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Setup and problem statement

Let (M, g) be a connected Riemannian manifold, Δ – the Laplace-Beltrami operator on
M . In local coordinates x1, ..., xn it has the form

Δ =
1

D

n∑

i,j=1

∂xi

(
aij (x) ∂xj

)
,

where D =
√

det (gij) and (aij) = D (gij)
−1 .

Consider the equation (or inequality)

−Δu + Φ (x) uσ = f (or − Δu + Φ (x) uσ ≥ f )

where Φ, f ∈ C (M), f ≥ 0, σ > 0. Solution u should be non-negative and in C2 (M).

Our goal is obtaining pointwise estimates of u.

Assume that Δ has a positive Green function G (x, y) on M . Set Gf(x) =
∫

M

G(x, y)f(y)dμ(y).

It is known that if Gf is finite then Δ (Gf) = −f.
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Linear case σ = 1

W. Hansen–Z.Ma 1990, AG–W.Hansen 2008: if

−Δu + Φ (x) u ≥ f on M

where Φ ≥ 0 and the function h = Gf is positive and finite, then

u ≥ h exp

(

−
1

h
G (hΦ)

)

.

This implies the lower bound for the Green function GΦ of −Δ + Φ:

GΦ (x, y) ≥ G (x, y) exp





−

∫

M

G (x, z) G (z, y) Φ (z) dμ (z)

G (x, y)





 .

In the case Φ ≤ 0 a similar estimate under additional assumptions was obtained by
N.Kalton–I.Verbitsky 1999.
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Main result

Theorem 1 (AG–I.Verbitsky, 2015) Let u ≥ 0 solve −Δu + Φuσ ≥ f in M . Set h = Gf
and assume that 0 < h < ∞. Assume also that G (hσΦ) be well defined.

(i) If σ = 1 then

u ≥ h exp

(

−
1

h
G (hΦ)

)

. (1)

(ii) If σ > 1 then

u ≥
h

[

1 + (σ − 1)
1

h
G (hσΦ)

] 1
σ−1

, (2)

where the expression in square brackets is necessarily positive, that is,

− (σ − 1)G(hσΦ) < h. (3)

(iii) If 0 < σ < 1 then

u ≥ h

[

1 − (1 − σ)
1

h
G
(
1{u>0}h

σΦ
)
] 1

1−σ

+

. (4)
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Estimates with boundary condition

Let Ω be a relatively compact domain in M with smooth boundary. Let GΩ (x, y) be the
Green function of Δ in Ω with the Dirichlet boundary condition.

It suffices to prove (1)-(4) in Ω with GΩ instead of G and with h = GΩf instead of Gf .

Consider the following problem. Let h ∈ C2 (Ω) ∩ C
(
Ω
)

be positive and superharmonic

in Ω. Set f := −Δh ≥ 0. Assume that u ∈ C2(Ω) ∩ C
(
Ω
)
, u ≥ 0, satisfies

{
−Δu + Φuσ ≥ f in Ω
u ≥ h on ∂Ω

(5)

Theorem 2 (i) If σ = 1 then u ≥ h exp
(
− 1

h
GΩ (hΦ)

)
.

(ii) If σ > 1 then

u ≥
h

[
1 + (σ − 1) 1

h
GΩ (hσΦ)

] 1
σ−1

,

where necessarily −(σ − 1)GΩ(hσΦ) < h.

(iii) If 0 < σ < 1 then u ≥ h
[
1 − (1 − σ) 1

h
GΩ

(
1{u>0}h

σΦ
)] 1

1−σ

+
.
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Approach to the proof of Theorem 2

Assume for simplicity that u > 0 and h > 0 in Ω. Assume first h ≡ 1. Then f = −Δh = 0
and (5) becomes {

−Δu + Φuσ ≥ 0 in Ω
u ≥ 1 on ∂Ω

Fix a C2 function ϕ on (a interval of) R with ϕ′ > 0 and make the following change:

v = ϕ−1 (u) .

By the chain rule we have

Δu = Δϕ (v) = ϕ′(v)Δv + ϕ′′(v)|∇v|2,

whence

− Δv =
ϕ′′ |∇v|2

ϕ′
−

Δu

ϕ′
≥

ϕ′′

ϕ′
|∇v|2 − Φ

ϕ(v)σ

ϕ′(v)
. (6)

Choose ϕ to solve the following initial value problem

ϕ′ (s) = ϕσ (s) , ϕ (0) = 1.
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If σ = 1 then ϕ (s) = es. If σ 6= 1 then ϕ (s) = [(1 − σ)s + 1]
1

1−σ .

