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Setup and problem statement

Let (M, g) be a connected Riemannian manifold, A — the Laplace-Beltrami operator on
M. In local coordinates x1, ..., z, it has the form

1 n
A = 5 Z &Ci (Clij (I’) (9%) 5

,j=1

where D = y/det (g;;) and (a;;) = D (gi;) "
Consider the equation (or inequality)

—Au+d(x)u” = f (or —Au+®(z)u” > f)

where ®, f € C' (M), f >0, 0 > 0. Solution u should be non-negative and in C? (M).

Our goal is obtaining pointwise estimates of wu.

Assume that A has a positive Green function G (z,y) on M. Set Gf(x) = [G(z,y) f(y)du(y).
It is known that if G f is finite then A (G f) = —F. "



Linear case 0 =1

W. Hansen—7.Ma 1990, AG-W.Hansen 2008: if
—Au+®(x)u>f on M

where ® > 0 and the function h = G f is positive and finite, then
1
u > hexp (—EG(hCI))> :

This implies the lower bound for the Green function G¢ of —A + ®:

/Gazz ) ® (2) dp (2)
(z,y)

Go (x,y) > G (x,y) exp

In the case & < 0 a similar estimate under additional assumptions was obtained by
N.Kalton—I.Verbitsky 1999.



Main result

Theorem 1 (AG-I.Verbitsky, 2015) Let u > 0 solve —Au+ du” > f in M. Set h=Gf
and assume that 0 < h < co. Assume also that G (h°®) be well defined.

(1) If o =1 then
u> hexp (—%G (hCD)) | (1)

(13) If o0 > 1 then
s d . @)

[1 o — 1)%(:(/10@)} o

o—1

where the expression in square brackets is necessarily positive, that is,

— (0 — 1)G(h®) < h. (3)

(131) If 0 < o < 1 then



Estimates with boundary condition

Let Q be a relatively compact domain in M with smooth boundary. Let Gg (z,y) be the
Green function of A in 2 with the Dirichlet boundary condition.

It suffices to prove (1)-(4) in 2 with Gq instead of G and with h = Gqf instead of Gf.

Consider the following problem. Let h € C? (2) N C (Q) be positive and superharmonic
in Q. Set f:= —Ah > 0. Assume that u € C*(Q) N C (Q), u > 0, satisfies

—Au+ du® > f in Q (5)
u>h on 0f

Theorem 2 (i) If o =1 then u > hexp (—+Gq (h®)) .
(17) If o > 1 then

h
u >

= 1

1+ (0 — 1)2Gq (h70)] 7T
where necessarily —(o — 1)Gqo(h°®) < h.

(iii) {0 < o < 1 then u > h [l - (1 - 0)LGa (Luse)h"®)] 77 .



Approach to the proof of Theorem 2

Assume for simplicity that « > 0 and h > 0 in Q. Assume first h = 1. Then f = —Ah =0
and (5) becomes
—Au+ du® >0 in
{ u>1 on 0f)

Fix a C? function ¢ on (a interval of) R with ¢’ > 0 and make the following change:
v= " (u).
By the chain rule we have
Au = Ap (v) = ¢'(v)Av + ¢ ()| Vo,

whence

(o

v/ 2 A "
A LT B i ML S 2Ol
p o T ' (v)
Choose ¢ to solve the following initial value problem

¢ (s) =97 (s), ¢(0)=1.




q>1 q=1

1/(g-1) -1 0 1/(q-

The inverse function ¢! is always defined on (0, +00).



The function ¢ is convex, and we obtain from (6)
—Av > - in Q.

Since on 9 we have v = =1 (u) > ¢! (1) = 0, it follows that
v> —GadP in )

and, hence,
u>@(—Gq®P) in Q.

This yields the cases (i) — (iii) of Theorem 2 in the case h = 1.

Indeed, in the case o = 1 we have ¢ (s) = e® and, hence,
u > exp (—Gq?®) .

In the case 0 > 1 we have ¢ (s) = [(1 —0)s + 1]_ﬁ, which gives the estimate of (i7)

1
1+ (0 — 1)Gad]7 T

u >

Similarly one treats the case 0 < o < 1.



For a general h > 0, we use the h-transform of A in Q: A" := 5 o A o h. That is,

(A (hu)) = % (hAu +2Vh - Vh + (Ah)u) = 1 iy (R*Vu) -I—&u = Lu+ &u

Ahy =
Y 12 h h

S

where

1 .
L = 72 div (hQV)

is the weighted Laplacian associated with measure dfi = h2dpu.

For function o = % we have

Ah

A= ——Au> — (=du + f) = —h7'du" — —

Sl
SRS

Setting ® = h?~1®, we obtain that @ satisfies
~ Ah
—A"i + P > — in €, w>1 on 0f.

Now we use the same approach as in the case h = 1, but for operator A" in place of A.

Set v =~ (@) = ¢! (u/h) and compute A"v as in (6). For the part L = 5 div (h?V)
of the operator A", computation is the same as for A.
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The part 52 gives in the end an additional term so that instead of (7) we obtain

—Ahy > -0+ (% —v) %

Multiplying by h, we obtain

p(v) — 1 )
— A (hv 2—h"®+(——v Ah. 8
The convexity of ¢ implies
—1
Pl -1y, (9)
¥'(s)
for any s in the domain of ¢. Indeed, if s > 0 then 3¢ € [0, s] such that
s)— (0
PPNICETI0)
s
It follows that ()1
/ PY\S) —
0 (s) 2 ¢ (§) = ——

which yields (9).



