω). Moreover, for any compact set K ⊂ Ω, that is contained in a chart,

‖u‖Cm(K) ≤ C

k∑

j=0

∥
∥Δju

∥
∥

W 1(Ω)
, (2.17)

where C = C (K, Ω, n, k,m, g, D).
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Proof. Let us choose a precompact chart U such that K ⊂ U b Ω. Let x1, ..., xn be
the coordinates in U . Consider in U the following differential operator

L =
1

ρ

∂

∂xi

(

ρgij ∂

∂xj

)

,

where ρ = D
√

det g. We know that, for a smooth function u, Lu = Δu in U . Let us
show that Lu = Δu holds also if L and Δ are understood weakly.

As it follows from Lemma 2.6,

L2
loc (U) = L2

e,loc (U) and W 1
loc (U) = W 1

e,loc (U) .

Assume u ∈ W 1
loc (U) and f ∈ L2

loc (U). By (2.4), the equation Lu = f weakly in U
means that, for all ψ ∈ D (U)

∫

U

n∑

i,j=1

ρgij∂ju ∂i

(
1

ρ
ψ

)

dλ = −
∫

U

fψdλ. (2.18)

By (2.15) the equation Δu = f weakly in Umeans that, for all ϕ ∈ D (U),

∫

U

〈∇u,∇ϕ〉g dμ = −
∫

U

f ϕdμ. (2.19)

Since

〈∇u,∇ϕ〉g = 〈du,∇ϕ〉 = gij ∂u

∂xj

∂ϕ

∂xi

and
dμ = ρdλ,

we obtain that (2.19) is equivalent to

∫

U

ρgij ∂u

∂xj

∂ϕ

∂xi
dλ = −

∫

U

ρfϕdλ.

The change ψ = ρϕ shows that the latter identity is equivalent to (2.18), which proves
that the weak operators Δu and Lu are the same.

If (2.16) is satisfied then

u, Δu, ..., Δku ∈ W 1 (U) ,

whence also
u, Lu, ..., Lku ∈ W 1

e (U) .

Since 2k + 1 > n
2

+ m, we obtain by Corollary 2.4 that u ∈ Cm (U) and

‖u‖Cm(K) ≤ C
k∑

j=0

∥
∥Lju

∥
∥

W 1
e (U)

. (2.20)

Since Ω can be covered by charts like U , we conclude that u ∈ Cm (Ω). The estimate
(2.20) and ‖∙‖W 1

e (U) ' ‖∙‖W 1(U) (cf. Lemma 2.6) imply (2.17).
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Remark. In the case m = 0 the norm

‖u‖C(K) := sup
K
|u|

makes sense for any compact set K, not necessarily contained in a chart. In this case
the estimate (2.17) holds also for any compact set K, because the latter can be covered
by a finite number of precompact charts, and in each of them we can apply Theorem
2.7.

08.12.16

As an example of application of Theorem 2.7, let us prove the following statement.

Corollary 2.8 Let a function u ∈ W 1 (Ω) satisfy in Ω the equation Δu = αu in a
weak sense, where α is a real number. Then u ∈ C∞ (Ω). Moreover, for any compact
set K ⊂ Ω that is contained in a chart, and for any non-negative integer m, we have

‖u‖Cm(K) ≤ C (1 + |α|)
m
2

+ n
4
+ 1

2 ‖u‖W 1(Ω) , (2.21)

where C = C (K, Ω, n,m, g, D) .

Proof. We have u ∈ W 1 (Ω) and Δu = αu ∈ W 1 (Ω). It follows that also Δ2u = α2u ∈
W 1 (Ω) and, by induction, for any positive integer j, we obtain

Δju = αju ∈ W 1 (Ω) .

By Theorem 2.7 we conclude that u ∈ C∞ (Ω).
By the estimate (2.17) of that theorem, we have, for any non-negative integers m, k

such that 2k + 1 > n
2

+ m, that

‖u‖Cm(K) ≤ C
k∑

j=0

∥
∥Δju

∥
∥

W 1(Ω)
,

Since ∥
∥Δju

∥
∥

W 1 = |α|j ‖u‖W 1 ,

it follows that

‖u‖Cm(K) ≤ C
k∑

j=0

|α|j ‖u‖W 1 ≤ C (1 + |α|)k ‖u‖W 1 .

Choose k to be the smallest integer such that 2k + 1 > m + n
2
. Then

2k − 1 ≤ m +
n

2
,

and, hence,

k ≤
m

2
+

n

4
+

1

2
,

whence (2.21) follows.
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Example. Consider the equation Δu = αu in Ω = (0, 2π). It becomes u′′ = αu and if
α < 0 then one of the solution is u (x) = sin βx where β =

√
−α. In this case

‖u‖2L2 =

∫ 2π

0

sin2 βxdx = π, ‖u′‖2L2 = β2

∫ 2π

0

cos2 βxdx = β2π = |α| π

and
‖u‖W 1 = (1 + |α|)1/2 π1/2.

Assume that |α| ≥ 1 and, hence, β ≥ 1. Then the functions |sin βx| and |cos βx| attain
their maximum value 1 on (0, 2π). Since

u(j) (x) = ±βj sin βx or ± βj cos βx,

it follows that

‖u‖Cm(0,2π) = sup
0≤j≤m

sup
(0,2π)

∣
∣u(j)

∣
∣ = sup

0≤j≤m
βj = βm = |α|m/2 .

It follows that
‖u‖Cm(0,2π) ' (1 + |α|)m/2−1/2 ‖u‖W 1 ,

which shows that the exponent m/2 in (2.21) is correct.

2.4 Compact embedding theorem

Let Ω be an open subset of M . Clearly, D (Ω) ⊂ W 1 (Ω). Define

W 1
0 (M) = the closure of D (Ω) in W 1 (Ω) .

Theorem 2.9 (Compact embedding theorem) If Ω is a precompact open subset of M
then the identical embedding

W 1
0 (Ω) ↪→ L2 (Ω)

is a compact operator.

Proof. In the case when M = Rn this theorem is known (Theorem 4.6 from PDE),
and we will use it in order to prove that on an arbitrary manifold.

We need to prove that, for any bounded sequence {fk} in W 1
0 (Ω), there is a subse-

quence {fki
} that converges in L2 (Ω). Since D (Ω) is dense in W 1

0 (Ω), we can assume
without loss of generality that all the functions fk are in D (Ω). Since Ω ⊂ M is
relatively compact, there is a finite family {Uj}

N
j=1 of precompact charts such that

Ω ⊂
⋃N

j=1
Uj .

By Theorem 1.3, there exists a partition of unity at Ω subordinate to {Uj}, that is,

non-negative functions ϕj ∈ D (Uj) such that
∑N

j=1 ϕj ≡ 1 in Ω.

Let us prove that, for any j, the sequence
{
fkϕj

}∞
k=1

is bounded in W 1 (Ω). Indeed,
suppressing indices k, j, we have

‖fϕ‖L2 ≤ sup |ϕ| ‖f‖L2 ≤ ‖f‖L2 ≤ ‖f‖W 1 ,
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‖∇ (fϕ)‖~L2 = ‖ϕ∇f + f∇ϕ‖~L2

≤ sup ϕ ‖∇f‖~L2 + sup |∇ϕ| ‖f‖L2

≤ C ‖f‖W 1 ,

where C = 1 + sup |∇ϕ| <∞. It follows that

∥
∥fkϕj

∥
∥

W 1(Ω)
≤ C ′ ‖fk‖W 1(Ω) ,

which implies that, for any j, the sequence
{
fkϕj

}∞
k=1

is bounded in W 1 (Ω). It follows
that this sequence is bounded also in W 1 (Uj) = W 1

e (Uj). Since fkϕj ∈ D (Uj) ⊂
W 1

0 (Uj), we can use the compact embedding theorem in Rn and conclude that there is
a subsequence

{
fki

ϕj

}∞
i=1

that converges in L2
e (Uj) = L2 (Uj). By extending the limit

function by 0 outside Uj , we obtain that
{
fki

ϕj

}∞
i=1

converges in L2 (Ω).
Applying this procedure successively for each j = 1, ..., N , we obtain a subsequence

{fki
} such that

{
fki

ϕj

}∞
i=1

converges in L2 (Ω) for any j. Since
∑N

j=1 ϕj ≡ 1 in Ω, we

conclude that {fki
} converges in L2 (Ω), which finishes the proof.

2.5 Resolvent operator

Fix an open set Ω ⊂M and consider the following Dirichlet problem

{
Δu− αu = −f in Ω
u ∈ W 1

0 (Ω)
(2.22)

where α is a real parameter and f is a given function from L2 (Ω). A function u ∈
W 1

0 (Ω) is called a weak solution of (2.22) if Δu = αu + f weakly in Ω; equivalently,
this means that, for any ϕ ∈ D (Ω),

(∇u,∇ϕ)~L2 + α (u, ϕ)L2 = (f, ϕ)L2 . (2.23)

Theorem 2.10 (a) For any α > 0 and for any f ∈ L2 (Ω), the problem (2.22) has a
unique solution u.

(b) Define the resolvent operator Rα by

Rα : L2 (Ω)→ L2 (Ω)

Rαf = u,

where u is the solution of (2.22). Then the operator Rα is linear, bounded with ‖Rα‖ ≤
α−1, injective, positive definite, self-adjoint operator in L2 (Ω).

(c) If Ω is precompact then the operator Rα is compact.

Proof. (a) All terms in (2.23) are bounded linear functionals of ϕ ∈ W 1 (Ω), because

|(f, ϕ)| ≤ ‖f‖L2‖ϕ‖L2 ≤ ‖f‖L2‖ϕ‖W 1

and similarly
|(∇u,∇ϕ)~L2 | ≤ ‖∇u‖~L2 ‖∇ϕ‖~L2 ≤ ‖u‖W 1 ‖ϕ‖W 1 .
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Hence, all terms in (2.23) are continuous in ϕ ∈ W 1 (Ω). If (2.23) holds for all ϕ ∈
D (Ω), then it holds also for all ϕ ∈ W 1

0 (Ω) because D (Ω) is dense in W 1
0 (Ω).

Denote the left hand side of (2.23) by [u, ϕ]α, that is,

[u, ϕ]α := (∇u,∇ϕ)~L2 + α (u, ϕ)L2 ,

and observe that [∙, ∙]α is an inner product in W 1
0 . If α = 1 then [∙, ∙]α coincides with

the standard inner product in W 1
0 . For any α > 0 and u ∈ W 1

0 , we have

min (α, 1) ‖u‖2W 1 ≤ [u, u]α ≤ max (α, 1) ‖u‖2W 1 ,

or shortly

[u, u]α ' ‖u‖
2
W 1 .

Therefore, the space W 1
0 with the inner product [∙, ∙]α is complete.

Rewrite the equation (2.23) in the form

[u, ϕ]α = (f, ϕ)L2 ∀ϕ ∈ W 1
0 (Ω) . (2.24)

Since the right hand side ϕ 7→ (f, ϕ)L2 is a bounded functional of ϕ ∈ W 1
0 , the equation

(2.24) has a unique solution u ∈ W 1
0 (Ω) by the Riesz representation theorem1.

(b) Substituting ϕ = u in (2.23) we obtain

‖∇u‖2L2 + α‖u‖2L2 = (f, u)L2 . (2.25)

It follows that

α‖u‖2L2 ≤ ‖f‖L2‖u‖L2 ,

which implies ‖u‖L2 ≤ α−1‖f‖L2 and, hence,

‖Rα‖ := sup
f∈L2\{0}

‖Rαf‖L2

‖f‖L2

≤ α−1 <∞.

Hence, Rα is bounded.
If u = Rαf = 0 then we obtain from (2.23) that (f, ϕ)L2 = 0 for all ϕ ∈ D (Ω).

Since D (Ω) is dense in L2 (Ω), it follows f = 0. Hence, Rα is injective.
It follows from (2.25) that if f 6= 0 then

(Rαf, f)L2 = (u, f)L2 = ‖∇u‖2L2 + α‖u‖2L2 > 0,

because u 6= 0 by the injectivity. Hence, Rα is positive definite.
Since Rα is a bounded operator, in order to prove that it is self-adjoint it suffices

to prove that it is symmetric, that is

(Rαf, g)L2 = (f,Rαg)L2 for all f, g ∈ L2 (Ω) .

Setting Rαf = u, Rαg = v, and choosing ϕ = v in (2.23), we obtain

(∇u,∇v)~L2 + α (u, v)L2 = (f,Rαg)L2 .
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Since the left hand side is symmetric in u, v, we conclude that the right hand side is
symmetric in f, g, which implies that Rα is symmetric.13.12.16

(c) Consider an operator R̃α defined by

R̃α : L2 (Ω)→ W 1
0 (Ω)

R̃αf = u

It follows from (2.25) that
‖u‖2W 1 ≤ C ‖f‖L2 ‖u‖L2

where C = max (1, α−1). Since ‖u‖L2 ≤ α−1 ‖f‖L2 , we obtain that

‖u‖W 1 ≤ C ′ ‖f‖L2 ,

where C ′ = (Cα−1)
1/2

, and

∥
∥
∥R̃α

∥
∥
∥ := sup

f∈L2(Ω)\{0}

∥
∥
∥R̃αf

∥
∥
∥

W 1

‖f‖L2

≤ C ′ <∞.

Therefore, R̃α is a bounded operator. The operator Rα can be represented as the
following composition

L2 (Ω)
R̃α→ W 1

0 (Ω)
I

↪→L2 (Ω)

where I is the identical embedding. Since R̃α is a bounded operator and I is compact
by Theorem 2.9, we conclude that Rα = I ◦ R̃α is compact.

2.6 Eigenvalue problem

Consider in an open set Ω ⊂M the following weak eigenvalue problem:
{

Δv + λv = 0 weakly in Ω
v ∈ W 1

0 (Ω) \ {0}
(2.26)

where λ ∈ R is a spectral parameter. Any solution v to (2.26) is called an eigenfunction
of Δ in Ω, and the corresponding value of λ – a (Dirichlet) eigenvalue of Δ in Ω.

If λ is an eigenvalue of Δ in Ω, then consider the eigenspace

Eλ =
{
v ∈ W 1

0 (Ω) : Δv + λv = 0
}

.

Clearly, Eλ is a subspace of W 1
0 (Ω). The equation Δv + λv = 0 means that, for any

ϕ ∈ W 1
0 (Ω)

(∇v,∇ϕ)~L2 = λ (v, ϕ)L2 . (2.27)

The both sides of this equation are continuous functionals of v ∈ W 1
0 (Ω), which implies

that Eλ is a closed subspace of W 1
0 (Ω). The multiplicity of λ is defined as dim Eλ (finite

or ∞).

1The Riesz representation theorem says the following: if l is a bounded linear functional on a
Hilbert space H, then the equation

(u, ϕ)H = l (ϕ) ∀ϕ ∈ H

has a unique solution u ∈ H. The proof of this theorem amounts to construction of a vector orthogonal
to the null space of l.
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Theorem 2.11 Assume that Ω is precompact. There exists an orthonormal basis
{vk}

∞
k=1 in L2 (Ω) that consists of eigenfunctions of Δ in Ω; the corresponding eigen-

values λk are non-negative reals, and the sequence {λk} is monotone increasing and
diverges to +∞ as k →∞.

Besides, vk ∈ C∞ (Ω) for all k, the sequence {vk}
∞
k=1 is an orthogonal basis also

in W 1
0 (Ω), and the sequence {λk}

∞
k=1 contains any eigenvalues λ of Δ in Ω exactly

m times where m is the multiplicity of λ. In particular, any eigenvalue has a finite
multiplicity.

Proof. Any eigenfunction of the Laplace operator is C∞ by Corollary 2.8, in particular,
vk ∈ C∞ (Ω).

Let v be an eigenfunction of Δ in Ω with the eigenvalue λ. Rewrite the equation
Δv + λv = 0 in the form

Δv − v = − (1 + λ) v.

By Theorem 2.10, this equation for v ∈ W 1
0 (Ω) is equivalent to

v = R ((1 + λ) v) ,

where R = R1. If 1 + λ = 0 then it follows v = 0 which contradicts to the definition of
an eigenfunction. Therefore, 1 + λ 6= 0, which implies

Rv =
1

1 + λ
v.

Hence, if v is an eigenfunction of Δ in Ω with an eigenvalue λ then v is an eigenfunction
of the operator R in L2 (Ω) with the eigenvalue 1

1+λ
.

Conversely, if v ∈ L2 (Ω) is an eigenfunction of R with an eigenvalue α, that is,

Rv = αv,

then α 6= 0 by the injectivity of R, which implies v = 1
α
Rv ∈ W 1

0 (Ω). Hence, v is an
eigenfunction of Δ in Ω with the eigenvalue λ that is determined by 1

1+λ
= α, that is,

λ = 1
α
− 1.

Recall the Hilbert-Schmidt theorem: if H is a separable ∞-dimensional Hilbert
space and A is a compact self-adjoint operator in H, then there exists an orthonormal
basis {vk}

∞
k=1 in H that consists of the eigenvectors of A, the corresponding eigenvalues

αk are real, and the sequence {αk} goes to 0 as k →∞.
Since R is a self-adjoint, compact operator in L2 (Ω), by the Hilbert-Schmidt theo-

rem there is an orthonormal basis {vk}
∞
k=1 in L2 (Ω) that consists of the eigenfunctions

of R, and if αk denotes the eigenvalue of vk then αk → 0 as k →∞.
Since R is positive definite, we obtain that αk > 0, because

0 < (Rvk, vk)L2 = αk ‖vk‖
2
L2 .

Any sequence of positive reals that goes to 0 can be rearranged to become monotone
decreasing. Hence, by rearranging the sequences {vk} and {αk}, we achieve that {αk}
is monotone decreasing.

It follows that vk is an eigenfunction of Δ in Ω with the eigenvalue λk = 1
αk
− 1.

Clearly, {λk} is monotone increasing and λk → +∞ as k →∞.



2.6. EIGENVALUE PROBLEM 69

Let us show that λk ≥ 0. Indeed, if v is an eigenfunction of Δ in Ω with an
eigenvalue λ, then it follows from Δv = −λv that, for any ϕ ∈ W 1

0 (Ω),

(∇v,∇ϕ)~L2 = λ (v, ϕ)L2 . (2.28)

Substituting ϕ = v, we obtain

λ =
‖∇v‖2~L2

‖v‖2L2

≥ 0. (2.29)

Let mention for the future the following consequence of (2.29):

‖v‖2W 1 = (λ + 1) ‖v‖2L2 . (2.30)

Let us verify that the sequence {vk} is orthogonal in W 1
0 (Ω). Setting in (2.28)

v = vk and ϕ = vl, we obtain, for all k 6= l,

(∇vk,∇vl)~L2 = λk (vk, vl)L2 = 0,

which implies
(vk, vl)W 1 = 0.

In order to show that {vk}
∞
k=1 is a basis in W 1

0 (Ω), it suffices to show that, for any
ϕ ∈ W 1

0 (Ω), if (vk, ϕ)W 1 = 0 for any k ≥ 1, then ϕ = 0. Indeed, by (2.28) we have

(∇vk,∇ϕ)~L2 = λk (vk, ϕ)L2

whence
(vk, ϕ)W 1 = (∇vk,∇ϕ)~L2 + (vk, ϕ)L2 = (λk + 1) (vk, ϕ)L2 .

Since (vk, ϕ)W 1 = 0, it follows that also (vk, ϕ)L2 = 0. By the completeness of {vk} in
L2 (Ω) we conclude that ϕ = 0.

Before we prove the remaining claim about the multiplicity of eigenvalues, let us
verify that if v and w are two eigenfunctions with distinct eigenvalues λ and μ, then
u and w are orthogonal in L2 (Ω) and W 1 (Ω). Indeed, setting ϕ = w in (2.28), we
obtain

(∇v,∇w)~L2 = λ (v, w)L2 (2.31)

and in the same way
(∇v,∇w)~L2 = μ (v, w)L2

whence
(λ− μ) (v, w)L2 = 0.

Since λ 6= μ, we conclude that (v, w)L2 = 0. It follows from (2.31) that also (u,w)W 1 =
0.

Assume that λ is an eigenvalue of Δ with multiplicity m, that is, dim Eλ = m.
In the next argument we regard Eλ as a subspace of W 1

0 (Ω) and use only W 1 inner
product. Assume that λ occurs l times in the sequence {λk}

∞
k=1, say, at (necessarily

consecutive) positions i + 1, ..., i + l. Since λk → ∞, we have l < ∞. The functions
vi+1, ..., vi+l belong to Eλ and are linearly independent, which implies l ≤ m. Let
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us show that l = m. Assume from the contrary that l < m. Then there is a non-
zero element w ∈ Eλ that is orthogonal to span{vi+1, ..., vi+l}. We claim that w is
orthogonal to all vk. Indeed, w is orthogonal to vi+1, ..., vi+l by construction, and w is
orthogonal to all other vk because their eigenvalues are different from λ. However, a
non-zero element of W 1

0 (Ω) cannot be orthogonal to all vk because {vk}
∞
k=1 is a basis

in W 1
0 (Ω).