The inverse function ϕ−1 is always defined on (0, +∞) .
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The function ϕ is convex, and we obtain from (6)

− Δv ≥ −Φ in Ω. (7)

Since on ∂Ω we have v = ϕ−1 (u) ≥ ϕ−1 (1) = 0, it follows that

v ≥ −GΩΦ in Ω

and, hence,
u ≥ ϕ (−GΩΦ) in Ω.

This yields the cases (i) − (iii) of Theorem 2 in the case h = 1.

Indeed, in the case σ = 1 we have ϕ (s) = es and, hence,

u ≥ exp (−GΩΦ) .

In the case σ > 1 we have ϕ (s) = [(1 − σ)s + 1]−
1

σ−1 , which gives the estimate of (ii)

u ≥
1

[1 + (σ − 1)GΩΦ]
1

σ−1

.

Similarly one treats the case 0 < σ < 1.

7



For a general h > 0, we use the h-transform of Δ in Ω: Δh := 1
h
◦ Δ ◦ h. That is,

Δhu =
1

h
(Δ (hu)) =

1

h
(hΔu + 2∇h ∙ ∇h + (Δh) u) =

1

h2
div
(
h2∇u

)
+

Δh

h
u = Lu+

Δh

h
u

where

L =
1

h2
div
(
h2∇

)

is the weighted Laplacian associated with measure dμ̃ = h2dμ.

For function ũ = u
h

we have

−Δhũ = −
1

h
Δu ≥

1

h
(−Φuσ + f) = −hσ−1Φũσ −

Δh

h
.

Setting Φ̃ = hσ−1Φ, we obtain that ũ satisfies

−Δhũ + Φ̃ũσ ≥ −
Δh

h
in Ω, ũ ≥ 1 on ∂Ω.

Now we use the same approach as in the case h = 1, but for operator Δh in place of Δ.

Set v = ϕ−1 (ũ) = ϕ−1 (u/h) and compute Δhv as in (6). For the part L = 1
h2 div (h2∇)

of the operator Δh, computation is the same as for Δ.
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The part Δh
h

gives in the end an additional term so that instead of (7) we obtain

−Δhv ≥ −Φ̃ +

(
ϕ(v) − 1

ϕ′(v)
− v

)
Δh

h
.

Multiplying by h, we obtain

− Δ (hv) ≥ −hσΦ +

(
ϕ(v) − 1

ϕ′(v)
− v

)

Δh. (8)

The convexity of ϕ implies
ϕ(s) − 1

ϕ′(s)
− s ≤ 0, (9)

for any s in the domain of ϕ. Indeed, if s > 0 then ∃ξ ∈ [0, s] such that

ϕ′ (ξ) =
ϕ (s) − ϕ (0)

s
.

It follows that

ϕ′ (s) ≥ ϕ′ (ξ) =
ϕ (s) − 1

s
,

which yields (9).
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If s < 0 then ∃ξ ∈ [s, 0] such that

ϕ (s) − 1

s
=

ϕ (s) − ϕ (0)

s
= ϕ′ (ξ) ≥ ϕ′ (s) ,

which again implies (9) since s < 0.
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Since Δh ≤ 0 and
ϕ(v) − 1

ϕ′(v)
− v ≤ 0,

we obtain (
ϕ(v) − 1

ϕ′(v)
− v

)

Δh ≥ 0

and therefore by (8)
−Δ (hv) ≥ −hσΦ in Ω.

On ∂Ω we have v = ϕ−1 (u/h) ≥ ϕ−1 (1) = 0, which implies

hv ≥ −GΩ (hσΦ) in Ω.

Dividing by h and applying ϕ, we conclude that

u

h
≥ ϕ

(

−
1

h
GΩ (hσΦ)

)

in Ω.
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Existence of positive solutions

Let us ask for which values σ > 1 the inequality

Δu + uσ ≤ 0 (10)

has a positive solution u on M (the case of Φ ≡ −1). For example, in Rn with n ≤ 2
any non-negative solution of (10) is 0 while in the case n > 2, the inequality (10) has a
positive solution in Rn if and only if

σ >
n

n − 2

(Mitidieri and Pohozaev, 1998). Hence, σcrit = n
n−2

.

