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1 Introduction: the notion of ODEs and examples

A differential equation (eine Dif ferenzialgleichung) is an equation for an unknown
function that contains not only the function but also its derivatives. In general, the
unknown function may depend on several variables and the equation may include various
partial derivatives. However, in this course we consider only the differential equations
for a function of a single real variable. Such equations are called ordinary differential
equations - shortly ODE (die gewdéhnliche Dif ferenzialgleichungen). The theory of
partial differential equations, that is, the equations containing partial derivatives, is a
topic for a different lecture course.
A most general ODE has the form

F(z,y,9, ...,y(”)) =0 (1.1)

where F' is a given function of n + 2 variables and y = y (x) is an unknown function. The
problem is usually to find a solution y (z), possibly with some additional conditions, or
to investigate various properties of a solution.

The order of an ODE is the maximal value of n such that the derivative (™ is presented
in the equation.

In Introduction we consider various examples and specific classes of ODEs of the first
and second but then develop a general theory, which includes the existence and uniqueness
results in rather general setting for an arbitrary order.

Consider the differential equation of the first order

y =r(zy), (1.2)

where y = y (z) is the unknown real-valued function of x and f (z,y) is a given function
of z,y.

The difference with (1.1) is that (1.2) is resolved with respect to y. Consider a couple
(z,y) as a point in R? and assume that function f is defined on a set D C R?, which is
called the domain of the equation (1.2).

Definition. A real valued function y (z) defined on an interval I C R, is called a (par-
ticular) solution of (1.2) if y (x) is differentiable at any = € I, the point (z,y (z)) belongs
to D for any x € I and the identity ¢’ () = f (z,y (z)) holds for all z € I.

The family of all solutions of (1.2) is called the general solution. The graph of a
particular solution is called an integral curve of the equation. Note that any integral
curve is contained in the domain D.

Typically, a given ODE cannot be solved explicitly. We’ll consider below some classes
of f(z,y) when one find the general solution to (1.2) in terms of indefinite integration.
Start with a simplest example.

Example. Assume that the function f does not depend on y so that (1.2) becomes
y' = f(x). Hence, y must be a primitive function of f. Assuming that f is a continuous
function on an interval I, we obtain the general solution in the form

y= [ f@yda=F ).
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where F' is a primitive of f (z) and C is an arbitrary constant.

1.1 Separable ODE
Consider a separable ODE, that is, an ODE of the form

Yy =f(x)g(y). (1.3)

It is called separable because the right hand side splits into the product of a function
of z and a function of y.

Theorem 1.1 (The method of separation of variables) Let f (z) and g (y) be continuous
functions on intervals I and J, respectively, and assume that g(y) # 0 on J. Let F (x)
be a primitive function of f (x) on I and G (y) be a primitive function of le) on J. Then
a function y : I — J solves the differential equation (1.3) if and only if it satisfies the
identity

G(y(x))=F(x)+C, (1.4)

where C' is any real constant.

Proof. Let y (z) solve (1.3). Dividing (1.3) by ¢ (y) and integrating in x, we obtain

/g{dy"’; :/f(a:) dz, (1.5)

where we regard y as a function of x. Since F' (x) is a primitive of f (z), we have

/f(x)dx:F(x)—i—C”.

In the left hand side of (1.5), we have y'dx = dy. By the change of a variable in the
indefinite integral (Theorem 1.4 from Analysis II), we obtain

yar [ dy )
/g<y>‘/g<y> G+

where in the middle integral y is considered as an independent variable. Combining the
above lines, we obtain the identity (1.4) with C' = C" — C".

Conversely, let y (x) be a function from I to J that satisfies (1.4). Since the function
g (y) does not change the sign, by the inverse function theorem (from Analysis I) function
G has the inverse G, whence we obtain from (1.4)

y(@) =G (F(z)+0C). (1.6)

Since G~1 and F are differentiable functions, by the chain rule also y is differentiable. Tt
follows from (1.4) by differentiation in z that

Gy =F(x)=f(x).

Substituting here G’ (y) = le)’ we obtain (1.3). m
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Corollary. Under the conditions of Theorem 1.1, for any xo € I and yo € J there is
ezactly one solution y (x) of the equation (1.3) defined on I and such that y (xo) = yo.

In other words, for every point (zg,y0) € I x J there is exactly one integral curve of
the ODE that goes through this point.

Proof. The identity (1.6) determines for any real C' a particular solution y (x) defined
on the interval I. We only need to make sure that C' can be chosen to satisfy the condition
y (zg) = xp. Indeed, by (1.4), the latter condition is equivalent to G (yo) = F (z0) + C,
which is true exactly for one value of the constant C, that is, for C' = G (yo) — F (),
whence the claim follows. =

Let us show some examples using this method.

Example. (Heat conduction) Let x (t) denote the temperature of a body at time ¢ and
assume that the body is immersed into a media with a constant temperature 7. Without
sources and sinks of heat, the temperature of the body will over time tend to T". The exact
temperature at time ¢ can be determined by using the Fourier law of heat conductance:
the rate of decrease of x (t) is proportional to the difference x (t) — 7', that is,

where k > 0 is the coefficient of thermoconductance between the body and the media.
This equation is separable, and solving it in each of the domains x > T or x < T', we

obtain the identity
dz
=—k [ dt
Jam ]

Injz —T|=—-kt+C,

whence
|l —T| =eCe .

Renaming +e® by C, we obtain the solution
x=T+Ce™™. (1.7)

Note that by the definition of C, we have C' # 0. More precisely, C' > 0 correspond to a
solution z (t) > T and C' < 0 corresponds to a solution x (¢) < T'. However, C' = 0 gives
also a solution x = T, which was not accounted for by the above method. Hence, the
identity (1.7) determines a solution to the given equation for all real C'. Here are some
integrals curves of this equation with 7'=1 and k = 1:



The value of C' can be found, for example, if one knows the initial value of the temper-
ature that is x (0) = x¢. Setting ¢ = 0 in (1.7), we obtain zy = T+ C whence C = zo—T.
Hence, (1.7) becomes

=T+ (zg—T)e ™.

The value of k can be determined if one has one more measurement of  (¢) at some time
t>0.

Remark. If in the equation y' = f (z) g (y) the function g (y) vanishes at a sequence
of points, say w1, ys, ..., enumerated in the increasing order, then we have a family of
constant solutions y () = y,. The method of separation of variables provides solutions
in any domain y; < y < yx+1. The integral curves in the domains y; < y < Y41 can in
general touch the constant solution, as will be shown in the next example.

Example. Consider the equation
v =1yl

which is defined for all y € R. Since the right hand side vanish for y = 0, the constant
function y = 0 is a solution. In the domains y > 0 and y < 0, the equation can be solved
using separation of variables. For example, in the domain y > 0, we obtain

%:/dﬂc

2,/y=x+C

whence

and
1

y:Z(x—l—C)Q, z>—C.

Similarly, in the domain y < 0, we obtain

/_dy = [ dx
V=
6



whence
—2\/—y=z+C
and

y:—i(:c—FC)?, r < —C.

We obtain the following integrals curves:

We see that the integral curves in the domain y > 0 touch the curve y = 0 and so do the
integral curves in the domain y < 0. This allows us to construct more solution as follows:
take a solution y; () < 0 that vanishes at = a and a solution ys (x) > 0 that vanishes
at x = b > a. Then define a new solution:

y1<fL’), r<a
y(z)=1< 0, a<z<b,
ys (), = >0.

Such solutions are not obtained automatically by the method of separation of variables.
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1.2 Linear ODE of 1st order

Consider the ODE of the form
Y +a(z)y=>b(z) (1.8)
where a and b are given functions of x, defined on a certain interval I. This equation is

called linear because it depends linearly on y and 3/.
A linear ODE can be solved as follows.

Theorem 1.2 (The method of variation of parameter) Let functions a (z) and b(x) be
continuous in an interval I. Then the general solution of the linear ODE (1.8) has the
form

y (z) = e 4@ /b (z) @ dz, (1.9)
where A (x) is a primitive of a (x) on I.

Note that the function y (x) given by (1.9) is defined on the full interval I.
Proof. Let us make the change of the unknown function u (z) = y (z) eA®, that is,

y(z) = u(zx)e 4@, (1.10)
Substituting this to the equation (1.8) we obtain
(ue‘A)/ + aue ™ =1,

we ™ —ue A + aue ™ = b.

Since A’ = a, we see that the two terms in the left hand side cancel out, and we end up
with a very simple equation for u (z):

e A =10

u:/beAdx.

Substituting into (1.10), we finish the proof. m
One may wonder how one can guess to make the change (1.10). Here is the motivation.
Consider first the case when b (z) = 0. In this case, the equation (1.8) becomes

whence v = be? and

Yy +a(x)y=0

and it is called homogeneous. Clearly, the homogeneous linear equation is separable. In
the domains y > 0 and y < 0 we have

and



Then In |y| = —A(z) + C and
y(x) = Ce™

where C' can be any real (including C' = 0 that corresponds to the solution y = 0).

For a general equation (1.8) take the above solution to the homogeneous equation and
replace a constant C' by a function u (x), which will result in the above change. Since we
have replaced a constant parameter by a function, this method is called the method of
variation of parameter. It applies to the linear equations of higher order as well.

Corollary. Under the conditions of Theorem 1.2, for any xo € I and any yo € R there
is exists exactly one solution y () defined on I and such that y (x¢) = yo.

That is, though any point (z,y0) € I x R there goes exactly one integral curve of the
equation.

Proof. Let B (z) be a primitive of be™4 so that the general solution can be written
in the form

y=e " (B(z)+0)

with an arbitrary constant C'. Obviously, any such solution is defined on I. The condition
y (x9) = yo allows to uniquely determine C' from the equation:

C = yoe’@) — B (x0) ,

whence the claim follows. =

Example. Consider the equation
/ 1 x2
y+-y=e
x

in the domain z > 0. Then

A(x):/a(m)dx:/df:m

(we do not add a constant C' since A (x) is one of the primitives of a (z)),

1 2 1/1 - 1 » C
= — z d = — —ev = —¢e% —
y(z) :c/ zdx x<2e —i—C) 5.6 T

where C' is an arbitrary constant.

1.3 Exact differential forms

Let F (z,y) be a real valued function defined in an open set  C R?. Recall that F is
differentiable at a point (z,y) € €2 if there exists a matrix A of dimension 1 x 2 (called
the full derivative of F') full such that

dx

F(x+dz,y+dy) — F (z,y) :A<dy

) +o(|dz] + |dy))

as |dz| + |dy| — 0. Here we denote by dz and dy the increments of = and y, respectively,
which are considered as new independent variables. The linear function (‘Z) — A(‘éz) is
called the differential of F' and is denoted by dF. Let A = (a b) so that

dF = adz + bdy.
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If F' is differentiable at any point (z,y) € €2 then a and b are functions of (x,y). Recall
also that a = F, and b = F,.

Definition. Given two functions a (z,y) and b (x,y) in €, consider the expression
a(z,y)de +b(z,y)dy,

which is called a differential form. The differential form is called ezact in € if there is a
differentiable function F' in §2 such that

dF = adx + bdy, (1.11)

and inexact otherwise. If the form is exact then the function F' from (1.11) is called an
integral of the form.

Observe that not every differential form is exact as one can see from the following
claim.

Claim. If functions a,b belong to C* () then the necessary condition for the form adx +
bdy to be exact is a, = b,.

Proof. Indeed, if there is F' is an integral of the form adx + bdy then F, = a and
F, = b, whence it follows that F' € C*(Q2). Then F,, = F,,, which implies a, = b,. ®

Example. The form ydz — xdy is not exact because a, = 1 while b, = —1.

The form ydx + xdy is exact because it has an integral F' (z,y) = zy.

The form 2zydz + (2% + y?) dy is exact because it has an integral F (z,y) = x2y + %3
(it will be explained later how one can obtain an integral).

If the differential form adz + bdy is exact then this allows to solve easily the following
differential equation:
a(z,y)+b(z,y)y =0. (1.12)

This ODE is called quasi-linear because it is linear with respect to y’ but not neces-
sarily linear with respect to y. One can write (1.12) in the form

a(z,y)dz+b(z,y)dy =0,

which explains why the equation (1.12) is related to the differential form adz + bdy. We
say that the equation (1.12) is exact if the form adz + bdy is exact.

Theorem 1.3 Let Q be an open subset of R%, a, b be continuous functions on ), such that
the form adx + bdy s exact. Let F' be an integral of this form. Consider a differentiable
function y (z) defined on an interval I C R such that the graph of y is contained in Q.
Then y solves the equation (1.12) if and only if

F (z,y(z)) = const on I.

Proof. The hypothesis that the graph of y(z) is contained in € implies that the
composite function F' (z,y (z)) is defined on I. By the chain rule, we have

d
%F (ry(x)=F,+Fy =a+by.

10



Hence, the equation a + by’ = 0 is equivalent to £ F (z,y(z)) = 0, and the latter is
equivalent to F'(z,y (x)) = const. m

Example. The equation y + xy’ = 0 is exact and is equivalent to xy = C because
ydz+xdy = d(xy). The same can be obtained using the method of separation of variables.

The equation 2zy + (22 + y?) v/ = 0 is exact and is equivalent to z2y + y—; = C. Below
are some integral curves of this equation:

y

How to decide whether a given differential form is exact or not? A partial answer is
given by the following theorem.

We say that a set 2 C R? is a rectangle (box) if it has the form I x J where I and J
are intervals in R.
Theorem 1.4 (The Poincaré lemma) Let © be an open rectangle in R?. Let a,b be

functions from C* (Q) such that a, = b,. Then the differential form adz + bdy is exact in
Q.

Let us first prove the following lemma, which is of independent interest.

Lemma 1.5 Let g (z,t) be a continuous function on I x J where I and J are bounded
closed intervals in R. Consider the function

B8
f () = / g (e, 1) dt,

where [, B] = J, which is defined for all x € 1. If the partial derivative g, exists and is
continuous on I X J then f is continuously differentiable on I and, for any x € I,

B8
f(z) = / g (2, 1) dt.

11



In other words, the operations of differentiation in x and integration in ¢, when applied
to g (x,t), are interchangeable.
Proof. We need to show that, for all z € I,

f(l",t) — f<x>t)

T —x

B
— / gz (z,t)dt as ' — =,
which amounts to

B ' t) — t g
/g(il?;)/ g(:c, )dt—>/ gm<x7t)dtasx’—>l‘.

Tr —T

Note that by the definition of a partial derivative, for any ¢ € |, (],

g (x',t) -9 <x>t)

; — gp (z,t) as 2’ — . (1.13)
T —z

Consider all parts of (1.13) as functions of ¢, with fixed x and with 2’ as a parameter.
Then we have a convergence of a sequence of functions, and we would like to deduce
that their integrals converge as well. By a result from Analysis II, this is the case, if the
convergence is uniform in the whole interval [«, 3], that is, if

) — t
ap |21 — 0 (1)

— gy (2, t)] =0 asa’ — x. 1.14
S pr 2 (7, 1) (1.14)

By the mean value theorem, for any t € [«, ], there is £ € [z, 2'] such that

g(.ﬁl?/,t) —g($,t)
T —x

= Gz (gat) :

Hence, the difference quotient in (1.14) can be replaced by g, (§,t). To proceed further,
recall that a continuous function on a compact set is uniformly continuous. In particular,
the function g, (z,t) is uniformly continuous on I x J, that is, for any € > 0 there is 6 > 0
such that

zya' €l |z -2 | <bdand t,t’ € J [t —t'| <6 = |g. (x,t) — g, (&', 1)) <e.  (1.15)
If |z — 2'| < 6 then also |x — &| < 6 and by (1.15)
|92 (€,t) — gu (x,t)] < e forallt e J

In other words, |z — 2'| < ¢ implies that

't — t
sup g(z',t) —g(x,t)

- 7t <87
ey ¥ —x 9 (@, 8)] <

whence (1.14) follows. =
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Proof of Theorem 1.4. Assume first that the integral F' exists and F'(zg,y0) =0
for some point (xg,y0) € 2 (the latter can always be achieved by adding a constant
to F'). For any point (z,y) € Q, also the point (z,y9) € €; moreover, the intervals
[(z0,%0) , (z,90)] and [(z,90), (z,y)] are contained in 2 because € is a rectangle. Since
F, = a and F, = b, we obtain by the fundamental theorem of calculus that

F(z,y0) = F(z,90) — F (20, %0) = /’” Fy (s,y0)ds = /xa(57y0>d5

o zo

and y y
Flaw) = Famw = [ Fabi= [ bab
Yo Yo
whence

F () :/m o (5, %0) ds+/y b(x,t) dt. (1.16)

z Yo

Now forget about this argument and just define function F'(z,y) by (1.16). Let us show
that F'is indeed the integral of the form adx + bdy. It suffices to verify that F, = a and
F, = b because then we can conclude that F € C* (Q) (and even F' € C?(Q)) and, hence,

dF = Fydx + F,dy = adz + bdy.

It is easy to see from (1.16) that F}, = b(x,y). Let us show that F, = a (z,y). Indeed,
using Lemma 1.5 and the hypothesis a, = b,, we obtain

d
Fo = dx d8+_/ (,£)d
= (xyo)—l—/b(:rt)
— a(:p,yo)—i—/yay(x,t)dt
= a(z,y)+ (a(z,y) —a(z,y))
= a(:v,y).

Hence, we have shown that F, = a and F, = b, which was to be proved. m
Example. Consider again the differential from 2zydx + (2? + y?) dy in 2 = R?. Since
= (2zy), =2z = (z* +¢?) , = ba,

we conclude by Theorem 1.4 that the given form is exact. The integral F' can be found
by (1.16) taking xg = yo = 0:
3

z Yy
F(%?J)z/ﬂ 230ds+/0 ($2+t2)dt:x2y+%,

as it was observed above.
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Example. Consider the differential form

—ydx + zdy

1.17
$2 +y2 ( )

in Q =R?\ {0}. This form satisfies the condition a, = b, because

B ( y >_ (2?2 +y?) — 22 y*—a?
ay, = — —
Yy

72 + 2 (22 + y2)2 o (22 + y2)2

and

_( x ) (@) 222y —a?
2 4y?) . (22 4 y2)° (22 4 92)*
By Theorem 1.4 we conclude that the given form is exact in any rectangular domain in

). However, we’ll show that the form is inexact in 2.
Consider the function 6 (z,y) which is the polar angle that is defined in the domain

Q' =R*\ {(z,0) : x < 0}

by the conditions

sinf = g, cosf = E, 0e(—mm),
r r

where r = /22 + y?. Let us show that in €

_ —ydr +zdy

do
x2 + 12

(1.18)

In the half-plane {z > 0} we have tanf = £ and 0 € (—7/2,7/2) whence

f = arctan g.
T

Then (1.18) follows by differentiation of the arctan. In the half-plane {y > 0} we have
cot## = £ and § € (0, ) whence

T
6 = arccot —

and (1.18) follows again. Finally, in the half-plane {y < 0} we have cot = ¥ and 0 €

(—m,0) whence
A = — arccot (—£> ,
Y

and (1.18) follows again. Since €' is the union of the three half-planes {z > 0}, {y > 0},
{y < 0}, we conclude that (1.18) holds in Q" and, hence, the form (1.17) is exact in €.

Why the form (1.17) is inexact in Q7 Assume from the contrary that the form (1.17)
is exact in €2 and that F' is its integral in €2, that is,

dF — —ydx +xdy‘
x? + y?

14



Then dF = df in € whence it follows that d (F — 6) = 0 and, hence! F' = 6 + const in
Q. It follows from this identity that function 6 can be extended from €’ to a continuous
function on €2, which however is not true, because the limits of § when approaching the
point (—1,0) (or any other point (z,0) with < 0) from above and below are different.
The moral of this example is that the statement of Theorem 1.4 is not true for an
arbitrary open set ). It is possible to show that the statement of Theorem 1.4 is true
if and only if the set Q) is simply connected, that is, if any closed curve in 2 can be
continuously shrunk to a point. Obviously, the rectangles are simply connected, while the

set R?\ {0} is not.

1.4 Integrating factor

Consider again the quasilinear equation
a(z,y)+b(z,y)y =0 (1.19)

and assume that it is inezxact.
Write this equation in the form

adz 4 bdy = 0.
After multiplying by a non-zero function M (z,y), we obtain equivalent equation
Madz + Mbdy = 0,

which may become exact, provided function M is suitably chosen.

Definition. A function M (z,y) is called the integrating factor for the differential equa-
tion (1.19) in 2 if M is a non-zero function in Q such that the form Madx + Mbdy is
exact in €.

If one has found an integrating factor then multiplying (1.19) by M we reduce the
problem to the case of Theorem 1.3.

Example. Consider the ODE

y/ e L
dx2y + 2’
and write it in the form Y
———dz —dy =0.
dx2y +x T

Clearly, this equation is not exact. However, multiplying by 4z%y + z and dividing by z2,
we obtain the equation

1
%dw— (4y+ —) dy =0,
x x

'We use the following fact that is contained in Exercise 58 from Analysis II: if the differential of a
function is identical zero in a connected open set U C R™ then the function is constant in this set. Recall
that the set U is called connected if any two points from U can be connected by a polygonal line that is
contained in U.

The set € is obviously connected.
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which is already exact in any rectangular domain because

Y ) 1 1
I == (a2 .
(1;2 y 2 ( v x>x
The integral of this form is obtained by (1.16) with yo = 0 and any z # 0:

T Y 1
F(z,y) = %ds—/ (4t—l——> dt:—2y2—y.
20 0 x x

By Theorem 1.3, the general solution is given by the identity

y
T

2y + = =C.

1.5 Second order ODE

A general second order ODE;, resolved with respect to y” has the form

y' = f(z,y.9),

where f is a given function of three variables and y = y (z) is an unknown function. We

consider here some problems that amount to a second order ODE.

1.5.1 Newtons’ second law

Consider movement of a point particle along a straight line and let the coordinate at time
t be x (t). The velocity of the particle is v (t) = 2/ (t) and the acceleration a (t) = x” (t).
The Newton’s second law says that at any time maz” = I where m is the mass of the
particle and F' is the sum of all forces acting on the particle. In general, F' may depend

on t,z,z’ so that we get a second order ODE for z ().

Assume that the force F' = F' (z) depends only on the position . Let U be a primitive
function of —F; the function U is called the potential of the force F'. Multiplying the

equation ma” = F by 2’ and integrating in ¢, we obtain

m/x"x'dt: /F(fE) ' dt,

%/%(z’fdt:/F(:c)dx,
va

and )
T4 U@) =C.

The sum 22 + U (z) is called the energy of the particle (which is the sum of the kinetic

2

energy and the potential energy). Hence, we have obtained the conservation law of the
energy: the energy of the particle moving in a potential field remains constant.

16



1.5.2 Electrical circuit

Consider an RLC-circuit that is, an electrical circuit where a resistor, an inductor and a
capacitor are connected in a series:

e - EL

Q

Denote by R the resistance of the resistor, by L the inductance of the inductor, and
by C the capacitance of the capacitor. Let the circuit contain a power source with the
voltage V' (t), where t is time. Denote by I (¢) the current in the circuit at time ¢. Using
the laws of electromagnetism, we obtain that the potential difference vy on the resistor
R is equal to

VR — RI

(Ohm’s law), and the potential difference vy, on the inductor is equal to

UL:La

(Faraday’s law). The potential difference ve on the capacitor is equal to

Q

Vo = 67
where () is the charge of the capacitor; also we have ) = I. By Kirchhoff’s law, we have
v +vp +ve =V (t)

whence

RI+LI’+%:V(t).

Differentiating in ¢, we obtain

1
LI" + RI' + ol %48 (1.20)

which is a second order ODE with respect to I (¢). We will come back to this equation
after having developed the theory of linear ODEs.
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2 Existence and uniqueness theorems

2.1 1st order ODE

We change notation, denoting the independent variable by ¢ and the unknown function
by x (t). Hence, we write an ODE in the form

:U/:f(t7x)7

where f is a real value function on an open set Q C R? and a pair (¢, ) is considered as
a point in R2.

Let us associate with the given ODE the initial value problem (IVP), that is, the
problem to find a solution that satisfies in addition the initial condition x (ty) = zo where
(to, zo) is a given point in 2. We write shortly IVP as follows:

{x’=f<t,x),

T (to) = Xg.

A solution to IVP is a differentiable function x (¢) : I — R where I is an open interval
containing ¢y, such that (¢,z (t)) € Q for all ¢ € I, which satisfies the ODE in I and the
initial condition. Geometrically, the graph of function z (¢) is contained in © and goes
through the point (o, xo).

In order to state the main result, we need the following definition.

Definition. We say that a function f : 2 — R is locally Lipschitz in x if, for any point
(to, zo) € §2 there exist positive constants ¢, 6, L such that the rectangle

R:[t0—6,t0+5]X[$0—€,$0+€] (21)

is contained in 2 and
|f(t,@) = f(ty) < Liz—yl,
for all t € [to — 6,10 + 6] and z,y € [xo — €,z + €]

Lemma 2.1 If the partial derivative f, exists and is continuous in ) then f s locally
Lipschitz in Q.

Proof. Fix a point (ty, zo) € € and choose positive ¢, § so that the rectangle R defined
by (2.1) is contained in € (which is possible just because 2 is an open set). Then, for all
t € [to— 6,to + 6] and z,y € [xg — €, x0 + €], we have by the mean value theorem

f(t,l')—f(t,’y) :f:c(t7£) (l‘—y),

for some ¢ € [z,y]. Since R is a bounded closed set and f, is continuous on R, the
maximum of |f,| on R exists, so that

L :=sup|f;| < 0.
R
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Since (t,€) € R, we obtain | f; (t,£)| < L and, hence,

which finishes the proof. m
The next theorem is one of the main results of this course.

Theorem 2.2 (The Picard - Lindelof theorem) Let Q be an open set in R? and f (t,x) be
a continuous function in Q that is locally Lipschitz in x. Then, for any point (ty,xo) € €2,
the initial value problem IVP has a solution. Furthermore, if there are two solutions xy (t)
and x5 (t) of the same IVP then xq (t) = x5 (t) in their common domain.

Remark. By Lemma 2.1, the hypothesis of Theorem 2.2 that f is locally Lipschitz in
x could be replaced by a simpler hypotheses that f, is continuous. However, there are
simple examples of functions that are Lipschitz but not differentiable, as for example
f (x) = |z|, and Theorem 2.2 applies for such functions.

If we completely drop the Lipschitz condition and assume only that f is continuous
in (t,z) then the existence of a solution is still the case (Peano’s theorem) while the
uniqueness fails in general as will be seen in the next example.

Example. Consider the equation ' = \/|x| which was already solved before by separa-
tion of variables. The function z (t) = 0 is a solution, and the following two functions
1,
x(t) = 1% t>0,

1
r(t) = —1t2,t <0

are also solutions (this can also be trivially verified by substituting them into the ODE).
Gluing together these two functions and extending the resulting function to ¢ = 0 by
setting x (0) = 0, we obtain a new solution defined for all real ¢ (see the diagram below).
Hence, there are at least two solutions that satisfy the initial condition x (0) = 0.

X 6T
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The uniqueness breaks down because the function \/|x| is not Lipschitz near 0.
Proof of existence in Theorem 2.2. We start with the following observation.

Claim. A function x (t) solves IVP if and only if z (t) is a continuous function on an
open interval I such that ty € I, (t,z(t)) € Q for allt € I, and

—x0+/fsx (2.2)

Indeed, if = solves IVP then (2.2) follows from o’ = f (¢, 2 (t)) just by integration:

/t:x’(s)ds:/t:f(s,x(s))ds
t)—x():/t:f(s,x(s))ds

Conversely, if = is a continuous function that satisfies (2.2) then the right hand side of
(2.2) is differentiable in ¢ whence it follows that x (¢) is differentiable. It is trivial that
x (ty) = xo, and after differentiation (2.2) we obtain the ODE 2’ = f (t,z) .

Fix a point (tg,z9) € Q and let £,6 be the parameter from the the local Lipschitz
condition at this point, that is, there is a constant L such that

for all t € [to — 6,to + 6] and =,y € [zo — &, 20 + €]. Set
J=[zg—e,x0+e¢] and I =[tg—rty+7],

whence

were 0 < r < ¢ is a new parameter, whose value will be specified later on.
Denote by X be the family of all continuous functions z (t) : I — J, that is,

X ={x:1— J:xis continuous}

(see the diagram below).