N e oo o o o o o o — — ——— —————

R R

If s <0 then 3¢ € [s,0] such that

p(s) =1 _p(s) —p(0)

: 2 @2,

which again implies (9) since s < 0.
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Since Ah < 0 and

we obtain .
(o —v) a0

and therefore by (8)
—A (hv) > —=h°® in Q.

On 99 we have v = ¢~ (u/h) > =1 (1) = 0, which implies
hv > —Ggq (h°®) in Q.

Dividing by h and applying ¢, we conclude that

U 1
- > _ o 1 .
h_g@( hGQ(h (I>)> in 2

11



Existence of positive solutions

Let us ask for which values o > 1 the inequality
Au+u® <0 (10)

has a positive solution w on M (the case of ® = —1). For example, in R” with n < 2
any non-negative solution of (10) is 0 while in the case n > 2, the inequality (10) has a
positive solution in R” if and only if

n
n—2

g >

(Mitidieri and Pohozaev, 1998). Hence, 0oy = 5.

Let d (x,y) be a distance function on M, not necessarily geodesic, but such that the metric
balls

B(z,r)={y e M :d(z,y) <r}.

are precompact open subsets of M. Set

V(z,r)=p(B(x,1)).
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Theorem 3 (AG — Yuhua Sun, 2017) Assume that, for some xy € M,

V(zg,7) = 1% for large r (V)
and
G (z,y) = d(z,y)" for large d(z,y), (G)
where a > v > 0. Then, for any o satisfying
l<o< g,
7
the inequality
Au+u? <0 (11)

has no positive solution in any exterior domain of M.

If in addition d is the geodesic distance, M has bounded geometry, and (V') holds for all
xo € M, then, for any
o> g,
~

the inequality (11) has a positive solution on M.

.«
Hence, 0.t = o
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Example 1

Let I' be an infinite connected graph with a uniformly bounded degree. Let d(x,y) be
the graph distance on I' and V' (z,7) — the volume function.

Assume that the discrete Laplace operator on I' has a positive Green function G (z,y).

®

If I' satisfies conditions (V') and (G)
for some a and  then we construct
a manifold M satisfying (V) and (G)
inflating the edges of I' into 2-dim
tubes.

Since M has bounded geometry, both :
parts of Theorem 3 apply in this case. o

M.Barlow constructed in 2004 a family of fractal-like graphs such that each graph satsfies
(V) with some « and has the walk dimension (3, where «, 3 can be any real numbers
satisfying 2 < g < a+ 1.
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For the graphical Sierpinski gasket
we have a = log, 3 and 3 = log, 5
so that 3 > a.

A%X%A A%’A%A A%X%A AeAVAeA AexeA AQXQA A%A

However, for higher dimensional constructions one can achieve 3 < «. In this case the
graph has a positive Green function satysying (G) with v = a — £.

Since v can be arbitrarily small, the critical value o..;; = % can be arbitrarily large, unlike

the Euclidean critical value %
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Example 2

Assume that G(z,y) satisfies the following 3G-inequality

Mawgc<m;w+Géw>

for all x,y,2z € M and some C' > 1. Then the function p (z,y) = reTCRN)] is a quasi-metric

on M. For any quasi-metric p, there exists v > 0 and a distance function d(z,y) such
that p(z,y) ~ d(z,y)".

Hence, G(z,y) ~ d(x,y)” 7, that is, M satisfies (G). Assume that (M, p) satisfies (V),
that is, for p-balls centered at x,

p (B, (zo, 7)) == re.
Then, for d-balls, we obtain
pu(Ba(xg,r)) ~ r7.

Hence, (M, d) satisfies (V') with & := ay. Assuming in addition that all balls are precom-
pact, we obtain by Theorem 3 that, for any o < % = «, the inequality Au + u? < 0 has
no positive solution in any exterior domain of M.
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Idea of the proof of Theorem 3

Assume that u is a positive solution in M \ K of
Au +u° <0.
It follows that, for any precompact open set U D K, we have u > Ggeu? in U°.
Since infgy v > 0 and u is superharmonic, it follows that
u(y) > G (y,z0) for y € U,

for some ¢ > 0. Hence, for any z € U*,

u(x) >c” | Gge(v,y) G (y,70) dp (y) - (12)

UC

On the other hand, one can prove that, for any precompact open set Q2 C M,

sup(Au + A1 (2)u) > 0,
Q

where A (£2) is the first Dirichlet eigenvalue of A in Q. It follows that

AL (Q2) > igf u’ L (13)
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Assuming Q0 C U° and combining (13) with (12) we obtain

1

A1 (Q2)o-T > ¢ inf / Gy (z,y) G° (y, o) du (y) -

ze)

If o < % then we bring this inequality to contradiction by choosing {2 large enough and
by applying the hypotheses (V'), (G) to estimate all the quantities involved.

For the proof of the second part of Theorem 3, we construct a positive solution of the
equation
Au+u’ + A f7=0 in M,

where f is a specifically chosen decreasing function and A > 0 is small enough. This
differential equation amounts to the integral equation

u(z) = /M Gz, ) () + X)) du(y),

and the latter is solved in a certain closed subset of L> (M) by observing that the operator
in the right hand side is a contraction for small enough A. Next, we improve the regularity
properties of u in two steps: first show that u is Holder and then that u € C2.
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