In what follows we denote by {λk (Ω)}∞k=1 the sequence of the eigenvalues of Δ in
Ω in the (non-strictly) increasing order, that is, λk (Ω) ≤ λk+1 (Ω).

The sequence {λk (Ω)}∞k=1 contains certain information about the domain Ω (and
about the metric tensor g in Ω). There was a famous question of Mark Kac stated in
1966 as follows:

“Can one hear the shape of a drum?”

The point is that if we consider Ω as a drum then the frequencies of vibration
of the drum when hit are exactly

√
λk (Ω) (provided the metric tensor g is properly

chosen depending on the material of the drum). Therefore, hearing the overtones of
the drum allows (at least theoretically) to recover the sequence {λk (Ω)}, and the main
question is whether this sequence contains enough information to restore Ω and g, up
to isometry. In general the answer is negative, but constructing counterexamples is
quite difficult.

2.7 The bottom eigenvalue

As before, let Ω be a precompact open subset of M . The value λ1 (Ω) is called the
bottom eigenvalue of Ω.

Theorem 2.12 Let (M, g, μ) be a connected weighted manifold. If Ω ⊂ M is a non-
empty relatively compact open set such that M \ Ω is non-empty then λ1 (Ω) > 0.

In general λ1 (Ω) = 0 is possible, for example, if M is a compact manifold (say, Sn)
and Ω = M . Indeed, in this case v ≡ 1 ∈ D (Ω) is an eigenfunction of Ω with the
eigenvalue λ = 0 so that λ1 (Ω) = 0. This example shows also that the condition that
M \ Ω is non-empty is essential for the positivity of λ1 (Ω).

The assumption about the connectedness of M is also essential. Indeed, let M
consist of two disjoint copies of Sn, so that M is disconnected Let Ω be one of the
copies of Sn. Then M \ Ω is non-empty but still λ1 (Ω) = 0 because again ϕ ≡ 1 is an
eigenfunction of Ω with the eigenvalue λ = 0.

Recall that if Ω is a bounded domain in Rn then λ1 (Ω) > 0 can be proved by using
Friedrich’s inequality. On a general manifold this tool is not available, so we have to
use a different argument.15.12.16

Proof. Assume that λ1 (Ω) = 0 so that there is an eigenfunction v of Δ in Ω with the
eigenvalue 0, that is, v ∈ W 1

0 (Ω) and Δv = 0 weakly in Ω. By Corollary 2.8 we have
v ∈ C∞ (Ω). We will prove that v = 0 in Ω which will contradict to the fact that v is
an eigenfunction. It suffices to prove that v = 0 in any connected component. Hence,
we can assume without loss of generality, that Ω is connected.
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By (2.29) we have ‖∇v‖~L2 = 0 that is, ∇v = 0 in Ω. Since Ω is connected, we
conclude that v ≡ const in Ω. If v 6= 0 in Ω then we can assume without loss of
generality, that v ≡ 1 in Ω.

The set Ω is closed and its complement is non-empty by hypothesis. The sets Ω

and M \ Ω are closed and their union is M . Since M is connected, these sets cannot

be disjoint. Hence, there is a point x0 that belongs to both Ω and M \ Ω.
Let U be any connected open neighborhood of x0. Note that, by the choice of x0,

the set U intersects both Ω and M \Ω. Consider the set Ω′ = Ω∪U that is a connected
open set. Note that, by construction, Ω′ \ Ω is non-empty.

Since v ∈ W 1
0 (Ω), extending v to Ω′ by setting v = 0 in Ω′ \ Ω, we obtain that

v ∈ W 1
0 (Ω′). Since v = 0 on Ω′ \Ω, we have also ∇v = 0 in Ω′ \Ω a.e. (EDE, Lemma

1.5). Since also ∇v = 0 in Ω, we conclude that ∇v = 0 in Ω′. This implies that

〈∇v,∇ϕ〉 = 0 ∀ϕ ∈ D (Ω) ,

that is, Δv = 0 weakly in Ω′. It follows that v ∈ C∞ (Ω′). Since ∇v = 0 in Ω′, we
conclude that v ≡ const in Ω′, which contradicts to the facts that v = 1 in Ω and v = 0
in Ω′ \ Ω.
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Chapter 3

The heat semigroup in compact
domains

As before, (M, g, μ) is a weighted manifold and Δ is the weighted Laplace operator on
M .

3.1 The heat equation and caloric functions

Let I be an interval in R. Consider in I ×M the heat equation

∂u

∂t
= Δu,

where u = u (t, x) is a function of t ∈ I and x ∈ M . This equation can be understood
in the classical sense: the function u (t, x) is differentiable in t, is C2 in x, and, for all
(t, x) ∈ I ×M , ∂u

∂t
(t, x) = Δu (t, x).

However, we will understand the heat equation in a weak sense, and the solution u
will be regarded as a path in L2 (M).

Definition. For a function u : I → L2 (M), define its L2-derivative u′ (t) ∈ L2 (M) at
t ∈ I by

u′ (t) = lim
s→0

u (t + s)− u (t)

s
,

where the limit is understood in the norm of L2 (M), that is,

∥
∥
∥
∥
u (t + s)− u (t)

s
− u′ (t)

∥
∥
∥
∥

L2

→ 0 as s→ 0.

Notation for the L2-derivative: u′ (t) or du
dt

.
Notation for function u: for any t ∈ I, u (t) is an element of L2 (M), so that u (t) (x)

makes sense. For simplicity, we use instead the notation u (t, x). Then u (t, ∙) has the
same meaning as u (t).

Definition. A function u : I → L2 (M) is called caloric in I ×M if

1. u is L2-differentiable at any t ∈ I;

73
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2. for any t ∈ I, we have u (t) ∈ W 1 (M) and Δu (t) ∈ L2 (M), where Δ is under-
stood in the weak sense;

3. for any t ∈ I, we have du
dt

= Δu (t) .

In this case we also say that the heat equation du
dt

= Δu is satisfied weakly in I×M .

Example. Assume that v ∈ W 1 (M) satisfies weakly in M the equation

Δv + λv = 0.

Then the function u (t, x) = e−λtv (x) is caloric in R ×M. Indeed, u can be regarded
as a mapping

u : R→ L2 (M)

u (t) = e−λtv

Since v does not depend in t, we obtain

u′ (t) = −λe−λtv.

On the other hand,

Δu = e−λtΔv = −λe−λtv,

whence u′ = Δu follows.

3.2 The mixed problem

Let Ω be an open subset of a weighted manifold M . Since Ω can be regarded as a
manifold, the above notion of a caloric function is defined in I × Ω for any interval
I ⊂ R.

Consider the following initial-boundary problem (shortly, mixed problem) in R+×Ω:






du
dt

= Δu weakly in R+ × Ω,
u (t, ∙) ∈ W 1

0 (Ω) for any t > 0,

u (t, ∙)
L2

→ f as t→ 0+,

(3.1)

where f ∈ L2 (Ω) is a given function. In other words, we look for a caloric function in
R+ × Ω that satisfies the appropriately understood boundary condition u = 0 on ∂Ω
and the initial condition u|t=0 = f .

Theorem 3.1 The mixed problem (3.1) has at most one solution.

Proof. Assuming that u solves the mixed problem, consider the function

J(t) := ‖u (t, ∙) ‖2L2 = (u (t) , u (t))
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and prove that it is monotone decreasing in t ∈ (0, +∞). For that, we use the following
product rule for L2-derivatives: if u (t) and v (t) are L2-differentiable functions then
the numerical function t 7→ (u(t), v(t)) is differentiable and

d

dt
(u, v) = (

d

dt
u, v) + (u,

d

dt
v),

which is proved in the same way, as the usual product rule for scalar functions (see
Exercise 65). In particular, we obtain that the function J (t) is differentiable on (0, +∞)
and

J ′ (t) =
d

dt
(u, u) = 2(

du

dt
, u) = 2 (Δu, u) .

By the definition of Δu, we have, for any ϕ ∈ W 1
0 (Ω),

(Δu, ϕ) = −〈∇u,∇ϕ〉 .

Since u ∈ W 1
0 (Ω), setting here ϕ = u we obtain

(Δu, u) = −〈∇u,∇u〉 ≤ 0,

whence J ′ (t) ≤ 0 follows. Hence, J (t) is a monotone decreasing function.
To prove the uniqueness of the solution is suffices to show that f = 0 implies u = 0.

Indeed, if u (t)
L2

→ 0 as t → 0+ then also J (t) → 0. Since J (t) is non-negative and
decreasing, we conclude J (t) ≡ 0 for t > 0 and u (t) = 0, which was to be proved.

Now we prove the existence of solution of (3.1) in precompact domains using the
method of separation of variables.

Theorem 3.2 Let Ω be precompact. Let {vk}
∞
k=1 be an orthonormal basis in L2 (Ω)

that consists of eigenfunctions of Δ in Ω, and let {λk}
∞
k=1 be the sequence of the cor-

responding eigenvalues, in the increasing order. For any f ∈ L2 (Ω), consider the
eigenfunction expansion

f =
∞∑

k=1

akvk

and, for any t ≥ 0, set

u (t) =
∞∑

k=1

e−λktakvk.

Then u (t) solves the mixed problem (3.1).

Let us first prove two lemmas.

Lemma 3.3 Let {ak}
∞
k=1 be a sequence of reals.

(a) If
∞∑

k=1

λka
2
k <∞, (3.2)

then the series
∑

akvk converges in W 1 (Ω) and, hence,

f :=
∞∑

k=1

akvk ∈ W 1
0 (Ω)
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and

‖f‖2W 1 =
∞∑

k=1

(λk + 1) a2
k. (3.3)

(b) If
∞∑

k=1

λ2
ka

2
k <∞ (3.4)

then

Δf = −
∞∑

k=1

λkakvk ∈ L2 (Ω) (3.5)

By Exercise 42, the condition (3.2) is also necessary for f ∈ W 1
0 (Ω), and (3.4) is

also necessary for Δf ∈ L2 (Ω).

Proof. (a) Since the sequence {vk} is orthonormal in L2 (Ω), the series

∞∑

k=1

akvk

converges in L2 if and only if

∞∑

k=1

‖akvk‖
2
L2 =

∞∑

k=1

a2
k <∞.

The sequence {vk} is orthogonal also in W 1
0 (Ω) and, by (2.30),

‖vk‖W 1 =
√

λk + 1.

Hence, by (3.2)
∞∑

k=1

‖akvk‖
2
W 1 =

∞∑

k=1

a2
k (λk + 1) <∞,

which implies that the series
∑

akvk converges in W 1 and, hence, f ∈ W 1
0 (Ω) . Then

(3.3) holds by the Parseval identity.
(b) Since (3.4) implies (3.2), we have f ∈ W 1

0 (Ω). Consider the partial sums

fN =
N∑

k=1

akvk and gN =
N∑

k=1

λkakvk.

We have

ΔfN =
N∑

k=1

akΔvk = −
N∑

k=1

λkakvk = −gN .

where we have used Δvk = −λkvk. Hence, for any ϕ ∈ W 1
0 (Ω), we have

(∇fN ,∇ϕ)~L2 = (gN , ϕ)L2 . (3.6)
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Letting N →∞ and using that fN
W 1

→ f and

gN
L2

→ g :=
∞∑

k=1

λkakvk,

we obtain
(∇f,∇ϕ)~L2 = (g, ϕ)L2 ,

that is, Δf = −g, which was to be proved.
20.12.16

Corollary 3.4 Let f =
∑

akvk ∈ L2 (Ω). If, for some non-negative integer j,

∞∑

k=1

λ2j+1
k a2

k <∞ (3.7)

then

Δjf = (−1)j
∞∑

k=1

λj
kakvk ∈ W 1

0 (Ω) ,

where the series converges in W 1 (Ω).

Proof. The case j = 0 is equivalent to Lemma 3.3(a).
Inductive step from j to j + 1. By the inductive hypothesis, we have

g := Δjf = (−1)j
∞∑

k=1

λj
kakvk =

∞∑

k=1

bkvk ∈ W 1
0 (Ω) ,

where
bk = (−1)j λj

kak.

Since
∞∑

k=1

λ2
kb

2
k =

∑
λ2j+2

k a2
k <∞,

we obtain by Lemma 3.3(b) that

Δg = −
∞∑

k=1

λkbkvk ∈ L2 (Ω) .

Moreover, since
∞∑

k=1

λk (λkbk)
2 =

∞∑

k=1

λ2j+3
k a2

k <∞,

we obtain by Lemma 3.3(a) that Δg ∈ W 1
0 (Ω). It remains to observe that

Δj+1f = Δg = (−1)j+1
∞∑

k=1

λj+1
k akvk,

which finishes the inductive step.
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Lemma 3.5 (Dominated convergence theorem) Consider a sequence of functions {γk (t)}∞k=1

defined on some interval I containing 0. Assume that all γk (t) are continuous at t = 0
and that the sequence {γk} is uniformly bounded on I, that is,

C := sup
k∈N

sup
t∈I

γk (t) <∞.

Let
∑∞

k=1 hk be a convergent orthogonal series in a Hilbert space H. Then

∞∑

k=1

γk (t) hk →
∞∑

k=1

γk (0) hk as t→ 0,

where the converges is in the norm of H.

We will apply this lemma for H = L2 and for H = W 1
0 .

Proof. The convergence of
∑

hk is equivalent to

∞∑

k=1

‖hk‖
2 <∞.

Since all functions γk (t) are uniformly bounded, we obtain that

∞∑

k=1

γk (t)2 ‖hk‖
2 <∞,

which implies that the series

w (t) :=
∞∑

k=1

γk (t) hk

converges for any t ∈ I. We need to prove that w (t)→ w (0) as t→ 0. We have

w (t)− w (0) =
∞∑

k=1

(γk (t)− γk (0)) hk,

whence by the Parseval identity

‖w (t)− w (0)‖2L2 =
∞∑

k=1

(γk (t)− γk (0))2 ‖hk‖
2 .

To prove that this goes to 0 as t→ 0, let us fix some ε > 0 and choose N so big that

∞∑

k=N

‖hk‖
2 < ε.

Then

‖w (t)− w (0)‖2L2 =
N∑

k=1

(γk (t)− γk (0))2 ‖hk‖
2

+
∞∑

k=N

(γk (t)− γk (0))2 ‖hk‖
2 .
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The first (finite) sum goes to 0 as t → 0 by the continuity of all γk at 0. The second
sum is bounded by

∞∑

k=N

(2C)2 ‖hk‖
2 = 4C2

∞∑

k=N

‖hk‖
2 ≤ 4C2ε.

It follows that
lim sup

t→0
‖w (t)− w (0)‖2 ≤ 4C2ε.

Since ε is arbitrary, we obtain w (t)
H
→ w (0).

Proof of Theorem 3.2. Fix t > 0. By Lemma 3.3(a), in order to prove that
u (t) ∈ W 1

0 (Ω) , it suffices to verify that

∞∑

k=1

λke
−2λkta2

k <∞,

and the latter is true because

sup
λ≥0

λe−2λt =
1

t
sup
λ≥0

(λt) e−2λt =
1

t
sup
ξ≥0

ξe−2ξ <∞ (3.8)

and
∞∑

k=1

a2
k <∞.

Let us show that Δu (t) ∈ L2 (Ω) for all t > 0. By Lemma 3.3(b), it suffices to
verify that

∞∑

k=1

λ2
ke

−2λkta2
k <∞,

and this is true because similarly to (3.8)

sup
λ≥0

λ2e−2λt <∞.

Besides, we obtain by (3.5) that

Δu (t) = −
∞∑

k=1

λke
−λktakvk.

Let us show that u (t)
L2

→ f as t→ 0. Indeed, since

e−λkt → 1 as t→ 0

and all functions e−λkt are bounded by 1 for all k and t ≥ 0, we conclude by Lemma
3.5

u (t) =
∞∑

k=1

ake
−λktvk

L2

→
∞∑

k=1

akvk = f.
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Let us compute du
dt

at any t > 0. Observe that

u (t + s)− u (t)

s
=

∞∑

k=1

e−λk(t+s) − e−λkt

s
akvk

=
∞∑

k=1

e−sλk − 1

s
e−λktakvk. (3.9)

Fix t > 0 and consider the functions

γk (s) =
e−sλk − 1

s
e−λkt.

Clearly, we have as s→ 0

γk (s)→ −λke
−λkt =: γk (0) .

In order to be able to apply Lemma 3.5, we need to verify that the functions γk (s) are
uniformly bounded for all k and for all s near 0. This is equivalent to the following:
there is ε > 0 such that

sup
λ≥0

sup
s∈[−ε,ε]

e−sλ − 1

s
e−λt <∞.

In fact, we will take ε = t/2. Let us apply the inequality

∣
∣eθ − 1

∣
∣ ≤ |θ| e|θ|,

for any θ ∈ R, which follows from

∣
∣eθ − 1

∣
∣ =

∣
∣
∣
∣

∫ θ

0

eξdξ

∣
∣
∣
∣ ≤ |θ| e

|θ|.

Setting here θ = −λs, we obtain

∣
∣e−sλ − 1

∣
∣ ≤ λ |s| eλ|s|,

whence, for all s ∈ [−t/2, t/2],

∣
∣
∣
∣
e−λs − 1

s
e−tλ

∣
∣
∣
∣ ≤ λe−λteλ|s| ≤ λe−λt/2.

Therefore, we have

sup
λ≥0

sup
s∈[−t/2,t/2]

∣
∣
∣
∣
e−λs − 1

s
e−tλ

∣
∣
∣
∣ ≤ sup

λ≥0
λe−λt/2 <∞. (3.10)

Returning to (3.9), we obtain

u (t + s)− u (t)

s

L2

→ −
∞∑

k=1

λke
−λktakvk,
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whence
du

dt
= −

∞∑

k=1

λke
−λktakvk = Δu (t) ,

which finishes the proof.

Define for any t ≥ 0 the operator PΩ
t : L2 (Ω) → L2 (Ω) as follows: if f =∑∞

k=1 akvk ∈ L2 (Ω), then

PΩ
t f =

∞∑

k=1

e−λktakvk. (3.11)

Theorem 3.6 The operators PΩ
t have the following properties:

(a)
∥
∥PΩ

t

∥
∥ ≤ 1;

(b) PΩ
t → id as t→ 0+ in the strong operator topology;

(c) PΩ
t PΩ

s = PΩ
t+s (the semigroup identity);

(d) PΩ
t is self-adjoint.

One says that the family
{
PΩ

t

}
is a continuous contraction semigroup in L2 (Ω). 10.01.17

Proof. (a) For any f =
∑∞

k=1 akvk ∈ L2 (Ω), we have

‖f‖2L2 =
∞∑

k=1

a2
k

and
∥
∥PΩ

t f
∥
∥2

L2 =
∞∑

k=1

e−2λkta2
k ≤

∞∑

k=1

a2
k = ‖f‖2L2 ,

whence
∥
∥PΩ

t

∥
∥ ≤ 1.

(b) We already know that, for any f ∈ L2 (Ω), PΩ
t f

L2

→ f which exactly means that
PΩ

t → id in the strong operator topology (but not in the operator norm).
(c) We have, for any f ∈ L2 (Ω) as above,

PΩ
t PΩ

s f = PΩ
t

(
∞∑

k=1

e−λksakvk

)

=
∞∑

k=1

e−λkte−λksakvk

=
∞∑

k=1

e−λk(t+s)akvk

= PΩ
t+sf,

which proves the claim.
(d) For f =

∑∞
k=1 akvk ∈ L2 (Ω) and g =

∑∞
k=1 bkvk ∈ L2 (Ω), we have

(Ptf, g)L2 =
∞∑

k=1

(
e−λktak

)
bk =

∞∑

k=1

ak

(
e−λktbk

)
=
(
f, PΩ

t g
)

L2 ,

which means that PΩ
t is self-adjoint.
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3.3 Smoothness properties

Theorem 3.7 Let Ω be a precompact open subset of M . For any f ∈ L2 (Ω) and t > 0,
the function PΩ

t f belongs to C∞ (Ω). Moreover, for any compact set K ⊂ Ω and any
t > 0,

∥
∥PΩ

t f
∥
∥

C(K)
≤ C

(
1 + t−1

)n
4
+1
‖f‖L2 , (3.12)

where C = C (Ω, K, g, D, n) .