J=[x0-€,x0F¢€]

Xo

E—

I=[to-r,to+r]
t5-0 to to+d t

v
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We are going to consider the integral operator A defined on functions z (¢) by

Ax (t) = xg —l—/t f(s,x(s))ds,

which is obviously motivated by (2.2). To be more precise, we would like to ensure that
x € X implies Az € X. Note that, for any x € X, the point (s,z (s)) belongs to  so
that the above integral makes sense and the function Ax is defined on I. This function
is obviously continuous. We are left to verify that the image of Ax is contained in J.
Indeed, the latter condition means that

|Az (t) — xo| < eforallt € I. (2.3)

We have, for any ¢t € I,

t
|Az (t) — x| = / f(s,z(s))ds| < sup |f(s,z)||t —to] < Mr,
to sel,xeJ
where
M= sup |f(s,z)| <oo.

s€ [to—&,to—l—&}
z€[xo—E,T0+E]

Hence, if 7 is so small that Mr < e then (2.3) is satisfied and, hence, Az € X.

To summarize the above argument, we have defined a function family X and a mapping
A: X — X. By the above Claim, a function z € X will solve the IVP if function z is a
fixed point of the mapping A, that is, if + = Az. The existence of a fixed point can be
obtained, for example, using the Banach fixed point theorem. In order to be able to apply
this theorem, we must introduce a distance function d on X so that (X, d) is a complete
metric space, and A is a contraction mapping with respect to this distance.

Let d be the sup-distance, that is, for any two functions z,y € X, set

d(z,y) = suplz(t) =y (t)].

Recall that, by a theorem from Analysis II, the space C (I) of all continuous functions
on I with the sup-distance is a complete metric space. The family X is a subset of C (1)
defined by the additional condition that the images of all functions from X are contained
in J. Clearly, the set X is closed whence it follows that the metric space (X, d) is complete.

How to ensure that the mapping A : X — X is a contraction? For any two functions
z,y € X and any t € I, we have z (t),y (t) € J whence by the Lipschitz condition

t

Az (t) — Ay ()] = /f@ﬂwﬁ— f(s,y(s))ds

to to

t
< | Ll - y()lds
to
< Llt—to|suplz — g
I
< Lrd(z,y).
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Taking sup in t € I, we obtain
d(Az, Ay) < Lrd (z,y) .

Hence, choosing r < 1/L, we obtain that A is a contraction, which finishes the proof of
the existence. m
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Remark. Let us summarize the proof of the existence of solutions as follows. Let ¢,6, L
be the parameters from the the local Lipschitz condition at the point (o, zo), that is,

for all t € [to — 6,to + 6] and z,y € [zg — €, x0 + €]. Let
M =sup{|f (t,z)| : t € [to — O, to+ 0], = € [xg—€,20+ €|} .
Then the IVP has a solution on an interval [ty — r,to + 7] provided r is a positive number
that satisfies the following conditions:

€ 1

<o r<—,r<—. 2.4

r<é r< o<y (2.4)

For some applications, it is important that r can be determined as a function of €, 6, M, L.

For the proof of the uniqueness, we need the following two lemmas.

Lemma 2.3 (Gronwall inequality) Let z (t) be a non-negative continuous function on
[to, t1] where to < t1. Assume that there are constants C, L > 0 such that

z(t)§C’+L/tz(s)ds (2.5)

to

for all t € [ty,t1]. Then
z(t) < Cexp (L (t —to)) (2.6)
for all t € [ty,t].
Proof. We can assume that C' is strictly positive. Indeed, if (2.5) holds with C' =0
then it holds with any C' > 0. Therefore, (2.6) holds with any C' > 0, whence it follows

that it holds with C' = 0. Hence, assume in the sequel that C' > 0. This implies that the
right hand side of (2.5) is positive. Set

F(t):C+L/tz(s)ds

to

and observe that F' is differentiable and F" = Lz. It follows from (2.5) that
F'=Lz<LF

This is a differential inequality for F' that can be solved similarly to the separable ODE.
Since F' > 0, dividing by F' we obtain

whence by integration

1 2@ :/t Zéj))dsg/to Lds = L (t —to).

It follows that
F(t) < F(to) exp (L (t —to)) = Cexp (L (t — to))-
Using again (2.5), that is, z < F', we obtain (2.6). =
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Lemma 2.4 If S is a subset of an interval U C R that is both open and closed in U then
either S is empty or S =U.

Proof. Set S¢ = U\ S so that S¢is closed in U. Assume that both S and S¢ are non-
empty and choose some points ag € S, by € S¢. Set ¢ = “O—gb‘) so that ¢ € U and, hence,
¢ belongs to S or S¢. Out of the intervals [ag, c|, [, by] choose the one whose endpoints
belong to different sets S, S¢and rename it by [ay, b;], say a; € S and b; € S°. Considering
the point ¢ = ‘”—;“bl, we repeat the same argument and construct an interval [ag, bo] being
one of two halfs of [aq,b;] such that ay € S and by € S¢. Contintue further, we obtain
a nested sequence {[a, by]},-, of intervals such that a; € S, by, € S¢ and |by, — ax| — 0.
By the principle of nested intervals, there is a common point x € [ay, by] for all k. Note
that x € U. Since ay — x, we must have x € S, and since b, — x, we must have x € S°,
because both sets S and S¢ are closed in U. This contradiction finishes the proof. m

Proof of the uniqueness in Theorem 2.7. Assume that z; (t) and x5 (t) are two
solutions of the same IVP both defined on an open interval U C R and prove that they
coincide on U.

We first prove that the two solution coincide in some interval around ty. Let € and
6 be the parameters from the Lipschitz condition at the point (¢y,zo) as above. Choose
0 < r < 8 so small that the both functions x; (t) and x5 (¢) restricted to I = [ty — 7, to + 7]
take values in J = [xg — ¢,2¢ + €] (which is possible because both x; (t) and x5 (t) are
continuous functions). As in the proof of the existence, the both solutions satisfies the
integral identity

x(t):xg+/t f(s,z(s))ds

for all t € I. Hence, for the difference z (t) := |x; (t) — x2 (t)|, we have

(1) = |mr (8) — 2 ()] < / £ (5,21 () — [ (5,22 (5))] ds,

assuming for certainty that ¢y <t < to+r. Since the both points (s, z; (s)) and (s, z2 (s))
in the given range of s are contained in I x J, we obtain by the Lipschitz condition

|f (5,21 (5)) = f (5,22 (s))| < L a1 (s) — 22 (s)]
whence .
z (t) SL/t z () ds.

Appling the Gronwall inequality with C' = 0 we obtain z () < 0. Since z > 0, we

conclude that z (t) = 0 for all ¢ € [to, to + r]. In the same way, one gets that z (¢) = 0 for

t € [to — r,to], which proves that the solutions z; (t) and x5 (¢) coincide on the interval I.
Now we prove that they coincide on the full interval U. Consider the set

S={teU:z (t) =x2(t)}

and let us show that the set S is both closed and open in I. The closedness is obvious: if
x1 (tg) = my (ty) for a sequence {t;} and t, — t € U as k — oo then passing to the limit
and using the continuity of the solutions, we obtain x; (t) = x5 (t), that is, t € S.
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Let us prove that the set S is open. Fix some t; € S. Since x; (t1) = x2 (¢1), the both
functions z; (t) and x5 (t) solve the same IVP with the initial condition at ¢;. By the
above argument, x; (t) = x2 (t) in some interval I = [t; — r, ¢, + r| with » > 0. Hence,
I C S, which implies that S is open.

Since the set S is non-empty (it contains ¢y) and is both open and closed in U, we
conclude by Lemma 2.4 that S = U, which finishes the proof of uniqueness. =

Example. The method of the proof of the existence of the solution suggest the following
iteration procedure for computation of the solution. Recall that finding a solution amounts
to solving the equation x = Ax where A is the integral operator

Az (t) = xg —|—/t f(s,x(s))ds

defined on functions x € X, where X is the class of all continuous functions from I to
J. By the proof of the Banach fixed point theorem, we can start with any function in X
and construct a sequence {xy} of functions from X such that zx.; = Axg. Then xy (¢)
converges to the solution z (¢) uniformly in ¢ € I. Choose the initial function z¢ (¢) to be
the constant x(. In general, one cannot compute x;, explicitly, but for a particular choice
of f this is possible. Namely, take f (t,x) = x, ty = 0, g = 1, which corresponds to the
the IVP

Then we have

whence .
:Ul(t)zl—l—/ zods =1 +1t,
0

t t2
xg(t)zl—}—/o xlds:l—l—t—l—E

t t2 t3
x3(t):1+/0$2dt=1+t+§+§

and by induction
2 t3 tk
l‘k(ﬂ:l—f‘t‘l—a‘f‘g—i—...—f—g.

Clearly, z; — €' as k — oo, and the function x (¢) = e’ indeed solves the above TVP.

2.2 Dependence on the initial value

Counsider the IVP
{f:f@@

z(tg) = s

where the initial value is denoted by s instead of zy to emphasize that we allow now s to
vary. Hence, the solution is can be considered as a function of two variables: = = x (¢, s).
Our aim is to investigate the dependence on s.
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As before, assume that f is continuous in an open set 2 C R? and is locally Lipschitz
in this set in z. Fix a point (fo,x¢) € € and let ¢,6, L be the parameters from the local
Lipschitz condition at this point, that is,

for all t € [to — 6,tp + 6] and z,y € [xg — £, 29 + €]. Let M be the supremum of |f (¢, x)|
in the rectangle [to — 0,to + 6] X [xg — €, z0 + €].

As we know by the proof of Theorem 2.2, the solution with the initial condition
x (tg) = xo is defined in the interval [t, — r,to + ] where r is any positive number that
satisfies (2.4), and z (t) takes values in [zg — &, x¢ + €]. Now consider the IVP with the
condition x (tg) = s where s is close enough to zg, say

s € [ro—¢/2,20+¢/2]. (2.7)

Then the interval [s — €/2, s 4+ £/2] is contained in [zg — €, o + €] so that the above Lips-
chitz condition holds if we replace the interval [xg — &, x¢ + €] by [s — /2,5 + £/2]. Also,
the supremum of |f (¢, z)| in [tg — 6,t0 + 6] X [s — /2, s + /2] is bounded by M. Hence,
the solution x (¢, s) is defined for all ¢t € [ty — r (s),to + r (s)] provided r (s) satisfies the

conditions. 1
£
< < — —. .
r(s)_é,r(s)_QM,r(s)<L (2.8)

Note that in comparison with (2.4) we use here €/2 instead of € to ensure that the solution
takes values in [s — /2, s + ¢/2] . Hence, if r satisfies (2.4) then we can take r (s) = r/2,
which then satisfies (2.8). Hence, for any s as in (2.7), the solution z (¢, s) is defined in
the interval

t € [ty —r/2,to +1/2] (2.9)

and takes values in the interval [zo — ¢, z9 + €. In particular, we can compare solutions
with different s since they have the common domain (2.9).

X()+8/2

N

"

v

-8 tg-r  tr/2  ty tehr/2 tetr totd t
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Theorem 2.5 (Continuous dependence on the initial value) Let Q be an open set in
R? and f(t,x) be a continuous function in 0 that is locally Lipschitz in x. Let (ty, z)
be a point in Q and let e,7 be as above. Then, for all §',s" € [xg —¢e/2,x¢0 +€/2] and
t e [to—1/2t0 +1/2,

|z (t,8") —x (¢, ") < 2|8 —§"|. (2.10)

Consequently, the function x (t,s) is continuous in (t,s).
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Proof. Consider again the integral equations

z(t,s) =5+ /:f(T,.’L‘(T,S,))dT

and

2t ) = 5" + /t ez (e ) dr

Setting z (t) = |z (¢,s') — z (t,s")| and assuming t € [to,to + r/2], we obtain, using the
Lipschitz condition

z(t) < |8’-S"|+/t [f (2 (7,8) = f (7,2 (7, s"))| dr

t
< |s’—s"|+L/ z(7)dr.
¢

0

By the Gronwall inequality, we conclude that
z(t) <|s"—§"|exp (L (t —tp)) -

Since ¢t — to < r/2 and L < s-we see that L (t —ty) < 1 and exp (L (t — to)) < e/* < 2,
which proves (2.10) for ¢ > ¢,. Similarly one obtains the same for ¢ < .
Let us prove that x (¢, s) is continuous in (¢,s). Fix a point (¢g, ) € Q and prove

that x (¢, s) is continuous at this point, that is,
x (tn, ) — x (to, To)

if (¢, xn) — (to, o). Choosing € and r as above and taking n large enough, we can assume
that z,, € [xg —€/2,20 +¢/2] and t,, € [to — r/2,to + r/2]. Then by (2.10)

@ (tn, Tn) = @ (tn, To)| + |2 (tn, To) — @ (to, T0)]

|I‘ (tnyxn) —Z (tOJmO)l S
< 2|z, — x| + |2 (tn, o) — 2 (¢, 20)],

and this goes to 0 asn — oco. ®

2.3 Higher order ODE and reduction to the first order system

A general ODE of the order n resolved with respect to the highest derivative can be

written in the form
y =F (t, Y, ...,y(”’l)) , (2.11)

where t is an independent variable and y (¢) is an unknown function. It is sometimes more
convenient to replace this equation by a system of ODEs of the 1% order.

Let x (t) be a vector function of a real variable ¢, which takes values in R”. Denote by
xy the components of x. Then the derivative 2’ () is defined component-wise by

= (a), zy, ... ).

aey n
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Consider now a vector ODFE of the first order
¥ = f(t,x) (2.12)

where f is a given function of n+1 variables, which takes values in R™, that is, f : Q@ — R"
where  is an open subset of R"*! (so that the couple (¢,z) is considered as a point in
Q). Denoting by fi the components of f, we can rewrite the vector equation (2.12) as a
system of n scalar equations

xll - fl (tvxla --wxn)
z = fi (6,21, ..., 7)) (2.13)

Iln - fn (tax17 Jmn)

Let us show how the equation (2.11) can be reduced to the system (2.13). Indeed,
with any function y (¢) let us associate the vector-function

T = (y7 y,7 A y(n_l)) )
which takes values in R™. That is, we have
I =Y, T2 = y,> vy Iy =Y

Obviously,
xl - (y/7 y”7 ceey y(n)) ’

and using (2.11) we obtain a system of equations

xh = T3
(2.14)
T =Ty
xl, = F (t,xq,...1,)
Obviously, we can rewrite this system as a vector equation (2.12) where
f(t,z) = (za, 23, .., Tp, F (L, 21, 0y 7)) (2.15)

Conversely, the system (2.14) implies
flfgn) = I;L =F <t7 Zy, I'll, ey xgn_1)>

so that we obtain equation (2.11) with respect to y = x;. Hence, the equation (2.11) is
equivalent to the vector equation (2.12) with function f defined by (2.15).

Example. For example, consider the second order equation

y'=F(t,y,y).

Setting = = (y,y’) we obtain
x/ — (y/,y//)
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whence
)
/
xh = F (t,x1,22)

Hence, we obtain the vector equation (2.12) with

f(t,z) = (xg, F (t,21,22)) .

What initial value problem is associated with the vector equation (2.12) and the scalar
higher order equation (2.11)7 Motivated by the study of the 1st order ODE, one can
presume that it makes sense to consider the following IVP for the vector 1st order ODE

{Tay

where zq € R" is a given initial value of x (t). For the equation (2.11), this means that the
initial conditions should prescribe the value of the vector x = (y, v, ..., y("’l)) at some ty,
which amounts to n scalar conditions

y (to) = o
Y (to) = n
?J(nfl) (t0) = Yn—1

where o, ...,y,—1 are given values. Hence, the initial value problem IVP for the scalar
equation of the order n can be stated as follows:

Yy =F(t,y,y, ...,y )
Yy (to) = Yo
Y (to) =

y("_l) (t0> = Yn—1-

2.4 Existence and uniqueness for a system

Let € be an open subset of R** and f be a mapping from  to R". Denote a point in
R™™! by (¢, ) where t € R and = € R". Then we write f = f (¢, ).

Definition. Function f is called locally Lipschitz in z if for any point (tozo) € € there
exists positive constants ¢, §, L such that

If @) = f @yl < Lz —yll (2.16)
for all t € [to — 6,10 + 6] and x,y € B (w0, ¢).
Here ||-|| denotes some norms in R™ and R™*! (arbitrary, but fixed) and B (z,¢) is

the closed ball in R™, that is,
B(zg,e) ={y e R": ||z —y|| < e}.

Note that the value of the Lipschitz constant L depends on the choice of the norms, but
the property of f to be locally Lipschitz is independent of the choice of the norms.
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Lemma 2.6 If all partial derivatives 5:& exists in ) and are continuous then f is locally
Tj

Lipschitz in Q.
Proof. Given a point (%o, z¢) choose £ and § so that the cylinder
K= [t() — 6,t0 +5] X E(JJQ,{‘:)

is contained in €2, which is possible by the openness of ). Since K is a closed bounded

ng’; are bounded on K. Set

set, all functions

[
3x]

C = max sup

Fix an index k =1,...,n, t € [ty — 6,ty + 6], and consider fi (t,z) as a function of z only
(that is, as a mapping from a subset of R” to R). For any two points z,y € B (zo,¢), we
have by the mean value theorem in R"

fe @ x) = fi (ty) = (o), (8,6) (z = y), (2.17)

where ¢ is a point in the interval [z,y] and, hence, in B (xg,¢), and (fz), is the full
derivative of fx in z. In fact, since the partial derivatives ng’; are continuous, the full

derivative coincides with the Jacobian matrix, that is, (fz), is the 1 x n matrix

(fr), = (g—ﬁ, ,g—ﬁ) :

The right hand side of (2.17) is the product of this row and the column-vector x — y, that
is,
— Ifx
Filtod) = filto) =350 (5 8) (2 ).

Since (t,&) € K, we obtain by the deﬁnitlon of C

|fi (t2) = fiu (,9)| < C D Jwy — il = Cllz =yl

=1

Taking max in k, we obtain

1 (&, 2) = f (8, 9) [loo < Cllz =yl
Switching to the fixed norm || - || in R” and using the fact that any two norms have

bounded ratio, we obtain (2.16). =

Definition. Given a function f : Q — R™, where  is an open set in R"*!, consider the

WP = fit.)
= f(tx
{ 2 (ty) = o, (2.18)
where (tg, o) is a given point in Q. A solution to IVP is a function x (¢) : I — R"™ (where
I is an open interval containing ¢y) such that (¢,z (t)) € Q for all ¢t € I and x (¢) satisfies
the ODE 2/ = f (¢,x) in I and the initial condition z (t9) = .
The graph of function x (¢), that is, the set of points (¢,z (t)), is hence a curve in
that goes through the point (o, xo).
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Theorem 2.7 (Picard - Lindelof Theorem) Consider the equation

= f(t,x)

where f : Q — R™ is a mapping from an open set Q C R"™ to R™. Assume that f is
continuous on Q and locally Lipschitz in x. Then, for any point (to,x¢) € 2, the initial
value problem IVP (2.18) has a solution.

Furthermore, if x (t) and y (t) are two solutions to the same IVP then x (t) =y (t) in
their common domain.

Proof. The proof is very similar to the case n = 1 considered in Theorem 2.2. We
start with the following claim.

Claim. A function x (t) solves IVP if and only if z (t) is a continuous function on an
open interval I such that to € I, (t,x(t)) € Q for allt € I, and

x(t):xg—i—/t £ (5,2 (s)) ds. (2.19)

Here the integral of the vector valued function is understood component-wise. If x
solves IVP then (2.19) follows from z}, = fi (¢, z (t)) just by integration:

Z%@@=£ﬂ@“m“
whence 2 (8) — (20), — /t: fr(s,2(s))ds

and (2.19) follows. Conversely, if z is a continuous function that satisfies (2.19) then

Tr = (:co)k+/t fr (8,2 (s))ds.

The right hand side here is differentiable in ¢ whence it follows that x, () is differentiable.
It is trivial that xj (to) = (z0),, and after differentiation we obtain z) = f; (t,z) and,
hence, 2’ = f (¢, x).

Fix a point (tg,z9) € Q and let €,6 be the parameter from the the local Lipschitz
condition at this point, that is, there is a constant L such that

1f (t,z) — f(t, ) < Lz —yl

for all t € [t — 6,to+ 6] and x,y € B (20,¢). Set I = [to —r,to+ r],where 0 < r < 6 is
a new parameter, whose value will be specified later on, and J = B (zg,¢) .
Denote by X be the family of all continuous functions z (t) : I — J, that is,

X ={z:I— J:xis continuous} .

We are going to consider the integral operator A defined on functions x (¢) by

Az (t) = xg +/t f(s,x(s))ds,
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and we would like to ensure that x € X implies Az € X. Note that, for any x € X, the
point (s, x (s)) belongs to € so that the above integral makes sense and the function Az is
defined on . This function is obviously continuous. We are left to verify that the image
of Az is contained in J. Indeed, the latter condition means that

| Az (£) — @o|| < € for all € 1. (2.20)

We have, for any ¢ € I,

4 () -l = |

/t:f<s,x<s>>ds

t
< [Ira)ds
to
< sup [[f(s,2)| |t —to| < M,
scl,xzeJ
where
M= sup |f(s,2)] <oc.
SG[to—&,to—l—&}
x€B(z0,¢).

Hence, if 7 is so small that Mr < e then (2.3) is satisfied and, hence, Ax € X.
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Define a distance function on the function family X as follows: if x,y € X then

d(z,y) =sup |z (t) —y (@)
tel
We claim that (X, d) is a complete metric space (see Exercises).
We are left to ensure that the mapping A : X — X is a contraction. For any two
functions z,y € X and any t € I, t > ty, we have x (t),y (t) € J whence by the Lipschitz
condition

[Az (t) — Ay ()] =

A
=
w
8
—~
w
S~—
S~—
|
~=
w

<
—~
w
S~—
=
U
»

to

(/LWMQ—yQM%

to

L(t—t) Sup [z (s) —y ()]

< Lrd(z,y).

IN

IN

The same inequality holds for t < t3. Taking sup in ¢ € I, we obtain
d(Az, Ay) < Lrd (z,y) .

Hence, choosing r < 1/L, we obtain that A is a contraction. By the Banach fixed point
theorem, we conclude that the equation Az = x has a solution = € X, which hence solves
the IVP.

Assume that x (t) and y () are two solutions of the same IVP both defined on an
open interval U C R and prove that they coincide on U. We first prove that the two
solution coincide in some interval around ¢,. Let € and 6 be the parameters from the
Lipschitz condition at the point (to,z() as above. Choose 0 < r < ¢ so small that the
both functions x () and y () restricted to I = [tg — 7, to + 7] take values in J = B (70, ¢)
(which is possible because both x (t) and y (¢) are continuous functions). As in the proof
of the existence, the both solutions satisfies the integral identity

x(t):xg+/t f(s,z(s))ds

for all t € I. Hence, for the difference z (t) := || (t) — y (¢)||, we have

dwzwww—ywus[Wf@x@»—f@y@mm&

assuming for certainty that to <t <ty + r. Since the both points (s, x (s)) and (s,y (s))
in the given range of s are contained in I x J, we obtain by the Lipschitz condition

|f(ss2(s)) = f(s,y(s) < Lz (s) —y(s)
whence

z(t)gL/tz(s)ds.

to
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Appling the Gronwall inequality with C' = 0 we obtain z(¢) < 0. Since z > 0, we

conclude that z (t) = 0 for all ¢ € [to, to + r|. In the same way, one gets that z (t) = 0 for

t € [to — r,to], which proves that the solutions z (t) and y (¢) coincide on the interval I.
Now we prove that they coincide on the full interval U. Consider the set

S={teU:z(t)=y(t)}

and let us show that the set S is both closed and open in I. The closedness is obvious:
if  (ty) = y (tx) for a sequence {tx} and ty — t € U as k — oo then passing to the limit
and using the continuity of the solutions, we obtain x (t) = y (¢), that is, t € S.

Let us prove that the set S is open. Fix some t; € S. Since x (t1) = y(t;1) =: 1,
the both functions z (¢) and y (t) solve the same IVP with the initial data (¢;,z1). By
the above argument, z (t) = y (t) in some interval I = [t; — r,t; + r| with » > 0. Hence,
I C S, which implies that S is open.

Since the set S is non-empty (it contains ¢y) and is both open and closed in U, we
conclude by Lemma 2.4 that S = U, which finishes the proof of uniqueness. =

Remark. Let us summarize the proof of the existence part of Theorem 2.7 as follows.
For any point (tg,z¢) € 2, we first choose positive constants ,6, L from the Lipschitz
condition, that is, the cylinder

G = {to — 6,t0 —|—6] X E(ZL’(),:E‘)
is contained in €2 and, for any two points (¢, z) and (¢,y) from G with the same ¢,

1f (& 2) = F )l < Lz -yl

Let
M= sgpllf(t,rc)ll

and choose any positive r to satisfy

€ 1
<6 r< — —. 2.21
r<br<D r< g (221)

Then there exists a solution z (¢) to the IVP, which is defined on the interval [ty — 7, to + 7]
and takes values in B (7o, ¢).

The fact that the domain of the solution admits the explicit estimates (2.21) can be
used as follows.

Corollary. Under the conditions of Theorem 2.7 for any point (to,xo) € Q) there are
positive constants € and r such that, for any t; € [to —r,to + 7] and x1 € B (x,€/2) the

IvP /
{ i (Z)f:(t;f) ’ (2.22)

has a solution x (t) defined for t € [t, — r,t; + 7] and taking values in B (x1,¢/2).
In particular, ift, € [to —1/2,t + /2] then x (t) is defined for allt € [to — /2,10 +1/2]
and takes values in B (g, €).

__ Proof. Let ¢,0, L, M be as above. Assuming that ¢, € [to — 6/2,to+6/2] and z; €
B (z0,€/2), we obtain that the cylinder

Gl == [tl —5/2,t1+6/2] XE(m1,€/2)
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is contained in GG. Hence, the values of L and M for the cylinder GGy can be taken the
same as those for G. Hence, the IVP (2.22) has solution z (t) in the interval [t; — r,¢; + 7]
taking values in B (z1,e/2) provided

€ 1

r<—.

< 2 <
r<o/%rs o L

In particular, r can be taken to depend only on €, 6, L, M, that is, r is a function of (¢, xo).
We are left to observe that, for this choice of r, the condition t; € [tg — /2ty + r/2]
implies tl € {to - 6/2,t0 + 5/2]

The second claim follows from the observations that B (zg,e) D B (x1,£/2) and
[to —7/2,to +1/2] C [t1 —r,t1 + 7] provided t; € [to —7/2,tg +7/2]. m

2.5 Maximal solutions

Consider again the ODE
= f(tx)

where f : Q — R" is a mapping from an open set  C R"*! to R", which is continuous
on ) and locally Lipschitz in x.

Although the uniqueness part of Theorem 2.7 says that any two solutions are the same
in their common interval, still there are many different solutions to the same IVP because
strictly speaking, the functions that are defined on different domains are different, despite
they coincide in the intersection of the domains. The purpose of what follows is to define
the maximal possible domain where the solution to the IVP exists.

We say that a solution y (t) of the ODE is an extension of a solution z (t) if the domain
of y (t) contains the domain of z (¢) and the solutions coincide in the common domain.

Definition. A solution z (t) of the ODE is called mazimal if it is defined on an open
interval and cannot be extended to any larger open interval.

Theorem 2.8 Assume that the conditions of Theorem 2.7 are satisfied. Then the follow-
mg 1s true.

(a) Any IVP has is a unique mazximal solution.

(b) If z (t) and y (t) are two mazimal solutions to the same ODE and x (t) =y (t) for
some value of t, then x and y are identically equal, including the identity of their domains.

(c) If x (t) is a maximal solution with the domain (a,b), then x (t) leaves any compact
set K CQast— a and ast —b.

Here the phrase “z (t) leaves any compact set K as ¢t — b” means the follows: there is
T € (a,b) such that for any t € (T,b), the point (¢,z (t)) does not belong to K. Similarly,
the phrase “z (t) leaves any compact set K ast — a” means that there is T' € (a, b) such
that for any t € (a,T), the point (¢, (t)) does not belong to K.

