Prof. A. Grigoryan

Analysis on Manifolds

Blatt 3. Abgabe bis 10.05.2024

16. Let M be a smooth manifold of dimension $n, F \in C^{\infty}(M)$ and S be a non-singular null set of F, that is,

$$S = \{x \in M : F(x) = 0\}$$
 and $dF \neq 0$ on S.

Consequently, S is a submanifold of M of dimension n-1.

(a) Prove that, for any $x_0 \in S$, the tangent space $T_{x_0}S$ is determined as a subspace of $T_{x_0}M$ by the equation

$$T_{x_0}S = \{\xi \in T_{x_0}M : \langle dF, \xi \rangle = 0\}.$$
 (6)

Hint. Verify first that every $\xi \in T_{x_0}S$ satisfies $\langle dF, \xi \rangle = 0$.

(b) Let $M = \mathbb{R}^n$. The tangent space $T_{x_0}M$ can be identified with \mathbb{R}^n by using the isomorphism $I: T_{x_0}M \to \mathbb{R}^n$ defined by

$$I(\frac{\partial}{\partial x^i}) = e_i,$$

where $\{e_i\}_{i=1}^n$ is the canonical basis in \mathbb{R}^n . Prove that

$$x_0 + I(T_{x_0}S)$$

is the hyperplane H_{x_0} in \mathbb{R}^n that goes through x_0 and has the normal $\nabla F(x_0)$, where

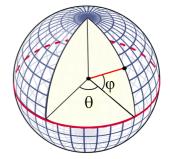
$$\nabla F = \left(\frac{\partial F}{\partial x^1}, ..., \frac{\partial F}{\partial x^n}\right).$$

Remark. This result means that the tangent space $T_{x_0}S$ can be naturally identified with the tangent hyperplane H_{x_0} in \mathbb{R}^n to the hypersurface S at the point x_0 .

17. For any submanifold S of \mathbb{R}^n , denote by \mathbf{g}_S the Riemannian metric on S that is induced by the canonical Euclidean metric

$$\mathbf{g}_{\mathbb{R}^n} = \left(dx^1\right)^2 + \dots + \left(dx^n\right)^2.$$

- (a) Let \mathbb{S}^1 be the unit circle in \mathbb{R}^2 . Express the induced metric $\mathbf{g}_{\mathbb{S}^1}$ using the polar angle θ on \mathbb{S}^1 as a local coordinate.
- (b) Let S² be the unit sphere in R³. Express the induced metric g_{S²} using the longitude θ and the latitude φ on S² as the local coordinates.



18. Let Γ be the graph in \mathbb{R}^n of a C^{∞} function $f: U \to \mathbb{R}$, where U is an open subset of \mathbb{R}^{n-1} . Let \mathbf{g} be the canonical metric in \mathbb{R}^n , and denote by \mathbf{g}_{Γ} the induced Riemannian metric on Γ considering Γ as a submanifold of \mathbb{R}^n . Let y^1, \ldots, y^{n-1} be the Cartesian coordinates in U that can be regarded as local coordinates on Γ .

Prove that the components of the metric \mathbf{g}_{Γ} in the coordinates y^1, \dots, y^{n-1} are as follows:

$$(g_{\Gamma})_{ij} = \delta_{ij} + \frac{\partial f}{\partial y^i} \frac{\partial f}{\partial y^j},\tag{7}$$

where $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$.

Hint. Use the following result from lectures: if S is a submanifold of a Riemannian manifold (M, \mathbf{g}) then the induced metric \mathbf{g}_S is given in the local coordinates x^1, \ldots, x^n on M and y^1, \ldots, y^m on S by the formula

$$(g_S)_{ij} = g_{kl} \frac{\partial x^k}{\partial y^i} \frac{\partial x^l}{\partial y^j}.$$
(8)

19. Let U be an open set in \mathbb{R}^m and $\Psi: U \to \mathbb{R}^k$ be a smooth mapping. Define the graph Γ of Ψ as follows:

$$\Gamma = \left\{ (x, y) \in \mathbb{R}^{m+k} : y = \Psi(x) \right\},\$$

where $x \in \mathbb{R}^m$, $y \in \mathbb{R}^k$ and $(x, y) = (x^1, ..., x^m, y^1, ..., y^k) \in \mathbb{R}^{m+k}$. Prove that Γ is a submanifold of \mathbb{R}^{m+k} of dimension m.

20. * Let X and Y be smooth manifolds of dimensions n and m, respectively, with $n \ge m$. A mapping $\Phi : Y \to X$ is called smooth if in local coordinates $x^1, ..., x^n$ in X and $y^1, ..., y^m$ in Y it is given by equations

$$x^{i} = \Phi^{i}(y^{1}, ..., y^{m}), \ i = 1, ..., n,$$

where Φ^i are smooth functions. Let Φ be a smooth mapping as above satisfying the following three properties:

(1) the mapping $\Phi: Y \to X$ is injective;

(2) the rank of the Jacobi matrix $J = \left(\frac{\partial \Phi^i}{\partial y^j}\right)$ of Φ is maximal at all points, that is, it is equal to m;

(3) Φ is a homeomorphism of Y onto its image $S := \Phi(Y) \subset X$.

- (a) Prove that S is a submanifold of X of dimension m.
- (b) Give examples to show that any of the conditions (1), (2), (3) is essential for this statement.