Proof. Let f =
∑∞

k=1 akvk, so that

u (t) := PΩ
t f =

∞∑

k=1

e−λktakvk.

By Corollary 3.4 we obtain that, for any non-negative j,

Δju (t) = (−1)j
∞∑

k=1

λj
ke

−λktakvk ∈ W 1
0 (Ω) , (3.13)

because
∞∑

k=1

λ2j+1
k

(
e−λktak

)2
<∞, (3.14)

and the latter is true because
∑

a2
k <∞ and, for any q ≥ 0,

sup
λ≥0

λqe−2λt = sup
λ≥0

t−q (λt)q e−2λt = t−q sup
ξ≥0

ξqe−2ξ =
Cq

tq
<∞. (3.15)

By Theorem 2.7, we conclude that u (t) ∈ C∞ (Ω) for any t > 0.
Let us prove the estimate (3.12). By Lemma 3.3 we have

∥
∥Δju

∥
∥2

W 1 =
∞∑

k=1

(λk + 1)
(
λj

ke
−λktak

)2
.

Since
∑

a2
k = ‖f‖2L2 and by (3.15)

sup
λ≥0

(λ + 1)
(
λje−λt

)2
≤ sup

λ≥0
λ2j+1e−2λt + sup

λ≥0
λ2je−2λt ≤

C2j+1

t2j+1
+

C2j

t2j
≤

C ′
j (1 + t−1)

t2j
,

we obtain
∥
∥Δju

∥
∥2

W 1 ≤
C ′

j (1 + t−1)

t2j
‖f‖2L2 .

By Theorem 2.7, we have the following estimate

‖u‖C(K) ≤ C

k∑

j=0

∥
∥Δju

∥
∥

W 1(Ω)
,
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provided 2k + 1 > n
2
. Since

k∑

j=0

∥
∥Δju

∥
∥

W 1(Ω)
≤ C

k∑

j=0

(1 + t−1)
1/2

tj
‖f‖L2

≤ C
(
1 + t−1

)1/2 (
1 + t−1

)k
‖f‖L2

= C
(
1 + t−1

)k+1/2
‖f‖L2 ,

it follows
‖u‖C(K) ≤ C

(
1 + t−1

)k+1/2
‖f‖L2 .

Choosing minimal k with 2k + 1 > n/2, that is, 2k − 1 ≤ n/2 and, hence,

k +
1

2
≤

n

4
+ 1,

whence (3.12) follows.

Theorem 3.8 Under the conditions of Theorem 3.7, the function u (t, x) = PΩ
t f (x)

belongs to C∞ (R+ × Ω), that is, u (t, x) is smooth jointly in (t, x). Moreover, u satisfies
in R+ × Ω the heat equation ∂tu = Δu in the classical sense.

Proof. By Theorem 3.7, the function PΩ
t f is smooth for any t > 0, so that u (t, x) =

Ptf (x) is defined pointwise for all t > 0 and x ∈ Ω. Let us prove first that u is jointly
continuous in (t, x). For that it suffices to show that u (t, x) is continuous in t locally
uniformly in x. In fact, we will prove that, for any t > 0, for any positive integer m
and for any compact set K ⊂ Ω that is covered by a chart U ,

u (t + s, ∙)
Cm(K)
−→ u (t, ∙) as s→ 0, (3.16)

which will settle the joint continuity of u.
By Theorem 2.7, we have

‖v‖Cm(K) ≤ C

k∑

j=0

∥
∥Δjv

∥
∥

W 1(Ω)

provided 2k + 1 > m + n
2

and Δjv ∈ W 1 (Ω) for all j ≤ k. Hence, in order to prove
(3.16) it suffices to show that, for any non-negative integer j and for any t > 0,

Δju (t + s, ∙)
W 1(Ω)
−→ Δju (t, ∙) as s→ 0. (3.17)

As in the proof of Theorem 3.7, we have, for any non-negative integer j,

Δju (t, ∙) = (−1)j
∞∑

k=1

λj
ke

−λktakvk ∈ W 1
0 (Ω) ,

whence

Δju (t + s, ∙) = (−1)j
∞∑

k=1

λj
ke

−λk(t+s)akvk

= (−1)j
∞∑

k=1

e−λk(s+t/2)λj
ke

−λkt/2akvk. (3.18)
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By Lemma 3.3(a) and (3.14), the series

∞∑

k=1

λj
ke

−λkt/2akvk

converges in W 1
0 (Ω). Since the functions

γk (s) = e−λk(s+t/2)

are uniformly bounded for all k and s ∈ [−t/2, t/2], by Lemma 3.5 we can pass to the
limit under the summation sign in (3.18) as s → 0, which yields (3.17) and, hence,
(3.16).

By (3.16), for any partial derivative in x-variables,

∂α =
∂|α|

(∂x1)α1 (∂x2)α2 ... (∂xn)αn
,

we obtain

∂αu (t + s, ∙)
C(K)
−→ ∂αu (t, ∙) as s→ 0,

which implies that ∂αu is jointly continuous in (t, x).
Next, let us prove the existence of the partial derivative ∂tu. For that let us verify

that, for any t > 0,

u (t + s, ∙)− u (t, ∙)
s

Cm(K)
−→ Δu (t, ∙) as s→ 0 (3.19)

(note for comparison, that in the proof of Theorem 3.2, we proved a similar convergence
in the sense of L2 (Ω)). By Theorem 2.7 it suffices to prove that, for any non-negative
integer j,

Δj u (t + s, ∙)− u (t, ∙)
s

W 1(Ω)
−→ Δj+1u (t, ∙) as s→ 0. (3.20)

By (3.18), we have

Δj u (t + s, ∙)− u (t, ∙)
s

= (−1)j
∞∑

k=1

λj
k

e−λk(t+s) − e−λkt

s
akvk

= (−1)j+1
∞∑

k=1

1− e−λks

s
e−λkt/2λj

ke
−λkt/2akvk.

Observe that the series
∞∑

k=1

λj
ke

−λkt/2akvk

converges in W 1
0 (Ω) and the functions

γk (s) =
1− e−λks

s
e−λkt/2

are uniformly bounded in k and s ∈ [−t/4, t/4] (cf. the estimate (3.10) from the proof
of Theorem 3.2). Since

γk (s)→ λke
−λkt/2 as s→ 0,
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we conclude by Lemma 3.5 that

Δj u (t + s, ∙)− u (t, ∙)
s

W 1

→ (−1)j+1
∞∑

k=1

λke
−λkt/2λj

ke
−λkt/2akvk

= (−1)j+1
∞∑

k=1

λj+1
k e−λktakvk = Δj+1u (t, ∙) ,

which proves (3.20) and, hence, (3.19). 12.01.17

It follows from (3.19) that ∂tu exists in the classical sense for all t > 0 and x ∈M ,
and

∂tu = Δu. (3.21)

In particular, ∂tu is continuous in (t, x). Moreover, (3.19) also yields that, for any
partial derivative ∂α in x,

∂αu (t + s, ∙)− ∂αu (t, ∙)
s

C(K)
−→ ∂αΔu (t, ∙) ,

which implies that ∂t (∂αu) exists and

∂t (∂αu) = ∂αΔu. (3.22)

Consequently, ∂t (∂αu) is continuous in (t, x).
Finally, we will prove that an arbitrary partial derivative of u is continuous in

R+ × Ω. It suffices to prove the latter in the domain (s,∞) × Ω, for any s > 0. Fix
s > 0, a positive integer j, and consider the function

w (t) := Δju (t + s) = (−1)j
∞∑

k=1

λj
ke

−λk(t+s)akvk =
∞∑

k=1

e−λktbkvk

where
bk = (−λk)

j e−λksak.

Since
∑

b2
k <∞, all the above arguments work for function w instead of u. Applying

(3.22) to the function w instead of u, we obtain that, in (s,∞)× Ω,

∂t

(
∂αΔju

)
= ∂α

(
Δj+1u

)
. (3.23)

It follows that

∂j
t (∂αu) = ∂j−1

t (∂αΔu) = ∂j−2
t

(
∂αΔ2u

)
= ... = ∂αΔju.

Applying this identity successively to an arbitrary partial derivative of the form

∂j1
t ∂α1∂j2

t ∂α2 ....∂
jp−1

t ∂αp−1∂
jp

t ∂αpu,

we bring this derivative to the form ∂αΔju where α = α1+...+αp and j = j1+...+jp. It
follows that any partial derivative of u exists and is continuous in (t, x), which finishes
the proof.
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3.4 Weak maximum principle

So far we have studied the following properties of the weighted Laplace operator:

• spectral properties, that is, eigenvalues and eigenfunctions;

• smoothness properties (for example, smoothness of solutions of mixed problems)

In this section, we consider properties of different kind, related to the maximum
principle.

The spectral properties of more general differential and integral operators are stud-
ied in the spectral theory. The smoothness properties are characteristic to a larger
class of hypoelliptic operators. Finally, the properties based on the maximum principle,
are typical for Markov operators that are generators of Markov processes.

The Laplace operator is especially important as it belongs to the intersection of
these areas of Mathematics.

Definition. A function u : I → L2 (Ω) is called subcaloric in I × Ω if

1. u is L2-differentiable at any t ∈ I;

2. for any t ∈ I, we have u (t) ∈ W 1 (Ω) and Δu (t) ∈ L2 (Ω), where Δ is understood
in the weak sense;

3. for any t ∈ I, we have
du

dt
≤ Δu (t) . (3.24)

In the same way, u is called supercaloric if

du

dt
≥ Δu (t) .

Definition. For functions u, v ∈ W 1 (Ω) we write

u ≤ v mod W 1
0 (Ω) (3.25)

if there is a function w ∈ W 1
0 (Ω) such that u ≤ v + w in Ω.

The condition (3.25) can be regarded as a weak version of “u ≤ v on ∂Ω”.

Theorem 3.9 (Weak parabolic maximum principle) Let u be a subcaloric function in
(0, T )× Ω such that

(i) for any t ∈ (0, T ),
u (t) ≤ 0 mod W 1

0 (Ω) . (3.26)

(ii) u (t)+

L2(Ω)
−→ 0 as t→ 0.

Then u (t) ≤ 0 for all t ∈ (0, T ) .
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The condition (i) can be regarded as a weak version of “u (t) ≤ 0 on ∂Ω” and (ii)
is a weak version of “u (0) ≤ 0”.

Theorem 3.9 can be reformulated as the minimum principle for supercaloric func-
tions as follows. Assume that u (t) is supercaloric in (0, T )× Ω such that

(i) u (t) ≥ 0 mod W 1
0 (Ω) for any t ∈ (0, T ) ;

(ii) u (t)−
L2

→ 0 as t→ 0.

Then u (t) ≥ 0 for all t ∈ (0, T ).

Example. Assuming that Ω is precompact, let u (t) be a solution of the weak mixed
problem (3.1) in Ω with the initial function f ∈ L2 (Ω). The function u is caloric in
R+ × Ω and, hence, supercaloric. Moreover, we have u (t) ∈ W 1

0 (Ω) for all t > 0, that

is, u (t) = 0 mod W 1
0 (Ω). We also know that u (t)

L2

→ f as t→ 0. In particular, if f ≥ 0

then u (t)−
L2

→ 0 as t→ 0. Hence, by the minimum principle we conclude that u (t) ≥ 0
for all t > 0. Similarly, if f ≤ 0 then u (t) ≤ 0. Consequently, if f = 0 then u = 0,
which recovers the uniqueness result of Theorem 3.1.

For the proof of Theorem 3.9, we need the following lemma.

Lemma 3.10 If u ∈ W 1 (Ω) then the relation

u ≤ 0 mod W 1
0 (Ω) (3.27)

holds if and only if u+ ∈ W 1
0 (Ω).

Proof. In the proof we use the following facts:

• if v ∈ W 1
0 (Ω) then also v+ ∈ W 1

0 (Ω) (EDE, Lemma 1.7).

• if vk ∈ W 1
0 (Ω) and vk

W 1

→ v ∈ W 1
0 (Ω) then also (vk)+

W 1

→ v+ (see Exercises).

If u+ ∈ W 1
0 (Ω) then (3.27) is satisfied because u ≤ u+. Conversely, we need to

prove that if u ≤ w for some w ∈ W 1
0 (Ω) then u+ ∈ W 1

0 (Ω).
Assume first that w ∈ D (Ω), and let ϕ be a cutoff function of supp w in Ω (see Fig.

3.1). Then we have the following identity:

u+ = ((1− ϕ) w + ϕu)+ . (3.28)

Indeed, if ϕ = 1 then (3.28) is obviously satisfied. If ϕ < 1 then w = 0 and, hence,
u ≤ 0, so that the both sides of (3.28) vanish. Since ϕu ∈ W 1

0 (Ω) and (1 − ϕ) w ∈
D (Ω), it follows that

(1− ϕ) w + ϕu ∈ W 1
0 (Ω) .

By (3.28) we conclude that u+ ∈ W 1
0 (Ω) .

For a general w ∈ W 1
0 (Ω), let {wk} be a sequence of functions from D (Ω) such

that wk
W 1

−→ w. Then we have

uk := u + (wk − w) ≤ wk,
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Figure 3.1: Functions u,w, ϕ

which implies by the first part of the proof that (uk)+ ∈ W 1
0 . Since uk

W 1

→ u, it follows

that (uk)+

W 1

→ u+ (Exercise 67), whence we conclude that u+ ∈ W 1
0 .

17.01.17
Proof of Theorem 3.9. The inequality (3.24) means that, for any fixed t ∈ (0, T )
and any non-negative function v ∈ D (Ω),

(u′, v)L2 ≤ − (∇u,∇v)~L2 , (3.29)

where u′ ≡ du
dt

. Clearly, (3.29) extends to all non-negative functions v ∈ W 1
0 (Ω).

Let a function ϕ ∈ C∞ (R) be such that, for some positive constant C,





ϕ (s) = 0, s ≤ 0,
ϕ (s) > 0, s > 0,
0 ≤ ϕ′ (s) ≤ C, s ∈ R.

(3.30)

By (3.26) and Lemma 3.10, we have u (t)+ ∈ W 1
0 (Ω), for any t ∈ (0, T ). Since ϕ is

Lipschitz and vanishes at 0, we obtain that the function ϕ (u (t)) = ϕ
(
u (t)+

)
is also

in W 1
0 (Ω) and

∇ϕ (u) = ϕ′ (u+)∇u+ = ϕ′ (u)∇u,

where we drop the argument t for simplicity (EDE, Lemma 1.6). Setting v = ϕ (u (t))
in (3.29), we obtain

(u′, ϕ (u))L2 ≤ − (∇u, ϕ′ (u)∇u)~L2 = −
∫

Ω

ϕ′ (u) |∇u|2 dμ ≤ 0. (3.31)

Let ψ ∈ C∞ (R) be another function satisfying (3.30). Using the product rule and the
chain rule for L2 derivatives (Exercises 65,66), we obtain

d

dt
(u, ψ (u))L2 = (u′, ψ (u))L2 + (u, ψ′ (u) u′)L2

= (u′, ψ (u))L2 + (u′, ψ′ (u) u)L2

= (u′, ψ (u) + ψ′ (u) u)L2 . (3.32)

Now choose ψ from the condition that

ψ (s) + ψ′ (s) s = ϕ (s) ∀s ∈ R,



3.4. WEAK MAXIMUM PRINCIPLE 89

that is, (ψ (s) s)′ = ϕ (s) , which gives

ψ (s) =
1

s

∫ s

0

ϕ (t) dt. (3.33)

Note that the function ψ defined by (3.33) is C∞ smooth on R because

ψ (s) =
1

s

∫ 1

0

ϕ (sξ) d (sξ) =

∫ 1

0

ϕ (sξ) dξ.

It is easy to see from (3.33) that ψ satisfies (3.30). By (3.32) and (3.31) we obtain

d

dt
(u, ψ (u))L2 = (u′, ϕ (u))L2 ≤ 0.

Hence, (u, ψ (u))L2 as a function of t is decreasing in (0, T ). Since ψ (s) ≤ Cs for any
s ≥ 0, we obtain that

(u, ψ (u))L2 = (u+, ψ (u+))L2 ≤ C (u+, u+)L2 = C ‖u+‖
2
L2 .

By hypothesis, ‖u+‖L2 → 0 as t → 0. Hence, the function t 7→ (u+, ψ (u+))L2 is non-
negative, decreasing on (0, T ) and goes to 0 as t→ 0. It follows that (u+, ψ (u+))L2 = 0
for all t ∈ (0, T ), which implies that u+ (t) = 0 for all t ∈ (0, T ). Therefore, u (t) ≤ 0
for all t ∈ (0, T ), which was to be proved.

Using the maximum/minimum principle, we prove further properties of the heat
semigroup PΩ

t f , for any precompact open set Ω ⊂M .

Corollary 3.11 (Positivity-preserving property) If f ≥ 0 then PΩ
t f ≥ 0.

Proof. Consider the function u (t) = PΩ
t f that is caloric, satisfies u (t) = 0 mod W 1

0 (Ω)

because u (t) ∈ W 1
0 (Ω), and u (t)−

L2

→ 0 as t → 0 because u (t)
L2

→ f ≥ 0. By the
minimum principle we conclude that u (t) ≥ 0, that is, PΩ

t f ≥ 0.

Corollary 3.12 (Minimality property of PΩ
t ) Let u be a supercaloric function on

(0, T )× Ω such that

(i) u (t) ≥ 0 mod W 1
0 (Ω) for any t ∈ (0, T );

(ii) L2-limt→0 u (t) ≥ f for some f ∈ L2 (Ω) .

Then, for all t ∈ (0, T ),
u (t) ≥ PΩ

t f. (3.34)

Proof. The function v (t) = PΩ
t f − u (t) is obviously subcaloric in (0, T ) × Ω and

satisfies the conditions:

(i) v (t) ≤ 0 mod W 1
0 (Ω), because PΩ

t f = 0 mod W 1
0 (Ω) and u ≥ 0 mod W 1

0 (Ω) for
t ∈ (0, T );

(ii) v (t)+

L2

→ 0 as t→ 0, because L2-lim v (t) = L2-lim PΩ
t f−L2-lim u (t) ≤ f−f = 0.
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By Theorem 3.9, we conclude that v (t) ≤ 0 whence (3.34) follows.

Corollary 3.12 implies the following minimality property of PΩ
t f : if f ≥ 0 then

the function u (t) = PΩ
t f is the minimal non-negative caloric function that satisfies

the initial condition u (t)
L2

→ f . Indeed, this function is non-negative, caloric and
satisfies the initial condition by Corollary 3.11 and Theorem 3.2. If u (t) is any other
function with these properties then by Corollary 3.12 we have (3.34), which means the
minimality of PΩ

t f .

Corollary 3.13 (Submarkovian property) If f ≤ 1 then PΩ
t f ≤ 1. Consequently, for

any f ∈ L∞ (Ω), we have PΩ
t f ∈ L∞ (Ω) and

∥
∥PΩ

t f
∥
∥

L∞ ≤ ‖f‖L∞ . (3.35)

Proof. If f ≤ 1 then consider the function u (t) ≡ 1 that is caloric and satisfies all the
conditions of Corollary 3.12. It follows that 1 ≥ PΩ

t f , which was to be proved. For the
proof of (3.35) it suffices to assume that ‖f‖L∞ = 1. Then f ≤ 1 implies PΩ

t f ≤ 1,
and f ≥ −1 implies PΩ

t f ≥ −1. Consequently,
∥
∥PΩ

t f
∥
∥

L∞ ≤ 1.

In the next statement we compare PΩ
t f in different domains. Any function f ∈

L2 (Ω) can be considered as an element of L2 (M) by setting f = 0 outside Ω. In the
same way, extend the function PΩ

t f to the whole M by setting PΩ
t f = 0 in M \ Ω.

Corollary 3.14 (Monotonicity property) If Ω1 ⊂ Ω2 then PΩ1
t f ≤ PΩ2

t f for all non-
negative f ∈ L2 (Ω1) .

Proof. Consider the function u (t) = PΩ2
t f that is non-negative and caloric in R+×Ω2.

Then it is also non-negative and caloric in R+×Ω1. Since u (t)
L2(Ω2)
→ f , it follows that

also u (t)
L2(Ω1)
→ f . We conclude by Corollary 3.12 that u (t) ≥ PΩ1

t f , which was to be
proved.

3.5 The heat kernel in precompact domains

In this section we will prove that the operator PΩ
t in L2 (Ω) has an integral kernel, that

is, a function pΩ
t (x, y) defined for t > 0 and x, y ∈ Ω such that

PΩ
t f (x) =

∫

Ω

pΩ
t (x, y) f (y) dμ (y) .