Example. 1. Consider the ODE 2/ = z? in the domain = R2. This is separable
equation and can be solved as follows. Obviously, x = 0 is a constant solution. In the
domains where x # 0 we have

o'dt / gt

22
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whence

S P~
T T

and z (t) = —5 (where we have replaced C' by —C). Hence, the family of all solutions
consists of a straight line z (£) = 0 and hyperbolas = (¢) = ——5 with the maximal
domains (C, +00) and (—oo, C'). Each of these solutions leaves any compact set K, but
in different ways: the solutions x (t) = 0 leaves K as t — 400 because K is bounded,

while z (t) = ——5 leaves K as t — C' because x (t) — o0.
2. Consider the ODE 2/ = 1 in the domain Q = {¢ € R and = > 0}. By separation of

variables, we obtain
2
%:/mdm:/xx’dt:/dt:t+0

z(t)=201t—-C), t>C
(where we have changed the constant C'). Obviously, the solution is maximal in the
domain (C, +00). It leaves any compact K C Q as t — C because (t,z (t)) tends to the
point (C,0) at the boundary of €.
The proof of Theorem 2.8 will be preceded by a lemma.

whence

Lemma 2.9 Let {z,(t)},c4 be a family of solutions to the same IVP where A is any
index set, and let the domain of x, be an open interval I,. Set I = I, and define a
function x (t) on I as follows:

acA

2 (t) = a0 (t) ift € L. (2.23)

Then I is an open interval and x (t) is a solution to the same IVP on I.
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The function x (¢) defined by (2.23) is referred to as the union of the family {z, (¢)}.

Proof. First of all, let us verify that the identity (2.23) defines x (¢) correctly, that
is, the right hand side does not depend on the choice of a. Indeed, if also ¢t € Ig then ¢
belongs to the intersection I, NIz and by the uniqueness theorem, z, (t) = x5 (t). Hence,
the value of x (¢) is independent of the choice of the index a. Note that the graph of z (¢)
is the union of the graphs of all functions z,, (t).

Set a = inf I, b = sup I and show that I = (a,b). Let us first verify that (a,b) C I,
that is, any ¢ € (a, b) belongs also to I. Assume for certainty that ¢ > ¢o. Since b = sup I,
there is t; € I such that t < t; < b. There exists an index « such that ¢; € I . Since
also ty € I,, the entire interval [t,¢;] is contained in I,. Since t € [to,t1], we conclude
that t € I, and, hence, t € I.

It follows that I is an interval with the endpoints a and b. Since [ is the union of open
intervals, I is an open subset of R, whence it follows that I is an open interval, that is,
I =(a,b).

Finally, let us verify why z (f) solves the given IVP. We have z (ty) = zo because
tg € I, for any o and

i (to) = Xy (tg) = X

so that x (t) satisfies the initial condition. Why z (t) satisfies the ODE at any ¢ € I?7 Any
given t € I belongs to some I,. Since z, solves the ODE in [, and x = x, on [,, we
conclude that x satisfies the ODE at ¢, which finishes the proof. m

Proof of Theorem 2.8. (a) Consider the IVP

{ o' = f(t,z), (2.24)

T (to) = 29

and let S be the set of all possible solutions to this IVP defined on open intervals. Let
x (t) be the union of all solutions from S. By Lemma 2.9, the function z () is also a
solution to the IVP and, hence, z (t) € S. Moreover, x (t) is a maximal solution because
the domain of x (¢) contains the domains of all other solutions from S and, hence, z (¢)
cannot be extended to a larger open interval. This proves the existence of a maximal
solution.

Let y () be another maximal solution to the IVP and let z(¢) be the union of the
solutions z (t) and y (t). By Lemma 2.9, z (¢) solves the IVP and extends both x (¢) and
y (t), which implies by the maximality of x and y that z is identical to both z and y.
Hence, = and y are identical (including the identity of the domains), which proves the
uniqueness of a maximal solution.

(b) Let x(t) and y (t) be two maximal solutions that coincide at some ¢, say t = t;.
Set 1 = x (t1) = y (t1). Then both x and y are solutions to the same IVP with the initial
point (¢1, 1) and, hence, they coincide by part (a).

(c¢) Let x (t) be a maximal solution defined on (a,b) and assume that z (¢) does not
leave a compact K C Q as t — a. Then there is a sequence t;, — a such that (g, xx) € K
where z, = x (t;). By a property of compact sets, any sequence in K has a convergent
subsequence whose limit is in K. Hence, passing to a subsequence, we can assume that
the sequence {(tx,zx)},e, converges to a point (tg,zo) € K as k — oo. Clearly, we have
to = a, which in particular implies that a is finite.
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By Corollary to Theorem 2.7, for the point (to,zo), there exist r,e > 0 such that the
IVP with the initial point inside the cylinder

G= [to-?”/2,t0+7’/2] XE(I(),FJ/Z)

has a solution defined for all t € [ty —r/2,to + r/2]. In particular, if k is large enough
then (tg,zx) € G, which implies that the solution y (t) to the following IVP

{y’:f(t,y),

Yy (tk) = Tk,
is defined for all t € [ty —r/2,to + /2] (see the diagram below).

X A

x(f)

_ Trs
B(xo.62) (1 32)

y(t) (t 05 xo)

\

v

[to—r/Z,t0+r/2] t

Since z (t) also solves this IVP, the union z (¢) of x (¢) and y (¢) solves the same IVP.
Note that x (¢) is defined only for ¢t > ¢y while z (¢) is defined also for ¢ € [ty — r/2, to].
Hence, the solution z (¢f) can be extended to a larger interval, which contradicts the
maximality of z (¢). =

Remark. By definition, a maximal solution x (¢) is defined on an open interval, say
(a,b), and it cannot be extended to a larger open interval. One may wonder if z (t) can
be extended at least to the endpoints ¢ = a or t = b. It turns out that this is never the
case (unless the domain 2 of the function f (¢,x) can be enlarged). Indeed, if z (t) can
be defined as a solution to the ODE also for ¢ = a then (a,z (a)) € © and, hence, there is
ball B in R™™! centered at the point (a, (a)) such that B C €. By shrinking the radius
of B, we can assume that the corresponding closed ball B is also contained in €. Since
x(t) — z (a) as t — a, we obtain that (¢, (t)) € B for all ¢ close enough to a. Therefore,
the solution () does not leave the compact set B C  as t — a, which contradicts part
(¢) of Theorem 2.8.
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2.6 Continuity of solutions with respect to f (¢, )

Consider the IVP
r = / (t’ l‘)
{ T (to) = 2

In one of the previous sections, we have considered in the one dimensional case the question
how the solution z (t) depends on the initial value zo thus allowing xy to vary. This
question can be is a particular case of a more general question how the solution x ()
depends on the right hand side f (¢, ). Indeed, consider the function y (t) = x (t) — xo,
which obviously solves the IVP

{ y/:f<t,y+$0),
y (to) =0.

Hence, for y (t), the initial value does not change while the right hand side does change
when 1z, varies.

Consider now a more general question. Let 2 be an open set in R™™ and f, g be two
functions from €2 to R™. Assume that both f, g are continuous and locally Lipschitz in x,
and consider two initial value problems

{ v =ft7) (2.25)

T (to) = X9

and

y =gty
L (226)
where (g, x) is a fixed point in €.

Assume that the function f as fixed and z (t) is a fixed solution of (2.25). However,
the function g can be chosen. Our purpose is to show that if g is chosen close enough
to f then the solution y (¢) of (2.26) is close enough to z (t). Apart from the theoretical
interest, this question has significant practical consequences. For example, if one knows
the function f (¢,z) only approximately then solving (2.25) approximately means solving
another problem (2.26) where g is an approximation to f. Hence, it is important to know
that the solution y (¢) is actually an approximation of x ().

Theorem 2.10 Let x (t) be a solution to the IVP (2.25) defined on an interval (a,b).
Then, for all « < 3 such that ty € [a, 8] C (a,b), and for any € > 0, there is n > 0 such
that, for any function g : 2 — R™ with the property

Sup If =gl <mn, (2.27)

there is a solution y (t) of the IVP (2.26) defined in |a, 3], and this solution satisfies

sup [z (t) =y ()] <e.

Proof. For any € > 0, consider the set

K.={(t,z) eR"" :a<t<B, |z —2z(t)| <e} (2.28)
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which can be regarded as the e-neighborhood in R™™! of the graph of the function ¢ +— x (¢)
where ¢ € [« §]. In particular, K is the graph of this function (see the diagram below).

XA

v

It is easy to see that K. is bounded and closed; hence, K, is a compact subset of R"*!
Claim 1. There are positive € and L such that K. C  and

I (&,2) = f (& y)]| < Lz =yl

for all (t,x),(t,y) € K.. That is, f is Lipschitz in x on the set K..
By the local Lipschitz condition, for any point (t.,z.) € Q (in particular, for any
(ts, ) € Kp), there are constants €, 6, L such that the cylinder

G = [t, — 0,t. + 6] X B(z,,¢)

is contained in 2 and
I (& 2) = f (L)l < Lz =yl
for all (t,z), (t,y) € G (see the diagram below).

A
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Varying the point (., z.) in Ky, we obtain a cover of Ky by open cylinders of the type
(ty — 0,ts +0) X B(x4,e/2) where €, (and L) depend on (t,,x,). Since Kj is compact,
there is a finite subcover, that is, a finite number of points {(t;, z;)}1, on Ko and the
corresponding numbers ¢;, 8;, L; such that the cylinders G; = (t; — 6;,t; + 6;) X B (x;,€;/2)
cover all K, and
If @) = f @&yl < Lille =yl

for all t € [tz — (Si,ti + 61] and T,y E E(l‘z,f‘:z) Set
€= 1m‘insi and L = max L;

and prove that the Lipschitz condition holds in K. with the constant L. For any two
points (¢, ), (t,y) € K., we have t € [, (], (t,z (t)) € Ko and

[z =z (@) <eand |y —z(t)] <e.

The point (¢,x (t)) belongs to one of the cylinders G; so that ¢t € (t; — 6;,t; + 6;) and
|z (t) — ;|| < ei/2 (see the diagram below).

A

(%)

(&X(2):

B(xr&/2)

(tixi)

v

By the triangle inequality, we have
[z =zl <llz =z (@) + [l () — il <e+ei/2 <e,

where we have used that ¢ < ¢;/2. In the same way one proves that ||y —z;|| < &;.
Therefore,  and y belong to the ball B (x;,¢;) whence it follows, by the choice of ¢; and
(Si, that

If (t2) = f (&l < Lillz —yll < Lz —yll,

which finishes the proof of Claim 1.

Observe that if the statement of Claim 1 holds for some value of ¢ then it holds for
all smaller values of € as well, with the same L. Hence, we can assume that the value of
¢ from Theorem 2.10 is small enough so that it satisfies the statement of Claim 1.
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Let now y (¢) be the maximal solution to the IVP (2.26), and let (a’,¥’) be its domain.
By Theorem 2.8, the graph of y (¢) leaves K. when ¢t — o’ and when ¢t — b'. Let (o/, ')
be the maximal interval such that the graph of y (¢) on this interval is contained in K.,
that is,

o =inf{t € (a,B) N (", V) : (t,y(t)) € K. and (s,y(s)) € K. for all s € (t,t0)} (2.29)
and (' is defined similarly with inf replaced by sup (see the diagrams below for the cases

o' > a and o/ = a, respectively).
XA X A

x(t
K,

~—__ () (0
7” e 1T \f
/

(1)

» >
»

a ot 5 ¢ B P t a=a’ t B~ B g

This definition implies that (o/,3) is contained in (a/,b') N (a, 3), function y (¢) is
defined on (o, 3') and by (2.29)

(t,y (t)) € K. for all t € (¢/,3') . (2.30)

Claim 2. We have [/, 8] C (d,V'). In particular, y (t) is defined on [/, 3']. Moreover,
the following is true: either o =« or o' > a and

|z (t) —y (t)]| =€ fort =< (2.31)

A similar statement holds for 3’ and 3.

By Theorem 2.8, y (t) leaves K. as t — a’. Hence, for all values of ¢ close enough to
a’ we have (t,y (t)) ¢ K.. For any such t we have by (2.29) ¢t < o/ whence o’ <t < « and
a’ < . Similarly, one shows that & > @', whence [o/, 3] C [d/,V].

To prove the second part, assume that o’ # « that is, o/ > «, and prove that

|lz(t) —y (t)]| =cfort =<'

The condition o/ > « together with o/ > o’ implies that o’ belongs to the open interval
(o, B) N (d',b). Tt follows that, for 7 > 0 small enough,

(o —7,0/ +7)C (o, ) N (', V). (2.32)

For any ¢ € (/, 3'), we have
[z () —y @) <e.
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By the continuity, this inequality extends also to ¢ = o’. We need to prove that, for
t = o, equality is attained here. Indeed, a strict inequality

lz () —y (@) <e

for t = o/ implies by the continuity of z (¢) and y (¢), that the same inequality holds for
all t € (&/ —7,a' + 7) provided 7 > 0 is small enough. Choosing 7 to satisfy also (2.32),
we obtain that (t,y (t)) € K. for all t € (o’ — 7, /], which contradicts the definition of /.

Claim 3. For any given «, 3,¢, L as above, there exists n > 0 such that if
sup [ f —gll <, (2.33)

then [/, 3] = [, f].

In fact, Claim 3 will finish the proof of Theorem 2.10. Indeed, Claims 2 and 3 imply
that y () is defined on [« 3], and by (2.30) (¢,y (t)) € K. for all t € (a, §). By continuity,
the latter inclusion extends to ¢ € [«, 5]. By (2.28), this means

ly () =2 ()| < e for all t € [a, f],

which was the claim of Theorem 2.10.
To prove Claim 3, for any ¢ € [o/, 3] use the integral identities

x(t):xg+/t f(s,z(s))ds

and

yw=m+[9@mm@
whence
lz(t) —y @) = ‘/t (f(s,2(s)) —g(s,y(s)))ds

< | [ 0.we) - gy,

to

/U@w@%f@wmws

to

i

Assuming for simplicity that ¢ > ¢, and noticing that the points (s,z (s)) and (s,y(s))
are in K., we obtain by the Lipschitz condition in K. (Claim 1) and (2.33)

2 (8) =y (D) S/ Lz (s) —y(s)lds +n (8 —a). (2.34)

to

Hence, by the Gronwall lemma applied to the function z (t) = ||z (t) — y (¢)]],

() —y @Ol < 7(6—a)expL(t—to)
< nB-a)expL(f—a).
Now choose 7 by .
(T L
so that
|z (t) —y (t)|| <e/2forallted,p]. (2.35)

It follows from Claim 2 that o/ = «a because otherwise we would have (2.31), which
contradicts (2.35). In the same way, 3’ = 3, which finishes the proof. m
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Using the proof of Theorem 2.10, we can refine the statement of Theorem 2.10 as
follows.

Theorem 2.10 ' Under conditions of Theorem 2.10, let x (t) be a solution to the IVP
(2.25) defined on an interval (a,b), and let [a, B] be an interval such that ty € |a, 3] C
(a,b). Let e > 0 be sufficiently small so that the Lipschitz condition holds in K. with a

constant L, and set
C=2(8—a)elP,

Then the solution y (t) of the IVP (2.26) is defined on [, ] and

sup [z (t) —y (B < C'sup If =4l (2.36)

provided supg_ || f — gl| is sufficiently small.

Proof. Fix ¢ as above and introduce one more parameter ¢’ < e. Then K., C K, and
the Lipschitz condition holds in K. with the same constant L. Using Claim 3 from the
proof of Theorem 2.10 with &’ instead of e, we conclude that if

sup 1f=gll<n (2.37)

where 7 satisfies
n(B—a)exp(L(—a)) =£/2
that is, Cn = ¢, then the maximal solution y (¢) of the IVP (2.26) is defined on [, #] and

Sup lz () —y (D) <&

Replacing K./ in (2.37) by a larger set K., we obtain, in particular, that if supy_||f — g||
is sufficiently small then y (¢) is defined on [a, 8]. Furthermore, replacing n by C~'¢’, we
obtain that
sup ||f —g|| < C 1 (2.38)
Ke

implies

sup lz () —y (D) <"

Choosing £’ so that equality holds in (2.38), we obtain (2.36). m

2.7 Continuity of solutions with respect to a parameter

Consider the IVP with a parameter s € R™

{ ' =f(t.z,s) (2.39)

T (to) = 29

where f : @ — R™ and (2 is an open subset of R*™™ "1 Here the triple (¢, z, s) is identified
as a point in R"*™*1 ag follows:

(t,z,8) = (t, 21, .., Ty, S1y vy S -

45



How do we understand (2.39)7 For any s € R™, consider the open set
Q, ={(t,z) e R™": (t,z,5) € Q}.
Denote by S the set of those s, for which €4 contains (o, x9), that is,

S = {SGRmZ<t0,$O)€QS}
= {s€R™: (ty,x0,5) € Q}

Rmﬂ

Rn+1

“(to,Xo)

Then the IVP (2.39) can be considered in the domain €2, for any s € S. We always
assume that the set S is non-empty. Assume also in the sequel that f (¢, z, s) is a contin-
uous function in (¢, z,s) € Q and is locally Lipschitz in = for any s € S. For any s € S,
denote by z (¢, s) the maximal solution of (2.39) and let I be its domain (that is, I; is an
open interval on the axis t). Hence, z (¢, s) as a function of (¢, s) is defined in the set

U={(ts)eR™:se S tel}.

Theorem 2.11 Under the above assumptions, the set U is an open subset of R"*! and
the function z (t,s) : U — R™ is continuous.

Proof. Fix some sy € S and consider solution z (t) = x (¢, so) defined for ¢t € I,.
Choose some interval [a, §] C I, such that ¢y € [a, 5]. We will prove that there is € > 0
such that

[a, B] x B (so,e) C U, (2.40)

which will imply that U is open. Here B (sg,¢) is a ball in R™ with respect to oo-norm
(we can assume that all the norms in various spaces R* are the co-norms).
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SER" A

B(SQ,S{ 50

\‘/

o to B !

I,

So

As in the proof of Theorem 2.10, consider a set
K.={(t,z) eR" :a<t< B, |z —z(t)| <e}
and its extension in R*™™*! defined by
K. = {(t,z,s) eR"™ 1 a <t < B,z —x(t)] <ells — 50|l <&}
= K. X B(sg,¢)

(see the diagram below).

SA

Bone) {'

K.=K.x B(sy,€)

If € is small enough then K. is contained in € (cf. the proof of Theorem 2.10 and
Exercise 26). Hence, for any s € B(so, €), the function f (¢,z,s) is defined for all (¢,z) €
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K.. Since the function f is continuous on (2, it is uniformly continuous on the compact
set K., whence it follows that

sup || f (t,z,80) — f(t,z,8)|| — 0as s — so.
(t,x)EK.
Using Theorem 2.10'with? f (t,x) = f(t,z,s0) and g (t,z) = f(t,x,s) where s €
B (s0,€), we obtain that if

sup Hf(t,x,s) _f<t7$7 SO)H
(tx)eK.

is small enough then then the solution y (¢) = z (¢, s) is defined on [«, ]. In particular,
this implies (2.40) for small enough e. Furthermore, by Theorem 2.10" we also obtain that

sup ||z (t,s) =@ (t,s)| < C sup ||f (t, 2, 50) — f(t,z,s)],

t€fa,f] (tw)eKe
where the constant C' depending only on «,(3,e and the Lipschitz constant L of the
function f (¢, z, so) in K.. Letting s — sg, we obtain that

sup ||z (t,s) —x (t,s0)|| — 0 as s — sy,
t€lo,f]

so that x (¢, s) is continuous in s uniformly in ¢ € [a, §]. Since x (¢, s) is continuous in ¢
for any fixed s, we conclude that x is continuous in (¢, s) (see Exercise 27), which finishes
the proof. m

2.8 Global existence

Theorem 2.12 Let I be an open interval in R. Assume that a function f (t,x) : I xR™ —
R™ s continuous, locally Lipschitz in x, and satisfies the inequality

I (& @)} < a(t)[lz] + b () (2.41)

forallt € I and x € R™, where a (t) and b(t) are some continuous non-negative functions
of t. Then, for all ty € I and xq € R", the initial value problem

{ v =ft2) (2.42)

T (to) = X
has a (unique) solution x (t) on I.

Proof. Let z (t) be the maximal solution to the problem (2.42), and let J = («, ()
be the open interval where z (t) is defined. We will show that J = I. Assume from the
contrary that this is not the case. Then one of the points o, 3 is contained in I, say 3 € 1.
What can happen to z () when t — 37 By Theorem 2.8, (¢,z (t)) leaves any compact
K C Q:=1 x R". Consider a compact set K = [ —¢,8] x B(0,7) where ¢ > 0 is so
small that [ —e,0] C I. Clearly, K C Q. If t is close enough to (3 then t € [3 — ¢, ].
Since (¢, z (t)) must be outside K, we conclude that = ¢ B (0,r), that is, ||z (¢)|| > 7. In
other words, we see that ||z (t)|| — cc ast — (.

2Since the common domain of the functions f (¢, z,s) and f (¢, x, sg) is (¢, ) € Qs, N, Theorem 2.10
should be applied with this domain.
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On the other hand, let us show that the solution z (¢) remains bounded when t — (.
From the integral equation

# (t) =xo+/t £ (5,2 (s)) ds,

we obtain, for any t € [to, )

le@l < ol + / 1f (52 ()] ds

N

< H$0||+/t (a(s)[lz(s)||+b(s))ds
< C—l—A/t |z (s)|| ds,

where 5
A=supa(s) and C = |z +/ b(s)ds.
[to,5] to
Since [tg, ] C I and functions a (s) and b (s) are continuous in [to, 4], the values of A and
C are finite. The Gronwall lemma yields

lz (£)]] < Cexp (A(t —to)) < Cexp (A (S —to)).
Since the right hand side here does not depend on ¢, we conclude that the function ||z (¢)||
remains bounded as t — (3, which finishes the proof. m
Example. We have considered above the ODE 2’ = 22 defined in R x R and have

seen that the solution z (t) = ﬁ cannot be defined on full R. The same occurs for the

equation 2’ = x* for @ > 1. The reason is that the function f (¢,z) = x* does not admit
the estimate (2.41) for large =, due to @ > 1. This example also shows that the condition
(2.41) is rather sharp.

A particularly important application of Theorem 2.12 is the case of the linear equation
¥=At)x+ B(t),

where x € R", ¢t € I (where I is an open interval in R), B: I — R", A: I — R"*". Here
R™" is the space of all n x n matrices (that can be identified with R”’). In other words,
for each t € I, A(t) is an n X n matrix, and A (¢) x is the product of the matrix A (¢) and
the column vector . In the coordinate form, one has a system of linear equations

ZE;C = ZA]“ (t) €T; + Bk (t) y
=1

forany k=1,...,n.

Theorem 2.13 Let A(t) and B (t) be continuous in an open interval I C R. Then, for
any tog € I and o € R™, the IVP

{ r=A{t)x+ B(t)

xr (t()) = 29

has a (unique) solution x (t) defined on I.
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Proof. It suffices to check that the function f(t,2) = A(t)x + B (t) satisfies the
conditions of Theorem 2.12. This function is obviously continuous in (¢, z). Let us show
that ||A () z|| < a(t) ||z]| for a continuous function a (¢). Indeed, using the oco-norm, we
have

g — < —
14 (2) x| = max[(A () 2),| = max EI:AM (t) 2| < max zl:Akl ()| max 2] = a (t) [|]
where a (t) = maxy, |>; A ()] is a continuous function. Setting also b(t) = || B (t)||, we
obtain

IF &) < [A@) 2l +[1BO] < a) ||z + ().

Since function f (¢, z) is continuously differentiable in z, it is locally Lipschitz by Lemma
2.6. Alternatively, let us show that f (¢, x) is Lipschitz in z in any set of the form [a, §] xR"
where [a, (] is a closed bounded interval in I. Indeed, for any ¢ € [o, 3] and z,y € R™,
we have

1f (& 2) = f Yl = 1A#) @ -yl <a@)llz -yl < Lz -yl

where
L= sup a(t).
t€lo ]

2.9 Differentiability of solutions in parameter

Before we can state and prove the main result, let us prove a lemma from Analysis.

Definition. A set K C R” is called convex if for any two points z,y € K, also the full
interval [z,y] is contained in K, that is, the point (1 — X\)x + Ay belong to K for any
A€ 0,1].

Example. Let us show that any ball B (z,r) in R" with respect to any norm is convex.
Indeed, it suffices to treat z = 0. If z,y € B (0,r) that is, ||z|| and ||y| are smaller than
r then also
A =Nz+ Ayl < (T =A) [lafl+ Allyl] <7
so that (1 — X))z + Ay € B(0,r).
If f (z,u) is a function of z € R™ and some parameter u, and f takes values in R' then
denote by f, the Jacobian matrix of f with respect to x, that is, the [ x n matrix defined

by
P (%)
T (930 N 8x]~ ’

where k = 1,...,[ is the row index and 7 = 1,...,n is the column index. In particular, if
n =1 =1 then f, is just the partial derivative of f in .

Lemma 2.14 (The Hadamard lemma) Let f (t,z) be a continuous mapping from € to
R! where ) is an open subset of R™™! such that, for any t € R, the set

Q={zeR": (t,x) € Q}
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is convex (see the diagram below). Assume that f, (t,z) exists and is also continuous in
Q. Consider the domain

Q = {(t,z,y) eR™' LR, z,y € U}
= {(t,z,y) e R : (t,x) and (t,y) € Q}.

Then there exists a continuous mapping ¢ (t,z,y) : & — R>" such that the following
wdentity holds:

fty) = ftz) =@t zy)(y—z)
for all (t,z,y) € Q (here ¢ (t,z,y) (y — x) is the product of the | X n matriz and the

column-vector).
Furthermore, we have for all (t,z) € Q the identity

oz, z) = f. (t,x). (2.43)
R

Q Q

x < ()

)

®
v

Remark. The variable ¢ can be higher dimensional, and the proof goes through without

changes.
Since f (¢, x) is continuously differentiable at x, we have

fty) = fa) = fo(t,z)(y—z) +o(lly —zl) asy — =

The point of the above Lemma is that the term o(||x — y||) can be eliminated if one
replaces f, (t,z) by a continuous function ¢ (¢, z,y).

Example. Consider some simple examples of functions f (z) with n = = 1 and without
dependence on t. Say, if f (z) = 2* then we have

f—fx)=Ww+z)(y—1)
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so that ¢ (z,y) = y + «. In particular, ¢ (z,x) = 2z = f’ (x). Similar formula holds for
f (z) = 2* with any k € N:

fly)—f(z)= (mk_l + 22y 4+ L+ yk_l) (y—x).

For any continuously differentiable function f (z), one can define ¢ (z,y) as follows:

oy Ly
f/ (ili') ) y=x.
It is obviously continuous in (z,y) for  # y, and it is continuous at (x,x) because if
(g, yr) — (x,x) as k — oo then

Yo — Tk

where &, € (2, yx), which implies that {, — = and hence, f’ (§,) — f’ (), where we have
used the continuity of the derivative f’(x).

Clearly, this argument will not work in the higher dimensional case, so one needs a
different approach.

Proof of Lemma 2.14. It suffices to prove this lemma for each component f;
separately. Hence, we can assume that [ = 1 so that ¢ is a row (¢4, ..., ,). Hence, we
need to prove the existence of n real valued continuous functions ¢y, ..., ¢, of (¢,z,y) such
that the following identity holds:

fty)—f(t ) :Zsoi(t,w,y)(yi—xi)-

Fix a point (t,z,y) € ' and consider a function
FQA)=ftz+A(y—2)

on the interval A € [0,1]. Since z,y € §; and Q; is convex, the point x + A (y — z)
belongs to €. Therefore, (t,2 4+ A (y — z)) € © and the function F' ()) is indeed defined
for all A € [0,1]. Clearly, F'(0) = f(¢t,z), F (1) = f(t,y). By the chain rule, F'(}) is
continuously differentiable and

F) =3 o (b + Ay =) (4 — ).

By the fundamental theorem of calculus, we obtain
fty)—ftz) = F(1)—F(0)
1
_ / F (V) d\
0

D FAEESUEIESr

— Z%‘ (t, x,y) (yz - :C,)

where

et = [ Lot a-a)in (2.44)
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We are left to verify that ¢, is continuous. Observe first that the domain €’ of ¢, is an
open subset of R?"™1. Indeed, if (t,z,y) € ' then (t,z) and (¢,y) € Q which implies by
the openness of {2 that there is € > 0 such that the balls B ((¢,z),¢) and B ((t,y),¢) in
R™*! are contained in €. Assuming the norm in all spaces in question is the co-norm, we
obtain that B ((t,z,y),e) C €. The continuity of ¢, follows from the following general
statement.

Lemma 2.15 Let f (A u) be a continuous real-valued function on [a,b] x U where U is
an open subset of Rk, \ € [a, 3] and uw € U. Then the function

b
e = [ Fnu i
18 continuous in u € U.