Let d (x, y) be a distance function on M , not necessarily geodesic, but such that the metric
balls

B(x, r) = {y ∈ M : d(x, y) < r} .

are precompact open subsets of M . Set

V (x, r) = μ (B (x, r)) .
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Theorem 3 (AG – Yuhua Sun, 2017) Assume that, for some x0 ∈ M ,

V (x0, r) ' rα for large r (V )

and
G (x, y) ' d (x, y)−γ for large d (x, y) , (G)

where α > γ > 0. Then, for any σ satisfying

1 < σ ≤
α

γ
,

the inequality
Δu + uσ ≤ 0 (11)

has no positive solution in any exterior domain of M .

If in addition d is the geodesic distance, M has bounded geometry, and (V ) holds for all
x0 ∈ M , then, for any

σ >
α

γ
,

the inequality (11) has a positive solution on M .

Hence, σcrit = α
γ
.
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Example 1

Let Γ be an infinite connected graph with a uniformly bounded degree. Let d (x, y) be
the graph distance on Γ and V (x, r) – the volume function.

Assume that the discrete Laplace operator on Γ has a positive Green function G (x, y).

If Γ satisfies conditions (V ) and (G)
for some α and γ then we construct
a manifold M satisfying (V ) and (G)
inflating the edges of Γ into 2-dim
tubes.

Since M has bounded geometry, both
parts of Theorem 3 apply in this case.

M.Barlow constructed in 2004 a family of fractal-like graphs such that each graph satsfies
(V ) with some α and has the walk dimension β, where α, β can be any real numbers
satisfying 2 ≤ β ≤ α + 1.
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For the graphical Sierpinski gasket
we have α = log2 3 and β = log2 5
so that β > α.

However, for higher dimensional constructions one can achieve β < α. In this case the
graph has a positive Green function satysying (G) with γ = α − β.

Since γ can be arbitrarily small, the critical value σcrit = α
γ

can be arbitrarily large, unlike
the Euclidean critical value n

n−2
.
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Example 2

Assume that G(x, y) satisfies the following 3G-inequality

1

G(x, y)
≤ C

(
1

G(x, z)
+

1

G(z, y)

)

for all x, y, z ∈ M and some C > 1. Then the function ρ (x, y) = 1
G(x,,y)

is a quasi-metric

on M . For any quasi-metric ρ, there exists γ > 0 and a distance function d(x, y) such
that ρ(x, y) ' d(x, y)γ .

Hence, G(x, y) ' d(x, y)−γ, that is, M satisfies (G). Assume that (M,ρ) satisfies (V ),
that is, for ρ-balls centered at x0,

μ (Bρ (x0, r)) ' rα.

Then, for d-balls, we obtain
μ(Bd(x0, r)) ' rαγ .

Hence, (M,d) satisfies (V ) with α̃ := αγ. Assuming in addition that all balls are precom-
pact, we obtain by Theorem 3 that, for any σ ≤ α̃

γ
= α, the inequality Δu + uσ ≤ 0 has

no positive solution in any exterior domain of M .
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Idea of the proof of Theorem 3

Assume that u is a positive solution in M \ K of

Δu + uσ ≤ 0.

It follows that, for any precompact open set U ⊃ K, we have u ≥ GU
cuσ in U c.

Since inf∂U u > 0 and u is superharmonic, it follows that

u (y) ≥ cG (y, x0) for y ∈ U c,

for some c > 0. Hence, for any x ∈ U c,

u (x) ≥ cσ

∫

Uc

GU
c (x, y) Gσ (y, x0) dμ (y) . (12)

On the other hand, one can prove that, for any precompact open set Ω ⊂ M ,

sup
Ω

(Δu + λ1(Ω)u) ≥ 0,

where λ1 (Ω) is the first Dirichlet eigenvalue of Δ in Ω. It follows that

λ1 (Ω) ≥ inf
Ω

uσ−1. (13)
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Assuming Ω ⊂ U c and combining (13) with (12) we obtain

λ1 (Ω)
1

σ−1 ≥ cσ inf
x∈Ω

∫

Uc

GU
c (x, y) Gσ (y, x0) dμ (y) .

If σ ≤ α
γ

then we bring this inequality to contradiction by choosing Ω large enough and

by applying the hypotheses (V ), (G) to estimate all the quantities involved.

For the proof of the second part of Theorem 3, we construct a positive solution of the
equation

Δu + uσ + λσfσ = 0 in M,

where f is a specifically chosen decreasing function and λ > 0 is small enough. This
differential equation amounts to the integral equation

u(x) =

∫

M

G(x, y) (uσ(y) + λσf(y)σ) dμ(y),

and the latter is solved in a certain closed subset of L∞ (M) by observing that the operator
in the right hand side is a contraction for small enough λ. Next, we improve the regularity
properties of u in two steps: first show that u is Hölder and then that u ∈ C2.
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