If so then the function pΩ
t (x, y) is called the heat kernel of Δ in Ω. We start with the

following improvement of Theorem 3.7.

Theorem 3.15 Let Ω be a precompact open subset of M . For any f ∈ L2 (Ω) and
t > 0, ∥

∥PΩ
t f
∥
∥

C(Ω)
≤ C

(
1 + t−1

)n
4
+1
‖f‖L2(Ω) , (3.36)

where C = C (Ω, g, D, n).
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19.01.17
As we will see from the proof, the constant C depends on a small open neighborhood

of Ω.

Proof. The estimate (3.36) is an improvement of the estimate (3.12) of Theorem 3.7
where the norm in the left hand side was taken in C (K) for a compact subset K ⊂ Ω.
In contrast, the estimate (3.36) provides the pointwise upper bound for PΩ

t f uniformly
in the entire domain Ω.

For the proof, let us first choose a precompact open subset V of M that covers Ω.
Extend f to V by setting f = 0 in V \ Ω. Applying the estimate (3.12) of Theorem
3.7 in the domain V and with K = Ω, we obtain that

∥
∥P V

t f
∥
∥

C(Ω)
≤ C

(
1 + t−1

)n
4
+1
‖f‖L2(V ) ,

where C = C (V, Ω, g, D, n). Assume further that f is non-negative. By Corollaries
3.11 and 3.14, we have

0 ≤ PΩ
t f ≤ P V

t f,

whence it follows that

∥
∥PΩ

t f
∥
∥

C(Ω)
≤ C

(
1 + t−1

)n
4
+1
‖f‖L2(Ω) .

If f is signed then f = f+ − f− and

∥
∥PΩ

t

∥
∥

C(Ω)
=

∥
∥PΩ

t f+ − PΩ
t f−

∥
∥

C(Ω)

≤
∥
∥PΩ

t f+

∥
∥

C(Ω)
+
∥
∥PΩ

t f−
∥
∥

C(Ω)

≤ C
(
1 + t−1

)n
4
+1
(
‖f+‖L2(Ω) + ‖f−‖L2(Ω)

)

≤ 2C
(
1 + t−1

)n
4
+1
‖f‖L2(Ω) ,

which finishes the proof.

Corollary 3.16 For any t > 0 and x ∈ Ω, there exists a function qt,x ∈ L2 (Ω) such
that

PΩ
t f (x) =

∫

Ω

qt,x (y) f (y) dμ (y) (3.37)

for all f ∈ L2 (Ω). Besides, we have

‖qt,x‖L2 ≤ C
(
1 + t−1

)n
4
+1

=: Φ (t) , (3.38)

where C is the same as in Theorem 3.15.

Proof. Fix t > 0 and x ∈ Ω and consider a linear mapping

L2 (Ω)→ R
f 7→ PΩ

t f (x)
(3.39)

By (3.36) we have ∣
∣PΩ

t f (x)
∣
∣ ≤ Φ (t) ‖f‖L2 . (3.40)
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Hence, the mapping (3.39) is bounded and, by the Riesz representation theorem, there
is a function qt,x ∈ L2 (Ω) such that

PΩ
t f (x) = (qt,x, f)L2 ,

which proves the first claim. Setting here f = qt,x and observing that

PΩ
t qt,x (x) =

∫

Ω

q2
t,xdμ = ‖qt,x‖

2
L2 ,

we obtain from (3.40) that

‖qt,x‖
2
L2 ≤ Φ (t) ‖qt,x‖L2 ,

whence (3.38) follows.

Definition. Define the heat kernel pΩ
t (x, y) of Δ in Ω by the identity

pΩ
t (x, y) = qt,x (y) .

Clearly, pΩ
t (x, y) (and qt,x (y)) is the integral kernel of the operator PΩ

t .
So far the heat kernel is defined as an L2-function of y, for any t > 0 and x ∈ Ω.

The next theorem shows that it is in fact a smooth function of t, x, y.

Theorem 3.17 Let Ω be a non-empty precompact open subset of a weighted manifold
M . Let {vk}

∞
k=1 be an orthonormal basis in L2 (Ω) that consists of the eigenfunctions

of Δ in Ω. Then heat kernel pΩ
t (x, y) admits the following eigenfunction expansion

pΩ
t (x, y) =

∞∑

k=1

e−λktvk (x) vk (y) , (3.41)

where the series converges absolutely and uniformly in (t, x, y) ∈ [ε,∞) × Ω × Ω, for
any ε > 0.

Besides, the series (3.41) converges in Cm ([ε,∞)×K ×K), for any positive in-
teger m, for any ε > 0 and any compact subset K ⊂ Ω that is contained in a chart.
Consequently, pt (x, y) ∈ C∞ (R+ × Ω× Ω) .

For the proof, we need the notion of trace of operators. Let A be a non-negative
definite operator in a Hilbert space H, that is, (Au, u) ≥ 0 for all u ∈ H. Let {hk}

∞
k=1

be an orthonormal basis in H. Define the trace of A by

trace A =
∞∑

k=1

(Ahk, hk) .

The right hand side here is a series with non-negative terms, so its sum is always defined
as an element of [0,∞]. It is a general fact that the value of trace A does not depend
on the choice of a basis. We do not prove this in general because in our specific case
of A = PΩ

t this will be clear otherwise.
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Lemma 3.18 In the setting of Corollary 3.16, we have, for any t > 0,

trace PΩ
2t =

∫

Ω

‖qt,x‖
2
L2dμ (x) <∞. (3.42)

Besides, we have

trace PΩ
2t =

∞∑

k=1

e−2tλk(Ω). (3.43)

Consequently, the series (3.43) converges.

Proof. Observe first that operator PΩ
2t is non-negative definite because for any f ∈

L2 (Ω), we have, by the semigroup property and symmetry of the heat semigroup,
(
PΩ

2tf, f
)

=
(
PΩ

t PΩ
t f, f

)
=
(
PΩ

t f, PΩ
t f
)
≥ 0.

To prove (3.42), choose any orthonormal basis {hk}
∞
k=1 in L2. Using (3.37), we obtain

trace PΩ
2t =

∑

k

(
PΩ

2thk, hk

)
=
∑

k

(
PΩ

t hk, P
Ω
t hk

)

=
∑

k

∫

Ω

(
PΩ

t hk (x)
)2

dμ (x)

=
∑

k

∫

Ω

(qt,x, hk)
2 dμ (x) . (3.44)

Applying the Parseval identity in the basis {hk}, we obtain
∑

k

(qt,x, hk)
2 = ‖qt,x‖

2
L2 . (3.45)

Hence, (3.44) and (3.45) yield

trace PΩ
2t =

∫

Ω

‖qt,x‖
2
L2dμ (x) ,

which proves the first part of (3.42). The finiteness of the trace follows from (3.38):

trace PΩ
2t ≤

∫

Ω

Φ (t)2 dμ (x) = Φ (t)2 μ (Ω) <∞. (3.46)

Finally, let us compute the trace in the orthonormal basis {vk}
∞
k=1 of the eigenfunctions

of Δ in Ω, that is,

trace PΩ
2t =

∞∑

k=1

(
PΩ

2tvk, vk

)
L2 .

Observe that by the definition (3.11) of the operator PΩ
2t, we have

PΩ
2tvk = e−2tλk(Ω)vk.

Hence, we obtain

trace PΩ
2t =

∞∑

k=1

(
e−2tλk(Ω)vk, vk

)
L2 =

∞∑

k=1

e−2tλk(Ω),
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which finishes the proof.

Proof of Theorem 3.17. Let us write λk = λk (Ω). By Lemma 3.18, we have, for
any t > 0.

∞∑

k=1

e−tλk <∞. (3.47)

As above, let {vk} be an orthonormal basis in L2 (Ω) that consists of eigenfunctions of
Δ in Ω. Let us first prove that the series

∞∑

k=1

e−tλkvk (x) vk (y) (3.48)

converges absolutely and uniformly in the domain t ≥ ε, x ∈ Ω, y ∈ Ω. By the Weier-
strass M -test, it suffices to prove that

∞∑

k=1

sup
t≥ε,x,y∈Ω

∣
∣e−tλkvk (x) vk (y)

∣
∣ <∞. (3.49)

Recall that, by Theorem 3.15, for any f ∈ L2 (Ω),

sup
x∈Ω

∣
∣PΩ

t f (x)
∣
∣ ≤ Φ (t) ‖f‖L2 ,

where Φ (t) is defined in (3.38). Applying this to f = vk and using (3.55) and ‖vk‖L2 =
1, we obtain

sup
x∈Ω

∣
∣e−tλkvk (x)

∣
∣ ≤ Φ (t) . (3.50)

It follows that
sup

x,y∈Ω

∣
∣e−2tλkvk (x) vk (y)

∣
∣ ≤ Φ (t)2 .

Since function Φ (t) is decreasing in t, we obtain, for any ε > 0,

∞∑

k=1

sup
t≥ε,x,y∈Ω

∣
∣e−3tλkvk (x) vk (y)

∣
∣ ≤

∞∑

k=1

sup
x,y∈Ω

∣
∣e−3ελkvk (x) vk (y)

∣
∣ ≤ Φ (ε)2

∞∑

k=1

e−ελk <∞,

(3.51)
where the right hand side is finite by (3.47). Renaming 3t to t and 3ε to ε, we obtain
(3.49).

Now let us show that the series (3.48) converges in Cm ([ε,∞)×K ×K). Again,
it suffices to prove that

∞∑

k=1

∥
∥e−λktvk (x) vk (y)

∥
∥

Cm([ε,∞)×K×K)
<∞. (3.52)

By Corollary 2.8 and (2.30), we have

‖vk‖Cm(K) ≤ C (λk + 1)
m
2

+ n
4
+ 1

2 ‖vk‖W 1(Ω) = C (λk + 1)σ , (3.53)

where σ = m
2

+ n
4

+ 1. For any partial derivative

∂α
x ∂β

y ∂γ
t ,
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where α, β are n-dimensional multiindices and γ is a non-negative integer such that

|α|+ |β|+ γ ≤ m,

we have
∂α

x ∂β
y ∂γ

t

(
e−λktvk (x) vk (y)

)
= (−λk)

γ e−λkt∂α
x vk (x) ∂β

y vk (y) .

It follows from (3.53) that

sup
t≥ε,x∈K,y∈K

∣
∣∂α

x ∂β
y ∂γ

t

(
e−λktvk (x) vk (y)

)∣∣ ≤ Cλγ
ke

−λkε (λk + 1)2σ .

Since γ ≤ m < 2σ, we obtain

sup
t≥ε,x∈K,y∈K

∣
∣∂α

x ∂β
y ∂γ

t

(
e−λktvk (x) vk (y)

)∣∣ ≤ Ce−λkε (λk + 1)4σ ,

whence ∥
∥e−λktvk (x) vk (y)

∥
∥

Cm([ε,∞)×K×K)
≤ Ce−λkε (λk + 1)4σ . (3.54)

Finally, it follows from (3.47) that

∞∑

k=1

e−λkε (λk + 1)4σ ≤ sup
λ>0

[
(λ + 1)4σ e−λε/2

] ∞∑

k=1

e−λkε/2 <∞,

which proves (3.52).
We are let to prove that the sum of the series (3.48) is equal to pΩ

t (x, y). Using the
notation qt,x as above and noticing that

(qt,x, vk)L2 = PΩ
t vk (x) = e−tλkvk (x) , (3.55)

we obtain the following expansion of qt,x in the basis {vk}:

qt,x =
∞∑

k=1

e−tλkvk (x) vk , (3.56)

that is,

pΩ
t (x, y) =

∞∑

k=1

e−tλkvk (x) vk (y) ,

where the series converges in L2 (Ω) in variable y, for any fixed x ∈ Ω and t > 0. Since
this series converges also in C (Ω) in variable y, it determines a continuous function
of y that is a continuous version of the L2 function of y. Hence, we see that pΩ

t (x, y)
is defined for all t > 0 and x, y ∈ Ω, and it is C∞ jointly in t, x, y by the previous
argument.

Remark. In Theorem 3.8, we have proved that the function u (t, x) = PΩ
t (x) is jointly

C∞ in t > 0 and x ∈ Ω, for any f ∈ L2 (Ω). The above approach to the proof of
Theorem 3.17 can be used in order to obtain a simpler proof of Theorem 3.8. Indeed,
we know that

Ptf =
∞∑

k=1

e−λktakvk, (3.57)
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where the series converges in L2 (Ω) for any t > 0, and the coefficients ak are determined
from

f =
∞∑

k=1

akvk.

We claim that, for any compact set K ⊂ Ω, any ε > 0 and any positive integer m,

∞∑

k=1

∥
∥e−λktakvk (x)

∥
∥

Cm([ε,∞)×K)
<∞,

which will imply that u ∈ C∞ (R+ × Ω). Indeed, we have by the Cauchy-Schwarz
inequality

∞∑

k=1

∥
∥e−λktakvk (x)

∥
∥

Cm([ε,∞)×K)
≤

(
∞∑

k=1

a2
k

)1/2

×

(
∞∑

k=1

∥
∥e−λktvk (x)

∥
∥2

Cm([ε,∞)×K)

)1/2

.

Clearly, the first series converges by the Parseval identity, while the second series
converges by the same argument as above, because similarly to (3.54)

∥
∥e−λktvk (x)

∥
∥

Cm([ε,∞)×K)
≤ Ce−λkε (λk + 1)3σ .

24.01.17

Moreover, using (3.50), we obtain in the same way that

∞∑

k=1

∥
∥e−λktakvk (x)

∥
∥

C([ε,∞)×Ω)
<∞,

which implies that the series (3.57) converges absolutely and uniformly in [ε,∞)×Ω.

Remark. If the boundary ∂Ω is smooth, for example, a C1-submanifold, then one can
show that vk ∈ C

(
Ω
)

and vk|∂Ω = 0 (similarly to the proof of Theorem 4.5 in EDE).
The fact that the series in (3.57) and (3.41) converge absolutely and uniformly in
(t, x, y) ∈ [ε,∞)×Ω×Ω, implies that PΩ

t f (x) = 0 when x ∈ ∂Ω and also pt (x, y) = 0
when one of the points x, y belongs to ∂Ω.

3.6 Further properties of the heat kernel

As above, let Ω be a precompact open subset of M . In the previous section, we have
constructed the heat kernel pΩ

t (x, y) that is a C∞-function of (t, x, y) ∈ R+ × Ω × Ω
given by the series (3.41). This function is the integral kernel of PΩ

t , that is, for all
f ∈ L2 (Ω), x ∈ Ω and t > 0 that

PΩ
t f (x) =

∫

Ω

pΩ
t (x, y) f (y) dμ (y) . (3.58)

Further properties of the heat kernel are stated in the following theorem.
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Theorem 3.19 In any precompact domain Ω ⊂ M , the heat kernel has the following
properties.

(a) Positivity: pΩ
t (x, y) ≥ 0, for all x, y ∈ Ω and t > 0.

(b) Submarkovian property: for all x ∈ Ω and t > 0
∫

Ω

pΩ
t (x, y) dμ (y) ≤ 1. (3.59)

(c) Symmetry: pΩ
t (x, y) ≡ pΩ

t (y, x) , for all x, y ∈ Ω and t > 0.

(d) The heat equation: for any fixed y ∈ Ω, the function (t, x) 7→ pt (x, y) is caloric
in R+ × Ω; moreover, it solves the heat equation ∂tu = Δu also in the classical
sense.

(e) The boundary condition: pΩ
t (∙, y) ∈ W 1

0 (Ω), for all y ∈ Ω and t > 0.

(f) The semigroup identity: for all x, y ∈ Ω and t, s > 0,

pΩ
t+s (x, y) =

∫

Ω

pΩ
t (x, z) pΩ

s (z, y) dμ (z) . (3.60)

(g) If Ω1 ⊂ Ω2 then pΩ1
t (x, y) ≤ pΩ2

t (x, y) for all x, y ∈ Ω1 and t > 0.

Proof. (a) Assume from the contrary that pt0 (x0, y0) < 0 at some (t0, x0, y0). By
the continuity of the heat kernel, there is an open neighborhood U of y0 such that
pt0 (x0, y) < 0 for all y ∈ U . Choose a non-negative non-zero function f ∈ D (U). Then
we have

PΩ
t0

f (x0) =

∫

U

pΩ
t0

(x0, y) f (y) dμ (y) < 0,

while by Corollary 3.11 we must have PΩ
t0

f (x0) ≥ 0. This contradiction shows that
pt (x, y) ≥ 0.

(b) By Corollary 3.13, f ≤ 1 implies PΩ
t f (x) ≤ 1 for all x ∈ M and t > 0. Taking

f = 1Ω, we obtain ∫

Ω

pΩ
t (x, y) dμ (y) ≤ 1,

which was to be proved.
(c) The symmetry follows trivially from the eigenfunction expansion (3.41).
(d) + (e) Fix y ∈ Ω. As follows from the proof of Theorem 3.17, the series

u (t) := pΩ
t (∙, y) =

∞∑

k=1

e−λktvk (y) vk, (3.61)

converges in L2 (Ω) for any t > 0. Indeed, (3.61) is obtained from (3.56) by switching
the variables x and y and using the symmetry of the heat kernel. For any t > s > 0,
we obtain using (3.57) that

u (t) =
∞∑

k=1

e−λktvk (y) vk =
∞∑

k=1

e−λk(t−s)
(
e−λksvk (y)

)
vk = PΩ

t−su (s) . (3.62)
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Since u (s) ∈ L2 (Ω), by the properties of the heat semigroup (Theorem 3.2) we obtain
that u (t) is caloric in the domain t > s and u (t) ∈ W 1

0 (Ω) for any t > s. Since s is
arbitrary, we the same properties hold for t > 0.

Since the function u (t, x) = pΩ
t (x, y) is C∞-smooth, its L2-derivative d

dt
u coincides

with the classical derivative and the classical Laplacian Δu coincides with the weak
Laplacian, whence it follows that u satisfies the classical heat equation ∂tu = Δu. Al-
ternatively, the latter can be seen by computing ∂tu and Δu by means of differentiating
the series (3.61) term-by-term, which is possible because that series converges in any
Cm.

(g) Rewriting the identity (3.62) by using (3.58) and the definition (3.61) of the
function u, we obtain

pΩ
t (x, y) =

∫

Ω

pΩ
t−s (x, z) u (s, z) dμ (z) =

∫

Ω

pΩ
t−s (x, z) pΩ

s (z, y) dμ (z) ,

which is equivalent to (3.60).
(h) For all t > 0 and x, y ∈ Ω1, set

qt (x, y) := pΩ2
t (x, y)− pΩ1

t (x, y) .

By Corollary 3.14, for any non-negative f ∈ L2 (Ω1) we have
∫

Ω

qt (x, y) f (y) dμ (y) = PΩ2
t f (x)− PΩ1

t f (x) ≥ 0.

Arguing as in the proof of (a), we conclude that qt (x, y) ≥ 0, which finishes the proof.

3.7 The initial condition

As we know, for any f ∈ L2 (Ω), we have

PΩ
t f

L2

→ f as t→ 0.

Here we show that the convergence is “better” is the function f is “better”.

Theorem 3.20 Let Ω be a precompact open subset of M .
(a) For any function f ∈ D (Ω), we have

PΩ
t f → f as t→ 0, (3.63)

where the convergence is in Cm (K), for any positive integer m and any compact set
K ⊂ Ω that is contained in a chart.

(b) For any open set U ⊂ Ω and for any x ∈ U , we have
∫

U

pΩ
t (x, y) dμ (y)→ 1 as t→ 0, (3.64)

where the convergence is local uniform in U .
(c) For any f ∈ Cb (Ω), the convergence (3.63) is locally uniform in Ω, that is, in

C (K) for any compact subset K ⊂ Ω.
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Proof. (a) If f ∈ D (Ω) then also Δjf ∈ D (Ω) ⊂ W 1
0 (Ω) for any non-negative integer

j. Hence, if f =
∑∞

k=1 akvk then

Δjf = (−1)j
∞∑

k=1

λj
kakvk

(cf. Exercise 42), where the series converges in W 1 (Ω). On the other hand, we have

ΔjPΩ
t f = (−1)j

∞∑

k=1

λj
ke

−λktakvk ∈ W 1
0 (Ω)

(see the identity (3.13) in the proof of Theorem 3.7). By Lemma 3.5 (with H = W 1
0 (Ω)

and γk (t) = e−λkt), we obtain

∞∑

k=1

λj
ke

−λktakvk
W 1(Ω)
→

∞∑

k=1

λj
kakvk as t→ 0,

that is

Δj
(
PΩ

t f − f
) W 1(Ω)
→ 0 as t→ 0.