The proof of Lemma 2.14 is then finished as follows. Consider f,, (t,z + A (y — x))
as a function of (A, ¢,z,y) € [0,1] x €. This function is continuous in (A, ¢, z,y), which
implies by Lemma 2.15 that also ; (¢, x,y) is continuous in (¢, z,y).

Finally, if z = y then f,, (t,x + A (y — x)) = f,, (¢, ) which implies by (2.44) that

Pi (t,l’,l‘) = fxz (tv l‘)

and, hence, ¢ (t,x) = f, (t,z), that is, (2.43). =

Proof of Lemma 2.15. (This was Exercise 62 from Analysis II). The fact that
f (A, u) is continuous in [a, b] x U implies that it is uniformly continuous on any compact
set in this domain, in particular, in any set of the form [a,b] x K where K is a compact
subset of U. In particular, if we have a convergent sequence in U

U, — uas k — oo

then all uj, with large enough k can be put in a compact set K (say, a closed ball), whence
it follows that the convergence

f\ug) — f(A\u) as k — o0

is uniform in A. Since one can exchange the operations of integration and uniform con-
vergence, we conclude that also
@ (ue) = ¢ (u),
which proves the continuity of . =
Consider again the initial value problem with parameter

{ v’ = f(t,x,s), (2.45)

Xz (to) = Zo,

where f : 0 — R" is a continuous function defined on an open set  C R**™*! and where
(t,x,8) = (t,x1,..., Tn, S1, -.-, Sm) - As above, denote by f, the Jacobian matrix of f with
respect to x, which is an n X n matrix. Similarly, denote by fs the Jacobian matrix of f
with respect to s, that is, f, is the n x m matrix

_of . (0fk
g (25
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where k is the row index and ¢ is the column index. If f, is continuous in 2 then by
Lemma 2.6 f is locally Lipschitz in = so that all the existence result apply. Let x (¢, s) be
the maximal solution to (2.45). Recall that, by Theorem 2.11, the domain U of z (¢, s) is
an open subset of R™*! and x : U — R" is continuous.

Theorem 2.16 Assume that function f(t,x,s) is continuous and f, and fs exist and
are also continuous in Q). Then x (t,s) is continuously differentiable in (t,s) € U and the
Jacobian matrix y = Osx solves the initial value problem

Yy =fotz(t,s),s)y+ fs(t,z(t,s),s),
{ i (2.46)

The linear ODE in (2.46) is called the variational equation for (2.45) along the solution
x (t,s) (or the equation in variations). Note that y (¢, s) is an n X m matrix and, hence,
can be considered also as a vector in R™. All terms in (2.46) are also n x m matrices.
For example, f,y is the product of n x n matrix f, by the n x m matrix y, which is hence
an n X m matrix.

Let for a fixed s the domain of z (¢,s) be an interval I,. Then the right hand side
in (2.46) is defined in I; x R™. Since this is a linear equation and its coefficients
fuz(t,x(t,s),s) and fs(t,z(t,s),s) are continuous in ¢ € I, we conclude by Theorem
2.13 that solution y (¢) exists in the full interval ;. Hence, Theorem 2.16 can also be
stated as follows: if x (¢, s) is the solution of (2.45) on I, and y (t) is the solution of (2.46)
on I, then the identity y (t) = Osx (t, s) takes place for all ¢ € I;.

Example. Consider the IVP with parameter

{Too

in the domain (0,+00) x R x R (that is, ¢ > 0 and z, s are arbitrary real). The task
is to find z and 9,z for s = 0. Obviously, the function f (¢,z,s) = x? 4+ 2s/t is contin-
uously differentiable in (x,s) whence it follows that the solution z (¢, s) is continuously
differentiable in (¢, s).
For s = 0 we have the IVP
T = 172
z(l)=-1

whence we obtain z (t,0) = —1. Setting y = 9,z (¢,0) and noticing that
fe =2z and f, =2/t

we obtain the variational equation for y:

2 2
y/ = (fm‘m:f%,s:0> Y + (fs‘m:f%,s:0> = _Ey + ;

This is the linear equation of the form y’ = a (¢) y + b (¢t) which is solved by the formula

y = eA® /e‘A(t)b(t) dt,
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where A (t) is a primitive of a (¢), for example A () = —2Int. Hence,
2
y(t) =t~ /t2;dt =t2(B+C0)=1+Ct2

The initial condition y (1) = 0 is satisfied for C = —1 so that y () =1 — ¢ 2.
Expanding z (¢, s) as a function of s by the Taylor formula of the order 1, we obtain

z(t,s) =x(t,0) 4+ 0sx (t,0) s +o(s) as s — 0,

whence

t

u<t):—%+<1—t12>s

can be considered as an approximation for x (¢, s) for small s. Later on, we’ll be able to
obtain more terms in the Taylor formula and, hence, to get a better approximation for
x(t,s).

Proof of Theorem 2.16. In the main part of the proof, we show that the partial
derivative O,z exists. Since this can be done separately for any component s;, in this
part we can and will assume that s is one-dimensional (that is, m = 1).

Fix some (t., s,) € U and prove that d,x exists at this point. Since the differentiability
is a local property, we can restrict the domain of the variables (t, s) as follows. Choose
[, 5] to be any interval in I, containing both ¢y and t.. Then choose €,6 > 0 so small
that the following conditions are satisfied (cf. the proof of Theorem 2.11):

1. The set

1 1
z(t,s) =——+ (1—t—2>8—|—0<8) as s — 0.

Hence, the function

K.={(t,z) eR" :a<t< B, |lz—z(ts)| <e}

is contained in 2;, and
K. X (84 —0,8.+06) C Q.

SA

5.+38,

K. x( s.-8, 8.+3)

v

‘C(Z s-)
x(2,5)
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2. The rectangle (a, 3) X (sx — 6, s« + 0) is contained in U and, for all s € (s, — 0, s« + ),

sSup ”I‘ (t7 S) -z (t> S*)H <g,
te(a,f)

that is, (¢,z (¢, s)) € K-..

SA

S48

v

In what follows, we restrict the domain of the variables (¢, z, s) to K. X (s, — 6,8, + 0).
Note that this domain is convex with respect to the variable (z, s), for any fixed ¢. Indeed,
for a fixed t, = varies in the ball B (x (¢, s.),€) and s varies in the interval (s, — 8, s, + 0),
which are both convex sets.

Applying the Hadamard lemma to the function f (¢, x, s) in this domain and using the
fact that f is continuously differentiable with respect to (z, s), we obtain the identity

f(tay7s)_f<t7$70-) :90(t7m70-7y75)(y_m)+¢(t7m707y75)(8_0-)7

where ¢ and 1 are continuous functions on the appropriate domains. In particular,
substituting o = s., © = z (t, s,) and y = z (¢, s), we obtain

ftx(t,s),s)— f(t,z(t,s:),8) = @t x(t,s:),8,x(t,s),s)(z(t,s) —x(t,s))
+ (8, x (t,84) 5 Se, 2 (£,8),8) (8 — S4)
= a(t,s)(z(t,s) —x(t,s:)) +b(t,s)(s—s.),

where the functions
a(t,s) =@tz (t,se),s2(t,s),s) and b(t,s) =1 (t,x(t,s4), 8, x(t,s),s) (2.47)

are continuous in (¢,s) € (o, ) X (s« — 9, s, +0) (the dependence on s, is suppressed
because s, is fixed).
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Set for any s € (s, — 6,5 +06) \ {5}

z (ta S) -z (t73*)
S — Sx

z(t,s) =

and observe that

;o 2t s)—a(t,s.)  f(tx(t,s),s)— f(t,x(t, s.),s.)
© 5 — Sy N 5 — S,

= a(t,s)z+b(t,s).

Note also that z(ty,s) = 0 because both z (t,s) and x (¢, s,) satisfy the same initial
condition. Hence, function z (¢, s) solves for any fixed s € (s, — 8, s, +06) \ {s«} the IVP

{Taampres 249

Since this ODE is linear and the functions a and b are continuous in ¢t € («, /3), we conclude
by Theorem 2.13 that the solution to this IVP exists for all s € (s, — 6,5, + ) and t €
(e, B) and, by Theorem 2.11, the solution is continuous in (¢, s) € (a, 3) X (s« — 8, 4 + 0).
Hence, we can define z (¢, s) also at s = s, as the solution of the IVP (2.48). In particular,
using the continuity of z (¢, s) in s, we obtain

lim z (¢, s) = 2z (¢, s.),

S—8x

that is,
t - t * .
asx(t,s*):limx<’s) x(’s):hmz(t,s):z(t,s*).

S—Sx S — Sy S—Sx

Hence, the derivative y (t) = 0sz (¢, s.) exists and is equal to z (¢, s.), that is, y (¢) satisfies

the IVP
v =al(t,s.)y+b(t,ss),
Note that by (2.47) and Lemma 2.14

a(t,s) =@ (t,x(t,84), ST (t,84),8) = fu(t,x(t,S4),S4)

and
b (t’ S*) = ¢ (t,l’ (t’ S*) y Sk T (t7 S*) 75*) = fs (t’ Z (t7 S*) 73*>

Hence, we obtain that y (¢) satisfies (2.46).

To finish the proof, we have to verify that x (¢, s) is continuously differentiable in (¢, s).
Here we come back to the general case s € R™. The derivative Osx = y satisfies the IVP
(2.46) and, hence, is continuous in (t,s) by Theorem 2.11. Finally, for the derivative 0;x
we have the identity

O = f (t,z(t,s),s), (2.49)

which implies that 9,z is also continuous in (¢, s). Hence, x is continuously differentiable
in (t,s). =
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Remark. It follows from (2.49) that 0,z is differentiable in s and, by the chain rule,
Os (Opx) = 0 [f (t,x (t,5),8)] = fu (t,x(t,8),5) 0s + fs (t,x(L,8),5). (2.50)
On the other hand, it follows from (2.46) that
0 (0sz) = 0wy = fou (t,x (t,5),s)0sx + fs (t,x (t,5),s), (2.51)

whence we conclude that

0,0, = 0,0,x.

Hence, the derivatives 0, and 0, commute® on z. If one knew this identity in advance
then the derivation of (2.46) would be easy. Indeed, by differentiating in s the equation
(2.49), we obtain (2.50). Interchanging then 0, and 0s, we obtain (2.46). Although this
argument is not a proof of (2.46), it allows one to memorize the equation in (2.46).

For the next statement, introduce the following terminology. Let f (u,v) be a function
of two (vector) variables u, v, defined in an open set 2. We write f € C* (u) if all the
partial derivatives of f up to the order k with respect to all components u; exist and are
continuous in 2. That is, each partial derivative

On f=0,102...f
exists and is continuous in (u,v) € Q provided |a| = a; + as + ... < k. Previously we
have used the notation f € C* to say that f has the partial derivatives up to the order k
with respect to all variables, in this case, u; and v;.

Theorem 2.17 Under the conditions of Theorem 2.16, assume that, for some k € N,
f(t,x,s) € C*(x,s). Then the mazimal solution x (t,s) belongs to C* (s). Moreover, for
any multiindex o« of the order || < k and of the dimension m (the same as that of s),
we have

0,0%z = 0°0,x. (2.52)

Proof. Induction in k. If k£ = 1 then the fact that z € C* (s) is the claim of Theorem
2.16, and the equation (2.52) with |a| = 1 was also proved above. Let us make inductive
step from k — 1 to k, for k > 2. Assume f € C*(z,s). Since also f € C*~!(z,s), by the
inductive hypothesis we have x € C*~! (s). Set y = d,x and recall that by Theorem 2.16

Y =fe (t:x73)y+fs (t,l‘,S),
s 253

where z = x (¢, s). Since f, and f, belong to C*~! (z,s) and z (t, s) € C*~1 (s), we obtain
that the composite functions f, (t,z (t,s),s) and f, (t,z (¢,s), s) are of the class C*~1 (s).
Hence, the right hand side in (2.53) is of the class C*~!(y,s) and, by the inductive
hypothesis, we conclude that y € C*71 (s). It follows that x € C* (s).

3The equality of the mixed derivatives can be concluded by a theorem from Analysis II if one knows
that both 0,0;x and 0,0,z are continuous. Their continuity follows from the identities (2.50) and (2.51),
which prove at the same time also their equality.
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To prove (2.52), choose some index i so that o; > 1. Set § = a — (0, ...1,..0) where
the only 1 is at the position i. Since by the first part of the proof f (¢, (t,s),s) € CF (s),
we obtain, using 9% = 829, the chain rule, and the equation (2.46) for the column y;,

asaatx = asaf (t,(E,S) = afasif(t7x78) - 8518 (fl‘z (t,I,S) aszx—’_fsz)
= asﬁ (fwz (taxwg) Yi + fsl) = 3;3@192

Since |B| = k — 1, we can apply the inductive hypothesis to the IVP (2.53) and conclude
that
afatyi = atasﬂyia

whence it follows that
050 = 8,585% = 0t(‘9§85ix = 0,05 x.

|
How can one find the higher derivatives of z (¢, s) in s? Let us show how to find the
ODE for the second derivative z = s, assuming for simplicity that n = m = 1, that is,
both = and s are one-dimensional. For the derivative y = 0,z we have the IVP (2.53),
which we write in the form
{ y/ =g (tvya S) (254)

y(to) =0
where
9(t,y,s)=fo(tx(t,s),s)y+ fs(t,z(t.s),s).
If f € C?*(z,s) then z (t,s) € C?(s) which implies that g € C'(y,s). Noticing that
z = Osy and applying the variational equation for the problem (2.54), we obtain the
equation for z

Z/:gy(t,y(t,S),S)Z+gs(t,y<t,8),8)

(alternatively, differentiating in s the equation ' = g (¢, y, s) and interchanging the deriva-
tives 0, and 0, we obtain the same equation). Since g, = f; (¢, z,s) and

9s (t,y,8) = fu (t,2,8) 2 + fou (t,2,5) (0s2) Y + fos (£, 2, 8) Yy + fou (t,2,8) Os + fss (£, 2, 8)
and d,x = y, we conclude that

2 = f;r: (t,flf,S) zZ+ fxx (t,l’, 3) y2 + 2fws (t,ZL‘,S) Y+ fss (taxys)
{ 2 () =0, (2.55)

Note that here z (¢, s) must be substituted for x and y (¢, s) — for y. The equation (2.55)
is called the variational equation of the second order, or the second variational equation.
Note that it is a linear equation and it has the same coefficient f, (¢, z (¢, s), s) in front of
the unknown function as the first variational equation. Similarly one finds the variational
equations of the higher orders.

Example. This is a continuation of the previous example of the IVP with parameter

S
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where we have computed that
1 1
z(t,0) = —7 and y(t) :=0sx (t,0) =1— o
Obviously, the function f (¢,z,s) = 2% + 2s/t belongs to C* (z, s) whence it follows by
Theorem 2.17 that x (¢,s) € C* (s). Let us compute z = Ogsx (t,0). Since

fzz = 27 fxs = 07 fss - 07

we obtain the second variational equation

2 2
7 = —zz + (.f:c:l?’q;:—%,s:()) y2 = _ZZ +2 (]' - t_2)2 :

Solving similarly to the first variational equation with the same a(t) = —2 and with
b(t) =2(1—t2)% we obtain
z(t) = e / e AOp (t) dt = t72 / 2% (1 — %) dt
2 2 2 2 4 C
=t P-4+ C )=t — = — -+ —.
(3 ;AT ) 3 TE TR
The initial condition z (1) = 0 yields C' = 4 whence
) 2t 2 4 N 16
2(t)=zt——=——+—.
3 3t 3t?
Expanding x (t,s) at s = 0 by the Taylor formula of the second order, we obtain as
s —0
1
x(t,s) = x(t)+y(t)s—|—§z(t)s2—|—o(52)
1 . 1. 2 8 1Y\, )
= —;—F(l—t ) s+ (gt—;—l—@—t—?))s +0(s?).

For comparison, the plots below show for s = 0.1 the solution z (¢, s) (yellow) found by nu-
merical methods (MAPLE), the first order approximation u (t) = —1 +(1 — ¢2) s (green)
and the second order approximation v (t) = —1+(1 — t72) s+ (3¢ — 2 + 5 — ) s° (red).

t
1 2 3 4 5 6
I I I I I

-0.05 T
0.1
-0.15 T
027
-025T
037
-035T
-047T
-045 7T
057
-0.55 7T
-0.6T
-0.65T
x 077
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Let us discuss an alternative method of obtaining the equations for the derivatives of
x(t,s) in s. As above, let z (t), y (t), z (t) be respectively x (¢,0), dsz (t,0) and Ogsx (t,0)
so that by the Taylor formula

v(ts) = (t) +y(t)s+ %z(t) 2 to(s?). (2.56)

Let us write a similar expansion for 2’ = 0;x. Since by Theorem 2.17 the derivatives 0;
and 0, commute on x, we have

0,x = 0,0,x =y

and in the same way 0,,2' = 2. Hence,

' (t,s) =2 (t)+ v (¢t) s+ %z’ (t)s* +o0(s?).

Substituting this into the equation
v = 2%+ 2s/t

we obtain

/ ! 1 ! 2 2 1 2 2 ?

' (t)+y (t)s+§z (t)s* +o(s*) = (x(t)+y(t)s+§z(t)s +o0(s )) +2s/t
whence

2 () 4y (t)s+ %z’ (1) = 2 (8) + 20 () y () s+ (y (O + 2 ()2 (1) > + 25/t + 0 ().

Equating the terms with the same powers of s (which can be done by the uniqueness of
the Taylor expansion), we obtain the equations

() = 22 (1)
y () = 2x(t)y(t)+2s/t
Z(t) = 2z(t)z(t) +20°(t).

From the initial condition z (1, s) = —1 we obtain

—1:x(1)+sy(1)+8—222(1)+0(52)7

whence z (t) = —1, y (1) = 2z (1) = 0. Solving successively the above equations with these
initial conditions, we obtain the same result as above.

2.10 Differentiability of solutions in the initial conditions

Theorems 2.16 and 2.17 can be applied to the case when the parameter enters the initial
condition, say, for the IVP
/

x (tog) = s,
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where x and s are n-dimensional. As we already know, the change = = x — s reduces this

problem to
T =f(tzT+s)
{ Z (tg) = 0.

Hence, if f € C*(x) then f(t,7+s) € C*¥(Z,s) and by Theorem 2.17 we obtain 7 &
C* (s) and, hence, = € C* (s). It follows from 2’ = f (¢,x) that also 2’ € C* (s).

To conclude this Chapter, let us emphasize that the main results are the existence,
uniqueness, continuity and differentiability in parameters for the systems of ODEs of the
first order. Recall that a higher order scalar ODE 2z = f (t,x,x’, ...,x("*l)) can be

reduced to a system of the first order. Hence, all the results for the systems can be
transferred to the higher order ODE.

3 Linear equations and systems
A linear (system of) ODE of the first order is a (vector) ODE of the form
¥ =A(t)z+ B(t)

where A (t) : [ — R™™ and B : I — R" and I being an open interval in R. If A (¢) and
B (t) are continuous in ¢ then by Theorem 2.13 the IVP

{ r=A({t)x+ B(t)

T () = (3.1)

has, for any ¢ty € I and v € R", a unique solution defined on the full interval I. In
the sequel, we always assume that A (t) and B (t) are continuous on I and consider only
solutions defined on the entire interval I. Denote by z (¢, v) the solution to the IVP (3.1),
where to will be considered as fixed, while v may vary. When v varies in R, x (¢,v) runs
over all solutions to the ODE 2’ = A (t) z + B (t) because any solution has some value at
to. Hence, x (t,v) with a parameter v is the general solution to the ODE.

The linear ODE is called homogeneous if B () = 0, and inhomogeneous otherwise.

3.1 Space of solutions of a linear system

Denote by A the set of all solutions of the ODE 2’ = A(t)z and by B - the set of all
solutions of the ODE 2’ = A(t)x + B (¢).

Theorem 3.1 (a) The set A is a linear space and B = A+ xq for any xo € B
(b) dim A = n. Consequently, if x1 (t), ..., z, (t) is a sequence of n linearly independent
solutions of ¥’ = Ax then the general solution of this equation is given by

z(t) = Cizq (1) + ... + Cpxy, (1) (3.2)

where C4, ..., C,, are arbitrary constants. Furthermore, the general solution to the equation
2’ = Ax + B is given by

z(t) =z (t) + Crzy () + ... + Crxy, (1) (3.3)

where xq (t) is one of the solutions of this equation.
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Proof of Theorem 3.1(a).  All R"valued functions on / form a linear space
with respect to operations addition and multiplication by constant. Zero element is the
function which is constant 0 on I. We need to prove that A is a linear subspace of the
space of all functions. It suffices to show that A is closed under operations of addition
and multiplication by constant.

If x and y € A then also z + y € A because

(x+y) =2"4+y =Av+Axr = A(z +y)

and similarly Ax € A for any A € R. Hence, A is a linear space.
Let x € A. Then

(zo+x) =Avg+ B+ Az =A(zo+2)+ B

so that o+ x € B. Conversely, any solution y € B can be represented in the from zy + x
where x € A. Indeed, just set x = y — xg and observe that = € A because

=y —xy=(Ay+ B) — (Azg+ B) = A (y — z9) = Az.

Hence, we have shown that B= A+ ;. &
For part (b), we need first a lemma.

Lemma 3.2 If x (t,v) solves in the interval I the IVP

{ = Az
x(tg) = v
then, for any t € I, the mapping v — x (t,v) is a linear isomorphism of R".
Proof. Fix t € I and show that = (¢,v) is a linear function of v. Indeed, the function
y(t) =z (t,u) + z (t,v)
is the solution as the sum of two solutions, and satisfies the initial condition
y (to) = x (to,u) + x (to,v) = u + v.

Hence, y (t) solves the same IVP as x (¢,u + v) and, hence, by the uniqueness, y () =
x (t,u+v), that is,
x(t,u)+z(t,v) =x(t,u+v).

In the same way,
x (t, ) = Xz (t,v).

Hence, the mapping v — z (¢,v) is a linear mapping from R" to R".
Let us show that the mapping v — x (¢,v) is injective, that is,

z(t,v) =0 = v=0.

Indeed, assume v # 0 but z (¢,v) = 0 for some ¢ € I. Then the solutions x = 0 and z (-, v)
have the same value 0 at time t. Therefore, they solve the same IVP with the initial
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condition at time ¢, which implies that they must be equal. In particular, this implies
v =z (to,v) = 0.

The mapping v — x (¢,v) is surjective by a general property of linear mappings from
R™ to R™ that the injectivity implies surjectivity. Another way to see it is as follows. For
any v € R”, we can find a solution that takes the value u at time ¢ and define v as the
value of this solution at ty. Then u = z (t,v).

Hence, the mapping v +— z (t,v) is a linear bijection of R™ onto R™, that is, an
isomorphism. m

Proof of Theorem 3.1(b). Consider the mapping ® : R® — A such that for any
v € R", ® (v) is the solution x (¢,v) (unlike the statement of Lemma 3.2, here we do not
fix t so that ® (v) is a function of ¢ rather than a vector in R™). It follows from Lemma
3.2 that ® is a linear mapping. Since any function from 4 has the form z (¢, v) for some
v, the mapping ® is surjective. Mapping & is injective because x (¢,v) = 0 implies v =
x (tg,v) = 0. Hence, ® is a linear isomorphism of R” and A, whence dim A = dim R™ = n.

Consequently, if z1, ..., x,, are linearly independent functions from A then they form a
basis in A because n = dim A. It follows that any element of A is a linear combination of
x1, ..., Ty, that is, any solution to 2’ = Ax has the form (3.2). The fact that any solution
to ' = Az + B has the form (3.3) follows from B= A+ z,. m

Theorem 3.1 suggests that in order to find a general solution of the system z’ = Ax,
it suffices to find n linearly independent solutions. There are various methods for that,
which will be discussed later in this Chapter. How to verify that the functions z, ..., z,
are linearly independent? Note that the zero of the linear space A is the function which
is identical zero on I. Therefore, functions x1, ..., x,, are linearly independent if

)\11’1 (t) + ... +/\nl’n (t) =0 = )\1 =..= )\n =0
where Ay, ..., \, are real coefficients. The next statement gives a convenient criterion for

linear independence.

Definition. Given a sequence of n vector functions xi,...,z, : I — R" define their
Wronskian W (t) as a real valued function on I by

W (t) = det (1 () | 22 (t) [-.] 2n (1)),

where the matrix on the right hand side is formed by the column-vectors x1, ..., z,,. Hence,
W (t) is the determinant of the n X n matrix.

Lemma 3.3 Let x4, ..., z, be the sequence of n solutions of ©' = Ax (that is, xz; € A for
alli=1,...,n). Then either W (t) =0 for allt € I and the functions 1, ..., x,, are linearly
dependent or W (t) # 0 for all t € I and the functions w1, ..., x, are linearly independent.

Proof. For any fixed t € I, the sequence ; (t), ..., z, (t) is a sequence of vectors from
R™. By Linear Algebra, this sequence is linearly dependent if and only if W (¢) = 0.
If W (t) = 0 for some t = to then sequence x; (ty), ..., T, (to) is linearly dependent so
that
Mz (to) + oo + Az (E0) =0

for some constants Ay, ..., A, that are not all equal to 0. Then the function

y(t) =Mz (t) + ... + Azn (1)
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solves the ODE ' = Ay and satisfies the condition y (tg) = 0. Hence, y(¢) = 0 for all
t € I, that is,
Ay (B) + ...+ Ay, (8) =0 for all ¢ € 1. (3.4)

Therefore, the sequence of functions i, ..., z, is linearly dependent. The identity (3.4)
obviously implies that W (¢) = 0 for all ¢.

Hence, we have proved that if W () = 0 for some ¢ then W (¢) = 0 for all ¢ and
the functions z, ..., z, are linearly dependent. Obviously, if W (¢) # 0 for all ¢ then the
functions 1, ..., z, are linearly independent. Hence, we see that only two alternatives
from the statement of Lemma 3.3 can occur. m

Example. Consider two vector functions

cost sint
t) = d t) = .
7 () (sint) and 2, (¢) (cos t)

The Wronskian of this sequence is

W(t) _ ( cost sint

) = cos?t — sin®t = cos 2t.
sint cost

Clearly, W (t) can vanish at some points (say at ¢ = 7/4) while W (¢) # 0 at other points.
This means that these two vector functions cannot be solutions of the same system of
ODEs.

For comparison, the functions

cost —sint
() = (sint) and (1) = < cost )

have the Wronskian W (t) = 1, and they both are solutions of the same system

, (0 —1
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3.2 Space of solutions of a linear ODE of the order n
Consider an ODE of the order n
™ = f (t,z, ...,:z:("’l)) : (3.5)

where z (t) is a real-valued function and f is a real valued function in an open subset
Q C R™". The initial conditions are

z (to) = vo, @' (to) =v1,..., ) (to) = Up—1 (3.6)

where (to.vo, ..., Un—1) € Q. Considering the vector function

X1 Q?](t)
o I B 37
Xy, (=1 (t)

rewrite the ODE (3.5) in the vector form
x' = F (t,x)

where
X2

F(t,x) = X3

ft,x1,...,%x,)
The initial condition becomes x (tg) = v = (vg,...,Un_1). The system x’ = F (t,x) is
called the normal system of the ODE (3.5).
Assuming that the function f (¢,x) is continuous and locally Lipschitz in x, we obtain
that the same is true for F' (¢,x) so that we obtain the existence and uniqueness for the

IVP
{ x' = F (t,x)
X (t()) = .

It follows that also the IVP (3.5)-(3.6) has a unique maximal solution z () = x; (t) for
any set of the initial conditions.
Consider now a higher order linear ODE

2™ fay () 2"V 4 a, () =b(t) (3.8)

where a; () and b (¢) are real-valued continuous functions on an interval I and z (t) is the
unknown real-valued function. Alongside (3.8), consider also the corresponding homoge-
neous ODE

2™ 4a; () ™Y+ da, () =0 (3.9)

In the both cases, the initial conditions are
xz (tO) = o, -T, (t[)) = V1, ...y .Clj(n_l) (tO) = VUp_1

where ¢ty € R and v = (v, ..., v,—1) € R™
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Theorem 3.4 (a) For any ty € I and v € R, the IVP for (3.8) has a unique solution
defined on 1.

(b) Let A be the set of all solutions to (3.9) and B be the set of all solutions to (3.8).
Then A is a linear space and B = A+ xy where xq is any solution to (3.8).

