Blatt 4. Abgabe bis 17.05.2024

21. Let (M, \mathbf{g}) be a Riemannian manifold and ν be the Riemannian measure on M. Assume that a function $f \in C(M)$ satisfies the following identity

$$
\begin{equation*}
\int_{M} f \varphi d \nu=0 \tag{9}
\end{equation*}
$$

for all $\varphi \in C_{0}^{\infty}(M)$. Prove that $f \equiv 0$ on M.
22. (Product rule for divergence) Let (M, \mathbf{g}) be a Riemannian manifold, and let ∇, div be the gradient and divergence associated with g, respectively. Prove that, for any smooth function u and any smooth vector field ω on M,

$$
\begin{equation*}
\operatorname{div}(u \omega)=\langle\nabla u, \omega\rangle_{\mathbf{g}}+u \operatorname{div} \omega . \tag{10}
\end{equation*}
$$

Hint. Use the divergence theorem and the product rule of gradient of Exercise 13a
23. The Laplace-Beltrami operator Δ on a Riemannian manifold (M, \mathbf{g}) is defined for any function $u \in C^{\infty}(M)$ by

$$
\Delta u=\operatorname{div}(\nabla u) .
$$

(a) (Product rule for the Laplacian) Prove that, for any two smooth functions u and v on M,

$$
\begin{equation*}
\Delta(u v)=u \Delta v+2\langle\nabla u, \nabla v\rangle_{\mathrm{g}}+(\Delta u) v . \tag{11}
\end{equation*}
$$

(b) (Chain rule for the Laplacian) Prove that

$$
\Delta f(u)=f^{\prime \prime}(u)|\nabla u|_{\mathbf{g}}^{2}+f^{\prime}(u) \Delta u
$$

where u and f are smooth functions on M and \mathbb{R}, respectively.
24. Let $\mathbf{g}, \widetilde{\mathbf{g}}$ be two Riemannian metric tensors on a smooth n-dimensional manifold M. Assume that, for some constant C,

$$
\begin{equation*}
\widetilde{\mathbf{g}} \leq C \mathbf{g}, \tag{12}
\end{equation*}
$$

that is, for all $x \in M$ and $\xi \in T_{x} M$,

$$
\begin{equation*}
\widetilde{\mathbf{g}}(x)(\xi, \xi) \leq C \mathbf{g}(x)(\xi, \xi) \tag{13}
\end{equation*}
$$

(a) Prove that if ν and $\widetilde{\nu}$ are the Riemannian measures of \mathbf{g} and $\widetilde{\mathbf{g}}$, respectively, then

$$
\frac{d \widetilde{\nu}}{d \nu} \leq C^{n / 2}
$$

(b) Prove that, for any smooth function f on M,

$$
|\nabla f|_{\mathrm{g}}^{2} \leq C|\nabla f|_{\tilde{\mathrm{g}}}^{2}
$$

Hint. Fix $x_{0} \in M$ and consider $T_{x_{0}} M$ as a Euclidean space with the inner product \mathbf{g}. Since $\widetilde{\mathbf{g}}$ is a symmetric bilinear form in this space, there exists a \mathbf{g}-orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ in $T_{x_{0}} M$ in which $\widetilde{\mathbf{g}}$ has a diagonal form, that is, $\left(\widetilde{g_{i j}}\right)=\operatorname{diag}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ with some reals α_{i}. By a linear change of coordinates in a neighborhood of x_{0}, you can assume that $\frac{\partial}{\partial x^{i}}=e_{i}$. For (a) note also that, by Exercise 15, the ratio $\frac{\operatorname{det} \tilde{g}\left(x_{0}\right)}{\operatorname{det} g\left(x_{0}\right)}$ does not depend on the choice of local coordinates.
25. * Fix n reals a_{1}, \ldots, a_{n} and consider the matrix

$$
B=\left(\begin{array}{ccccc}
1+a_{1}^{2} & a_{1} a_{2} & a_{1} a_{3} & \ldots & a_{1} a_{n} \\
a_{2} a_{1} & 1+a_{2}^{2} & a_{2} a_{3} & \ldots & a_{2} a_{n} \\
a_{3} a_{1} & a_{3} a_{2} & 1+a_{3}^{2} & \ldots & a_{3} a_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n} a_{1} & a_{n} a_{2} & a_{n} a_{3} & \ldots & 1+a_{n}^{2}
\end{array}\right)
$$

that is, $B=\left(b_{i j}\right)$ where $b_{i i}=1+a_{i}^{2}$ and $b_{i j}=a_{i} a_{j}$ for $i \neq j$. The purpose of this question is to prove the identity

$$
\begin{equation*}
\operatorname{det} B=1+a_{1}^{2}+\ldots+a_{n}^{2} . \tag{14}
\end{equation*}
$$

(a) Consider an auxiliary $(n+1) \times(n+1)$ matrix

$$
A=\left(\begin{array}{cccccc}
1 & -a_{1} & -a_{2} & \ldots & \ldots & -a_{n} \\
a_{1} & 1 & & & & \\
a_{2} & & 1 & & \mathbf{0} & \\
\vdots & & & \ddots & & \\
\vdots & & 0 & & \ddots & \\
a_{n} & & & & & 1
\end{array}\right)
$$

where all the entries of the matrix outside the first column, the first row and the main diagonal are zeros. Prove that

$$
\operatorname{det} A=1+a_{1}^{2}+\ldots+a_{n}^{2} .
$$

(b) Prove the identity (14)

Hint. Prove first that the matrix $A A^{T}$ has the block diagonal form

$$
A A^{T}=\left(\begin{array}{cc}
c & \mathbf{0} \\
\mathbf{0} & B
\end{array}\right),
$$

where B is the above matrix and $c=1+a_{1}^{2}+\ldots+a_{n}^{2}$.
Remark. The identity (14) will be used later on in order to compute measure on certain manifolds.