By Theorem 2.7 we conclude that

PΩ
t f − f

Cm(K)
→ 0 as t→ 0, (3.65)

which was to be proved.
(b) Let f be a cutoff function of {x} in U , that is, f ∈ D (Ω), f = 1 in a neighbor-

hood of x and 0 ≤ f ≤ 1. Then by (a)

∫

U

pΩ
t (x, y) dμ (y) ≥

∫

Ω

pΩ
t (x, y) f (y) dμ (y) = PΩ

t f (x)→ f (x) = 1

as t→ 0, where the convergence is local uniform in x. Since also

∫

U

pΩ
t (x, y) dμ (y) ≤ 1,

the convergence (3.64) follows.
(c) We have

PΩ
t f (x)− f (x) =

∫

Ω

pΩ
t (x, y) (f (y)− f (x)) dμ (y)

+

(∫

Ω

pΩ
t (x, y) dμ (y)− 1

)

f (x) .

By (b) we obtain that

(∫

Ω

pΩ
t (x, y) dμ (y)− 1

)

f (x)→ 0 (3.66)
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as t→ 0, where the convergence is local uniform in x. Choose an open set U containing
x and such that |f (y)− f (x)| ≤ ε for any y ∈ U , where ε > 0 is prescribed. Then we
have
∣
∣
∣
∣

∫

Ω

pΩ
t (x, y) (f (y)− f (x)) dμ (y)

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

U

pΩ
t (x, y) (f (y)− f (x)) dμ (y)

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

Ω\U
pΩ

t (x, y) (f (y)− f (x)) dμ (y)

∣
∣
∣
∣

≤ ε

∫

U

pΩ
t (x, y) dμ (y) + 2 sup |f |

∫

Ω\U
pΩ

t (x, y) dμ (y)

≤ ε + 2 sup |f |

(

1−
∫

U

pΩ
t (x, y) dμ (y)

)

.

As t→ 0 we obtain using (b) that

lim sup
t→0

∣
∣
∣
∣

∫

Ω

pΩ
t (x, y) (f (y)− f (x)) dμ (y)

∣
∣
∣
∣ ≤ ε.

Since ε is arbitrary, it follows that
∫

Ω

pΩ
t (x, y) (f (y)− f (x)) dμ (y)→ 0

as t → 0. Combining with (3.66), we obtain PΩ
t f (x) → f (x) as t → 0. Finally, it

remains to observe that the above argument yields also the local uniform convergence
in x.

Remark. The convergence (3.63) implies that, for any y ∈M ,
∫

Ω

pΩ
t (x, y) f (x) dμ (x)→ f (y) as t→ 0,

which means that pΩ
t (∙, y) → δy where δy is the Dirac delta-function, and the conver-

gence to δy is understood in the sense of distributions.

Remark. Recall that, for any f ∈ L2 (Ω), the function

u (t, x) = PΩ
t f (x)

solves the heat equation in R+×Ω in the classical sense and with the initial condition

u (t, ∙)
L2(Ω)
→ f as t→ 0.

If f ∈ Cb (Ω) then by Theorem 3.20 we have also that

u (t, ∙)
C(K)
→ f as t→ 0.

If in addition the boundary ∂Ω is a C1-submanifold then u (t, x) extends continuously
to Ω and vanishes on ∂Ω, for any t > 0. Hence, we conclude that in this case the
function u solves the classical mixed problem:






∂tu = Δu,
u (t, ∙) |∂Ω = 0,
u (t, x)→ f (x) as t→ 0,

where the convergence to the initial function is locally uniform in Ω.



Chapter 4

Global heat semigroup

26.01.17
In this Chapter we construct the heat semigroup {Pt} and the heat kernel pt (x, y) on
the entire weighted manifold M .

4.1 Convergence issues

Let us first observe the following consequence of Theorem 2.7.

Proposition 4.1 Let {uk} be a sequence of smooth functions on a weighted manifold
M , each satisfying the same equation

Δuk = f,

where f ∈ C∞ (M). If, for some u ∈ W 1
loc (M),

uk

W 1
loc(M)
−→ u as k →∞,

then the function u is C∞-smooth in M and satisfies the equation Δu = f.

Proof. For any indices k, l we have Δ (uk − ul) = 0 and, hence, Δj (uk − ul) = 0,
where j is any positive integer. This implies by Theorem 2.7 that

‖uk − ul‖Cm(K) ≤ C ‖uk − ul‖W 1(Ω) ,

where Ω is any precompact open neighborhood of K. Since

‖uk − ul‖W 1(Ω) → 0 as k, l →∞,

it follows that also

‖uk − ul‖Cm(K) → 0 as k, l →∞.

Hence, {uk} converges in Cm (K), and the limit is necessarily u. Since m is arbitrary,
this implies that u ∈ C∞ (M) and u satisfies Δu = f .

In this Chapter we accept without proof the following theorem that extends Propo-
sition 4.1 to the heat equation and relaxes the W 1

loc-converges to that of L1
loc.

101
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Theorem 4.2 ([3], Theorem 7.4) Let I be an open interval in R and M be a weighted
manifold. Let {uk} be a sequence of smooth functions on the manifold N := I ×M ,
each satisfying the same equation

∂tuk −Δuk = f,

where f ∈ C∞ (N). If, for some u ∈ L1
loc (N),

uk

L1
loc(N)
−→ u as k →∞

then the function u is C∞-smooth in N and satisfies the equation

∂tu−Δu = f.

The proof of this theorem requires the regularity theory for the parabolic equations,
that is similar to that of the elliptic equations.

4.2 The heat semigroup on M

Given a non-negative function f ∈ L2
loc (M), let us construct a function Ptf for any

t > 0 as follows. For any precompact open set Ω ⊂ M and t > 0, define PΩ
t f as a

function on M as follows:

PΩ
t f =

{
PΩ

t (f1Ω) in Ω
0, outside Ω.

Fix an exhaustion sequence {Ωk}
∞
k=1 of M by precompact open subsets.

Lemma 4.3 If f ≥ 0 then the sequence of functions
{

PΩk
t f

}
is monotone increasing

in k. Moreover, the limit limk→∞ PΩk
t f (x) does not depend on the choice of {Ωk}.

Proof. Let us show that PΩk
t f ≥ P

Ωk−1

t f . Outside Ωk−1 this is obvious because

PΩk
t f ≥ 0 = P

Ωk−1

t f . In Ωk−1 we have, using Corollaries 3.11 and 3.14, that

PΩk
t f = PΩk

t (f1Ωk
) = PΩk

t

(
f1Ωk\Ωk−1

)
+ PΩk

t

(
f1Ωk−1

)
≥ P

Ωk−1

t

(
f1Ωk−1

)
= P

Ωk−1

t f.

If these is one more exhaustion sequence {Ω′
k} then for any Ωk there is Ω′

m ⊃ Ωk which
implies

PΩk
t f ≤ P

Ω′
m

t f

and, hence,

lim
k→∞

PΩk
t f ≤ lim

k→∞
P

Ω′
k

t f.

Since the opposite inequality is true by the same argument, we obtain the identity of
the two limits.

For any non-negative function f ∈ L2
loc (M) and for all t > 0 and x ∈M , set

Ptf (x) := lim
k→∞

PΩk
t f (x) .

In general, Ptf (x) may take values in [0,∞] .
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Lemma 4.4 If Ptf ∈ L2
loc (R+ ×M) then the function Ptf is C∞ smooth and solves

the heat equation in R+ ×M .

Proof. Indeed, by the dominated convergence theorem, we obtain that

PΩk
t f

L2
loc(R+×M)
→ Ptf.

Since each of the functions (t, x) 7→ PΩk
t f solves the heat equation in R+×Ω1 and L2

loc-
convergence implies that in L1

loc, it follows from Theorem 4.2 that Ptf is C∞-smooth
in R+ × Ω1 and solves in this domain the heat equation. Since Ω1 can be chosen
arbitrarily, we obtain that the same properties of Ptf are true in R+ ×M .

Lemma 4.5 Let u (t, x) be a non-negative smooth solution to the heat equation in
R+ ×M such that

u (t, ∙)
L2

loc−→ f as t→ 0, (4.1)

for some f ∈ L2
loc (M). Then Ptf (x) is also a smooth solution to the heat equation in

R+ ×M , satisfying the initial condition (4.1), and

u (t, x) ≥ Ptf (x) , (4.2)

for all t > 0 and x ∈M .

Proof. For any precompact open set Ω ⊂ M , the function u (t, x) is non-negative

and caloric in R+ × Ω, and satisfies u (t, ∙)
L2(Ω)
→ f. By the minimality property of PΩ

t

(Corollary 3.12), we conclude that

u (t, x) ≥ PΩ
t f (x) ,

whence (4.2) follows by letting Ω → M (that is, by considering Ω = Ωk for an ex-
haustion sequence {Ωk} and letting k → ∞). Hence, the function Ptf belongs to
L2

loc (R+ ×M), and by Lemma 4.4 we conclude that Ptf is smooth and satisfies the
heat equation.

Finally, Ptf
L2

loc−→ f as t→ 0 follows from

f
L2(Ω)
← PΩ

t f ≤ Ptf ≤ u (t, ∙)
L2(Ω)
→ f

as t→ 0.

If f is a signed function from L2
loc (M), then consider Ptf+ and Ptf−. If they both

are in L2
loc (R+ ×M) then we define

Ptf := Ptf+ − Ptf−.

In this case Ptf also solves the heat equation in R+ ×M .

Theorem 4.6 For any f ∈ L2 (M), the function Ptf belongs to L2
loc (R+ ×M) and,

hence, is C∞-smooth and solves the heat equation in R+ ×M. Besides, for any t > 0,

‖Ptf‖L2(M) ≤ ‖f‖L2(M) (4.3)

and

Ptf
L2(M)
→ f as t→ 0. (4.4)
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Proof. If (4.3) is already proved then it implies Ptf ∈ L2
loc (R+ ×M). Hence, we

need only to prove (4.3) and (4.4). Assume first that f ≥ 0. Then we have, for any
precompact domain Ω ⊂M , that

∥
∥PΩ

t f
∥
∥

L2(Ω)
≤ ‖f‖L2(Ω) .

Hence, letting Ω →M , we obtain (4.3).

In order to prove (4.4) for a non-negative f , observe that we have the following
conditions:

PΩk
t f ≤ Ptf

t→0 ↓L2(M) ≤‖∙‖
L2

f1Ωk

L2(M)
−→
k→∞

f

Using Lemma 4.7 to be stated and proved below, we conclude that Ptf
L2(M)
→ f as

t→ 0.

Let now f be signed. Then f = f+ − f− where both f+ and f− belong to L2 (M).
Hence, we conclude that

Ptf = Ptf+ − Ptf−

is in L2
loc (R+ ×M). To prove (4.3), we have

‖Ptf‖
2
L2 = ‖Ptf+ − Ptf−‖

2
L2

= ‖Ptf+‖
2
L2 + ‖Ptf−‖

2
L2 − 2 (Ptf+, Ptf )L2

≤ ‖Ptf+‖
2
L2 + ‖Ptf−‖

2
L2

≤ ‖f+‖
2
L2 + ‖f−‖

2
L2 = ‖f‖2L2 .

And for (4.4) we have, as t→ 0,

Ptf = Ptf+ − Ptf−
L2

→ f+ − f− = f.

Now we prove the lemma used in the above proof.

Lemma 4.7 Let {uik} be a double sequence of non-negative functions from L2 (M)
such that, for any k,

uik
L2

→ fk ∈ L2 (M) as i→∞

and

fk
L2

→ f ∈ L2 (M) as k →∞.

Let {ui} be a sequence of functions from L2 (M) such that, for all i, k,

uik ≤ ui and ‖ui‖L2 ≤ ‖f‖L2 .

Then ui
L2

→ f as i→∞.
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Proof. All the hypotheses can be displayed in schematic form in the following diagram:

uik ≤ ui

i→∞ ↓L2 ≤‖∙‖L2

fk
L2
−→
k→∞

f

where all notation are self-explanatory. We need to prove that also ui
L2

→ f as i→∞.
Given ε > 0, we have, for large enough k,

‖f − fk‖L2 ≤ ε.

Fix one of such indices k. Then, for large enough i, we have

‖fk − uik‖L2 ≤ ε

so that
‖f − uik‖L2 ≤ 2ε. (4.5)

Let us show that, for such i,
‖f − ui‖

2
L2 ≤ Φ (ε) , (4.6)

with some function Φ such that Φ (ε)→ 0 as ε→ 0, which will settle the claim.
Set

g = (f − ui)+ and h = (f − ui)− ,

and estimate the L2-norms of g and h separately. By condition uik ≤ ui, we have

f − ui ≤ f − uik

whence
g = (f − ui)+ ≤ (f − uik)+

and by (4.5)
‖g‖L2 ≤ 2ε. (4.7)

In order to prove a similar estimate for ‖h‖L2 , let us first prove the following inequality,
any any x ∈M :

h2 ≤ u2
i + 2fg − f 2. (4.8)

Indeed, in the domain {f ≥ ui} we have h = 0, g = f − ui, and (4.8) follows from

u2
i + 2fg − f 2 = u2

i + 2f (f − ui)− f 2 = u2
i − 2fui + f 2 = (ui − f)2 ≥ 0 = h2.

In the domain {f < ui} we have g = 0, h = ui − f and (4.8) follows from

u2
i + 2fg − f 2 = u2

i − f 2 = (ui + f) (ui − f) ≥ (ui − f)2 = h2.

Integrating (4.8) over M and substituting ‖ui‖L2 ≤ ‖f‖L2 and ‖g‖L2 ≤ 2ε (cf. (4.7)),
we obtain

‖h‖2L2 ≤ ‖ui‖
2
L2 + 2 (f, g)L2 − ‖f‖

2
L2 ≤ 2 (f, g)L2 ≤ 2 ‖f‖L2 ‖g‖L2 ≤ 4ε ‖f‖L2 .

It follows that
‖f − ui‖

2
L2 = ‖g‖2L2 + ‖h‖2L2 ≤ 4ε2 + 4ε ‖f‖L2 ,

which proves (4.6).
31.01.17
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4.3 The global heat kernel

For any precompact open set Ω ⊂ M , extend the heat kernel pΩ
t (x, y) from x, y ∈

Ω to x, y ∈ M by setting pΩ
t (x, y) = 0 if one of the points x, y is outside Ω. For

any exhaustion sequence {Ωk}, the sequence
{

pΩk
t (x, y)

}
is monotone increasing by

Theorem 3.19 and, hence, has the limit

pt (x, y) = lim
k→∞

pΩk
t (x, y) ,

that is independent of the choice of {Ωk} (the proof is similar to that of Lemma 4.3).

Definition. The function is called the heat kernel of Δ in M .

Theorem 4.8 The heat kernel has the following properties.

(a) Finiteness and smoothness: pt (x, y) ∈ C∞ (R+ ×M ×M)

(b) Positivity: pt (x, y) ≥ 0;

(c) Submarkovian property: ∫

M

pt (x, y) dμ (y) ≤ 1

(d) Symmetry: pt (x, y) = pt (y, x) .

(e) The heat equation: for any fixed y ∈ M , the function u (t, x) = pt (x, y) solves
the heat equation ∂tu = Δu in R+ ×M .

(f) Approximation of identity: for any open set U ⊂M and for any x ∈ U ,

∫

U

pt (x, y) dμ (y)→ 1 as t→ 0, (4.9)

where the convergence is locally uniform in x. Moreover, for any f ∈ Cb (M),

Ptf (x)→ f (x) as t→ 0,

where the convergence is locally uniform in x.

(g) The semigroup identity:

pt+s (x, y) =

∫

Ω

pt (x, z) ps (x, y) dμ (z) .

(h) The heat semigroup kernel: for all non-negative f ∈ L2
loc (M) (and for all f ∈

L2 (M)),

Ptf (x) =

∫

M

pt (x, y) f (y) dμ (y) . (4.10)
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Proof. (b) + (c) + (d) + (g) follow immediately from the corresponding properties of
pΩ

t (x, y) by letting Ω → M . Note that at this moment we allow pt (x, y) to take the
value ∞ which will be excluded in (a).

(a) The submarkovian property implies that pt (x, y) ∈ L1
loc (R+ ×M ×M). Con-

sequently, the pointwise convergence

pΩk
t (x, y)→ pt (x, y) (4.11)

is also in L1
loc (R+ ×M ×M). Consider the weighted product M×M and observe that

the function

u (t, (x, y)) = pΩ
t (x, y)

solves in R+ × Ω× Ω the following equation

2∂tu = Δxu + Δyu = Δ(x,y)u

where Δx and Δy denote the Laplace operators on M with respect to the variables x, y
while Δ(x,y) denotes the Laplace operator on M ×M (see (1.58).

Hence, up to the time change 2t → t, the functions pΩk
t (x, y) satisfy the heat

equation in R+ × Ωk × Ωk. By Theorem 4.2, we conclude that the limit pt (x, y) is
C∞-smooth on R+ ×M ×M .

(e) Now apply the same argument with a fixed y. Since the function (t, x) 7→
pt (x, y) is smooth, it is in L1

loc (R+ ×M) and, hence, the convergence (4.11) is also
in L1

loc (R+ ×M), whence we obtain by Theorem 4.2 that pt (x, y) satisfies the heat
equation in R+ ×M .

(h) If f ∈ L2
loc (M) then, for any precompact open set Ω ⊂M , we have f ∈ L2 (Ω)

and, hence,

PΩ
t f (x) =

∫

Ω

pΩ
t (x, y) f (y) dμ (y) .

If f is non-negative then passing to the limit as Ω → M , we obtain (4.10) by the
monotone convergence theorem.

If f ∈ L2 (M) is signed then we have by the above argument the identity (4.10) for
f+ and f−. Since by Theorem 4.6 the functions Ptf+ and Ptf− are finite (moreover,
they are smooth), it follows that Ptf is well define and satisfies (4.10).

(f) Without loss of generality, we can assume that U is precompact. Let Ω be any
precompact open set containing U . Then we have by Theorem 3.20

∫

U

pt (x, y) dμ (y) ≥
∫

U

pΩ
t (x, y) dμ (y)→ 1 as t→ 0,

while ∫

U

pt (x, y) dμ (y) ≤ 1,

whence (4.9) follows. The second claim is proved in the same way as that in Theorem
3.20.
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4.4 Fundamental solutions

Definition. A C∞-function u (t, x) of t > 0 and x ∈M is called a fundamental solution
(of the heat equation) in M at y ∈M if

(i) ∂tu = Δu in R+ ×M ;
(ii) for any f ∈ D (M),

∫

M

u (t, x) f (x) dμ (x)→ f (y) as t→ 0,

that will be shortly written as

u (t, ∙)→ δy as t→ 0.

If in addition u ≥ 0 and, for all t > 0,

∫

M

u (t, x) dμ (x) ≤ 1, (4.12)

then u is called a regular fundamental solution.

Example. It is known that the following Gauss-Weierstrass function in Rn is a regular
fundamental solution at 0:

u (t, x) =
1

(4πt)n/2
exp

(

−
|x|2

4t

)

.

Lemma 4.9 Let u (t, x) be a smooth non-negative function on R+ × M satisfying
(4.12). Fix y ∈M . Then the following conditions are equivalent:

(a) u (t, ∙)→ δy as t→ 0.

(b) For any open set U containing y,

∫

U

u (t, ∙) dμ→ 1 as t→ 0. (4.13)

(c) For any f ∈ Cb (M),

∫

M

u (t, ∙) f dμ→ f (y) as t→ 0. (4.14)

In particular, if u is a regular fundamental solution at y, then u satisfies (b) and
(c).

Proof. The implication (c)⇒ (a) is trivial because u (t, ∙)→ δy is equivalent to (4.14)
for all f ∈ D (M).

The rest of the proof is practically identical to the proof of Theorem 3.20(b) , (c) .
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(a) ⇒ (b) . Let f ∈ D (U) be a cutoff function of the set {y} in U . Then (4.14)
holds for this f . Since f (y) = 1 and

∫

M

u (t, ∙) f dμ ≤
∫

U

u (t, ∙) dμ ≤ 1,

(4.13) follows from (4.14).

(b)⇒ (c) . For any open set U containing y, we have

∫

M

u (t, x) f (x) dμ (x) =

∫

M\U
u (t, x) f (x) dμ (x)

+

∫

U

u (t, x) (f (x)− f (y)) dμ (x)

+f (y)

∫

U

u (t, x) dμ (x) .