(¢) dim A = n. Consequently, if x1, ..., x, are n linearly independent solutions of (3.9)
then the general solution of (3.9) has the form

r=Cuxi+ ...+ Chxy,

where Cy,...,C,, are arbitrary real constants, and the general solution of (3.8) has the
form
r=x9+ Cix1+ ... + Cprxy,

where o s one of the solutions of (3.8).

Proof. (a) The linear equation (3.8) has the form ™ = f (¢,2/,...,2""V) with the
function

f(t, .. x("’l)) = —a;2™V — . —anz+D.
Hence, the function F'(¢,x) for the normal system is
X2
X3
F(t,x) = =Ax+ B
—ApX1 — ... — A1X, + b
where
0 1 0 0 0
0 0 1 0 0
A= and B =
0 0 0 1 b
—ap —Ap—1 —Ap—2 ... —a1

Hence, the initial value problem for the ODE (3.8) amounts to

x' = Ax+ B
X(t[)):’l)

which is linear. By Theorem 2.13, it has a unique solution defined on the entire interval
I. Therefore, the IVP for (3.8) has also a unique solution z (t) = x; (t) defined on I.

(b) The facts that A is a linear space and B = A + x, are trivial and proved in the
same way as Theorem 3.1.

(c) Let A be the space of all solutions to the normal system x’ = Ax where A is
as above. Then we have a bijection between A and A given by (3.7). Obviously, this
bijection is linear, which implies that A and A are isomorphic as linear spaces, whence
dmA=dmA=n. m

Let x4, ..., ¢, are n real-valued functions on an interval I of the class C"~!. Then their
Wronskian is defined by

T T Tn

X x e

W (t) = det ! 2 "
mYb—l) xén_l) O )
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Lemma 3.5 Let x4, ...,x, be n functions from A. Then either W (t) =0 for allt € I and
the functions x1, ..., z, are linearly dependent or W (t) # 0 for all t € I and the functions
x1, ..., Tn are linearly independent.

Proof. Define the vector function

Tk
T,
X —

x}(cnfl)

so that xq, ..., Xy is the sequence of vector functions that solve the vector ODE x’ = Ax.
The Wronskian of the sequence xy,...,x, is obviously the same as the Wronskian of
x1,..., Ty, and the sequence Xy, ..., X, is linearly independent if and only so is z1, ..., z,.
Hence, the rest follows from Lemma 3.3.

Example. Consider the ODE z” 4+ 2 = 0. Two obvious solutions are z; (t) = cost and
xo (t) = sint. Their Wronskian is

W(t):( cost sint ) _

—sint cost

Hence, we conclude that these solutions are linearly independent and, hence, the general
solution is z (t) = C; cost + Cysint. This can be used to solve the IVP

' +x=0
z (to) = vo, 2’ (to) = v1.

Indeed, the coefficients C'y and C5 can be determined from the initial conditions.

Of course, in order to use this method, one needs to find enough number of independent
solutions. This can be done for certain classes of linear ODEs, for example, for linear
ODEs with constant coefficients.

3.3 Linear homogeneous ODEs with constant coefficients

Consider the methods of finding n independent solutions to the ODE
2™ a2 4,z =0, (3.10)

where aq, ..., a,, are constants.

It will be convenient to obtain the complex valued general solution x (¢) and then to
extract the real valued general solution. The idea is very simple. Let us look for a solution
in the form z (t) = e* where \ is a complex number to be determined. Substituting this
function into (3.10) and noticing that ) = A\¥e* we obtain the equation for A (after
cancellation by e*):

N+ a N+ +a, =0

This equation is called the characteristic equation of (3.10) and the polynomial P (\) =
A"+ a A"+ ..+ a, is called the characteristic polynomial of (3.10). Hence, if A is the
root of the characteristic polynomial then e* solves (3.10). We try to obtain in this way
n independent solutions.
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Claim 1. If A\, ..., \, are distinct complex numbers then the functions e
linearly independent.

Proof. Let us prove this by induction in n. If n = 1 then the claim is trivial, just
because the exponential function is not identical zero. Inductive step from n — 1 to n.

Assume that for some complex constants C1, ..., C,, and all t € R,
CreMt 4+ . 4 CreMt =0 (3.11)

and prove that C; = ... = C,, = 0. Dividing (3.11) by e’ and setting p; = A\; — A\, we
obtain
Ciet + ...+ Cp_qetn1t + O, = 0.

Differentiating in ¢, we obtain
Crue"t + ..+ Cpqpu, et = 0.

By the inductive hypothesis, we conclude that C;u;, = 0 when by p, # 0 we conclude
C; =0, for all i =1,...,n — 1. Substituting into (3.11), we obtain also C;, = 0. =
Hence, we obtain the following result.

Theorem 3.6 If the characteristic polynomial P (\) of (3.10) has n distinct complex
T00ts A1, ..., A\ then the general complez solution to (3.10) is given by

z(t) = CreMt + ...+ CreMt
Proof. Indeed, each function e is a solution, the sequence {e’\it}?zl is linearly
independent by Claim 1, and by Theorem 3.4 the general solution is as claimed. =

Example. Consider the ODE
2" — 32 4+ 22 =0.

The characteristic polynomial is P (\) = A* — 3\ + 2, which has the roots \; = 2 and
Ao = 1. Hence, the linearly independent solutions are e?* and e?, and the general solution
is 0162t + Czet.

Consider now the ODE 2” + x = 0. The characteristic polynomial is P (\) = A\* + 1,
which has the complex roots A\; = ¢ and A\ = —i. Hence, we obtain the complex solutions
e and e~*. Out of them, we can get also real linearly independent solutions. Indeed,
just replace these two functions by their two linear combinations (which corresponds to
a change of the basis in the space of solutions)

it | it it _ it
% = cost and % = sint.
Hence, we conclude that cost and sint are linearly independent solutions and the general
solution is C cost + Cysint.

If {v} is a sequence of vectors in a linear space then by span {v;} we denote the set
of all linear combinations (with complex coefficients) of these vectors. Clearly, span {vy}
is a linear subspace. The argument in the above example can be stated as follows

span {e“, e’“} = span {cost,sint} .
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Claim 2. Let a polynomial P (A\) with real coefficients have a complex root A = o + if3,
where B # 0. Then also A = a — i3 is a root, and

span (e”, eXt> = span (eo‘t cos t, e* sin ﬁt) .

Proof. Since the complex conjugations commutes with addition and multiplication
of numbers, the identity P (A) = 0 implies P (X) = 0 (since ay, are real, we have @, = ay).
Next, we have

eM = e (cos ft +isinft) and eM = e (cos Bt — sin Bt)

so that e™ and e™ are linear combinations of e* cos 8t and e* sin ft. The converse is
true also, because

—_ 1 —
<e>‘t + e)‘t> and e*sinft = % (e)‘t — e)‘t> )

e cos At =
i

N —
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Using Theorem 3.6 and Claim 2, we can obtain a real basis in the space of solutions
provided the characteristic polynomial has n distinct complex roots. Indeed, it suffices
in the sequence eM?, ..., eM? to replace every couple e, eM by functions e® cos 3t and
e sin (3t.

Example. Consider an ODE z” — 2 = 0. The characteristic polynomial is P (\) =
N —1= (A—1) ()\2 + A+ 1) that has the roots \y =1 and Ay 3 = —% + z@ Hence, we
obtain the three linearly independent real solutions

, V3 V3

1 _1s .
e, e 2°cos—t, e 2" sin —t,

2

and the real general solution is

Cie' + e 3t (Cg CoS ?t + (38in ?t) .

What to do when P (\) has fewer than n distinct roots? Recall the fundamental the-
orem of algebra (which is normally proved in a course of Complex Analysis): any poly-
nomial P () of degree n with complex coefficients has exactly n complex roots counted
with multiplicity. What is it the multiplicity of a root? If Ay is a root of P (\) then its
multiplicity is the maximal natural number m such that P (\) is divisible by (A — \g)™,
that is, the following identity holds

PA)=(A=X2)"Q(0),

where @ ()) is another polynomial of X\. Note that P (\) is always divisible by A — g so
that m > 1. The fundamental theorem of algebra can be stated as follows: if Ay, ..., \g
are all distinct roots of P () and the multiplicity of \; is m; then my + ... +my = n and,
hence,

PO) == AD)™ e (=A™

In order to obtain n independent solutions to the ODE (3.10), each root A; should give
us m; independent solutions.

Theorem 3.7 Let Ay, ..., \x, be the distinct roots of the characteristic polynomial P ()
with the multiplicities my, ..., my. Then the following n functions are linearly independent
solutions of (3.10):

{7reM ) i=1,. 0k j=1,..,m.

Consequently, the general solution of (3.10) is

k. m;
p(t)=> 3 CytteM (3.12)

i=1 j=1

where C;; are arbitrary complex constants.
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Remark. Denoting

we obtain from (3.12)
z(t) = Z P (t) et (3.13)

Hence, any solution to (3.10) has the form (3.13) where P; is an arbitrary polynomial of
t of the degree at most m; — 1.

Example. Consider the ODE 2" — 22’ + 2 = 0 which has the characteristic polynomial
PN =M-2\+1=(1\-1)0>.

Obviously, A = 1 is the root of multiplicity 2. Hence, by Theorem 3.7, the functions e
and te! are linearly independent solutions, and the general solution is

T (t) = (Cl + Cgt) et.
Consider the ODE zV' + 2V — 22" — 22" + 2’ + x = 0. The characteristic polynomial
is
PO =X+ =203 -2 2 4t A +1=A-1)°(A+1)°.

Hence, the roots are Ay = 1 with m; = 2 and Ay = —1 with my = 3. We conclude that
the following 5 function are linearly independent solutions:

e, tel, e, te t?et.
The general solution is

z(t) = (Cy + Cat) et + (Cg + Cyt + C5t2) et

Proof of Theorem 3.7. We first verify that the function #~!e*! is indeed a
solution. Given a polynomial @ (A) = b\ + b X + ... + by with complex coefficients, we
can associate with it the differential operator

d d\' AN
o() = w(®) en(4) e
dl dl—l

= bO@—i_blm_’__’_b(b

where we use the convention that the “product” of differential operators is the composi-
tion. That is, the operator () (%) acts on a smooth enough function f (t) by the rule

Q <%) F=bofO +b Y 4 +bof

(here the constant term by is understood as a multiplication operator). It follows from
the definition that if @ (A\) and R (\) are two polynomials then

@ () =2 (@) (i)
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(because the product of two differential operators of the above kind is computed using
the same rules as for the product of the polynomials).
Since A; is a root of P (\) of multiplicity m;, we obtain for some polynomial @ ()

PO) = =)™ QM) = QM) (A =)™

(@)-e®) ()"

We would like to show that the function f (t) = t/e* is a solution for any j < m;, that

()0 -0

and for that it suffices to prove that

(£-2)" -0

To simplify notation, let us drop the index 7 and state this fact in a bit more general way:
Claim 3. For all A € C and j,m € N such that j < m,

d "o
(E—/\) (F-1eM) =0,

It suffices to prove this for m = j because for larger values of m this will follow trivially.
Hence, let us prove by induction in j that

d i
(E — )\) (tj leAt) = O

(Note that if A = 0 then this amounts to the trivial identity (%)j t=! = 0). Inductive
bases for j = 1 is verified as follows:

(% — )\) M= (e’\t)/ — XM =0.

The inductive step from j to j + 1. We have by the product rule

(o) e - (5 (G e

= (% - /\)] ((tfe”)’ - )\tje/\t)

d i ‘ ‘
= (E — /\) (N + MM — e

whence

= 4 i—/\ j(tj_le’\t) =0
dt ’
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where the last identity is true by the inductive hypothesis. This finishes the proof of
Claim 3.

We are left to show that the sequence of functions {tﬂ LeAi t} is linearly independent.
Assume from the contrary that they are linearly dependent, that is, some linear combina-
tion of them is identically equal to 0. Combining together the terms with the same \;, we
obtain that Zle P, (t) eM! = 0 where P, (t) are some polynomials of ¢ (that are obtained
by taking linear combinations of the terms #/~!). We would like to be able to conclude
that all polynomials P; (t) are identical 0, which will imply that all the coefficients of the
linear combination are zeros.

Claim 4. If A\, ..., \x are distinct complex numbers and if, for some polynomials P; (t),

k

Y Pi(t)eM =0 (3.14)

=1

then P, (t) =0 for all i.

For any non-zero polynomial P, define deg P as the maximal power of ¢ that enters
P with non-zero coefficient. If P (t) = 0 then set deg P = 0. We prove the claim by
induction in a parameter s assuming that

k
Z deg P; < s.
i=1

Inductive basis for s = 0. In this case, all deg P, must be zero, that is, each P; is just
a constant. Then the identity >, P,e*® = 0 implies P; = 0 because the functions e’ are
linearly independent by Claim 1.

Inductive step from s — 1 to s where s > 1. If all deg P, = 0 then we are again in
the case of the inductive basis. Assume that among P; there is a polynomial of a positive
degree, say deg P, > 0. Differentiating (3.14) in ¢ we obtain

k
> (Pl +N\P) et =0.
i=1

Subtracting (3.14) times ¢ where ¢ is a constant, we obtain

k
S Qi =0,
=1

where

Qi :R,+<)\Z—C)Pz
Note that always deg @Q); < deg P;. Choose now ¢ = A,. Then Q) = P whence

deg Qr = deg P, < deg P.

Hence, the sum of all the degrees of the polynomials @); is at most s — 1. By the inductive
hypothesis we conclude that Q; (t) = 0, that is, for any index i,

Pl—i‘()\Z—C)PZ:O
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Solving this ODE we obtain
Py (t) = Cexp (— (A — )1)..

If i < k then )\; # ¢, and the above identity of the polynomial and exponential functions
only possible if C' = 0 (indeed, the exponential function has all higher order derivatives
non-zero while a high enough derivative of a polynomial vanishes identically). Hence,
P; (t) = 0 for all i < k. Substituting into (3.14) we obtain that also Py (t) e*! = 0 whence

Finally, let us show how to extract the real general solution from the complex general
solution. The following lemma is a generalization of Claim 2.

Lemma 3.8 Let a polynomial P (\) with real coefficients have a complex root A = a+1if3
(where 3 # 0) of multiplicity m. Then also A = « — if3 is a root of multiplicity m and,
for any j < m,

span <tj_1e’\t, tj_leXt) = span (tj_le‘”t cos Bt, V" te sin ﬂt) . (3.15)

Hence, in the family of n independent solutions the sequence

e)\i) te}\t, e tm_le)\t7 e)\t, te}\t7 e tm—le)\t

can be replaced by
e cos Bt, te® cos fBt, ..., t™ e cos Bt, et sin Bt, te® sin fBt, ..., t™ e sin Gt
Proof. If )\ is a root of multiplicity m, then we have the identity
P(A)=(A=2)"Q(})

for some polynomial (). Applying the complex conjugation and using the fact that the
coefficients of P are real, we obtain

PO =(-%)"T0)

where @_is the polynomial whose coefficients are complex conjugate to those of ). Re-
placing A by A, we obtain o
P()) = ()\—)\0) Q).

Hence, ) is also a root of multiplicity m; > m. Applying the complex conjugation to Ag
we obtain as above that m > my, whence m = m;.

The identity (3.15) is an immediate consequence of Claim 2: for example, knowing
that e cos (3t is a linear combination of e’ and e, we conclude that #~'e®" cos 3t is the
linear combination of t#~1e and t#~le. m

5



30.05.2007 Prof. A. Grigorian, ODE, SS 2007
Example. Consider the ODE 2V + 22" + 2’ = 0. Its characteristic polynomial is
PO =N 4234 A=A+ 1) =AM +i)> (A —i)?,

and it has the roots \; = 0, Ao =i and A3 = —i, where Ay and A3 has multiplicity 2. The
general complex solution is then

Ci+ (Cy + Cst) e + (Cy + Cst) e ™,
and the general real solution is

Cy + (Cy + Cst) cost + (Cy + Cst) sint.

3.4 Linear inhomogeneous ODEs with constant coefficients

Here we consider the equation
2™+ a ™Y 4 fanz = f (1) (3.16)

where the function f () is a quasi-polynomial, that is, f has the form
F(8) = Ri(t)er

where R; (t) are polynomials, i, are complex numbers and the sum is finite. It is obvious
that the sum and the product of two quasi-polynomials is again a quasi-polynomial.
In particular, the following functions are quasi-polynomials

the® cos ft  and  t*e® sin Gt
(where k is a non-negative integer and «, 5 € R) because

iBt | ,—ift iBt _ ,—ift
cos Bt = Hte and sin gt = M
2 21
As we know, the general solution of the inhomogeneous equation (3.16) is obtained as
a sum of the general solution of the homogeneous equation and a particular solution of
(3.16). Hence, we focus on finding a particular solution of (3.16).
As before, denote by P ()) the characteristic polynomial of (3.16), that is

PA)=X"+a X"+ .. +a,.

Then the equation (3.16) can be written in the short form P (
used below.

Claim 1. If f = afi + ... + cfe and z1(t),...,zx (t) are solutions to the equation
P (%) x; = fi, then x = c1x1 + ... + cpxy solves the equation P (%) x=f.

)x = f, which will be

4
dt
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Proof. This is trivial because

d d d

n

Hence, we can assume that the function f in (3.16) is of the form f(t) = R (t)e*
where R (t) is a polynomial.

To illustrate the method, which will be used in this Section, consider first a particular
case.

Claim 2. If u is not a root of the polynomial P then the equation

d
P = et
()=

has a solution x (t) = ae’ where a is a complex constant to be chosen.
Proof. Indeed, we have

P(5) )= L ons (@) = Yot = PGy

=0

1

By We obtain

p (%) (aet) = e

that is, z (t) = ae* is a solution. ®
Note that in this argument it is important that P (u) # 0.

Therefore, setting a =

Example. Find a particular solution to the equation:
2" + 22"+ =€

Note that P (\) = A +2X+1 and p = 1 is not a root of P. Look for solution in the form
z (t) = ae'. Substituting into the equation, we obtain

ae' + 2ae’ + ae’ = €

whence we obtain the equation for a:

1
da=1,a= T
Alternatively, we can obtain a from
1 1 1
P(p) 142+1 4
Hence, the answer is z (t) = 3e’.

Consider another equation:

2"+ 22"+ =sint (3.17)
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Note that sint is the imaginary part of €. So, we first solve
" 422 4+ = et

and then take the imaginary part of the solution. Looking for solution in the form
z (t) = ae®, we obtain

1 1 1 l
a= = ===—C
Pp) #?+2i+1 20 2
Hence, the solution is
xr = —ieit _ L (cost +isint) = lsimt - icost
2 2 2 2 '
Therefore, its imaginary part « (t) = —3 cost solves the equation (3.17).

Consider yet another right hand side
1" + 22 +x = e " cost. (3.18)
Here e~ cost is a real part of e#! where y = —1 + 1. Hence, first solve
"+ 22 +x = e
Setting x (t) = aet*, we obtain

1 1

a= = = —1.
P(p) (=14 +2(=1+4)+1
Hence, the complex solution is z (t) = —e("'")* = —e¢~tcost — ie~*sint, and the solution
to (3.18) is x (t) = —e ' cost.
Finally, let us combine the above examples into one:
2" + 22" + 1 = 2¢" —sint + e ' cost. (3.19)

A particular solution is obtained by combining the above particular solutions:

z(t) = 2 Get> — (—%cost) + (—e " cost)

1 t+1 b ot cost
= —e + -cost—e " cost.
2 2

Since the general solution to z” 4+ 22’ +x = 0 is
z(t) = (Cy + Cyt) e,
we obtain the general solution to (3.19)
z(t) = (C,+Cot)e " + %et + %cost — e 'cost.
Consider one more equation
o+ 22 +x=e".
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This time p = —1 is a root of P (\) = A\* 42X + 1 and the above method does not work.
Indeed, if we look for a solution in the form x = ae™* then after substitution we get 0 in
the left hand side because e™* solves the homogeneous equation.

The case when p is a root of P () is referred to as a resonance. This case as well as
the case of the general quasi-polynomial in the right hand side is treated in the following
theorem.

Theorem 3.9 Let R (t) be a non-zero polynomial of degree k > 0 and p be a complex
number. Let m be the multiplicity of i if pu is a root of P and m = 0 if p is not a root of

P. Then the equation
d
P (_dt> r=R(t)e"

z(t) =t"Q(t) e,
where @Q (t) is a polynomial of degree k (which is to be found).

has a solution of the form

Example. Come back to the equation
2 420 =€t

Here y = —1 is a root of multiplicity m = 2 and R (t) = 1 is a polynomial of degree 0.
Hence, the solution should be sought in the form

z(t) = at’e”’

where a is a constant that replaces @ (indeed, @ must have degree 0 and, hence, is a
constant). Substituting this into the equation, we obtain

a ((t2e_t)” +2 (t2e_t), + th_t) =e!
After expansion, we obtain
(t2e_t)” +2 (tge_t), + t?e7t = 2¢7t
so that the equation becomes 2a = 1 and a = % Hence, a particular solution is

1
z(t) = §t26_t.

Consider one more example.

2"+ 22+ =te!
with the same 1 = —1 and R (t) = t. Since deg R = 1, the polynomial () must have
degree 1, that is, @ (t) = at + b. The coefficients a and b can be determined as follows.
Substituting

z (t) = (at + b) e = (at® + bt*) e
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into the equation, we obtain

2 +20 +x = ((at3 + bt2) e*t)” + 2 ((at3 + bt2) e*t), + (at3 + bt2) et
= (2b+6at)e "

Hence, comparing with the equation, we obtain
20+ 6at =t
whence b = 0 and a = %. Hence, the answer is

t3
z(t) = ge_t.

Proof of Theorem 3.9. Consider first the case m = 0, when P (u) # 0 (non-
resonant case). Then we prove the claim by induction in k = deg R. If k = 0 then this
was shown above. Let us prove the inductive step from k — 1 to k. It suffices to consider
the case R (t) = t*, that is, the equation

P (%) x = thett, (3.20)

because lower order terms are covered by the inductive hypothesis. We need to find a
solution z (¢) of the form @ (¢) e** where deg@ = k. Let us first check the function t*e#t
as a candidate for the solution.

Claim 3. For an arbitrary polynomial P ()\) and all p € C and non-negative integer k,
we have

P (%) (the") =t" P () e + R(t) e, (3.21)

where R is a polynomial of degree < k if k >0, and R=0 if k=0.
We will use the Leibniz product formula

n

n n 1) (n—1 n !’ (n— n
(fo)™ =3 <¢)f( g = g +nflg" 4+ f g, (3:22)

=0

where f (t) and g (t) are smooth enough functions of ¢. For example, if n = 1 then we
have the product rule

(f9)' = f'g+ fg
if n = 2 then
(f9)" =f"g+2f'd + fg",
etc. The proof of (3.22) goes by induction in n (see Exercises).

It suffices to prove (3.21) for P () = M since for an arbitrary polynomial P ()) identity
(3.21) follows by combining the identities for P (\) = ). Using (3.22), we obtain

(tke“t)(j) = ¢* (e“t)(j) + terms with smaller power of ¢ times e/
— thdert 4 R(t) e
= P (u) e+ B e
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which proves (3.21).
Let us make change of unknown function as follows:

y =z — atFet
where a = ﬁ. Then y satisfies the equation

d

P (%) y=P ((jt) x —aP ((i) (tke“t) — phout _ gkout _ o (t) et = —aR (t) e,

Since degR < k, by the inductive hypothesis this equation has a solution of the form
y = Q (t) e where deg Q = deg R < k. Therefore, we obtain a solution z (t) of (3.20)

x = atfet + 4 = (atk + @) e’ = Q (t) et

where deg ) = k.

Consider now the resonant case m > 0. Again we can assume that R(t) = t* and
argue by induction in k. Note that, for some polynomial P (\), we have the identity

PQA)=A=p)" PN,

and P (1) # 0.
Claim 4. For all p € C, m € N and any function f (t) € C™, we have

d " "
<E — ) (feﬂt) = fmlent,
It suffices to prove (3.24) for m = 1 and then apply induction in m. Indeed,

d
(_dt — u) (fe“t) = (fe“t)/ — pfett = flett + fuett — pfert = flett.
Claim 5. We have

P ((i) (tFrmert) = t* P (1) e + R (t) e,

(3.23)

(3.24)

(3.25)

where ¢ = ¢ (k,m) > 0 and Risa polynomial of degree < k if k > 0 and R=0 if k=0.
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Indeed, we have by (3.21)

~/d - e
P (%) ( kt eMt) = P () et + S (t) e

where deg S < k + m. Applying (3.24), we obtain

d k+m uty __ d " k+m D ut ut
P(dt) (tHmert) = 7 (t P(p)et +S(t)e )
_ ﬁ (H) (tk+m)(m) et 4 g(m) (t) et
= P (p)thert + Sment
where ¢ = (k+m) (k+m —1)...(k+1) > 0. Note also that if £ > 0 then
deg S™ = max(deg S — m,0) < k.

In the case k = 0 we have deg S < m whence S(™ = 0. Setting R= S(m) we finish the
proof of Claim 5.
If £ =0 then Claim 5 implies that

P (%) (tmem) = P () e

- -1
whence z (t) = at™e™ solves the equation P (4£)z = e where a = (cP (,u)) . This

proves the inductive basis for £ = 0.
For the inductive step from k — 1 to k, consider a new unknown function

y(t) =z (t) — at™ e

so that
P 4 y=P 4 z — act®P (u) e — aR (t) e
dt dt '

Choosing a = (cﬁ (u)) and using the equation P (%) z = tFeM, we obtain that the
two terms on the right hand side cancel out and we obtain the following equation for y:

P (%) y=—aR(t)e".

Since deg R< k, by the inductive hypothesis this equation has a solution of the form
y (1) =tQ () e,
where deg@ = deg R< k. Hence, we obtain a solution = of the form
z (t) = atttmert 4 1mQ (1) et = ™ (atk +Q (t)) et =1"Q (t) e,
where deg@Q = k. =
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Second proof of Theorem 3.9. This proof is based on the following two facts
which we take without proof (see Exercise 43).

Claim 6. If a complex number 1 is a oot of a polynomial P (\) of multiplicity m if and
only if A
PO () =0 for alli=0,...,m—1 and P™ () # 0.

For example, p is a simple root if P(u) = 0 but P’ (u) # 0, and u is a root of
multiplicity 2 if P (u) = P’ (u) = 0 while P” (u) # 0.

Claim 7. For any polynomial P (\) any any two smooth enough functions f (t), g (t),

4 S Lwopo (2
P(dt) (fg)—;i!f P (dt)g (3.26)

where the summation is taken over all non-negative integers 1.
In fact, the sum is finite because P = 0 for large enough i.
For example, if P (\) = A" then this becomes the Leibniz formula. Indeed, we have

PPN =n(n—1)..(n—i+1)\""

and p
pP® <£) g=nn-1)..(n—i+1)g"?

and the formula (3.26) becomes
(n) _ — (n () (n—3)
(f9) ;_0 (Z)f g

that is, the Leibniz formula.
Now let us prove that the equation

P (%) r=R(t)e"

z(t) =t"Q (t) e

where m is the multiplicity of x4 and deg @ = k = deg R. Using (3.26), we have for this
function

has a solution in the form

p (%) = P (%) Q@) =3 2—1, (0 (1)@ PO (%) bt

i>0

= QM) PO e

>0

Since P% (1) = 0 for all i < m — 1, we can restrict the summation to i > m. Since
(tmQ (1)) = 0 for i > m + k, we can assume i < m + k. Denoting

y (1) = ("Q ()™ (3.27)
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we obtain the ODE for y:

P () P () (k) (1)
o+ ———yB) — Rt
TR e TR Py S TR ®):
which we rewrite in the form
boy + buy + ... + by™® = R(2) (3.28)
p(m+3)
where b; = (WTJ)(;LL) Note that
p(m)
b= L) g
m)!

Function y is sought as a polynomial of degree k. Indeed, if @ is a polynomial of degree k

then it follows from (3.27) that so is y. Conversely, if y is a polynomial (3.29) of degree k

then integrating (3.29) m times without adding constants, we obtain the same for @ (¢).
Hence, the problem amounts to the following: given a polynomial

R(t) = rot" +rit" 4.+ 1y

of degree k, prove that there exists a polynomial y (¢) of degree k that satisfies (3.28).
Let us prove the existence of y by induction in k. The inductive basis for £ = 0. Then
R(t) = ro, and y (t) = a, so that (3.28) becomes aby = 1y whence a = ry/by (where we
use that by # 0).

