Prof. A. Grigoryan

Blatt 4. Abgabe bis 17.05.2024

21. Let (M, \mathbf{g}) be a Riemannian manifold and ν be the Riemannian measure on M. Assume that a function $f \in C(M)$ satisfies the following identity

$$\int_{M} f\varphi d\nu = 0 \tag{9}$$

for all $\varphi \in C_0^{\infty}(M)$. Prove that $f \equiv 0$ on M.

22. (Product rule for divergence) Let (M, \mathbf{g}) be a Riemannian manifold, and let ∇ , div be the gradient and divergence associated with \mathbf{g} , respectively. Prove that, for any smooth function u and any smooth vector field ω on M,

$$\operatorname{div}\left(u\omega\right) = \langle \nabla u, \omega \rangle_{\mathbf{g}} + u \operatorname{div} \omega. \tag{10}$$

Hint. Use the divergence theorem and the product rule of gradient of Exercise 13a

23. The Laplace-Beltrami operator Δ on a Riemannian manifold (M, \mathbf{g}) is defined for any function $u \in C^{\infty}(M)$ by

$$\Delta u = \operatorname{div} \left(\nabla u \right).$$

(a) (Product rule for the Laplacian) Prove that, for any two smooth functions u and v on M,

$$\Delta(uv) = u\Delta v + 2\langle \nabla u, \nabla v \rangle_{\mathbf{g}} + (\Delta u) v.$$
(11)

(b) (Chain rule for the Laplacian) Prove that

$$\Delta f(u) = f''(u) \left| \nabla u \right|_{\mathbf{g}}^2 + f'(u) \,\Delta u,$$

where u and f are smooth functions on M and \mathbb{R} , respectively.

24. Let \mathbf{g} , $\mathbf{\tilde{g}}$ be two Riemannian metric tensors on a smooth *n*-dimensional manifold M. Assume that, for some constant C,

$$\widetilde{\mathbf{g}} \le C\mathbf{g},$$
 (12)

that is, for all $x \in M$ and $\xi \in T_x M$,

$$\widetilde{\mathbf{g}}(x)\left(\xi,\xi\right) \le C\mathbf{g}(x)\left(\xi,\xi\right). \tag{13}$$

(a) Prove that if ν and $\tilde{\nu}$ are the Riemannian measures of **g** and $\tilde{\mathbf{g}}$, respectively, then

$$\frac{d\tilde{\nu}}{d\nu} \le C^{n/2}$$

(b) Prove that, for any smooth function f on M,

$$\left|\nabla f\right|_{\mathbf{g}}^2 \le C \left|\nabla f\right|_{\widetilde{\mathbf{g}}}^2.$$

Hint. Fix $x_0 \in M$ and consider $T_{x_0}M$ as a Euclidean space with the inner product \mathbf{g} . Since $\widetilde{\mathbf{g}}$ is a symmetric bilinear form in this space, there exists a \mathbf{g} -orthonormal basis $\{e_1, ..., e_n\}$ in $T_{x_0}M$ in which $\widetilde{\mathbf{g}}$ has a diagonal form, that is, $(\widetilde{g_{ij}}) = \text{diag} \{\alpha_1, ..., \alpha_n\}$ with some reals α_i . By a linear change of coordinates in a neighborhood of x_0 , you can assume that $\frac{\partial}{\partial x^i} = e_i$. For (a) note also that, by Exercise 15, the ratio $\frac{\det \widetilde{g}(x_0)}{\det g(x_0)}$ does not depend on the choice of local coordinates.

25. * Fix n reals $a_1, ..., a_n$ and consider the matrix

$$B = \begin{pmatrix} 1+a_1^2 & a_1a_2 & a_1a_3 & \dots & a_1a_n \\ a_2a_1 & 1+a_2^2 & a_2a_3 & \dots & a_2a_n \\ a_3a_1 & a_3a_2 & 1+a_3^2 & \dots & a_3a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_na_1 & a_na_2 & a_na_3 & \dots & 1+a_n^2 \end{pmatrix}$$

that is, $B = (b_{ij})$ where $b_{ii} = 1 + a_i^2$ and $b_{ij} = a_i a_j$ for $i \neq j$. The purpose of this question is to prove the identity

$$\det B = 1 + a_1^2 + \dots + a_n^2. \tag{14}$$

(a) Consider an auxiliary $(n+1) \times (n+1)$ matrix

$$A = \begin{pmatrix} 1 & -a_1 & -a_2 & \dots & \dots & -a_n \\ a_1 & 1 & & & & \\ a_2 & 1 & \mathbf{0} & & \\ \vdots & & \ddots & & \\ \vdots & & \mathbf{0} & & \ddots & \\ a_n & & & & 1 \end{pmatrix},$$

where all the entries of the matrix outside the first column, the first row and the main diagonal are zeros. Prove that

$$\det A = 1 + a_1^2 + \dots + a_n^2.$$

(b) Prove the identity (14)

Hint. Prove first that the matrix AA^T has the block diagonal form

$$AA^T = \left(\begin{array}{cc} c & \mathbf{0} \\ \mathbf{0} & B \end{array}\right),$$

where B is the above matrix and $c = 1 + a_1^2 + \dots + a_n^2$.

Remark. The identity (14) will be used later on in order to compute measure on certain manifolds.