The last term here tends to f (y) by (4.13). The other terms are estimated as follows:

∣
∣
∣
∣

∫

M\U
u (t, x) f (x) dμ

∣
∣
∣
∣ ≤ sup |f |

∫

M\U
u (t, x) dμ (x) (4.15)

and
∣
∣
∣
∣

∫

U

u (t, x) (f (x)− f (y)) dμ

∣
∣
∣
∣ ≤ sup

x∈U
|f (x)− f (y)|

∫

U

u (t, x) dμ (x)

≤ sup
x∈U
|f (x)− f (y)| . (4.16)

Obviously, the right hand side of (4.15) tends to 0 as t → 0 due to (4.12) and (4.13).
By the continuity of f at y, the right hand side of (4.16) can be made arbitrarily small
uniformly in t by choosing U to be a small enough neighborhood of y. Combining the
above three lines, we obtain (4.14).

Remark. As we see from the last part of the proof, (4.14), in fact, holds for arbitrary
f ∈ L∞ (M) provided f is continuous at the point y.

4.5 Heat kernel as a fundamental solution

Theorem 4.10 For any y ∈M , the heat kernel pt (x, y) is the minimal regular funda-
mental solution of the heat equation at y.

Proof. The heat kernel is a regular fundamental solution by Theorem 4.8.
Let u (t, x) be another regular fundamental solution at y. Fix s > 0. The function

t, x 7→ u (t + s, x) satisfies the heat equation in R+ ×M and, hence, u (t + s, x) can
be considered as a non-negative solution to the Cauchy problem in R+ ×M with the
initial function f (x) = u (s, x). Since u is a smooth function, we have f ∈ L2

loc (M)
and

u (t + s, ∙)
L2

loc−→ f as t→ 0.
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By Lemma 4.5, we conclude that, for all t > 0 and x ∈M,

u (t + s, x) ≥ Ptf (x) =

∫

M

pt (x, z) u (s, z) dμ (z) . (4.17)

Fix now t > 0, x ∈ M and choose an open set Ω b M containing y. Then pt (x, ∙) ∈
Cb (Ω) and, by Lemma 4.9 in Ω,

∫

Ω

pt (x, z) u (s, z) dμ (z)→ pt (x, y) as s→ 0.

Hence, letting s → 0 in (4.17), we obtain u (t, x) ≥ pt (x, y), which was to be proved.

Theorem 4.11 Let u (t, x) be a regular fundamental solution to the heat equation at
y ∈ M . If u (t, x) → 0 as x → ∞ where the convergence is uniform in t ∈ (0, T ) for
any T > 0, then u (t, x) ≡ pt (x, y).

Proof. By Theorem 4.10, we have u (t, x) ≥ pt (x, y) so that we only need to prove the
opposite inequality.

Fix some ε > 0. By the hypothesis u (t, x) → 0 as x → ∞, there is a compact set
K such that u (t, x) < ε for all x ∈ M \ K and t ∈ (0, T ). Choose any precompact
open set Ω containing K. Fix also some s > 0, set

f (x) = u (s, x) ,

and consider function

v (t, x) = u (t + s, x)− PΩ
t f (x)− ε.

The function (t, x) 7→ u (t + s, x) solves the heat equation in (0, T − s) × M which
implies that it is caloric in (0, T − s)×Ω. Since the latter is true also for PΩ

t f (x) and
for the constant function ε, we see that v (t, x) is caloric in (0, T − s)× Ω.

For each t ∈ (0, T − s), we have

v (t, x) < 0 ∀x ∈ Ω \K,

which implies that supp v (t, ∙) ⊂ K and, hence, v (t, ∙)+ ∈ W 1
0 (Ω), that is,

v (t, ∙) ≤ 0 mod W 1
0 (Ω) .

As t→ 0, we have

u (t + s, ∙)
Ω

⇒ u (s, ∙) = f,

which implies that also

u (t + s, ∙)
L2(Ω)
→ f.

Since also

PΩ
t f

L2(Ω)
→ f,
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it follows that

v (t, ∙)
L2(Ω)
→ −ε

and, hence,

v (t, ∙)+

L2(Ω)
→ 0 as t→ 0.

By Theorem 3.9, we conclude that v (t, x) ≤ 0 for all t ∈ (0, T − s) and x ∈ Ω.
It follows that in Ω

u (t + s, ∙) ≤ PΩ
t u (s, ∙) + ε

whence, for any x ∈ Ω,

u (t + s, x) ≤
∫

Ω

pt (x, z) u (s, z) dμ (z) + ε.

Letting here s→ 0 and applying Lemma 4.9 in Ω with function f = pt (x, ∙) ∈ Cb (Ω),
we obtain that ∫

Ω

pt (x, z) u (s, z) dμ (z)→ pt (x, y)

and, hence,
u (t, x) ≤ pt (x, y) + ε,

for all x ∈ Ω. Since Ω is arbitrary, this inequality holds for all x ∈ M . Finally, since
ε > 0 is arbitrary, we conclude u (t, x) ≤ pt (x, y), which finishes the proof.

Example. As we know, the Gauss-Weierstrass function

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x− y|2

4t

)

(4.18)

is a regular fundamental solution of the heat equation in Rn. By Theorem 4.11, we
conclude that pt (x, y) is the heat kernel on Rn because pt (x, y) → 0 as x → ∞
uniformly in t.

02.02.17

4.6 Heat kernel and isometries

Theorem 4.12 Let J : M → M be an isometry of a weighted manifold (M, g, μ).
Then the heat kernel of M is J-invariant, that is, for all t > 0 and x, y ∈M ,

pt (Jx, Jy) = pt (x, y) (4.19)

Proof. Let us first show that the function u (t, x) = pt (Jx, Jy) is a regular fundamental
solution at y. Indeed, by Lemma 1.21, for any smooth function f on M ,

(Δf) (Jx) = Δ (f (Jx)) .

Applying this for f = pt (∙, Jy), we obtain

∂u

∂t
=

∂

∂t
pt (Jx, Jy) = (Δpt) (Jx, Jy) = Δu,
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so that u solves the heat equation.
By Lemma 1.21, we have the identity

∫

M

f (Jx) dμ (x) =

∫

M

f (z) dμ (z) , (4.20)

for any non-negative function f . It follows that

∫

M

u (t, x) dμ (x) =

∫

M

pt (z, Jy) dμ (z) ≤ 1

and, similarly, for any open set U containing y,

∫

U

u (t, x) dμ (x) =

∫

JU

pt (z, Jy) dμ (z)→ 1 as t→ 0.

Therefore, u is a regular fundamental solution. By Theorem 4.10, we conclude that

u (t, x) ≥ pt (x, y) ,

that is,

pt (Jx, Jy) ≥ pt (x, y) .

Applying the same argument to J−1 instead of J , we obtain the opposite inequality,
which finishes the proof.

Example. By Exercise 56, for any four points x, y, x′, y′ ∈ Hn such that

d (x′, y′) = d (x, y) ,

there exists a Riemannian isometry J : Hn → Hn such that Jx′ = x and Jy′ = y. By
Theorem 4.12, we conclude

pt (x′, y′) = pt (x, y) .

Hence, pt (x, y), as a function of x, y, depends only on the distance d (x, y).
The same applies to the heat kernel on Sn.

4.7 Heat kernel on model manifolds

Let (M, g, μ) be a weighed model as in Section 1.12. That is, M is a ball Br0 =
{|x| < r0} in Rn (with r0 ∈ (0,∞]) with a metric g = dr2 + ψ2 (r) gSn−1 (where (r, θ)
are the polar coordinates) and a density function D = D (r). Let S (r) be the area
function of (M, g, μ) that is, S (r) := ωnψn−1 (r) D (r), and let pt (x, y) be the heat
kernel.

Let (M, g̃, μ̃) be another weighted model based on the same smooth manifold M ,

and let S̃ (r) and p̃t (x, y) be its area function and heat kernel, respectively.

Theorem 4.13 If S (r) ≡ S̃ (r) then pt (x, o) = p̃t (y, o) for all x, y ∈ M such that
|x| = |y|.
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Note that the area function S (r) does not fully identify the structure of the weighted
model unless the latter is a Riemannian model. Nevertheless, pt (x, 0) is completely
determined by this function.

Proof. Let us first show that pt (x, o) = pt (y, o) if |x| = |y| . Indeed, there is a rotation
J of Rn such that Jx = Jy and Jo = o. Since J is an isometry of (M, g, μ), we obtain
by Theorem 4.12 that pt is J-invariant, which implies the claim.

By Lemma 4.9, the fact that a smooth non-negative function u (t, x) on R+×M is
a regular fundamental solution at 0, is equivalent to the conditions






∂tu = Δu,∫

M

u (t, x) dμ (x) ≤ 1,

∫

Bε

u (t, x) dμ (x)→ 1 as t→ 0,

(4.21)

for all 0 < ε < r0. The heat kernel pt (x, o) is a regular fundamental solution on
(M, g, μ) at the point o, and it depends only on t and r = |x| so that we can write
pt (x, o) = u (t, r).

Using the fact that u does not depend on the polar angle, we obtain from (1.94)

Δu =
∂2u

∂r2
+

S ′ (r)

S (r)

∂u

∂r
.

For 0 < ε < r0, we have by (1.91), (1.88), (1.93)

∫

Bε

udμ =
1

ωn

∫ ε

0

∫

Sn−1

u (t, r) S (r) dθdr =

∫ ε

0

u (t, r) S (r) dr.

Hence, we obtain the following equivalent form of (4.21):






∂u

∂t
=

∂2u

∂r2
+

S ′ (r)

S (r)

∂u

∂r
,

∫ r0

0

u (t, r) S (r) dr ≤ 1,

∫ ε

0

u (t, r) S (r) dr → 1 as t→ 0.

(4.22)

It is important that all the conditions in (4.22) depend on the geometry of M only via

the area function S (r). Since by hypothesis S (r) = S̃ (r), the conditions (4.22) are

satisfied also with S replaced by S̃, which means that u (t, r) is a regular fundamental
solution at 0 also on the manifold (M, g̃, μ̃). By Theorem 4.10, we conclude that
u (t, |x|) ≥ p̃t (x, 0), that is,

pt (x, 0) ≥ p̃t (x, 0) .

The opposite inequality follows in the same way by switching pt and p̃t, which finishes
the proof.
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4.8 Heat kernel and change of measure

Let (M, g, h) be a weighted manifold. Any smooth positive function h on M determines
a new measure μ̃ on M by

dμ̃ = h2dμ, (4.23)

and, hence, a new weighted manifold (M, g, μ̃). Denote by Δ̃ and p̃t respectively the
Laplace operator and the heat kernel on (M, g, μ̃).

Theorem 4.14 Let h be a smooth positive function on M that satisfies the equation

Δh + αh = 0, (4.24)

where α is a real constant. Then the following identities holds

Δ̃ =
1

h
◦Δ ◦ h + α id, (4.25)

p̃t (x, y) = eαt pt (x, y)

h (x) h (y)
, (4.26)

for all t > 0 and x, y ∈M .

The change of measure (4.23) satisfying (4.24) and the associated change of operator
(4.25) are referred to as Doob’s h-transform.

Proof. By the definition of the weighted Laplace operator, we obtain, for any smooth
function f on M ,

Δ̃f =
1

h2
divg,μ(h2∇f) = divg,μ(∇f) +

1

h2
〈∇h2,∇f〉g

= Δf + 2〈
∇h

h
,∇f〉g. (4.27)

On the other hand, using the equation (4.24) and the product rule for Δ, we obtain

1

h
Δ (hf) =

1

h
(hΔf + 2〈∇h,∇f〉g + fΔh)

= Δf + 2〈
∇h

h
,∇f〉g + f

Δh

h

= Δ̃f − αf.

Hence, we have proved the identity

Δ̃f =
1

h
Δ (hf) + αf, (4.28)

that is equivalent to (4.25). We have proved this identity for smooth f , but similarly
it holds when Δ is understood in the weak sense.

In order to prove (4.26), it suffices to prove the same identity for the heat kernels
p̃Ω

t and pΩ
t for any precompact open set Ω ⊂M . If v is an eigenfunction of Δ in Ω with

an eigenvalue λ then we have

Δ̃
(v

h

)
=

1

h
(Δ + α) v = (−λ + α)

v

h
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that is, v
h

is an eigenfunction of Δ̃ with the eigenvalue λ−α (of course, the same holds
for the weak eigenfunctions). Observe that the mapping

u 7→
u

h

is an isometry from L2 (Ω, μ) to L2 (Ω, μ̃) because for any u ∈ L2 (Ω, μ),

∥
∥
∥
u

h

∥
∥
∥

2

L2(Ω,μ̃)
=

∫

Ω

(u

h

)2

h2dμ =

∫

Ω

u2dμ = ‖u‖2
L2
(
Ω /,μ

) .

Therefore, if {vk} is an orthonormal basis in L2 (Ω, μ) that consists of the eigenfunctions
of Δ with eigenvalues {λk}, then the sequence

{
vk

h

}
is an orthonormal basis in L2 (Ω, μ̃)

that consists of the eigenfunctions of Δ̃ with eigenvalues {λk − α} . Therefore, we obtain

p̃Ω
t (x, y) =

∑

k

e−(λk−α)t vk (x)

h (x)

vk (y)

h (y)

=
eαt

h (x) h (y)

∑

k

e−λktvk (x) vk (y) =
eαtpΩ

t (x, y)

h (x) h (y)
,

which was to be proved.

Example. The heat kernel in (R1, gR1 , μ) with the Lebesgue measure μ is given by

pt (x, y) =
1

(4πt)1/2
exp

(

−
|x− y|2

4t

)

. (4.29)

Let h be any positive smooth function on R1 that determines a new measure μ̃ on R1

by dμ̃ = h2dμ. Then we have Δ = d2

dx2 and

Δ̃ =
1

h2

d

dx

(

h2 d

dx

)

=
d2

dx2
+ 2

h′

h

d

dx
(4.30)

(cf. (4.27)). The equation (4.24) becomes

h′′ + αh = 0,

which is satisfied, for example, if h (x) = cosh βx and α = −β2. In this case, we have
by (4.30)

Δ̃ =
d2

dx2
+ 2β coth βx

d

dx
.

By Theorem 4.14, we obtain

p̃t (x, y) = eαt pt (x, y)

h (x) h (y)

=
1

(4πt)1/2

1

cosh βx cosh βy
exp

(

−
|x− y|2

4t
− β2t

)

.
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Example. Consider in R1 measure μ is given by

dμ = ex2

dx,

where dx is the Lebesgue measure. Then, by (4.30) with h = e
1
2
x2

,

Δ =
d2

dx2
+ 2x

d

dx
. (4.31)

We claim that the heat kernel pt (x, y) of (R, gR, μ) is given by the explicit formula:

pt (x, y) =
1

(2π sinh 2t)1/2
exp

(
2xye−2t − x2 − y2

1− e−4t
− t

)

, (4.32)

that is called the Mehler kernel. It is a matter of a routine (but hideous) computation
to verify that the function (4.32) does solve the heat equation and satisfy the conditions
of Lemma 4.9, which implies that is it a regular fundamental solution. It is easy to see
that

pt (x, y) ≤
1

(4πt)1/2
exp

(

−
|x− y|2

4t
− t

)

,

which implies that pt (x, y) → 0 as x → ∞ uniformly in t. Hence, we conclude by
Theorem 4.11 that pt (x, y) is indeed the heat kernel.

Example. Continuing the previous example, it easily follows from (4.31) that function

h (x) = e−x2

satisfies the equation
Δh + 2h = 0.

Clearly, the change of measure dμ̃ = h2dμ is equivalent to

dμ̃ = e−x2

dx.

By Theorem 4.14 and (4.32), we obtain that the heat kernel p̃t of (R, gR, μ̃) is given by

p̃t (x, y) = e2t pt (x, y)

h (x) h (y)
= pt (x, y) exp

(
x2 + y2 + 2t

)

=
1

(2π sinh 2t)1/2
exp

(
2xye−2t − (x2 + y2) e−4t

1− e−4t
+ t

)

.

4.9 Heat kernel on H3

As was shown in Example 4.6, the heat kernel pt (x, y) in the hyperbolic space Hn is a
function of r = d (x, y) and t.

Theorem 4.15 The heat kernel of H3 is given by the following formula:

pt(x, y) =
1

(4πt)3/2

r

sinh r
exp

(

−
r2

4t
− t

)

. (4.33)
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The following formulas for pt (x, y) in Hn are known: if n = 2m + 1 then

pt (x, y) =
(−1)m

(2π)m (4πt)1/2

(
1

sinh r

∂

∂r

)m

e−m2t− r2

4t , (4.34)

which in the case n = 3 gives (4.33), and if n = 2m + 2 then

pt (x, y) =
(−1)m

√
2

(2π)m (4πt)3/2
e−

(2m+1)2

4
t

(
1

sinh r

∂

∂r

)m ∫ ∞

r

se−
s2

4t ds

(cosh s− cosh r)
1
2

. (4.35)

In particular, the heat kernel in H2 is given by

pt (x, y) =

√
2

(4πt)3/2
e−

1
4
t

∫ ∞

r

se−
s2

4t ds

(cosh s− cosh r)
1
2

. (4.36)

Of course, once the formula is known, one can prove it by checking that it is a regular
fundamental solution (which, however, is quite involved) and that pt (x, y) → 0 as
x→∞.

We will give here a non-computational proof of (4.33), which to some extend also
explains why the heat kernel has this shape.

Proof. By Theorem 4.12, it suffices to prove (4.33) in the case y = o where o is the
origin in H3. Let (r, θ) be the polar coordinates in H3 \ {o}. As we know, H3 can be
considered as a model manifold bases on R3 (see Sections 1.12 and 4.7), and the area
function of H3 is given by

S (r) = 4π sinh2 r.

Recall also that the Laplacian in the polar coordinates has the following expression:

ΔH3 =
∂2

∂r2
+ 2 coth r

∂

∂r
+

1

sinh2 r
ΔS2 . (4.37)

Denote by μ the Riemannian measure of H3.
For a smooth positive function h on H3, depending only on r, consider the weighted

model (H3, μ̃) where dμ̃ = h2dμ. The area function of (H3, μ̃) is given by

S̃ (r) = h2 (r) S (r) .

Choose function h as follows:
h (r) =

r

sinh r
,

so that
S̃ (r) = 4πr2,

that is, S̃ (r) is equal to the area function of R3. By a miraculous coincidence, the
function h happens to satisfy in H3 \ {o} the equation

Δh + h = 0, (4.38)

which follows from (4.37) by a straightforward computation. The function h extends
by continuity to the origin o by setting h (o) = 1. In fact, the extended function is
smooth in H3 and satisfies (4.38) in the entire H3 (Exercise 52).
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Denoting by p̃t the heat kernel of (H3, μ̃), we obtain by Theorem 4.14 that

p̃t (x, y) =
etpt (x, y)

h (x) h (y)
. (4.39)

Since the area functions of the weighted models (H3, μ̃) and R3 are the same, we
conclude by Theorem 4.13 that their heat kernels at the origin are the same, that is

p̃t (x, o) =
1

(4πt)3/2
exp

(

−
r2

4t

)

.

Combining with (4.39), we obtain

pt (x, o) = e−tp̃t (x, o) h (x) h (o) =
1

(4πt)3/2

r

sinh r
exp

(

−
r2

4t
− t

)

,

which was to be proved.

4.10 Heat kernel on S1

In this section pt (x, y) is the heat kernel of the Laplace operator on the circle S1. We
identify S1 with the quotient R/2πZ, that is, consider elements of S1 as real numbers
modulo 2πk with k ∈ Z.

Proposition 4.16 For all t > 0 and x, y ∈ S1,

pt (x, y) =
1

2π
+

1

π

∞∑

k=1

e−k2t cos k (x− y) , (4.40)

where the series converges absolutely and uniformly in (t, x, y) ∈ [ε,∞) × Ω × Ω, for
any ε > 0.

Proof. By Theorem 3.17, the heat kernel of a compact manifold M (or a precompact
open subset of any manifold) is given by the eigenfunction expansion

pt (x, y) =
∞∑

k=1

e−λktvk (x) vk (y) , (4.41)

where {vk} is an orthonormal basis in L2 (M) that consists of eigenfunctions of Δ, and
{λk} are their eigenvalues, and the convergence is absolute and uniform in ( t, x, y) ∈
[ε,∞)× Ω× Ω, for any ε > 0.

By Exercise 50, the eigenvalues of Δ on S1 are given by the sequence {m2}∞m=0

where the eigenvalue 0 has the eigenfunction const and the eigenvalue m2 with m ≥ 1
has two independent eigenfunctions cos mθ and sin mθ. Since

∫

S1
dθ =

∫ 2π

0

dθ = 2π
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and
∫

S1
cos2 mθdθ =

∫ 2π

0

cos2 mθdθ = π,

∫

S1
sin2 mθdθ =

∫ 2π

0

sin2 mθdθ = π,

we obtain the following orthonormal basis in L2 (S1) that consists of the eigenfunctions
of Δ:

1
√

2π
,
cos x
√

π
,
sin x
√

π
, ....,

cos mx
√

π
,
sin mx
√

π
, ....