The inductive step from k — 1 to k. Represent y in the from

y=at® + 2 (), (3.29)

where z is a polynomial of degree < k. Substituting (3.29) into (3.28), we obtain the
equation for z

boz +b12 + ...+ bpz® =R (t) — (abotk + ab; (tk)/ + ... + aby (tk)(k)) = R(t).

Choosing a from the equation aby = ry we obtain that the term t* in the right hand side
of (3.29) cancels out, whence it follows that R (t) is a polynomial of degree < k. By the
inductive hypothesis, the equation

boZ + blz' + ...+ bk_lz(k_l) = }Aé (t)

has a solution z (¢) which is a polynomial of degree < k — 1. Then z*) = 0 so that we can
add to this equation the term b,2*) without violating the equation. Hence, the function
y = at* + z solves (3.28) and is a polynomial of degree k. m

3.5 Some physical examples

Consider a second order ODE
"+ px’ +qr = f(t). (3.30)

It describes various physical phenomena as follows.
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3.5.1 Elastic force

Let a point body of mass m moves along axis x under the elastic force whose value is
governed by Hooke’s law:
F,=—ax

where a is a positive constant and = z (t) is the position of the body at time ¢. The
friction force is always given by
F fr = —bil?/.

Finally, assume that there is one more external force F., = F (t) depending only on ¢ (for
example, this may be an electromagnetic force assuming that the body is charged). Then
the second Newton’s law yields the equation

ma" = Fy + Fp + Fop = —ax — b2’ + F (t),

that is , Pt
2+ —a + g = L
m m m

Clearly, this is an equation of the form (3.30).

3.5.2 Pendulum

A simple gravity pendulum is a small body on the end of a massless string, whose other
end is fixed (say, at a point O). When given an initial push, the pendulum swings back and
forth under the influence of gravity. Let x (t) be the angular displacement of the pendulum
from a downwards vertical axis. Assuming that the length of the string is [ and the mass
of the body is m, we obtain that the moment of the gravity with respect to the point O
is —mglsinxz. The moment of inertia with respect to O is mi?. Assuming the presence
of some additional moment M () (for example, periodic pushes to the pendulum), we
obtain from the Newton’s second law for angular movement

ml*z” = —mglsinz + M ()

whence Mt
x + % sinz = m§2)'
This is the equation of oscillations of the pendulum. If the values of x are small enough

then we can replace sinx by x so that we get the equation of small oscillations

g _M(@®)
x"—k?x: TR

Obviously, it matches (3.30). In the presence of friction it may contains also the term z’.

3.5.3 Electrical circuit

We have considered already an RLC-circuit
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e - EL

a

As before, let R the resistance, L be the inductance, and C be the capacitance of the
circuit. Let V' (¢) be the voltage of the power source in the circuit and z (t) be the current
in the circuit at time ¢. Then we have see that the equation for z (t) is

L’ + R + = = V',

C
If L > 0 then we can write it in the form
:U” + Em, + i — Kl
L LC L’

which matches (3.30).

3.5.4 A periodic right hand side
Come back to the equation (3.30) and set f (t) = Asinwt, that is, consider the ODE

2" + px’ + gx = Asinwt, (3.31)

where A, w are given positive reals. The function Asinwt is a model for a more general
periodic force, which makes good physical sense in all the above examples. For example,
in the case of electrical circuit the external force has the form Asinwt if the circuit is
connected to an electrical socket with the alternating current (AC). In the case of elastic
force or a pendulum, a periodic external force occurs, for example, when someone gives
periodic pushes to the oscillating body. The number w is called the frequency of the
external force (the period = 27”) or the external frequency, and the number A is called
the amplitude (the maximum value) of the external force.

Note that in all three examples the coefficients p, ¢ are non-negative, so this will be
assumed in the sequel. Moreover, assume in addition that ¢ > 0, which is physically most
interesting case. To find a particular solution of (3.31), let us consider the ODE with
complex right hand side:

2" + pr' + qr = Ae™". (3.32)

Consider first the non-resonant case when 7w is not a root of the characteristic polynomial
P ()\) = A? + pA + ¢. Searching the solution in the from ce™* | we obtain
A A

= = :: 'b
¢ P(iw) —w?+piw+q ot
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and the particular solution of (3.32) is
(a +ib) €' = (acoswt — bsinwt) + i (asinwt + bcoswt) .
Taking its imaginary part, we obtain a particular solution to (3.31)
z (t) = asinwt + bcoswt = Bsin (wt + @) (3.33)

where

A
Vg —w2)? +wp?

and ¢ € [0,2m) is determined from the identities

B=vVa?+b =|c|=

cos p = a sinp = b
=g =g

The number B is the amplitude of the solution and ¢ is the phase.
To obtain the general solution to (3.31), we need to add to (3.33) the general solution
to the homogeneous equation
2’ +px’ +qxr =0.

Let A; and )\ are the roots of P ()), that is,

p /p2
A = —=— 4+ — —q.
12 2 4:

Consider first the case when A\; and Ay are real. Since p > 0 and ¢ > 0, we see that both
A1 and Ag are strictly negative. The general solution of the homogeneous equation has
the from

C’leht + Cg@Azt if )\1 7é )\2,
(Cl + Cgt) e)qt if )\1 = )\2.

In the both cases, it decays exponentially in ¢ as ¢t — +o00. Hence, the general solution of
(3.31) has the form

x (t) = Bsin (wt + ¢) + exponentially decaying terms.

As we see, when t — oo the leading term of x(t) is the above particular solution
Bsin (wt + ¢).
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Assume now that A\; and Ay are complex, say A\ 2 = o =43 where

2
a=-p/2<0 and B:\/q—pz>0

The general solution to the homogeneous equation is
e™ (Cy cos Bt + Cysin Bt) = Ce® sin (Bt + ).

The number (3 is called the natural frequency of the physical system in question (pendu-
lum, electrical circuit, spring) for the obvious reason - in absence of the external force,
the system oscillate with the natural frequency f.

Hence, the general solution to (3.31) is

z (t) = Bsin (wt + ¢) + Ce* sin (Bt + 1) .

If & < 0 then the leading term is again Bsin (wt + ¢). Here is a particular example of
such a function: sint 4 2e~*sin 7t

E

AW
AR

If & = 0 that is, the equation has the form

" + 32z = Asinwt.
The assumption that iw is not a root implies w # . The general solution is
z (t) = Bsin (wt + ¢) 4+ C'sin (5t + ) ,

which is the sum of two sin waves with different frequencies - the natural frequency and
the external frequency. Here is a particular example of such a function: sint + 2sin 7t
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Consider the following question: what should be the external frequency w to maximize
the amplitude B? Assuming that A does not depend on w and using the identity

B? = A
Wt (P - 20) W+ ¢

we see that the maximum B occurs when the denominators takes the minimum value. If
p? > 2¢ then the minimum value occurs at w = 0, which is not very interesting physically.
Assume that p? < 2q (in particular, this implies that p* < 4¢, and, hence, A\; and )\, are
complex). Then the maximum of B occurs when

2

I N i
=5 -2) =q-5

The value
wo :=1q—1p*/2

is called the resonant frequency of the physical system in question. If the external force
has this frequency then the system exhibits the highest response to this force. This
phenomenon is called a resonance.

Note for comparison that the natural frequency is equal to 3 = /q — p?/4, which is
in general different from wy. In terms of wy and (3, we can write

52— A2 B A?
W 202w g2 (2 — ,2)? 2 _ 4
w wow* +¢q (W2 —wd)™ + ¢% — wp
A2

(w2 — wp) +p268%
where we have used that

2 4 2 P2 ? 2 p4 2 92
q—wozq—(q—g) =qp" ——=p 5.

A

In particular, the maximum amplitude that occurs when w = wq is Bpax = o5

In conclusion, consider the case, when iw is a root of P ()), that is
(iw)? + piw + q = 0,
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which implies p = 0 and ¢ = w?. In this case « = 0 and w = wy = B = /4, and the
equation has the form
" + w?zx = Asinwt.

Considering the ODE
ZE” + WQZE — Aeiwt

and searching a particular solution in the form z (t) = cte™!, we obtain

. ” . .
(Cteuut) + WQCtezwt — Aezwt

iwce™ = Ae™!
whence ¢ = ﬁ. Alternatively, ¢ can be found directly by

A A

T Pliw) 2w
(see Exercise 44). Hence, the complex particular solution is

At At A
— = —3— coswt + — sin wt
2w 2w 2w

T (t) — iwt
and its imaginary part is

t
x(t) = % cos wt.
w

Hence, the general solution is

x(t) = —;% coswt 4+ C'sin (wt + 1) .

Here is an example of such a function: —tcost + 2sint

y
20T

NTAA /\
VA v

20T

S

Hence, we have a complete resonance: the external frequency w is simultaneously equal
to the natural frequency and the resonant frequency. In the case of a complete resonance,
the amplitude increases in time unbounded. Since unbounded oscillations are physically
impossible, either the system breaks down over time or the mathematical model becomes
unsuitable for describing the physical system.
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3.6 The method of variation of parameters

We present here this method in a general context of a system. Consider a system z’ =
A (t) x where x (t) is a function with values in R™ and A (¢) is an n X n matrix continuously
depending on t € I. Let x4 (t),...,x, (t) be n independent solutions. Consider now the
system
' =A(t)z+ B(t) (3.34)
where B (t) is a vector in R™ continuously depending on ¢. Let us look for a solution to
(3.34) in the form
z(t)=Cy(t)z1 (t) + ... + Cn (t) zp, (1) (3.35)
where C4, (s, .., C,, are now unknown real-valued functions to be determined. Originally
the representation (3.35) was motivated by the formula = = Cyz; + ... + Cx,, for the
general solution to the homogeneous equation ' = Ax and, hence, the method in question
is called the method of variation of parameters. However, another point of view on (3.35)
is as follows. Since the functions 1, ..., x, are linearly independent, by Lemma 3.3 the
vectors z (t) , ...,y (t) are linearly independent in R™ for any ¢ € I. Hence, these vectors
form a basis in R™ for any ¢, which implies that any function x (¢) can be represented in
the form (3.35).
How to determine the coefficients C (t) , ..., Cy, (¢)7 It follows from (3.35) and = = Aux;,
that

¢ = Ciz) + Coxy + ...+ Chxl,
+Clx1 + Coxa + ... + Ch
= 1Az + CyAxy + ... + C, Ax,y,
+Cixy + Coza + ... + Crxpy
= Az+Clz; + Cora+ ... + C) .

Hence, the equation 2’ = Ax + B becomes
Ciz1 + Cixo + ...+ Cl .z, = B. (3.36)

Let us rewrite this equation in the matrix form. For that, consider the column-vector

Ch (t)
C(t) =
Cn (1)
and the n x n matrix
X =(z1 | z2|...] zn)

where each z; is the column vector. The matrix X is called a fundamental matriz of
the system ' = Azx. It follows from the matrix multiplication rule that, for any column
0
vector V =1 ... |,
Un

U1
XV =(z1|x2 || @) | . | =121 4+ ... + v
Un
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Alternatively, one can verify this identity first for the case when V' is one of the vectors
é1, ..., e, from the canonical basis in R (for example, for V' = e; we trivially get Xe; = x;)
and then conclude by the linearity that this identity is true for all V.

In particular, we have

Ciz1 + Chxg + ... + Clx,, = XC'

and the equation (3.36) becomes
XC'=B.

Note that the matrix X is invertible because det X is the Wronskian, which is non-zero
for all ¢ by Lemma 3.3. Therefore, we obtain.

C'=X"'B.

Integrating in ¢, we find
C@z/X*@B@ﬁ

and

x@:XC:X@/Xle@ﬁ.
Hence, we have proved the following theorem.

Theorem 3.10 The general solution to the system x' = A (t) x + B (t) is given by

aﬂﬂ:aX@%/X'%@ENﬂdt (3.37)
where X = (z1 | 22 |...| ) is a fundamental matriz of the system.

Example. Consider the system
or, in the vector form,

As we have seen before, this system has 2 independent solutions

cost sint
nlt) = (sint) and 2 () = (— cos t)'

Hence, the corresponding fundamental matrix is
X — cgst sint
sint —cost

-l cost sint
~ \ sint —cost /)’
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Consider now the ODE
¥ =A(t)z+ B(t)

where B (t) = ( Zl 8 ) By (3.37), we obtain the general solution
2

B cost sint cost sint by (t) dt
S sint —cost sint —cost b (t)

B cost sint by (t) cost + by (t)sint dt

N sint —cost by (t)sint — by (t) cost '

Consider a particular example of function B (t), say, B (t) = < 1 ) . Then the integral is

cost + tsint g — 2sint — tcost + (4
sint — tcost ~\ —2cost —tsint + Cs
whence
A cost sint 2sint —tcost + (4
N sint —cost —2cost —tsint + Cy
B Cicost+ Cysint —t
N C;sint — Cycost + 2

—t cost sint
o (2)+Cl(sint)+c2(—cost)'
Consider now a scalar ODE of order n

2™ +ay ()Y + L 4a, )z =b(t)

where ag, (t) and b (t) are continuous functions on some interval I. Recall that it can be
reduced to the vector ODE
x' =A(t)x+ B(t)

where
x (t)
!
x (t) = ()
(=1 (1)
and
0 1 0 ... 0 0
0 0 1 .. 0 0
A= and B =
0 0 0 o1 b
—ap —Ap—1 —Ap—2 ... —0a1

If 24, ..., x, are n linearly independent solutions to the homogeneous ODE

2™ a2V 4+ ta, )z =0
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then denoting by x1, ..., x, the corresponding vector solution, we obtain the fundamental
matrix

I ) Ty
x’ :E/ l'/
X=(alxl| )= "7 > 7 7
xYH) :cé"fl) R e
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We need to multiply X! by B. Since B has the only non-zero term at the position
n, the product X !B will be equal to b times the n-th column of X 1.
Denote by v;x the element of X! at position 7, k where 7 is the row index and & is the

Yik
column index. Denote also by v, the k-th column of X !, that is, y, = ... |. Then

Ynk
X'B = by,

and the general vector solution is

x = X (1) /b(t) o (8) dt.

We need the function x (¢) which is the first component of x. Therefore, we need only to
take the first row of X to multiply by the column vector [ b(t)y, (t)dt. Hence,

o)=Y w0 / b(£) yin (¢) dt.

Theorem 3.11 Let x4, ...,x, be n linearly independent solution to
2™ +ay () 2"V + L 4a,(t)z=0

and X be the corresponding fundamental matriz. Then, for any continuous function b(t),
the general solution to

2™ fay () 2"V 4 a, (t)x=b(t)
s given by

r(t)= 3w ) / b (t) yin (1) dt (3.38)

where y;;, are the entries of the matriz X 1.

Example. Consider the ODE
2’ +x =sint

The independent solutions are z (t) = cost and x5 (t) = sint, so that
¥ cos t sint
—sint cost

ol cost —sint
~ \ sint cost

The inverse is
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Hence, the solution is
z(t) = cost/sint (—sint) dt + sint/sintcostdt
. 9 L. .
= —cost [ sin“tdt + 3 sint [ sin2tdt
1 1. 1.
= —cost Et_ZSIIlQHCl +Zsmt(—cos%+02)
1 1 . : .

= —§t cost + 1 (sin2tcost — sint cos 2t) + C3cost 4+ Cysint

1
= —§tcost + C3cost + Cysint.

Of course, the same result can be obtained by Theorem 3.9.
Consider one more example, when the right hand side is not a quasi-polynomial:

2"+ x = tant. (3.39)

Then as above we obtain*

r = cost/tant(—sint)dt+sint/tantcostdt

1 1 —sint . . .
= cost|{=In|{——— ) +sint | —sintcost + C;cost + Cysint
2 1+sint

1 1 —sint
= §cost1n<Tz$t)+Clcost—|—Cgsint.

Let us show how one can use the method of variation of parameters directly, without
using the formula (3.38). Again, knowing that the independent solutions of z” + x = 0
are r; = cost and xs = sint, let us look for the solution of (3.39) in the form

z (t) = C (t) cost + Cs (t) sint. (3.40)
To obtain the equations for C7, Cy, differentiate this formula:

' (t) = —Cy(t)sint + Cy (t) cost (3.41)
+C (t) cost + Cy (t) sint

The first equation for Cy, Cy comes from the requirement that the second line here (that
is, the sum of the terms with C] and C%) must vanish, that is,

C]cost + Cysint = 0.

4The intergal f tan x sin tdt is taken as follows:

.2 2
t 1-— t dt
/tan:csintdt:/sm dt:/&dt:/——sint.
cost cost cost
/ dt /dsint / dsint 11 1 —sint
e = = —1n .
cost cos?t 1—sin?t 2 1-+sint
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The motivation for this choice is as follows. Switching to the normal system, one must
have the identity
x(t) = C1 (1) x1 () + Coxa (t) .
The first component of this vector identity gives the scalar identity (3.40). The second
component of the vector identity implies
7' (t) = C (t) (cost) + Cy (t) (sint)’

because the second components of the vectors x,x;,xy are the derivatives of the first
components. Comparing with (3.41), we see that the sum of all terms containing C] and
C% must be zero.

It follows from (3.41) that

" = —Cicost— Cysint
—C}sint + Cj cost,
whence
2" +x=—C}sint + Cycost
(note that the terms with C; and Cs cancel out and that this will always be the case
provided all computations are correct). Hence, the second equation for C] and C% is
—C}sint 4+ Cycost = tant,
Solving the system of linear algebraic equations
Cjcost+ Chsint =0
—Cisint + Ccost = tant
we obtain
C] = —tantsint, Ci = sint
whence
z(t) = Cycost+ Cysint = — cost/tantsintdt + sint/sintdt.

We are left to evaluate the integrals, which however was already done above.

3.7 The Liouville formula

Let z (), ..., x, (t) be n functions from an interval I C R to R™. Consider the nxn matrix
(x;;) where z;; is the i-th component of x;, that is, the matrix that has z;,xs, ..., z, as
columns. The Wronskian of the sequence {x; };L:l is the determinant of this matrix, that
is,

W (t) = det (x;;) =det (z1 | 22 | ... | zn)-

Theorem 3.12 (The Liouville formula) Let {x;},_, be a sequence of n solutions of the
ODE x' = A(t) x, where A : I — R™™ is continuous. Then the Wronskian W (t) of this
sequence satisfies the identity

W (t) = W (to) exp / trace A () dr, (3.42)

to

forallt,to € 1.
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Recall that the trace (Spur) trace A of the matrix A is the sum of all the diagonal
entries of the matrix.
Proof. Denote by r; the i-th row of the Wronskian, that is r; = (21, Zs9, ..., i) and

(&
W = det "2

Tn

We use the following formula for differentiation of the determinant, which follows from
the full expansion of the determinant and the product rule®:

) 81 T
/
W' @t)=det | "2 | +det| ™ | +..+det| " (3.43)
T T r

The fact that each vector z; satisfies the equation z; = Ax; can be written in the coor-

dinate form as follows
n
!
k=1

whence we obtain the identity for the rows:

n
/ § :

r, = Aikrk.
k=1

That is, the derivative r} of the i-th row is a linear combination of all rows 7. For example,
T’Il = Allrl + A12T2 + ...+ Alnrn

which implies that

] 1 T T
det | "™ | =Apdet | ™ | +Andet| 2 |+ A, det | ™

All the determinants except for the 1st one vanish since they have equal rows. Hence,

] 1
T T

det = All det = A11W (t) .
Tn Tn

If f1 (t), ..., fn (t) are real-valued differentiable functions then the product rule implies

(frofn) = fifofu+ Fifsefn + o+ fifo S

Hence, when differentiating the full expansion of the determinant, each term of the determinant gives rise
to n terms where one of the multiples is replaced by its derivative. Combining properly all such terms,
we obtain that the derivative of the determinant is the sum of n determinants where one of the rows is
replaced by its derivative.
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Evaluating similarly the other terms in (3.43), we obtain
W/ (t) = (Au + A22 + ...+ Ann) W (t) = (trace A) w (t) .

By Lemma 3.3, W (t) is either identical 0 or never zero. In the first case there is nothing to
prove. In the second case, solving the above ODE for W (¢) by the method of separation
of variables, we obtain

In|W (t)] = /traceA(t) dt
whence

W (t) = Cexp ( / frace A (¢) dt) |

Comparing the identities at times ¢ and ty, we obtain (3.42). =
Let x1 (t),...,z, (t) are n real-valued functions on an interval I of the class C™!.
Recall that their Wronskian is defined by

T i) In

X x e

W (t) = det ! 2 "
mYb—l) xén_l) O )

Corollary. Consider an ODE
2™ 4 a; ()™ 4 da, () =0

where ay, (t) are continuous functions on an interval I C R. If x1(t),...,z, (t) are n
solutions to this equation then their Wronskian W (t) satisfies the identity

W (1) = W (to) exp (— /t "o () dT) . (3.44)

Proof. The scalar ODE is equivalent to the normal system x’ = Ax where

0 1 0 .. 0 .
0 0 1 .. 0 =
A= and x =
0 0 0 .. 1 L)
—Qp —Qp—1 —Ap—2 ... —a1

Since the Wronskian of the normal system coincides with W (t), (3.44) follows from (3.42)
because trace A = —a;. ®
In the case of the ODE of the 2nd order

2" 4+ ay (t) 2" +az (t)z =0

the Liouville formula can help in finding the general solution if a particular solution is

known. Indeed, if xq () is a particular non-zero solution and z (¢) is any other solution
then we have by (3.44)

det ( iz ;C, ) = Cexp (—/al (t)dt),
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that is

Using the identity

we obtain the ODE )
= 5 , (3.45)

and by integrating it we obtain - and, hence, z (cf. Exercise 36).

Example. Consider the ODE
2" —2(1+tan’t) z = 0.

One solution can be guessed z; (t) = tant using the fact that

4 ant ! tan®t + 1
— ltani?t = ——— = tan
dt cos? t

and
2

ﬁtant =2tant (tan2t+ 1).

( X )’ C
=

dt
x:Ctant/ 2tzC’tant(—t—cott+C’1),

tan

whence®

that is, renaming the constants,

z(t) =Cy (ttant + 1) + Cy tant.

6To evaluate the integral [ =%~ = [ cot®tdt use the identity
I

(cott) = —cot?t — 1

that yields
/cot2 tdt = —t — cott + C.
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3.8 Linear homogeneous systems with constant coefficients

Here we will be concerned with finding the general solution to linear systems of the form
' = Ax where A is a constant n X n matrix and x (¢) is a function on R with values in
R™. As we know, it suffices to find n linearly independent solutions and then take their
linear combination. We start with a simple observation. Let us try to find a solution in
the form z = ey where v is a non-zero vector in R™ that does not depend on ¢. Then

the equation x’ = Ax becomes
ey = M Av

that is, Av = Av. Hence, if v is an eigenvector of the matrix A with the eigenvalue A then
the function x (t) = e*v is a solution.

Claim 1. If an n x n matriz A has n linearly independent eigenvectors vy, ..., v, (that
is, a basis of eigenvectors) with the eigenvalues Ay, ..., A, then the general solution of the
ODE 1’ = Ax is

z(t) = Z Creluy,. (3.46)
k=1

Proof. As we have seen already, each function e*'v; is a solution. Since vectors
{vr},_, are linearly independent, the functions {e’\ktvk}zzl are linearly independent,
whence the claim follows. =

In particular, if A has n distinct eigenvalues then their eigenvectors are automatically
linearly independent, and Claim 1 applies.

Example. Consider a normal system

x| = X9
xh =1
The matrix A is ( (1) (1) . Recall that in order to find the eigenvalues one first writes
the characteristic equation
det (A—A)=0

that is,

- 1 2 B
det( 1 _)\)—)\—1—0

whence A\; o = £1. If ) is an eigenvalue then the eigenvectors satisfy the equation

(A=X)v=0.

() ()=

which gives only one independent equation v! — v? = 0. Hence, an eigenvector for \; = 1

18
(1
v = 1 .
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Similarly, for A = Ay = —1 we have the equation for v

(11)(2)

which gives only one independent equation v!+v? = 0. Hence, an eigenvector for Ay = —1

18
_ 1
V1 = _1 .

Since the vectors v; and v are independent, we obtain the general solution in the form
1 1 Ciet + Cye™
¢ —t _ 1 2
016 (1>+026 (—1>_(01€t—026_t .

In general, the eigenvalues and eigenvectors may be complex so that the formula (3.46)
gives the general complex solution. If the matrix A is real then one can extract the real
solution as follows. If \ is an imaginary eigenvalue then also X is an eigenvalue because
the characteristic equation has real coefficients. If v is an eigenvector of A then v is an
eigenvector of \ because Av = \v implies AT = \T.

Claim 2. We have

span (e)‘tv, eXW) = span (Re (e’\tv) , Im (e)‘tv)) .

A A

In particular, in the sequence of independent solutions the functions eMv,eMv can be

replaced by Re (e*v), Im (eMv) .
Proof. This is trivial because

At At At At
evv+etv eV — et
——— and Im e)‘tv =

R At —
ee v 5 2

Example. Consider a normal system

The matrix A is ( (1) _01 ), and the the characteristic equation is

-A -1\ . B
det< 1 _)\>—)\ +1=

whence \; o = 7. For A = ¢ we obtain the equation

(3 2) ()=

which amounts to the single equation v* — iv? = 0. An eigenvector is

- (1)
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and the corresponding solution of the ODE is

o (1) = & ¢\ ([ —sint+icost
1A= 1) cost +isint :

The general solution is

z(t)=CiRexy + Colma; = Cy ( —sint ) Lo, ( cost )

cost sint

Example. Consider a normal system

Ty = To
xh = 0.
This system is trivially solved to obtain zo = C' and z; = C't + C;. However, if we try

to solve it using the above method, we fail. Indeed, the matrix is A = ( 01 ) , the

00
A1\ .
det( ; _)\)_)\ =0,

the only eigenvalue is A = 0. The eigenvector satisfies the equation
01 vt
(00)()=0

. . . . 1
whence v? = 0. That is, the only eigenvector (up to a constant multiple) is v = ) :

characteristic equation is

0

and the only solution we obtain is x (t) = . The problem lies in the properties of

1
0
this matrix - it does not have a basis of eigenvectors, which is needed for this method.

As it is known from Linear Algebra, any symmetric matrix has a basis of eigenvectors.
However, as we have seen, it is not the case in general. In order to understand what to
do, we try a different approach.

3.8.1 Functions of operators and matrices

Recall that an scalar ODE 2’ = Az has a solution z (t) = Ce?'. Now if Aisan xn
matrix, we may be able to use this formula if we define what is e4?. It suffices to define
what is e for any matrix A. It is convenient to do this for linear operators acting in R™.
Denote the family of all linear operators in R™ by £ (R™). This is obviously a linear space
over R (or C). Besides, there is the operation of (noncommutative) multiplication in this
space, simply given by composition of operators.

Any n xn matrix defines a linear operator in R™ using multiplication of column-vectors
by this matrix. Moreover, any linear operator can be represented in this form so that there
is an one-to-one correspondence’ between linear operators and matrices.

"This correspondence depends on the choice of a basis in R” — see the next Section.
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If we fix a norm in R™ then we can define the operator norm in £ (R") by

Az
|All = sup A=) (3.47)
z€R?\{0} ||

It is known that || A|| is finite and satisfies all properties of a norm (that is, the positivity,
the scaling property, and the triangle inequality). In addition, the operator norm satisfies
the property

|AB|| < Al B]- (3.48)

Indeed, it follows from (3.47) that ||Az|| < || A|| ||=|| whence
I(AB) z|| = [|A (Bz)|| < [[A[[ | Bz|| < [[All | B]| |||

whence (3.48) follows.

Hence, £ (R") is a normed linear space. Since this space is finite dimensional (its
dimension is n?), it is complete as a normed space. This allows to consider limits and
series of operators, and the latter can be used to define e as follows.

Definition. If A € £ (R") then define e € £ (R") by means of the identity

A2
A=id At ot +—+ Zk,,

where the convergence is understood in the sense of the operator norm in £ (R").

Claim 3. The exponential series converges for any A € L (R").
Proof. It suffices to show that the series converges absolutely, that is,

o

Z_

k=0

It follows from (3.48) that HA’“H < ||AHk whence

A
S o
k=0

k=

and the claim follows. m

Lemma 3.13 For any A € L (R") the function F (t) = e/t satisfies the equation F' =
AF. Consequently, the general solution of the ODE ' = Az is given by x = e*v where
v € R™ 1s an arbitrary vector.

Proof. We have by the definition




It is easy to see (in the same way as Claim 3) that this series converges absolutely and
locally uniformly in ¢. Hence, G = F’, whence we obtain

& Ak*ltk:fl

FF=A — v =AF.
DN ]
Obviously,
A(t+h),, LAt A(t+h) At
:z:’:}llin(l)e Q;L cv_ (fllir%%)v: (eAt),v: (AeAt)U:A:c

so that x (¢) solves the ODE for all v. Having chosen n linearly independent vectors
V1, ..., U, We obtain n solutions zp = e“'v, that are also linearly independent (which
follows from Lemma 3.3). Hence, the general solution is

Cietv + ... + C ey, = e (Chvg + ... + Chop)

which can be simply written as ey for any v € R*. =

Remark. Note that the function z (t) = e**v solves the IVP

2= Ax
z(0) =v.
Choosing vy, ..., v, to be the canonical basis in R™, we obtain that the columns of the

matrix e’ form a basis in the space of solutions, that is, e4* is a fundamental matrix of
the system =’ = Ax.

Example. Let A be the diagonal matrix
A =diag (A, ..., \n) -

Then
AF = diag (A}, ..., \))
and
et = diag (e)‘lt, - e”’“) .
Let

01
(01
Then A? = 0 and all higher power of A are also 0 and we obtain

At - (1t
e —1d+At—<0 1).

Hence, for the ODE 2’ = Az, we obtain two independent solutions

xl(t):((l)> and :Cg(t):<i)
x(t>:(01_g202t>-
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Definition. Operators A, B € L (R™) are said to commute if AB = BA.

In general, the operators do not have to commute. If A and B commute then various
nice formulas take places, for example,

(A4 B)* = A’ + 2AB + B2, (3.49)
Indeed, in general we have
(A+ B)?=(A+B)(A+ B) = A*+ AB + BA + B?,
which yields (3.49) if AB = BA.

Lemma 3.14 If A and B commute then

Proof. Let us prove a sequence of claims.

Claim 1. If A, B,C commute pairwise then so do AC and B.
Indeed,

(AC)B = A(CB) = A(BC) = (AB)C = (BA)C = B (AC).

Claim 2. If A and B commute then so do e* and B.
Indeed, it follows from Claim 1 that A¥ and B commute for any natural k, whence

e'B = (i%) B=B <§:’2—T> = Be’.
k=0
Claim 3. If A(t) and B (t) are differentiable functions from I — L (R™) then
(A®)B () =A(t)B(t)+ A(t) B (t).

Warning: watch the correct order of the multiples.
Indeed, we have for any component

/
(AB);; = (Z AikBk]) = AyBiy+Y AwBj; = (AB),;+(AB),; = (AB+ AB),;.
k k k
Now we can prove the lemma. Consider the function F': R — £ (R") defined by
F (t) = e!e!B,
Differentiating it using Lemma 3.13, Claims 2 and 3, we obtain
F'(t) = () eP 1e (efF) = Aethe'P e Be!P = Ae'e!P + Bete!P = (A+ B) F(t).
On the other hand, Lemma 3.13 the function G (t) = e!A*5) satisfies the same equation
G'=(A+B)G.
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Since G (0) = F'(0) = id (because €® = id) we obtain that the vector functions F (¢) and
G (t) solve the same IVP, whence by the uniqueness theorem they are identically equal.
In particular, F' (1) = G (1), which means ee? = 45, m

Alternative proof. Let us briefly discuss a direct proof of eA*8 = e4eB. One first
proves the binomial formula

(A+B)" = kz; (Z) Ak prk

using the fact that A and B commute (this can be done by induction in the same way as
for numbers). Then we have

win 00 (A+B)n_ oo n Aanfk
c _z_: DD K (n— k)|

Of course, one need to justify the Cauchy product formula for absolutely convergent series
of operators. m

Definition. An n x n matrix is called a Jordan cell if it has the form

A1 o --- 0
i |
A=| o | (3.50)
: 1
0o - 0 A

where )\ is any complex number.

Here all the entries on the main diagonal are A and all the entries just above the main
diagonal are 1 (and all other values are 0). Let us use Lemma 3.14 in order to evaluate
et where A is a Jordan cell. Clearly, we have A = \id +N where

0 1 0O --- 0

A matrix (3.51) is called a nilpotent Jordan cell. Since the matrices Aid and N commute
(because id commutes with anything), Lemma 3.14 yields

etA — etz\ldetN — et/\etN. (352)
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Hence, we need to evaluate eV, and for that we first evaluate the powers N2, N3, etc.

Observe that the components of matrix N are as follows

1, it =it
Nij = { 0, otherwise

where 7 is the row index and j is the column index. It follows that

& 1, ifj=i+2
2 _ . C )
(N )ij o ;NZka] { 0, otherwise

that is,
0o 0 1 0
2_ : . . '. ‘.
N°=1 . SR |
: 0
0 -+« «vv wee 0

Here the entries with value 1 are located on the diagonal that is two positions above the

main diagonal. Similarly, we obtain

0 1 0

k __
N = 1
0 «ov eve e 0

where the entries with value 1 are located on the diagonal that is k£ positions above the

main diagonal, provided k < n, and N* = 0 if k > n.

Any matrix A with the property that A* = 0 for some natural k is called nilpotent.
Hence, N is a nilpotent matrix, which explains the term “a nilpotent Jordan cell”. It

follows that

2
1§ 5
tN t t2 2 tnil 1 O . .
—id4~ N+ LN |
B T T g
0

Combining with (3.52), we obtain the following statement:
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Lemma 3.15 If A is a Jordan cell (3.50) then, for anyt € R,

DY 2PN > W 8 > W L

S TR TAS RCE

0 et)\ %et)\

etA = . .. . . ﬁ A . (354)
: . . . 2!6
. t A
: . . ﬁ@
0o .- e 0 et

By Lemma, 3.13, the columns of the matrix ¢4 form linearly independent solutions to
the system 2’ = Ax. Hence, we obtain the following basis of solutions:

z1 (t) = M (1,0, ...,0)

t

Ty (t) = eM (F’ 1,0, o)
2t

s (t) :e’\t< 1,0,...,0)

PIRSTE

Lo
=M —— 11
) = (G g 1)

and the general solution is Cixy + ... + C,,x,, where (1, ..., ), are arbitrary constants.

Definition. If A is a m x m matrix and B is a [ x [ matrix then their tensor product is
an n X n matrix C' where n = m + [ and

- ({2)

That is, matrix C consists of two blocks A and B located on the main diagonal, and all
other terms are 0.

Notation for the tensor product: C = A® B.

Lemma 3.16 We have

ASE _ A g B

c A0
e” = malk

Proof. We claim that if A;, Ay are m x m matrices and Bj, By are [ X [ matrices then

(A1 ® By) (A ® Bs) = (A14y) ® (B1By) . (3.55)

that s, in the above notation,

Indeed, in the extended form this identity means

A, ] 0 A, ] 0 A A, | 0
0 | B, 0B, | 0 | BB,
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which follows easily from the rule of multiplication of matrices. Hence, the tensor product
commutes with the matrix multiplication. It is also obvious that the tensor product
commutes with addition of matrices and taking limits. Therefore, we obtain

0o k 0o k k 00 k 0 k
AB (A® B)" A*®@ B* A B\ 4 _
© —ZT_ZT_ £ )@ Zk N
=0 =0

k=0 ’ k=0
[ |

Definition. A tensor product of a finite number of Jordan cells is called a Jordan normal
form.

Lemmas 3.15 and 3.16 allow to evaluate et4 when A is a Jordan normal form.

Example. Solve the system =’ = Az where

oSO O
O O = =
o NN OO
N = OO

Clearly, the matrix A is the tensor product of two Jordan cells:

11 2 1
J1:<0 1) and J2:(O 2)

By Lemma 3.15, we obtain

et tet e?t te?
et = ( 0 o ) and etz = 0 o

whence by Lemma 3.16,
et tet 0 0
a | 0 e 0 0
0 0 e* te*
0 0 0 e

The columns of this matrix form 4 linearly independent solutions

T = (etOOO)

Ty = (te e, 0 0)
zz3 = (0,0, e2t 0)
Ty = (0 0, te% t)

and the general solution is

T (t) = 011'1 + 021'2 + 031'3 + C4ZE4
= (Olet + Ogtet, Cget, Cg€2t + C4t€2t, C462t) .
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3.8.2 Transformation of an operator to a Jordan normal form

Given a basis b = {by, by, ..., b, } in R™ (or C") and a vector z € R" (or C"), denote by x;
the column vector that represents z in this basis. That is, if z} is the i-th component of
xp then

x = xpby + by + ... + 2, = Zxébi.
i=1

Similarly, if A is a linear operator in R™ (or C") then denote by A, the matrix that
represents A in the basis b, that is, for all vectors z,

(A:r)b = Abxb,

where in the right hand side we have the product of the n x n matrix A, and the n x 1
column zp.
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If x = b; then z, = (0,...1,...0) where 1 is at position i, and A,z is the i-th column of
Ap. In other words, we have the identity

Ap = ((Abr), | (Abg), | -+ | (Abn),)
that can be stated as the following rule:

the i-th column of Ay is the column vector Ab; written in the basis by, ..., b,.

Example. Consider the operator A in R? that is given in the canonical basis e = {e1, €5}

by the matrix
1 0
&_<04>.

Consider another basis b = {b1, by} defined by

blzel—egz(_11> and bgzel—i-eg:(i).
(3 ) ()0
= 5 ) (1) = ()

It follows that Ab; = by and Abs = by whence
01
&_(10)

The following theorem is proved in Linear Algebra courses.

Then

and

Theorem. For any operator A € L (C") there is a basis b in C" such that the matriz A,
is in the Jordan normal form.

Let J be a Jordan cell of A, with A on the diagonal and suppose that the rows (and
columns) of J in A, are indexed by j,j+1,...,7+p— 1 so that J is a p X p matrix. Then
the sequence of vectors bj, ..., bj 4,1 is referred to as the Jordan chain of the given Jordan
cell. In particular, the basis b splits to a number of Jordan chains.

Since
j e e j4p—1
1 l
1 0 —j
Ay —Aid =
. . .. 1
0O --- 0 0 — jap—1
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and the k-th column of A, — Aid is the vector (A — Aid) by written in the basis b, we
conclude that

(A—Xid)b; =0

(A= Xid) by = b,

(A= Aid)bjp-1 = bjip2.

In particular, b; is an eigenvector of A with the eigenvalue A. The vectors b1, ...,0j4p—1
are called the generalized eigenvectors of A (more precisely, b4y is the 1st generalized
eigenvector, b, is the second generalized eigenvector, etc.). Hence, any Jordan chain
contains exactly one eigenvector and the rest vectors are the generalized eigenvectors.

Theorem 3.17 Consider the system x' = Ax with a constant linear operator A and let
Ay be the Jordan normal form of A. Then each Jordan cell J of Ay of dimension p with
A on the diagonal gives rise to p linearly independent solutions as follows:

1 (t) = eMuy

t
i) (t) = €>\t (ﬁvl + Ug)

(1 t
I3 (t) =€ 5111 + ﬂvg + U3

N [t t
(Ep(t) = e mvl—k...—l—ﬂvp,l—kvp s

where {v1, ...,v,} is the Jordan chain of J. The set of all n solutions obtained across all
Jordan cells is linearly independent.

Proof. In the basis b, we have by Lemmas 3.15 and 3.16

Xt th . Pl
T —11¢
0 6t>\
etAb — ,
t tA
ﬁe
0 0 et

where the block in the middle is /. By Lemma 3.13, the columns of this matrix give
n linearly independent solutions to the ODE 2’ = Ayx. Therefore, the vectors that are
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represented by these columns in the basis b, form n linearly independent solutions to the
ODE 2/ = Ax. Out of these solutions, select p solutions that correspond to p columns of
the cell '/, that is,

v (t)=(..e*0,...,0...)
p
"’I:Q (t> - ( \lile)\t7 )\t7 07 Y ., )
»
xp(t)=(... (;Zfll)!e)‘t,...,%eM,etA ),
v

where all the vectors are written in the basis b, the horizontal braces mark the columns of
the cell J, and all the terms outside the horizontal braces are zeros. Representing these
vectors in the coordinateless form via the Jordan chain vy, ..., v,, we obtain the solutions
as in the statement of Theorem 3.17. m

Let X\ be an eigenvalue of A. Denote by m the algebraic multiplicity of A, that is, its
multiplicity as a root of characteristic polynomial® P (\) = det (A — Aid). Denote by g
the geometric multiplicity of A\, that is the dimension of the eigenspace of A:

g = dimker (A — \id).

In other words, g is the maximal number of linearly independent eigenvectors of A. The
numbers m and ¢ can be characterized in terms of the Jordan normal form A, of A as
follows: m is the total number of occurrences of A on the diagonal® of Ay, whereas ¢ is
equal to the number of the Jordan cells with A on the diagonal'. It follows that g < m
and the equality occurs if and only if all the Jordan cells with the eigenvalue A have
dimension 1.

Despite this relation to the Jordan normal form, m and g can be determined without
a priori finding the Jordan normal form, as it is clear from the definitions of m and g.

Theorem 3.17' Let A € C be an eigenvalue of an operator A with the algebraic multiplicity
m and the geometric multiplicity g. Then \ gives rise to m linearly independent solutions
of the system =’ = Ax that can be found in the form

z(t) =M (ug +ugt + ... + u,t* ") (3.56)

where s = m — g+ 1 and u; are vectors that can be determined by substituting the above
function to the equation x' = Ax.

The set of all n solutions obtained in this way using all the eigenvalues of A is linearly
independent.

8To compute P (), one needs to write the operator A in some basis b as a matrix A, and then
evaluate det (4, — Aid). The characteristic polynomial does not depend on the choice of basis b. Indeed,
if ' is another basis then the relation between the matrices A, and Ay is given by A, = CAyC~!
where C' is the matrix of transformation of basis. It follows that A, — Aid = C (4y — Aid) C~! whence
det (Ap — \id) = det C' det (Ay — Nid) det O~ = det (Ap — Nid).

9If X occurs k times on the diagonal of A, then ) is a root of multiplicity k¥ of the characteristic
polynomial of A; that coincides with that of A. Hence, k = m.

10Note that each Jordan cell correponds to exactly one eigenvector.
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Remark. For practical use, one should substitute (3.56) into the system 2’ = Az con-
sidering w;; as unknowns (where u;; is the i-th component of the vector u;) and solve the
resulting linear algebraic system with respect to w;;. The result will contain m arbitrary
constants, and the solution in the form (3.56) will appear as a linear combination of m
independent solutions.

Proof. Let py, .., p, be the dimensions of all the Jordan cells with the eigenvalue A (as

we know, the number of such cells is g). Then X occurs p; + ... + p; times on the diagonal
of the Jordan normal form, which implies

g

ij =m.

j=1

Hence, the total number of linearly independent solutions that are given by Theorem 3.17
for the eigenvalue A is equal to m. Let us show that each of the solutions of Theorem 3.17
has the form (3.56). Indeed, each solution of Theorem 3.17 is already in the form

eM times a polynomial of ¢ of degree < pj — L.

To ensure that these solutions can be represented in the form (3.56), we only need to
verify that p; —1 < s — 1. Indeed, we have

(pj—1) = (Zm)—g:m—gzs—l,

whence the inequality p; —1 < s — 1 follows. m

In particular, if m = g, that is, s = 1, then m independent solutions can be found in
the form x (t) = e*wv, where v is one of m independent eigenvectors of X\. This case has
been already discussed above. Consider some examples, where g < m.

g

7j=1

Example. Solve the system

The characteristic polynomial is

2—-X 1

P()\):det(A—)\id):det( 1 4

):A%4n+9:(A—$%

and the only eigenvalue is A\; = 3 with the algebraic multiplicity m; = 2. The equation
for an eigenvector v is

(A—Xid)v =0

(5 1) (5) =

which is equivalent to —a + b = 0. Setting a = 1 and b = 1, we obtain the unique (up to
a constant multiple) eigenvector
v = ( 1 > .
1
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Hence, the geometric multiplicity is g; = 1. Hence, there is only one Jordan cell with
the eigenvalue \;, which allows to immediately determine the Jordan normal form of the

given matrix:
31
03 )°

By Theorem 3.17, we obtain the solutions

1 (t) = e

Ty (t) = € (tvy + vy)
where vs is the 1st generalized eigenvector that can be determined from the equation
(A—Xid) vy = vy.
Setting vy = (a, b), we obtain the equation
(5 0G)-()
-1 1 b 1

which is equivalent to —a + b = 1. Hence, setting a = 0 and b = 1, we obtain

(1)
:Cg(t):est(tj_l).

Cy + Cat
Ci+Cy(t+1) )

whence

Finally, the general solution is

T (t) = Cl$1 + CQ(EQ = 63t (

Example. Solve the system

2 1 1
= -2 0 -1 |z
2 1 2
The characteristic polynomial is
2—X 1 1
P()\) = det(A—\id) — det -2 =X -1

2 1 2-A
= M4 -5 +2=(2- N (A —1).
The roots are \; = 2 with m; = 1 and Ay = 1 with my = 2. The eigenvectors v for \; are
determined from the equation

(A—)\lid)’UZO,
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whence, for v = (a, b, ¢)

0 1 1 a
2 2 1 b | =0,
2 1 0 c
that is,
b+c=0
—2a—2b—c=0
2a+b=0.
The second equation is a linear combination of the first and the last ones. Setting a =1
we find b = —2 and ¢ = 2 so that the unique (up to a constant multiple) eigenvector is
1
v=1| =2 |,
2
which gives the first solution
1
T (t) =e* | =2
2
The eigenvectors for Ay = 1 satisfy the equation
(A - )\21d)'U = 0,
whence, for v = (a, b, c),
1 1 1 a
—2 —1 -1 b | =0,
2 1 1 c
whence
a+b+c=0
—2a—b—c=0
20+ b+c=0.
Solving the system, we obtain a unique (up to a constant multiple) solution a =0, b = 1,
¢ = —1. Hence, we obtain only one eigenvector
0
V1 = 1
-1

Therefore, go = 1, that is, there is only one Jordan cell with the eigenvalue Ay, which
implies that the Jordan normal form of the given matrix is as follows:

2 00
011
0 01

By Theorem 3.17, the cell with Ay = 1 gives rise to two more solutions



and
x3(t) = €' (tvy +v9),

where v5 is the first generalized eigenvector to be determined from the equation
(A — )\2 1d> Vo = V1.

Setting vy = (a, b, ¢) we obtain

1 1 1 a 0
-2 -1 -1 b | = 1 ,
2 1 1 c —1
that is
a+b+c=0
—2a—b—c=1
2a+b+c=—-1.
This system has a solution a = —1, b = 0 and ¢ = 1. Hence,
—1
Vg = 0 s
1
and the third solution is
—1
z3 (t) = €' (tvy + v2) = €' t
1—t
Finally, the general solution is
Che?t — Cyet
T (t) = 01£E1 + CgZEQ + 031‘3 = —20162t + (CQ + C3t) €t

201€2t + (Og - CQ - Ogt) €t
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4 Qualitative analysis of ODEs

4.1 Autonomous systems

Consider a vector ODE
o' = f(z)
where the right hand side does not depend on t. Such equations are called autonomous.

Here f is a C! function defined on an open set Q C R™ so that the domain of the ODE
is R x Q.

Definition. The set Q is called the phase space of the ODE and any path z : (a,b) — Q
where z (t) is a solution of the ODE;, is called a phase trajectory. A plot of all phase
trajectories is called a phase diagram or a phase portrait.

Recall that the graph of a solution (or the integral curve) is the set of points (¢, z (t))
in R x €. Hence, the phase trajectory can be regarded as the projection of the integral
curve onto €.

For any y € €, denote by ¢ (¢,y) the maximal solution to the IVP

{Fot

Recall that, by Theorem 2.16, the domain of function ¢ (¢,y) is an open subset of R"*!
and ¢ belongs to C! in its domain. Since f does not depend on t, it follows that the

solution to
v = f(z)
z(to) =y
is given by z (t) = ¢ (t — to,y).
Observe that if f (z9) = 0 for some zy € €2 then constant function x (t) = zg is a

solution of ' = f(x). Conversely, if z(t) = z¢ is a solution then f(xy) = 0. The
constant solutions play important role in the qualitative analysis of the ODE.

Definition. If f (xy) = 0 at some point zy € Q then x is called a stationary point of the
ODE 2’ = f(x) (other terms: rest point, singular point, equilibrium point, fixed point,
etc).

Observe that if 2 is a stationary point then ¢ (¢, xg) = xo.
Definition. A stationary point xg is called Lyapunov stable if for any € > 0 there exists

6 > 0 with the following property: for all z € Q such that ||z — o] < 6, the solution
¢ (t,z) is defined for all £ > 0 and

sup |lp (t,z) — x| < e. (4.1)
te(0,+00)

In other words,

sup |l¢ (t,z) — xo|| — 0 as x — .
te(0,+00)
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If we replace here the interval (0,400) by any bounded interval [a,b] containing 0 then
by the continuity of ¢ (¢, x),

sup [l¢ (¢, @) — xol| = sup [|¢ (t,2) — ¢ (t,20)|| — 0 as z — zo.
tela,b] te[a,b]

Hence, the main issue for the stability is the behavior of solutions as ¢t — +o0.

Definition. A stationary point xzq is called asymptotically stable if it is Lyapunov stable
and
o (t,2) — zo]| — 0 as t — +o0

for all z € Q such that ||z — zo|| is small enough.

Observe, the stability and asymptotic stability do not depend on the choice of the
norm in R™ because all norms in R™ are equivalent.

4.2 Stability for a linear system

Consider a linear system ' = Az in R™ where A is a constant operator. Clearly, x = 0 is
a stationary point.

Theorem 4.1 If for any eigenvalue A\ of A, we have Re X < 0 then 0 is asymptotically
stable. If for some eigenvalue A\ of A, Re A > 0 then 0 is unstable.

Proof. By Theorem 3.17', n independent solutions can be found in the form
wi (t) = NP (t)

where \; are the eigenvalues, P, (t) is a vector valued polynomial of ¢, that is, P; (t) =
Uy +ust + ... +u t5"! for some vectors uq, ..., u,. Hence, the general solution has the form

z(t)=> CieMPi(t).
i=1
Since z (0) = Y"1, C;P; (0), we see that the coeflicients C; are the components of z (0) in
the basis {P; (0)}.

Let now x denote the initial vector (rather than a solution) and i, ...,x, be the
components of = in this basis. Then the the solution ¢ (¢, z) is given by

e (t,x) = Z 2N P (1) .
i=1
It follows that

lot2)ll < Y lail|eX] 1P @)
=1

1B O lai

= maxe NP (1] [l]), -
(2

IN

max ‘e’\"t
(2
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Observe that
IR () < C (Y +1)

for all ¢ > 0 and for some C' and N. Chose N and C the same for all 7.
If all Re \; are negative then, setting

a =min|Re \;| > 0,

ot

we obtain etReri < e~ whence

l (¢, 2)]| < Ce™" (¢ + 1) |||

(where we have replaced ||z||; by ||z|| which can be done by adjusting the constant C').
Since the function (tN +1) e*" is bounded on (0, +00) and we obtain that there is a
constant C] such that for all t > 0

lp &, 2)| < Cull=][,

whence it follows that 0 is stable. Moreover, since (tN + 1) e — 0ast — +oo, we
conclude that 0 is asymptotically stable.

Let Re A > 0 for some eigenvalue A. To prove that 0 is unstable is suffices to show
that there exists an unbounded real solution z (), that is, a solution for which ||z (¢)|| is
not bounded on (0, 4+00) as a function of ¢. Indeed, setting zo = x (0) we obtain that also
¢ (t,exg) = ex (t) is unbounded, for any non-zero . If 0 were stable this would imply
that ¢ (t, ) is bounded provided ||z is small enough, which is not the case if z = exy.

To construct an unbounded solution, consider an eigenvector v of the eigenvalue A. It
gives rise to the solution

z (t) = Mo

for which
lz ()] = €] [Jo]l = e ]|

Hence, ||z (¢)|| is unbounded. If z () is a real solution then this finishes the proof. In
general, if x () is a complex solution then then either Rex (t) or Imz () is unbounded
(in fact, both are), whence the instability of 0 follows. m

This theorem does not answer the question what happens when Re A = 0. We will
investigate this for n = 2 where we also give a more detailed description of the phase
diagrams.

Consider now a linear system 2’ = Az in R? where A is a constant operator in R2. Let
b = {b1,b2} be the Jordan basis of A so that A has the Jordan normal form. Consider
first the case when the Jordan normal form of A has two Jordan cells, that is,

(N0
Ab_<0 A2).

Then b; and by are the eigenvectors of the eigenvalues A; and A, respectively, and the

general solution is
T (t) = OleAltbl + CQ@AthQ.

In other words, in the basis b,

p(t,x) = (eAltxl, €>\2t$2)
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where now z = (z1,22) € R? denotes the initial point rather than the solution. It follows
that
||80(t,90)||1 = |€A1t| |z1| + |€A2t| 2| = etfteM 21| + elfers |24 .

The following cases take place:

1. If Re A\; or Re )\, is positive then || (¢, z)|| goes +00 as t — +oo for x = by or = by
so that 0 is unstable.

2. If both Re A\; and Re A, are negative, then 0 is asymptotically stability as in Theorem
4.1 (and by Theorem 4.1).

3. If both Re A\; and Re Ay are non-negative then

le (&)l < lfly

which implies that the stationary point 0 is stable (but the asymptotic stability
cannot be claimed).

Note that the case 3 is not covered by Theorem 4.1.
Let us consider the phase diagrams of the system in various cases.
Case A1, \y are real.

Renaming eMx; to z an e*?'z, to y, we obtain that the phase trajectory in the plane
(x,y) satisfies the equation y = C'|z|” where v = Xy/A\; (assuming that \; # 0 and
Ay # 0). Hence, the phase diagram consists of all curves of this type as well as of the
half-axis ¢ > 0,2 < 0,y > 0,y < 0.

If v > 0 (that is, A\; and Ay are of the same sign) then the phase diagram (or a
stationary point) is called a node. One distinguishes a stable node when A\, Ao < 0 and
unstable node when A, Ao > 0. Here is a node with v > 1:

17

and here is a node with v = 1:

122



-1

If one or both of Aj, Ay is 0 then we have a degenerate phase diagram (horizontal or vertical
straight lines or just dots).
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If v < 0 (that is, A; and Ay are of different signs) then the phase diagram is called a
saddle:

ST

4

Of course, the saddle is always unstable.
Case A1 and \y are complex, say \; = a — i and Ay = a + i3 with § # 0.

Then we rewrite the general solution in the real form
z(t) =CiRe ety O, Tm el @By, .

Note that b, is an eigenvector of A; and, hence, must have a non-trivial imaginary part
in any real basis. We claim that in some real basis b; has the form (1,7). Indeed, if
b1 = (p,q) in the canonical basis e, e then by rotating the basis we can assume p, ¢ # 0.
Since b; is an eigenvector, it is defined up to a constant multiple, so that we can take
p = 1. Then, setting ¢ = q1 + 1q2 we obtain

by =e1+ (q1 +iq2) e2 = (€1 + quea) + igoes = €] + i€l

where €] = e; + q1e2 and €, = goe5 is a new basis (the latter follows from the fact that ¢
is imaginary and, hence, ¢» # 0). Hence, in the basis ¢’ = {e}, €5} we have b; = (1,4).
It follows that in the basis €’

. ot _ g0t o3
elatBity, — eot (cos Bt + isin Bt) ( 1 > = ( e cos ft —ie*"sin 5t )

e sin Bt + ie® cos Gt

and
B e cos Bt —e®sinft | e™ cos (Bt + 1)
x(t)_01<eatsinﬁt)+02< e cos Bt )_C(eatsin(ﬁt—l—?ﬁ))’

where C' = /C? + C% and
C
cosy = 61’ siny = =2

C
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If (r,8) are the polar coordinates on the plane in the basis €/, then the polar coordinates
for the solution x (t) are

r(t) = Ce® and 0(t) = Bt + .

If o # 0 then these equations define a logarithmic spiral, and the phase diagram is called
a focus or a spiral:

0.75T

05T

Y

(@
0.5 -0R5 & 0J25 0J5 0.75 1

05T

The focus is stable is a < 0 and unstable if a > 0.