By (4.41) we obtain

pt (x, y) =
1

2π
+

1

π

∞∑

m=1

e−m2t cos mx cos my +
1

π

∞∑

m=1

e−m2t sin mx sin my

=
1

2π
+

1

π

∞∑

m=1

e−m2t cos m (x− y) ,

which was to be proved.

Proposition 4.17 Let qt (x, y) = 1

(4πt)n/2 exp
(
− |x−y|2

4t

)
be the heat kernel in R1. Then

the heat kernel pt (x, y) of S1 is given by

pt (x, y) =
∑

n∈Z

qt (x + 2πn, y) . (4.42)

Proof. Set
q̃t (x, y) =

∑

n∈Z

qt (x + 2πn, y)

and observe that the series converges in any reasonable sense because qt (x, y) decays
quickly in |x− y|. Using the fact that qt (x, y) satisfies the heat equation in t, x for any
fixed y, it is easy to show that so does q̃t (x, y).

Next, we obtain
∫

S1
q̃t (x, y) dx =

∑

n∈Z

∫ 2π

0

qt (x + 2πn, y) dx =

=
∑

n∈Z

∫ 2π(n+1)

2πn

qt (z, y) dz =

∫ ∞

−∞
qt (z, y) dz = 1

that is, ∫

S1
q̃t (x, y) dx = 1. (4.43)

Also, we have
∫ y+ε

y−ε

q̃t (x, y) dx ≥
∫ y+ε

y−ε

qt (x, y) dx→ 1 as ε→ 0.

Hence, q̃t (x, y) is a regular fundamental solution to the heat equation on S1. By
Theorem 4.10, we obtain

q̃t (x, y) ≥ pt (x, y) .
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It follows from (4.40) that ∫

S1
pt (x, y) dx = 1,

which together with (4.43) implies the identity q̃t (x, y) = pt (x, y) .

Corollary 4.18 (The Poisson summation formula) For all t > 0, we have the follow-
ing identity

∑

k∈Z

e−k2t =

√
π

t

∑

n∈Z

exp

(

−
π2n2

t

)

. (4.44)

Proof. Rewrite (4.40) as follows

pt (x, y) =
1

2π

∑

k∈Z

e−k2t cos k (x− y) . (4.45)

In particular, for x = y = 0 we obtain

pt (0, 0) =
1

2π

∑

k∈Z

e−k2t. (4.46)

From (4.42) at x = y = 0, we obtain

pt (0, 0) =
∑

n∈Z

1

(4πt)1/2
exp

(

−
π2n2

t

)

.

Comparing the above two lines, we obtain (4.44).



Chapter 5

∗ Stochastic completeness

Definition. A weighted manifold (M, g, μ) is called stochastically complete if the heat
kernel pt (x, y) satisfies the identity

∫

M

pt (x, y) dμ (y) = 1, (5.1)

for all t > 0 and x ∈M .

The condition (5.1) can also be stated as Pt1 ≡ 1. Recall that in general we have
0 ≤ Pt1 ≤ 1 as it follows from Corollaries 3.11 and 3.13.

If the condition (5.1) fails, that is, Pt1 6≡ 1 then the manifold M is called stochas-
tically incomplete.

Our purpose here is to provide conditions for the stochastic completeness (or in-
completeness) in various terms.

5.1 Uniqueness for the bounded Cauchy problem

Fix 0 < T ≤ ∞, set I = (0, T ) and consider the Cauchy problem in I ×M

{
∂u
∂t

= Δu, in I ×M,
u|t=0 = f,

(5.2)

where f is a given function from Cb (M). The problem (5.2) is understood in the
classical sense, that is, u ∈ C∞(I×M) and u (t, x)→ f (x) locally uniformly in x ∈M
as t → 0. Here we consider the question of the uniqueness of a bounded solution of
(5.2).

Theorem 5.1 Fix α > 0 and T ∈ (0,∞]. For any weighted manifold M , the following
conditions are equivalent.

(a) M is stochastically complete.

(b) The equation Δv = αv in M has the only bounded non-negative solution v = 0.

(c) The Cauchy problem (5.2) in (0, T )×M has at most one bounded solution.

121
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Remark. As we will see from the proof, in condition (b) the assumption that v is
non-negative can be dropped without violating the statement.

Proof. We first assume T <∞ and prove the following sequence of implications

¬ (a) =⇒ ¬ (b) =⇒ ¬ (c) =⇒ ¬ (a) ,

where ¬ means the negation of the statement.
Proof of ¬ (a) ⇒ ¬ (b). So, we assume that M is stochastically incomplete and

prove that there exists a non-zero bounded solution to the equation −Δv + αv = 0.
Consider the function

Pt1 (x) =

∫

M

pt (x, y) dμ (y) ,

which by Lemma 4.4 is C∞ smooth, 0 ≤ Pt1 ≤ 1 and, by the hypothesis of stochastic
incompleteness, Pt1 6≡ 1. Consider also the function

w (x) =

∫ ∞

0

e−αtPt1 (x) dt. (5.3)

Let us verify that w ∈ C∞ (M), it satisfies the estimate

0 ≤ w ≤ α−1 (5.4)

and the equation
−Δw + αw = 1. (5.5)

The inequalities (5.4) follows from 0 ≤ Pt1 ≤ 1. To prove the other properties, consider
an exhaustion {Ωi} of M and define in Ωk the function

wi (x) =

∫ ∞

0

e−αtPΩi
t f (x) dt,

where f = 1Ωi
. Expanding f =

∑∞
k=1 akvk in the basis of eigenfunctions of Δ in Ωi, we

obtain

PΩi
t f =

∞∑

k=1

e−λktakvk

whence

wi =
∞∑

k=1

(∫ ∞

0

e−(λk+α)tdt

)

akvk =
∞∑

k=1

ak

λk + α
vk.

It follows that wi ∈ W 1
0 (Ω) and

−Δwi =
∞∑

k=1

λkak

λk + α
vk ∈ L2 (Ωi) .

Hence,

−Δwi + αwi =
∞∑

k=1

λkak

λk + α
vk +

∞∑

k=1

αak

λk + α
vk =

∞∑

k=1

akvk = f = 1.



5.2. GEODESIC COMPLETENESS 123

Similarly to Corollary 2.8, we conclude that wi ∈ C∞ (Ωi). Since wi ↗ w as i → ∞,
we obtain by (an extension of) Proposition 4.1 that w is C∞ smooth and satisfies (5.5).

It follows from Pt1 (x) 6≡ 1 that there exist x ∈M and t > 0 such that Pt1 (x) < 1.
Then (5.3) implies that, for this value of x, we have a strict inequality w (x) < α−1.
Hence, w 6≡ α−1.

Finally, consider the function v = 1 − αw, which by (5.5) satisfies the equation
Δv = αv. It follows from (5.4) that 0 ≤ v ≤ 1, and w 6≡ α−1 implies v 6≡ 0. Hence, we
have constructed a non-zero non-negative bounded solution to Δv = αv, which finishes
the proof.

Proof of ¬ (b)⇒ ¬ (c). Let v be a bounded non-zero solution to equation Δv = αv.
By Corollary 2.8, v ∈ C∞ (M). Then the function

u (t, x) = eαtv (x) (5.6)

satisfies the heat equation because

Δu = eαtΔv = αeαtv = ∂tu.

Hence, u solves the Cauchy problem in R+ ×M with the initial condition u (0, x) =
v (x), and this solution u is bounded on (0, T ) × M (note that T is finite). Let us
compare u (t, x) with the function Ptv (x). Since v ∈ Cb (M), the function Ptv (x)
solves the heat equation and satisfies the initial condition with the function v in the
classical sense (cf. Lemma 4.9). It follows from Corollary 3.13 that

sup |Ptv| ≤ sup |v| ,

whereas by (5.6)
sup |u (t, ∙)| = eαt sup |v| > sup |v| .

Therefore, u 6≡ Ptv, and the bounded Cauchy problem in (0, T )×M has two different
solutions with the same initial function v.

Proof of ¬ (c) ⇒ ¬ (a). Assume that the problem (5.2) has two different bounded
solutions with the same initial function. Subtracting these solutions, we obtain a non-
zero bounded solution u (t, x) to (5.2) with the initial function f = 0. Without loss
of generality, we can assume that 0 < sup u ≤ 1. Consider the function w = 1 − u,
for which we have 0 ≤ inf w < 1. The function w is a non-negative solution to the
Cauchy problem (5.2) with the initial function f = 1. By Lemma 4.5, we conclude
that w (t, ∙) ≥ Pt1. Hence, inf Pt1 < 1 and M is stochastically incomplete.

Finally, let us prove the equivalence of (a), (b), (c) in the case T = ∞. Since the
condition (c) with T = ∞ is weaker than that for T < ∞, it suffices to show that (c)
with T =∞ implies (a). Assume from the contrary that M is stochastically incomplete,
that is, Pt1 6≡ 1. Then the functions u1 ≡ 1 and u2 = Pt1 are two different bounded
solutions to the Cauchy problem (5.2) in R+×M with the same initial function f ≡ 1,
so that (a) fails, which was to be proved.

5.2 Geodesic completeness

Let (M, g) be a Riemannian manifold and d (x, y) be the geodesic distance on M (see
Section 1.13 for the definition). The manifold (M, g) is said to be metrically complete if
the metric space (M,d) is complete, that is, any Cauchy sequence in (M,d) converges.
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A smooth path γ (t) : (a, b) → M is called a geodesics if, for any t ∈ (a, b) and
for all s close enough to t, the path γ|[t,s] is a shortest path between the points γ (t)
and γ (s). A Riemannian manifold (M, g) is called geodesically complete if, for any
x ∈M and ξ ∈ TxM \{0}, there is a geodesics γ : [0, +∞)→M of infinite length such
that γ (0) = x and γ̇ (0) = ξ. It is known that, on a geodesically complete connected
manifold, any two points can be connected by a shortest geodesics.

We state the following theorem without proof.

Hopf-Rinow Theorem. For a Riemannian manifold (M, g), the following condi-
tions are equivalent:

(a) (M, g) is metrically complete.

(b) (M, g) is geodesically complete.

(c) All geodesic balls in M are relatively compact sets.

This theorem will not be used, but it motivates us to give the following definition.

Definition. A Riemannian manifold (M, g) is said to be complete if all the geodesic
balls in M are relatively compact.

For example, any compact manifold is complete.

5.3 Stochastic completeness and the volume growth

Define the volume function V (x, r) of a weighted manifold (M, g, μ) by

V (x, r) := μ (B (x, r)) ,

where B (x, r) is the geodesic ball. Note that V (x, r) < ∞ for all x ∈ M and r > 0
provided M is complete.

Recall that a manifold M is stochastically complete, if the heat kernel pt (x, y)
satisfies the identity ∫

M

pt (x, y) dμ (y) = 1,

for all x ∈ M and t > 0 (see Section 5.1). The result of this section is the following
volume test for the stochastic completeness.

Theorem 5.2 Let (M, g, μ) be a complete connected weighted manifold. If, for some
point x0 ∈M , ∫ ∞ rdr

ln V (x0, r)
=∞, (5.7)

then M is stochastically complete.

Condition (5.7) holds, in particular, if

V (x0, r) ≤ exp
(
Cr2

)
. (5.8)

As a consequence we see that both Rn and Hn are stochastically complete.
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Fix 0 < T ≤ ∞, set I = (0, T ) and consider the following Cauchy problem in
I ×M {

∂u
∂t

= Δμu in I ×M,
u|t=0 = 0.

(5.9)

A solution is sought in the class u ∈ C∞(I ×M), and the initial condition means that
u (t, x)→ 0 locally uniformly in x ∈M as t→ 0 (cf. Section 5.1). By Theorem 5.1, the
stochastic completeness of M is equivalent to the uniqueness property of the Cauchy
problem in the class of bounded solutions. In other words, in order to prove Theorem
5.2, it suffices to verify that the only bounded solution to (5.9) is u ≡ 0.

The assertion will follow from the following more general fact.

Theorem 5.3 Let (M, g, μ) be a complete connected weighted manifold, and let u(x, t)
be a solution to the Cauchy problem (5.9). Assume that, for some x0 ∈ M and for all
R > 0, ∫ T

0

∫

B(x0,R)

u2(x, t) dμ(x)dt ≤ exp (f(R)) , (5.10)

where f(r) is a positive increasing function on (0, +∞) such that

∫ ∞ rdr

f(r)
=∞. (5.11)

Then u ≡ 0 in I ×M .

Theorem 5.3 provides the uniqueness class (5.10) for the Cauchy problem. The
condition (5.11) holds if, for example, f (r) = Cr2, but fails for f (r) = Cr2+ε when
ε > 0.

Before we embark on the proof, let us mention the following consequence.

Corollary 5.4 If M = Rn and u (t, x) be a solution to (5.9) satisfying the condition

|u(t, x)| ≤ C exp
(
C |x|2

)
for all t ∈ I, x ∈ Rn, (5.12)

then u ≡ 0. Moreover, the same is true if u satisfies instead of (5.12) the condition

|u(t, x)| ≤ C exp (f (|x|)) for all t ∈ I, x ∈ Rn, (5.13)

where f (r) is a convex increasing function on (0, +∞) satisfying (5.11).

Proof. Since (5.12) is a particular case of (5.13) for the function f (r) = Cr2, it suffices
to treat the condition (5.13). In Rn we have V (x, r) = crn. Therefore, (5.13) implies
that ∫ T

0

∫

B(0,R)

u2(x, t) dμ(x)dt ≤ CRn exp (f (R)) = C exp(f̃ (R)),

where f̃ (r) := f (r) + n ln r. The convexity of f implies that ln r ≤ Cf (r) for large

enough r. Hence, f̃ (r) ≤ Cf (r) and function f̃ also satisfies the condition (5.11). By
Theorem 5.3, we conclude u ≡ 0.
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The class of functions u satisfying (5.12) is called the Tikhonov class , and the
conditions (5.13) and (5.11) define the Täcklind class . The uniqueness of the Cauchy
problem in Rn in each of these classes are classical results.

Proof of Theorem 5.2. By Theorem 5.1, it suffices to verify that the only bounded
solution to the Cauchy value problem (5.9) is u ≡ 0. Indeed, if u is a bounded solution
of (5.9), then setting

S := sup |u| <∞

we obtain ∫ T

0

∫

B(x0,R)

u2(t, x)dμ(x) ≤ S2TV (x0, R) = exp (f (R)) ,

where

f(r) := ln
(
S2TV (x0, r)

)
.

It follows from the hypothesis (5.7) that the function f satisfies (5.11). Hence, by
Theorem 5.3, we obtain u ≡ 0.

Proof of Theorem 5.3. Denote for simplicity Br = B(x0, r). The main technical
part of the proof is the following claim.

Claim. Let u (t, x) solve the heat equation in (b, a) ×M where b < a are reals, and
assume that u (t, x) extends to a continuous function in [b, a]×M . Assume also that,
for all R > 0,

∫ b

a

∫

BR

u2(x, t) dμ(x)dt ≤ exp (f(R)) ,

where f is a function as in Theorem 5.2. Then, for any R > 0 satisfying the condition

a− b ≤
R2

8f(4R)
, (5.14)

the following inequality holds:

∫

BR

u2(a, ∙)dμ ≤
∫

B4R

u2(b, ∙)dμ +
4

R2
. (5.15)

Let us first show how this Claim allows to prove that any solution u to (5.9),
satisfying (5.10), is identical 0. Extend u (t, x) to t = 0 by setting u (0, x) = 0 so that
u is continuous in [0, T )×M . Fix R > 0 and t ∈ (0, T ). For any non-negative integer
k, set

Rk = 4kR

and, for any k ≥ 1, choose (so far arbitrarily) a number τ k to satisfy the condition

0 < τ k ≤ c
R2

k

f(Rk)
, (5.16)

where c = 1
128

. Then define a decreasing sequence of times {tk} inductively by t0 = t
and tk = tk−1 − τ k (see Fig. 5.1).
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τ

{ }

( )

τ

Figure 5.1: The sequence of the balls BRk
and the time moments tk.

If tk ≥ 0 then function u satisfies all the conditions of the Claim with a = tk−1 and
b = tk, and we obtain from (5.15)

∫

BRk−1

u2(tk−1, ∙)dμ ≤
∫

BRk

u2(tk, ∙)dμ +
4

R2
k−1

, (5.17)

which implies by induction that

∫

BR

u2(t, ∙)dμ ≤
∫

BRk

u2(tk, ∙)dμ +
k∑

i=1

4

R2
i−1

. (5.18)

If it happens that tk = 0 for some k then, by the initial condition in (5.9),

∫

BRk

u2(tk, ∙)dμ = 0.

In this case, it follows from (5.18) that

∫

BR

u2(t, ∙)dμ ≤
∞∑

i=1

4

R2
i−1

=
C

R2
,

which implies by letting R→∞ that u(∙, t) ≡ 0 (here we use the connectedness of M).
Hence, to finish the proof, it suffices to construct, for any R > 0 and t ∈ (0, T ), a

sequence {tk} as above that vanishes at a finite k. The condition tk = 0 is equivalent
to

t = τ 1 + τ 2 + ... + τ k . (5.19)

The only restriction on τ k is the inequality (5.16). The hypothesis that f (r) is an
increasing function implies that

∫ ∞

R

rdr

f (r)
≤

∞∑

k=0

∫ Rk+1

Rk

rdr

f (r)
≤

∞∑

k=0

R2
k+1,

f (Rk)
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which together with (5.11) yields

∞∑

k=1

R2
k

f(Rk)
=∞.

Therefore, the sequence {τ k}
∞
k=1 can be chosen to satisfy simultaneously (5.16) and

∞∑

k=1

τ k =∞.

By diminishing some of τ k, we can achieve (5.19) for any finite t, which finishes the
proof.

Now we prove the above Claim. Since the both integrals in (5.15) are continuous
with respect to a and b, we can slightly reduce a and slightly increase b; hence, we can
assume that u (t, x) is not only continuous in [b, a]×M but also smooth.

Let ρ(x) be a Lipschitz function on M (to be specified below) with the Lipschitz
constant 1. Fix a real s /∈ [b, a] (also to be specified below) and consider the following
the function

ξ(t, x) :=
ρ2(x)

4(t− s)
,

which is defined on R×M except for t = s, in particular, on [b, a]×M . By the weak
gradient ∇ρ is in L∞ (M) and satisfies the inequality |∇ρ| ≤ 1, which implies, for any
t 6= s,

|∇ξ (t, x)| ≤
ρ (x)

2 (t− s)
.

Since
∂ξ

∂t
= −

ρ2 (x)

4 (t− s)2 ,

we obtain
∂ξ

∂t
+ |∇ξ|2 ≤ 0. (5.20)

For a given R > 0, define a function ϕ (x) by

ϕ (x) = min

((
3− d(x,x0)

R

)

+
, 1

)

(see Fig. 5.2). Obviously, we have 0 ≤ ϕ ≤ 1 on M , ϕ ≡ 1 in B2R, and ϕ ≡ 0 outside
B3R. Since the function d (∙, x0) is Lipschitz with the Lipschitz constant 1, we obtain
that ϕ is Lipschitz with the Lipschitz constant 1/R. Then we have |∇ϕ| ≤ 1/R. By
the completeness of M , all the balls in M are relatively compact sets, which implies
ϕ ∈ Lip0 (M).

Consider the function uϕ2eξ as a function of x for any fixed t ∈ [b, a]. Since it
is obtained from locally Lipschitz functions by taking product and composition, this
function is locally Lipschitz on M . Since this function has a compact support, it
belongs to Lip0 (M), whence

uϕ2eξ ∈ W 1
c (M) .

Multiplying the heat equation
∂u

∂t
= Δμu
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1

x0 B2R

(x)

B3R

Figure 5.2: Function ϕ (x)

by uϕ2eξ and integrating it over [b, a]×M , we obtain

a∫

b

∫

M

∂u

∂t
uϕ2eξdμdt =

a∫

b

∫

M

(Δμu) uϕ2eξdμdt. (5.21)

Since both functions u and ξ are smooth in t ∈ [b, a], the time integral on the left hand
side can be computed as follows:

1

2

∫ a

b

∂(u2)

∂t
ϕ2eξdt =

1

2

[
u2ϕ2eξ

]a
b
−

1

2

∫ a

b

∂ξ

∂t
u2ϕ2eξdt. (5.22)

Using the Green formula to evaluate the spatial integral on the right hand side of
(5.21), we obtain

∫

M

(Δμu) uϕ2eξdμ = −
∫

M

〈∇u,∇(uϕ2eξ)〉dμ.

Applying the product rule and the chain rule to compute ∇(uϕ2eξ), we obtain

−〈∇u,∇(uϕ2eξ)〉 = − |∇u|2 ϕ2eξ − 〈∇u,∇ξ〉uϕ2eξ − 2〈∇u,∇ϕ〉uϕeξ

≤ − |∇u|2 ϕ2eξ + |∇u| |∇ξ| |u|ϕ2eξ

+

(
1

2
|∇u|2 ϕ2 + 2 |∇ϕ|2 u2

)

eξ

=

(

−
1

2
|∇u|2 + |∇u| |∇ξ| |u|

)

ϕ2eξ + 2 |∇ϕ|2 u2eξ.



130 CHAPTER 5. ∗ STOCHASTIC COMPLETENESS

Combining with (5.21), (5.22), and using (5.20), we obtain

[∫

M

u2ϕ2eξdμ

]a

b

=

a∫

b

∫

M

∂ξ

∂t
u2ϕ2eξ dμdt + 2

a∫

b

∫

M

(Δμu) uϕ2eξdμdt

≤

a∫

b

∫

M

(
− |∇ξ|2 u2 − |∇u|2 + 2 |∇u| |∇ξ| |u|

)
ϕ2eξdμdt

+4

a∫

b

∫

M

|∇ϕ|2 u2eξdμdt

= −

a∫

b

∫

M

(|∇ξ| |u| − |∇u|)2 ϕ2eξdμdt

+4

a∫

b

∫

M

|∇ϕ|2 u2eξdμdt

whence
[∫

M

u2ϕ2eξdμ

]a

b

≤ 4

a∫

b

∫

M

|∇ϕ|2 u2eξdμdt. (5.23)

Using the properties of function ϕ (x), in particular, |∇ϕ| ≤ 1/R, we obtain from (5.23)

∫

BR

u2(a, ∙)eξ(a,∙)dμ ≤
∫

B4R

u2(b, ∙)eξ(b,∙)dμ +
4

R2

a∫

b

∫

B4R\B2R

u2eξdμdt. (5.24)

Let us now specify ρ(x) and s. Set ρ(x) to be the distance function from the ball BR,
that is,

ρ(x) = (d(x, x0)− R)+

(see Fig. 5.3).

Set s = 2a− b so that, for all t ∈ [b, a],

a− b ≤ s− t ≤ 2 (a− b) ,

whence

ξ(t, x) = −
ρ2(x)

4(s− t)
≤ −

ρ2(x)

8 (a− b)
≤ 0. (5.25)

Consequently, we can drop the factor eξ on the left hand side of (5.24) because ξ = 0 in
BR, and drop the factor eξ in the first integral on the right hand side of (5.24) because
ξ ≤ 0. Clearly, if x ∈ B4R\B2R then ρ(x) ≥ R, which together with (5.25) implies that

ξ (t, x) ≤ −
R2

8 (a− b)
in [b, a]× B4R\B2R.
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BR

M

(x)

B2R

Figure 5.3: Function ρ (x).

Hence, we obtain from (5.24)

∫

BR

u2(a, ∙)dμ ≤
∫

B4R

u2(b, ∙)dμ +
4

R2
exp

(

−
R2

8 (a− b)

) a∫

b

∫

B4R

u2dμdt.

By (5.10) we have
a∫

b

∫

B4R

u2dμdt ≤ exp (f(4R))

whence
∫

BR

u2(a, ∙)dμ ≤
∫

B4R

u2(b, ∙)dμ +
4

R2
exp

(

−
R2

8 (a− b)
+ f(4R)

)

.

Finally, applying the hypothesis (5.14), we obtain (5.15).
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Chapter 6

∗ Gaussian estimates in the
integrated form

As one can see from explicit examples of heat kernels (4.18), (4.32), (4.33), the de-
pendence of the heat kernel pt (x, y) on the points x, y is frequently given by the term

exp
(
−cd2(x,y)

t

)
that is called the Gaussian factor. The Gaussian pointwise upper

bounds of the heat kernel require certain additional assumptions about the manifold
in question.

On the contrary, it is relatively straightforward to obtain the integrated upper
bounds of the heat kernel, which is the main topic of this Chapter

6.1 The integrated maximum principle

Recall that any function f ∈ Liploc (M) has the weak gradient ∇f ∈ ~L∞
loc (M).

Theorem 6.1 (The integrated maximum principle) Let ξ(t, x) be a continuous func-
tion on I×M , where I ⊂ [0, +∞) is an interval. Assume that, for any t ∈ I, ξ (t, x) is
locally Lipschitz in x ∈M , the partial derivative ∂ξ

∂t
exists and is continuous in I ×M ,

and the following inequality holds on I ×M :

∂ξ

∂t
+

1

2
|∇ξ|2 ≤ 0. (6.1)

Then, for any function f ∈ L2 (M), the function

J(t) :=

∫

M

(Ptf)2 (x) eξ(t,x)dμ(x) (6.2)

is non-increasing in t ∈ I. Furthermore, for all t, t0 ∈ I, if t > t0 then

J (t) ≤ J (t0) e−2λ1(M)(t−t0). (6.3)

Remark. Let d(x) be a Lipschitz function on M with the Lipschitz constant 1. Then
we have |∇d| ≤ 1. It follows that the following functions satisfy (6.1):

ξ(t, x) =
d2(x)

2t

133
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and

ξ(t, x) = ad(x)−
a2

2
t,

where a is a real constant. In applications d (x) is normally chosen to be the distance
from x to some set.

Proof. Let us first reduce the problem to the case of non-negative f . Indeed, if f is
signed then set g = |Pt0f | and notice that

|Ptf | = |Pt−t0Pt0f | ≤ Pt−t0g.

Assuming that Theorem 6.1 has been already proved for function g, we obtain

∫

M

(Ptf)2 eξ(t,∙)dμ ≤
∫

M

(Pt−t0g)2 eξ(t,∙)dμ

≤ e−2λ1(t−t0)

∫

M

g2eξ(t0,∙)dμ

= e−2λ1(t−t0)

∫

M

(Pt0f)2 eξ(t0,∙)dμ.

Hence, we can assume in the sequel that f ≥ 0. It suffices to prove that, for any
relatively compact open set Ω ⊂M , the function

JΩ (t) :=

∫

Ω

(
PΩ

t f
)2

(x) eξ(t,x)dμ(x)

is non-increasing in t ∈ I. Since u (t, ∙) := PΩ
t f ∈ L2 (Ω) and ξ (t, ∙) is bounded in

Ω, the function JΩ (t) is finite (unlike J (t) that a priori may be equal to ∞). Note
also that JΩ (t) is continuous in t ∈ I. Indeed, the path t 7→ u (t, ∙) is continuous in

t ∈ [0, +∞) in L2 (Ω) and the path t 7→ e
1
2
ξ(t,∙) is obviously continuous in t ∈ I in

the sup-norm in Cb (Ω) , which implies that the path t 7→ u (t, ∙) e
1
2
ξ(t,∙) is continuous in

t ∈ I in L2 (Ω).
To prove that JΩ (t) is non-increasing in I it suffices to show that the derivative

dJΩ

dt
exists and is non-positive for all t ∈ I0 := I \ {0}. Fix some t ∈ I0. Since the

functions ξ (t, ∙) and ∂ξ
∂t

(t, ∙) are continuous and bounded in Ω, they both belong to

Cb (Ω). Therefore, the partial derivative ∂ξ
∂t

is at the same time the derivative dξ
dt

in
Cb (Ω). In the same way, the function eξ(t,∙) is differentiable in Cb (Ω) and

deξ

dt
=

∂eξ

∂t
= eξ ∂ξ

∂t
. (6.4)

The function u (t, ∙) is L2 (Ω)-differentiable and its L2 derivative du
dt

is given by

du

dt
= Δu. (6.5)

Using the product rules for L2 derivatives, we conclude that ueξ is differentiable in
L2 (Ω) and

d

dt

(
ueξ
)

=
du

dt
eξ + u

deξ

dt
. (6.6)
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It follows that the inner product
(
u, ueξ

)
= JΩ (t) is differentiable as a real valued

function of t and, by the product rule and by (6.4), (6.5), (6.6),

dJΩ

dt
=

(
du

dt
, ueξ

)

+

(

u,
d
(
ueξ
)

dt

)

= 2

(
du

dt
, ueξ

)

+

(

u2,
deξ

dt

)

= 2
(
Δu, ueξ

)
+

(

u2,
∂ξ

∂t
eξ

)

. (6.7)

By the chain rule for Lipschitz functions, we have eξ(t,∙) ∈ Liploc (M). Since the function
eξ(t,∙) is bounded and Lipschitz in Ω and u (t, ∙) ∈ W 1

0 (Ω), we obtain that ueξ ∈ W 1
0 (Ω) .

By the Green formula, we obtain

2
(
Δu, ueξ

)
= −2

∫

Ω

〈∇u,∇
(
ueξ
)
〉dμ.

Since both functions u and eξ(t,∙) are locally Lipschitz, the product rule and the chain
rule apply for expanding ∇

(
ueξ
)
. Substituting the result into (6.7) and using (6.1),

we obtain

dJΩ

dt
≤ −2

∫

Ω

(

|∇u|2 eξ + ueξ〈∇u,∇ξ〉+
1

4
u2 |∇ξ|2 eξ

)

dμ

= −2

∫

Ω

(

∇u +
1

2
u∇ξ

)2

eξdμ, (6.8)

whence dJΩ

dt
≤ 0. To prove (6.3), observe that

(

∇u +
1

2
u∇ξ

)

eξ/2 = ∇(ueξ/2).

Since ueξ/2 ∈ W 1
0 (Ω), we can apply the variational principle, which yields

∫

Ω

(

∇u +
1

2
u∇ξ

)2

eξdμ =

∫

Ω

|∇(ueξ/2)|2dμ

≥ λ1 (Ω)

∫

Ω

|ueξ/2|2dμ

= λ1 (Ω) JΩ(t). (6.9)

Hence, (6.8) yields

dJΩ

dt
≤ −2λ1 (Ω) JΩ (t) ,

whence (6.3) follows.
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6.2 The Davies-Gaffney inequality

For any set A on a weighted manifold M and any r > 0, denote by Ar the r-
neighborhood of A, that is,

Ar = {x ∈M : d (x,A) < r} .

Write also Ac
r = (Ar)

c = M \ Ar.

Theorem 6.2 Let A be a measurable subset of a weighted manifold M . Then, for any
function f ∈ L2(M) and for all positive r, t,

∫

Ac
r

(Ptf)2 dμ ≤
∫

Ac

f 2dμ + exp

(

−
r2

2t
− 2λt

)∫

A

f 2dμ, (6.10)

where λ = λ1(M). In particular, if f ∈ L2 (A) then

∫

Ac
r

(Ptf)2 dμ ≤ ‖f‖22 exp

(

−
r2

2t
− 2λt

)

(6.11)

(see Fig. 6.1).

A r

f

Ac
r

Figure 6.1: Sets A and Ac
r

Proof. Fix some s > t and consider the function

ξ(τ , x) =
d2(x,Ac

r)

2(τ − s)
,

defined for x ∈M and τ ∈ [0, s). Set also

J (τ) :=

∫

M

(Pτf)2 eξ(τ ,∙)dμ.

Since the function ξ satisfies the condition

∂ξ

∂τ
+

1

2
|∇ξ|2 ≤ 0,
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we obtain by Theorem 6.1 that

J (t) ≤ J (0) exp (−2λt) . (6.12)

Since ξ (τ , x) = 0 for x ∈ Ac
r, we have

J (t) ≥
∫

Ac
r

(Ptf)2 dμ. (6.13)

On the other hand, using the fact that ξ (0, x) ≤ 0 for all x and

ξ (0, x) ≤ −
r2

2s
for all x ∈ A,

we obtain

J (0) ≤
∫

Ac

f 2dμ + exp

(

−
r2

2s

)∫

A

f 2dμ. (6.14)

Combining together (6.12), (6.13), (6.14) and letting s→ t+, we obtain (6.10).
The inequality (6.11) trivially follows from (6.10) and the observation that

∫
Ac f 2dμ =

0.

Corollary 6.3 (The Davies-Gaffney inequality). If A and B are two disjoint measur-
able subsets of M and f ∈ L2(A), g ∈ L2(B), then, for all t > 0,

|(Ptf, g)| ≤ ‖f‖2‖g‖2 exp

(

−
d2(A,B)

4t
− λt

)

(6.15)

(see Fig. 6.2).

A
Bd(A,B)

f
g

Figure 6.2: Sets A and B

Proof. Set r = d (A,B). Then B ⊂ Ac
r and by (6.11)

∫

B

(Ptf)2 dμ ≤ ‖f‖22 exp

(

−
r2

2t
− 2λt

)

.

Applying the Cauchy-Schwarz inequality, we obtain

|(Ptf, g)| ≤

(∫

B

(Ptf)2 dμ

)1/2

‖g‖2

≤ ‖f‖2‖g‖2 exp

(

−
r2

4t
− λt

)

,
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which was to be proved.

Note that (6.15) is in fact equivalent to (6.11) since the latter follows from (6.15)
by dividing by ‖g‖2 and taking sup in all g ∈ L2 (B) with B = Ar

c.
Assuming that the sets A and B in (6.15) have finite measures and setting f = 1A

and g = 1B, we obtain from (6.15)

(Pt1A, 1B) ≤
√

μ(A)μ(B) exp

(

−
d2(A,B)

4t
− λt

)

,

or, in terms of the heat kernel,
∫∫

AB

pt(x, y)dμ(x)dμ(y) ≤
√

μ(A)μ(B) exp

(

−
d2(A,B)

4t
− λt

)

. (6.16)

This can be considered as an integrated form of the Gaussian upper bound of the
heat kernel. Note that, unlike the pointwise bounds, the estimate (6.16) holds on an
arbitrary manifold.

6.3 Upper bounds of higher eigenvalues

We give here an application of Corollary 6.3 to eigenvalue estimates on a compact
weighted manifold M . As before, denote by λk(M) be the k-th smallest eigenvalue of
Δ counted with the multiplicity. Recall that λk(M) ≥ 0 and λ1(M) = 0.

Theorem 6.4 Let M be a connected compact weighted manifold. Let A1, A2, ..., Ak be
k ≥ 2 disjoint measurable sets on M , and set

δ := min
i 6=j

d(Ai, Aj).

Then

λk(M) ≤
4

δ2 max
i 6=j

(

ln
2μ(M)

√
μ(Ai)μ(Aj)

)2

. (6.17)

In particular, if we have two sets A1 = A and A2 = B then (6.17) becomes

λ2(M) ≤
4

δ2

(

ln
2μ(M)

√
μ(A)μ(B)

)2

, (6.18)

where δ := d(A,B).

Proof. We first prove (6.18). Let {ϕk}
∞
k=1 be an orthonormal basis in L2(M,μ) that

consists of the eigenfunctions of Δ, so that ϕk has the eigenvalue λk = λk(M). By the
eigenfunction expansion (3.41), we have for any t > 0

∫∫

AB

pt(x, y)dμ(x)dμ(y) =
∞∑

i=1

e−tλi

∫

A

ϕi(x)dμ(x)

∫

B

ϕi(y)dμ(y)

=
∞∑

i=1

e−tλiaibi, (6.19)
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where
ai = (1A, ϕi) and bi = (1B, ϕi) .

By the Parseval identity

∞∑

i=1

a2
i = ‖1A‖

2
2 = μ(A) and

∞∑

i=1

b2
i = ‖1B‖

2
2 = μ(B).

Since λ1 = 0, the first eigenfunction ϕ1 is identical constant. By the normalization
condition ‖ϕ1‖2 = 1 we obtain ϕ1 ≡ 1/

√
μ(M) , which implies

a1 = (1A, ϕ1) =
μ(A)
√

μ(M)
and b1 = (1B, ϕ1) =

μ(B)
√

μ(M)
.

Therefore, (6.19) yields

∫∫

AB

pt(x, y)dμ(x)dμ(y) = a1b1 +
∞∑

i=2

e−tλiaibi

≥ a1b1 − e−tλ2

(
∞∑

i=2

a2
i

)1/2( ∞∑

i=2

b2
i

)1/2

≥
μ(A)μ(B)

μ(M)
− e−tλ2

√
μ(A)μ(B).

Comparing with (6.16), we obtain

√
μ(A)μ(B)e−

δ2

4t ≥
μ(A)μ(B)

μ(M)
− e−tλ2

√
μ(A)μ(B),

whence

e−tλ2 ≥

√
μ(A)μ(B)

μ(M)
− e−

δ2

4t

Choosing t from the identity

e−
δ2

4t =
1

2

√
μ(A)μ(B)

μ(M)
,

we conclude

λ2 ≤
1

t
ln

2μ(M)
√

μ(A)μ(B)
=

4

δ2

(

ln
2μ(M)

√
μ(A)μ(B)

)2

,

which was to be proved.
Let us now turn to the general case k > 2. Consider the following integrals

Jlm :=

∫

Al

∫

Am

p(t, x, y)dμ(x)dμ(y)

and set
a

(l)
i := (1Al

, ϕi).
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Exactly as above, we have

Jlm =
∞∑

i=1

e−tλia
(l)
i a

(m)
i

=
μ(Al)μ(Am)

μ(M)
+

∞∑

i=k

e−λita
(l)
i a

(m)
i +

k−1∑

i=2

e−λita
(l)
i a

(m)
i

≥
μ(Al)μ(Am)

μ(M)
− e−λkt

√
μ(Al)μ(Am)

+
k−1∑

i=2

e−λita
(l)
i a

(m)
i . (6.20)

On the other hand, by (6.16)

Jlm ≤
√

μ(Al)μ(Am)e−
δ2

4t . (6.21)

Therefore, we can further argue as in the case k = 2 provided the term in (6.20) can
be discarded, which the case when

k−1∑

i=2

e−λita
(l)
i a

(m)
i ≥ 0. (6.22)

Let us show that (6.22) can be achieved by choosing l,m. To that end, let us interpret
the sequence

a(j) := (a
(j)
2 , a

(j)
3 , ..., a

(j)
k−1)

as a (k − 2)-dimensional vector in Rk−2. Here j ranges from 1 to k so that we have k
vectors a(j) in Rk−2. Let us introduce the inner product of two vectors u = (u2, ..., uk−1)
and v = (v2, ..., vk−1) in Rk−2 by

〈u, v〉t :=
k−1∑

i=2

e−λituivi (6.23)

and apply the following elementary fact:

Lemma 6.5 From any n+2 vectors in a n-dimensional Euclidean space, it is possible
to choose two vectors with non-negative inner product.

Note that n + 2 is the smallest number for which the statement of Lemma 6.5 is
true. Indeed, choose an orthonormal basis e1, e2, ..., en in the given Euclidean space
and consider the vector

v := −e1 − e2 − ...− en.

Then any two of the following n + 1 vectors

e1 + εv, e2 + εv, ...., en + εv, v

have a negative inner product, provided ε > 0 is small enough.
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E

Figure 6.3: The vectors v′
i are the orthognal projections of vi onto E.

Lemma 6.5 is easily proved by induction in n. The inductive basis for n = 1 is
trivial. The inductive step is shown on Fig. 6.3. Indeed, assume that the n + 2
vectors v1, v2, ..., vn+2 in Rn have pairwise obtuse angles. Denote by E the orthogonal
complement of vn+2 in Rn and by v′

i the orthogonal projection of vi onto E.
For any i ≤ n + 1, the vector vi can be represented as

vi = v′
i − εivn+2 ,

where
εi = −〈vi, vn+2〉 > 0.

Therefore, we have
〈vi, vj〉 = 〈v′

i, v
′
j〉+ εiεj |vn+2|

2 .

By the inductive hypothesis, we have 〈v′
i, v

′
j〉 ≥ 0 for some i, j, which implies 〈vi, vj〉 ≥

0, contradicting the assumption.
Now we can finish the proof of Theorem 6.4. Fix some t > 0. By Lemma 6.5, we

can find l,m so that 〈a(l), a(m)〉t ≥ 0; that is (6.22) holds. Then (6.20) and (6.21) yield

e−tλk ≥

√
μ(Al)μ(Am)

μ(M)
− e−

δ2

4t ,

and we are left to choose t. However, t should not depend on l,m because we use t to
define the inner product (6.23) before choosing l,m. So, we first write

e−tλk ≥ min
i,j

√
μ(Ai)μ(Aj)

μ(M)
− e−

δ2

4t

and then define t by

e−
δ2

4t =
1

2
min
i,j

√
μ(Ai)μ(Aj)

μ(M)
,

whence (6.17) follows.
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