If « = 0 (that is, the both eigenvalues \; and Ay are purely imaginary), then r (¢t) = C,
that is, we get a family of concentric circles around 0, and this phase diagram is called a
center:

In this case, the stationary point is stable but not asymptotically stable.
Consider now the case when the Jordan normal form of A has only one Jordan cell,

that is,
Al
A,,_(O A).
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In this case, A must be real because if A is an imaginary root of a characteristic polynomial
then A\ must also be a root, which is not possible since A\ does not occur on the diagonal
of A,. Then the general solution is

z (t) = CreMby + Che™ (bit + by) = (Cy + Cat) by + Cre*iby

whence z (0) = C1b; + Cyby. Renaming by x = (21, x2) the initial point, we obtain in the
basis b
o (t,z) = (M (21 + ast) , eMay)

whence
o (8, 2)|l, = e |21 4 zot] + € || .

Hence, we obtain the following cases of stability:

1. If A < 0 then the stationary point 0 is asymptotically stable (which follows also
from Theorem 4.1).

2. If A > 0 then the stationary point 0 is unstable (indeed, if 25 # 0 then the solution
is unbounded).

Renaming e (z; + z»t) by y and ey by x, we obtain the following relation between
x and y:

zln |z
=——+Cx
D
(this follows from £ = & +¢ and ¢ = +1n 2). Here is the phase diagram in this case:

y 17

-1

This phase diagram is also called a node. It is stable if A < 0 and unstable if A\ > 0. If
A = 0 then we obtain a degenerate phase diagram - parallel straight lines.

Hence, the main types of the phases diagrams are the node (A, A2 are real, non-
zero and of the same sign), the saddle (A1, Ay are real, non-zero and of opposite signs),
focus/spiral (A1, Ay are imaginary and Re A # 0) and center (A1, Ay are purely imaginary).
Otherwise, the phase diagram consists of parallel straight lines or just dots, and is referred
to as degenerate.
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To summarize the stability investigation, let us emphasize that in the case Re A = 0
both stability and instability can happen, depending on the structure of the Jordan normal
form.

4.3 Lyapunov’s theorem

Theorem 4.2 Let xq be a stationary point of the system ' = f (x) where f € C? (). Let
A = f'(x0), that is, A is the Jacobian matriz of f at xo. If Re X < 0 for any eigenvalue
A of A then the stationary point xq is asymptotically stable for ' = f (z).

Remark. This theorem has the second part that says the following: if Re A > 0 for some
eigenvalue \ of A then z; is unstable for 2’ = f (x). The proof is somewhat lengthy and
will not be presented here.

Comparing with Theorem 4.1, we see that the conditions for the stability of the sta-
tionary point zg for the system a’ = f (x) coincide with those for the linearized system
y' = Ay (provided either Re A < 0 for all eigenvalues A or Re A > 0 for some eigenvalue
A). Setting y = x — x, we obtain that the system 2’ = f (z) transforms to

y' = f(z)=f(zo+y) = f(20) + [ (20) y +o([yll)
that is,
y'=Ay+o(llyl).

Hence, the linearized system 3y’ = Az is obtained by neglecting the term o (||y||) which
is small provided |ly|| is small. The message is that by throwing away this term we do
not change the type of stability of the stationary point (under the above conditions for
the eigenvalues). Note also that the equation 3’ = Ay is the variational equation for
x' = f (z) at the solution = = x.

Example. Consider the system

{ ¥ =4+ dy — 2e* 1Y

y =sin3z +1n (1 —4y).
It is easy to see that the right hand side vanishes at (0,0) so that (0,0) is a stationary

point. Setting
B VA + 4y — 2"tV
fl@y) = ( sin3z +In (1 —4y) )’

azfl a fl -2 -1
A= f"(0,0)= Y = .
roo=(5% o 30—
Another way to obtain this matrix is to expand each component of f (x,y) by the Taylor
formula:

we obtain

fi(zy) = 2 1+y—2e”y:2<1—|—%+0(x)>—2(1—|—(x+y)—|—0(|:c|+|y\))

= 2z —y+o(lz[+1y)
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and

fo(z,y) = sin3z+1In(l —4y) =3x+o(x) —4y+o(y)
= 3z —4dy+o(|lz|+y|).

o= (3 20) () +otel i,

whence we obtain the same matrix A.
The characteristic polynomial of A is

Hence,

N
det< 3 _4_)\)—/\ +6A+ 11,

and the eigenvalues are
Ao = —3+iV2.
Hence, Re A < 0 for all A\, whence we conclude that 0 is asymptotically stable.

The main tool for the proof of theorem 4.2 is the following lemma, that is of its own
interest. Recall that given a vector v € R"™ and a differentiable function F' in a domain in
R™, the directional derivative 0,F can be determined by

O, F (z) = F' (x)v = Z@ZF (z)v;.

Lemma 4.3 Consider the system 2’ = f (z) where f € C*(Q) and let xy be a stationary
point of it. Let V (x) be a C* scalar function in an open set U such that zo € U C Q and
the following conditions hold:

1. V(z) >0 for any x € U \ {xo} and V (x¢) = 0.

2. Forallz € U,
af(m)V (ZE) S 0. (4.2)

Then the stationary point 0 is stable.
Furthermore, if all x € U
@)V (z) < =W (2), (4.3)

where W (x) is a continuous function on U such that W (x) > 0 for z € U\ {xo} and
W (xo) = 0 then the stationary point 0 is asymptotically stable.

Function V' with the properties 1-2 is called the Lyapunov function. Note that in the
expression OV (x) the vector field f (x) which is used for the directional derivative of
V', depends on z. By definition, we have

OV (x) = Z OV () fi ().

In this context, 0;V is also called the orbital derivative of V with respect to the ODE
= f(z).
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Before the proof, let us show examples of the Lyapunov functions.

Example. Consider the system 2’ = Az where matrix A has the diagonal form A =
diag (A, ..., A\p,) where \; are all real. Obviously, 0 is a stationary point. Consider the
function

V)= o =|ll;,
i=1

which is positive in R™ \ {0} and vanishes at 0. Then 0,V = 2x;, f; () = A\jz; whence

=1

If all \; are non-positive then 9;V < 0 so that V' satisfies (4.2). If all \; are negative then
set
n = 2min |\;| > 0.

It follows that .
OV <—n Y al=—qV,
i=1

so that the condition (4.3) is satisfied. Therefore, if all A; < 0 then 0 is stable and if all
A; < 0 then 0 is asymptotically stable. Of course, in this example this can be seen directly
from the formula for the general solution.

Example. Consider the second order scalar ODE z” + k2’ = F (z) which describes
the movement of a body under the external potential force F'(z) and friction with the
coefficient k. This can be written as a system

=y
y =—ky+ F(x).

Note that the phase space is R? (assuming that F' is defined on R) and a point (z,y) in
the phase space is a couple position-velocity.

Assume F'(0) = 0 so that (0,0) is a stationary point. We would like to answer the
question if (0, 0) is stable or not. The Lyapunov function can be constructed in this case

as the full energy
2

Viey) =5 +U @),

where U (z) = — [ F (z)dx is the potential energy and y—; is the kinetic energy. More
precisely, assume that £ > 0, F'(z) <0 for x > 0, F'(z) > 0 for z < 0 and set

U(x):—/OxF(s)ds,

so that U (0) = 0 and U (x) > 0 for # # 0. Then the function V (z,y) is positive away
from (0,0) and vanishes at (0,0). Let us compute the orbital derivative of V' setting

f(z,y) = (y, F (z)):

oV = yo,V + (—ky+ F(x)0,V =yU (z)+ (—ky+ F (z))y
= —yF(z)—ky* + F (z)y = —ky® <0.
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Hence, V is indeed the Lyapunov function, and by Lemma 4.3 the stationary point (0, 0)
is stable.

Physically this has a simple meaning. The fact that F' (z) < 0 for z > 0 and F' (z) > 0
for x < 0 means that the force always acts in the direction of the origin thus trying to
return the displaced body to the stationary point, which causes the stability.
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Proof of Lemma 4.3. For any solution z (t) in U, we have by the chain rule

d
oV @@) =V (@)2"(t) = V' (@) f (2) = Op)V (2) < 0. (4.4)
Therefore, the function V' is decreasing along any solution z (t) as long as x (t) remains
inside U. B

By shrinking U, we can assume that U is bounded and that V' is defined on U. Also,
without loss of generality, assume that xg is the origin of R". Set

B, =B(0,r)={x e R": ||z|| < r}.
Since U is open and contains 0 there is €9 > 0 such that B, C U. For any € € (0,¢q), set

m(e) = inf V().

Since V is continuous and U \ B, is a compact set (bounded and closed), by the minimal
value theorem, the infimum of V' is taken at some point. Since V is positive away from
0, we obtain m (¢) > 0. It follows from the definition of m (¢) that V () > m (¢) outside
B.. In particular, if z € U and V (z) < m (¢) then z € B..

Now given € > 0 we need to find § > 0 such that € By implies ¢ (¢,x) € B, for all
t > 0 (where ¢ (¢, z) is the maximal solution to the given ODE with the initial value x at
t = 0). First of all, we can assume that ¢ < 9. By the continuity of V| § can be chosen
so small that V' () < m (¢) for all z € Bs. Then the solution ¢ (¢,z) for ¢ > 0 must also
satisfy the condition V (¢ (¢,x)) < m(e) and hence, ¢ (t,z) € B, as long as ¢ (t,z) is
defined. Shortly, we have shown the following implications:

r€Bs = V(z)<m(e) = V(p(t,z)) <m(e) = ¢(t,z) € B-.

We are left to verify that ¢ (¢, x) is defined for all ¢ > 0 and ¢ (¢, z) € U. Indeed, assume
that ¢ (t,x) is defined only for ¢ < T where T is finite. Then the graph of the solution
(t,p (t,x)) is located in the set [0,T] x B (zg,€), which is compact, whereas ¢ (¢,z) is a
maximal solution that must leave any compact in R x U when ¢ — T (see Theorem 2.8).
Hence, T" must be +o00, which finishes the proof of the first part.

For the second part, we obtain by (4.3) and (4.4)

d
%V(w ) < -Wi(z()).
It suffices to show that

Vi(xz(t) = 0ast— oo
since this will imply that x (f) — 0 (recall that 0 is the only point where V' vanishes).
Since V' (x (t)) is decreasing in ¢, the limit

L= lim V (z(t))

t——+o0

exists. Assume that L > 0. Then, for all ¢t > 0, V (2 (¢)) > L. By the continuity of V,
there is 7 > 0 such that
V(y) < L for all y € B,.
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Hence, x (t) ¢ B, for all £ > 0. Set

m= inf W (y)>0.

It follows that

%V(z () < -W(z(t) <-m

for all t > 0. However, this implies that
Viz(t) <V (zx(0)—mt

which becomes negative for large enough t. This contradiction proves that L = 0 and,
hence, z (t) - 0 ast — +00. &

Proof of Theorem 4.2. Without loss of generality, set xo = 0. Using that f € C?,
we obtain by the Taylor formula, for any component f; of f,

n 1 n
fk (IL‘) = fk (0) + Z_Zlasz (0) T; + 5 ”Z_l @Jfk (O) XTidj +o0 (||x||2) as ¢ — 0.
Noticing that 0, fi (0) = Ay; write
f(z)=Ax+ h(x)
where h (z) is defined by
1 n
ij=1

Setting B = max; jx |0;; fx (0)|, we obtain

2 2 2
It o)l = g i (@) < B 3 fs| +0 (o) = B el -+ (JalF).
1,]=

Hence, for any choice of the norms, there is a constant C' such that
2
IR (2)[| < Cllz]|

provided ||z|| is small enough.
Assuming that Re A < 0 for all eigenvalues of A, consider the following function

V(z) = /Oo HeSAacszs
0

and prove that V (z) is the Lyapunov function.
Let us first verify that V' (z) is finite. Indeed, in the proof of Theorem 4.1 we have
established the inequality

el < Cem (¥ + 1) |l
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where N is some natural number (depending on the dimensions of the cells in the Jordan
normal form of A) and «a > 0 is the minimum of — Re A over all eigenvalues A of A. This
inequality clearly implies that the integral in the definition of V' is finite.

Next, let us show that V () is of the class C! (in fact, C*°). For that, represent x in
the canonical basis ey, ..., e, as * = ) x;e; and notice that

n
Izl =) |zl =22
i=1

Therefore,
||68A£E||; = ey My = (Z T (eSAei)> . (Z x; (e‘”‘q))
@ J
= in:vj (eSAei : eSAej) .
1]

Integrating in s, we obtain

Vv (ZL‘) = Z bz‘jl'z‘l'j
i,J

with some constants b;;, which clearly implies V' (z) is of the class C*°.

Remark. Usually we work with any norm in R”. In this case we have selected the 2-norm
to ensure the smoothness of V' (z).
Function V' (z) is obviously non-negative and V (z) = 0 if and only if x = 0. In order

to complete the proof of the fact that V' (x) is the Lyapunov function, we need to estimate
O)V (). Let us first evaluate 04,V (z). Recall that by (4.4)

%V (etAm) = 04,V (etA:z:)

whence

O0azV (x) = iV (etAm)

On the other hand,

V(ett) = [ flecritafds = [ el ds
0 t

whence

i A\ || tA |12
2y (ethz) = — |l

It follows that

04V () = %V (e"'z)

Now we can estimate O,V () as follows:

2
= - H$||2
t=0

OV (x) = 04V (2) + OV () = — |25 + Zaiv (z) hi (2)
=1

= llllz + IV (@)l 1 ()]

<
2 2
< =l + OV @) [l
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where in the second line we have used the Cauchy-Schwarz inequality

z-y <zl [yl

and in the third line - the estimate || (2)||, < C' ||z||, which is true provided ||z|| is small
enough. Since the function V' (z) has minimum at 0, we have V' (0) = 0. Hence, if ||z|| is
small enough then the above estimate of ||k ()| holds and ||V’ (z)|, < $C~'. It follows
that, for such =z,

1
OV (x) < =5 |25

and we conclude by Lemma 4.3, that the stationary point 0 is asymptotically stable. m

4.4 Zeros of solutions

In this section, we consider a scalar linear second order ODE
" +pt)a’+q(t)z=0, (4.5)

where p (t) and ¢ (t) are continuous functions on some interval I C R. We will be con-
cerned with the structure of zeros of a solution x (¢), that is, with the points ¢ where
z(t) =0.

For example, the ODE x” + z = 0 has solutions sint and cost that have infinitely
many zeros, while a similar ODE z” 4+ 2 = 0 has solutions sinh ¢ and cosh ¢ with finitely
many zeros (in fact, any solution to the latter equation may have at most 1 zero). An
interesting question is how to determine or to estimate the number of roots of (4.5) in
general.

Let us start with the following simple observation.

Lemma 4.4 If z(t) is a solution to (4.5) on I that is not identical zero then, on any

bounded closed interval J C I, the function x (t) has at most finitely many distinct zeros.
Moreover, every zero of x (t) is simple.
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A zero to of x (t) is called simple if 2’ (ty) # 0 and multiple if 2’ (ty) = 0. This definition
matches the notion of simple and multiple roots of polynomials. Note that if ¢, is a simple
zero then z (t) changes signed at .

Proof. If ¢, is a multiple zero then then x (¢) solves the IVP

2+ pr’+qxr=0
x(to):O N
x' (tg) =0

whence, by the uniqueness theorem, we conclude that z (t) = 0.

Let z (t) have infinitely many distinct zeros on J, say x (t;) = 0 where {t;},-, is
a sequence of distinct reals in J. Then, by the Weierstrass theorem, the sequence {t;}
contains a convergent subsequence. Without loss of generality, we can assume that ¢, —
to € J. Then z (tp) = 0 but also 2’ (tp) = 0, which follows from

2 (to) = lim  (ty) — x (to)
k—oo 1 — 1o

=0.

Hence, the zero ¢, is multiple, whence z (t) = 0. m

Theorem 4.5 (Theorem of Sturm). Consider two ODEs on an interval I C R
" +pt)r’+qt)r=0and ¥y +pt)y +a(t)y=0,

where p € C*(I), q1,q2 € C(I), and, for allt € I,

() <aq(t).

If x (t) is a non-zero solution of the first ODE and y (t) is a solution of the second ODE
then between any two distinct zeros of x (t) there is a zero of y(t) (that is, if a < b are
zeros of x (t) then there is a zero of y (t) in [a,b)]).

A mnemonic rule: the larger ¢ (t) the more likely a solution has zeros.

Example. Let ¢; and g» be positive constants and p = 0. Then the solutions are

z(t) = Cisin (\/ait + ;) and y(t) = Cosin (Vgat + ¢s,) .

T

Var’

y (t) for an arithmetic sequence with the difference \/% < \/Lq_l. Clearly, between any two

terms of the first sequence there is a term of the second sequence.

Zeros of function z (t) form an arithmetic sequence with the difference and zeros of

Example. Let ¢; (t) = g2 (t) = ¢ (t) and let = and y be linearly independent solution to
the same ODE 2" + px’ + gx = 0. Then we claim that if a < b are consecutive zeros of
x (t) then there is exactly one zero of y in [a, b] and this zero belongs to (a,b). Indeed, by
Theorem 4.5, y has zero in [a, b], say y (¢) = 0. Let us verify that ¢ # a,b. Assuming that
¢ = a and, hence, y (a) = 0, we obtain that y solves the IVP

v +py +qy=0
y(a)=0
Yy (a) = Cx' (a)
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where C' = z:%‘;i (note that 2’ (a) # 0 by Lemma 4.4). Since Cz (t) solves the same IVP,
we conclude by the uniqueness theorem that y (t) = Cz (t). However, this contradicts to
the hypothesis that = and y are linearly independent. Finally, let us show that y (¢) has
a unique root in [a,b]. Indeed, if ¢ < d are two zeros of y in [a, b] then switching = and
y in the previous argument, we conclude that = has a zero in (¢,d) C (a,b), which is not
possible.

It follows that if {as}r_, is an increasing sequence of consecutive zeros of z (t) then
in any interval (ay,agy1) there is exactly one root ¢ of y so that the roots of z and y
intertwine. An obvious example for this is the case when z (t) = sint and y (t) = cost.

Proof of Theorem 4.5. By Exercise 37, the ODE
" +pt)a'+qt)z=0

transforms to
v +Q(t)u=0.

by the change

where

Q) =q--5

(here we use the hypothesis that p € C'). Obviously, the zeros of x (t) and u (t) are the
same. Also, if ¢; < ¢o then also Q1 < Q5. Therefore, it suffices to consider the case p = 0.

Assume in the sequel that p = 0. Since the set of zeros of x (¢) on any bounded
closed interval is finite, it suffices to show that function y (¢) has a zero between any two
consecutive zeros of x (t). Let a < b be two consecutive zeros of x (t) so that z (t) # 0
in (a,b). Without loss of generality, we can assume that x (¢) > 0 in (a,b). This implies
that 2’ (a) > 0 and 2’ (b) < 0. Indeed, x (¢) > 0 in (a,b) implies

r)-z0)

' (a) = lim
t—a,t>a t—a

It follows that 2’ (a) > 0 because if 2’ (a) = 0 then a is a multiple root, which is prohibited
by Lemma 4.4. In the same way, =’ (b) < 0. If y (¢) does not vanish in [a, b] then we can
assume that y (£) > 0 on [a, b]. Let us show that these assumptions lead to a contradiction.

Multiplying the equation z” + gu& = 0 by y, the equation y” + ¢y = 0 by z, and
subtracting one from the other, we obtain

(" +qat)r)y— ' +qt)y)z=0,

2"y —y'r = (¢ — q1) wy,
whence
(2'y —y'2) = (@2 — 1) wy.
Integrating the above identity from a to b and using z (a) = x (b) = 0, we obtain

b

2’ (0)y (b)) — 2 (a)y (a) = [y — y'a], = / (2 (1) —aqu (t) = (t) y (t) dt. (4.6)

a
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Since ga > ¢; on [a,b] and x (¢) and y (t) are non-negative on [a, b], the integral in (4.6)
is non-negative. On the other hand, the left hand side of (4.6) is negative because y (a)
and y (b) are positive whereas 2’ (b) and —z’ (a) are negative. This contradiction finishes
the proof. m

Consider the differential operator

L= tp() S +a ) (4.7)

so that the ODE (4.5) can be shortly written as Lz = 0. Assume in the sequel that
p € C'(I) and g € C (I) for some interval I.

Definition. Any C? function y satisfying Ly < 0 is called a supersolution of the operator
L (or of the ODE Lz = 0).

Corollary. If L has a positive supersolution y (t) on an interval I then any non-zero
solution x (t) of Lr = 0 has at most one zero on I.

Proof. Indeed, define function ¢ () by the equation

y' +pt)y +q(t)y=0.

Comparing with
Ly=y"+pt)y +q(t)y <0,
we conclude that ¢ (t) > ¢ (t). Since z” 4+ pz’ + gz = 0, we obtain by Theorem 4.5 that

between any two distinct zeros of x (¢) there must be a zero of y (¢). Since y () has no
zeros, « (t) cannot have two distinct zeros. m

Example. If ¢ (t) < 0 on some interval I then function y (t) = 1 is obviously a positive
supersolution. Hence, any non-zero solution of 2” + ¢ (t) = 0 has at most one zero on I.
It follows that, for any solution of the IVP,

z (ty) =

(El (to) =

with ¢ (t) < 0 and a # 0, we have x (t) # 0 for all ¢t # to. In particular, if @ > 0 then
x (t) > 0 for all t > t.

2 +qt)x=0
a

Corollary. (The comparison principle) Assume that the operator L has a positive su-
persolution y on an interval [a,b]. If 1 (t) and x5 (t) are two C* functions on [a,b] such
that Lxy = Lxo and x1 (t) < x5 (t) fort = a and t = b then x1 (t) < xo (t) holds for all
t € [a,b].

Proof. Setting x = x5 — 1, we obtain that Lx =0 and z (t) > 0 at t = a and ¢t = b.
That is, z (t) is a solution that has non-negative values at the endpoints a and b. We need
to prove that x (t) > 0 inside [a,b] as well. Indeed, assume that 2 (¢) < 0 at some point
¢ € (a,b). Then, by the intermediate value theorem, x (¢) has zeros on each interval [a, c)
and (c,b]. However, since L has a positive supersolution on [a, b], = () cannot have two
zeros on [a, b] by the previous corollary. m
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Consider the following boundary value problem (BVP) for the operator (4.7):

Lz = f(t)
z(a) =«
z(b) =P

where f (t) is a given function on I, a,b are two given distinct points in I and «, 3 are
given reals. It follows from the comparison principle that if L has a positive supersolution
on [a, b] then solution to the BVP is unique. Indeed, if z; and z5 are two solutions then
the comparison principle yields x; < x5 and x5 < z1 whence z; = x».

The hypothesis that L has a positive supersolution is essential since in general there is
no uniqueness: the BVP 2" +x = 0 with x (0) = z (7) = 0 has a whole family of solutions
x (t) = Csint for any real C.

Let us return to the study of the cases with “many” zeros.

Theorem 4.6 Consider ODE z" + q(t)x = 0 where q(t) > a > 0 on [tg, +00). Then
zeros of any non-zero solution x (t) on [ty,+00) form a sequence {ty};, that can be
numbered so that ti 1 > ty, and ty, — +oo. Furthermore, if

then .

Proof. By Lemma 4.4, the number of zeros of z (t) on any bounded interval [ty, T
is finite, which implies that the set of zeros in [ty, +00) is at most countable and that all
zeros can be numbered in the increasing order.

Consider the ODE y” +ay = 0 that has solution y (t) = sin y/at. By Theorem 4.5, z (¢)

has a zero between any two zeros of y (t), that is, in any interval [\’T/—’Z, %} C [to, +00).

This implies that x (t) has in [to, +00) infinitely many zeros. Hence, the set of zeros of
z (t) is countable and forms an increasing sequence {t},.,. The fact that any bounded
interval contains finitely many terms of this sequence implies that t;, — +o0.

To prove the second claim, fix some T > ¢, and set

=m(T)= inf :
=)= g 4

Consider the ODE y” +my = 0. Since m < ¢ () in [T, +00), between any two zeros of
y (t) in [T, +00) there is a zero of x (t). Consider a zero t; of z (t) that is contained in
[T, +00) and prove that

m
U1 — i < N (4.9)

Assume from the contrary that that ¢, — tx > \/Lm Consider a solution

y (t) =sin (%+w>,

whose zeros form an arithmetic sequence {s;} with difference ﬁ, that is, for all 7,
Lt -t
Sj+1 — S5 = T k+1 — Uk
m
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Choosing the phase ¢ appropriately, we can achieve so that, for some 7,
[s5, 8j+1] C (e, thr1) -

However, this means that between zeros s;, s;41 of y there is no zero of x. This contra-
diction proves (4.9).

If b = 400 then by letting T — oo we obtain m — oo and, hence, tx,1 —t — 0 as
k — oo, which proves (4.8) in this case.

Consider the case when b is finite. Then setting

M=M(T)= sup qft),

t€[T,+00)

we obtain in the same way that

T
t —tp > —.
k+1 — bk = T
When T' — oo, both m (T') and M (T') tend to b, which implies that

T
lpr1 — gy — —=.

Vb

139



Lecture 28 10.07.2007 Prof. A. Grigorian, ODE, SS 2007

4.5 The Bessel equation
The Bessel equation is the ODE

Pzt + (P —a®)z =0 (4.10)

where ¢ > 0 is an independent variable, z = x (t) is the unknown function, o € R is a given
parameter'!. The Bessel functions'? are certain particular solutions of this equation. The
value of « is called the order of the Bessel equation.

Theorem 4.7 Let x (t) be a non-zero solution to the Bessel equation on (0,+00). Then
the zeros of x (t) form an infinite sequence {ty},., such that t;, < ty41 for all k € N and
thr1 —ty — ™ as k — oo.

Proof. Write the Bessel equation in the form

1 2
z" + zx’ + (1 — ‘2‘—2> x =0, (4.11)

set p(t) =+ and q(t) = <1 - C;—j) Then the change

w(t) = z(f)exp (% / p(t)dt)
— 2 (t)exp (%mz) N

brings the ODE to the form
W' +Q(t)u=0

where

2 ! Oé2 1

p p
t)=¢q—————=1——+—. 4.12
Note the roots of z (t) are the same as those of u (t). Observe also that @ (t) — 1 ast — oo
and, in particular, @ (t) > 3 for ¢ > T for large enough 7. Theorem 4.6 yields that the

HTn general, one can let a to be a complex number as well but here we restrict ourselves to the real
case.

12The Bessel function of the first kind is defined by

IR A
Ja(f)—zm!r(m+a+1) <§) -

m=0

It is possible to prove that J,, (¢) solves (4.10). If v is non-integer then J, and J_,, are linearly independent
solutions to (4.10). If @ = n is an integer then the independent solutions are .J,, and Y,, where

Y, () = lim Jo (t) cosam — J_q (1)

a—n sin am

is the Bessel function of the second kind.
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roots of z (¢) in [T, +00) form an increasing sequence {t},-, such that ;.1 — ty — 7 as
k — oo.

Now we need to prove that the number of zeros of z (¢) in (0,77 is finite. Lemma 4.4
says that the number of zeros is finite in any interval 7,7 where 7 > 0, but cannot be
applied to the interval (0,7 because the ODE in question is not defined at 0. Let us
show that, for small enough 7 > 0, the interval (0,7) contains no zeros of x (t). Consider
the following function on (0, 7)

1
z (t) :lng —sint

which is positive in (0, 7) provided 7 is small enough (in fact, z (¢) — +o00 as t — 0). For
this function we have

2 = —% —cost and 2’ = t% + sint
whence
z"+1z’+zzlnl—&8t.
t t t
Since %St ~ % and ln% =0 (%) as t — 0, we see that the right hand side here is negative

in (0,7) provided 7 is small enough. It follows that

1 a?
2"+ ;z/ + (1 — t_2) z <0, (4.13)

so that z (t) is a positive supersolution of the Bessel equation in (0, 7). By Corollary of
Theorem 4.5, z (t) has at most one zero in (0, 7). By further reducing 7, we obtain that
x (t) has no zeros on (0, 7), which finishes the proof. m

Example. In the case a = 5 we obtain from (4.12) @ (t) = 1 and the ODE for u (t)
becomes u” + u = 0. Using the solutions u () = cost and u (t) = sint and the relation
x(t) = t~Y2u(t), we obtain the independent solutions of the Bessel equation: z (t) =
t~1/2sint and x (t) = t~*/?cost. Clearly, in this case we have exactly t,1 — t = .

The functions t~/?sint and ¢~/? cost show the typical behavior of solutions to the

Bessel equation: oscillations with decaying amplitude as t — oo:
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Remark. In (4.13) we have used that o > 0 which is the case for real «. For imaginary
a one may have a? < 0 and the above argument does not work. In this case a solution to
the Bessel equation can actually have a sequence of zeros that accumulate at 0'3.

4.6 Sturm-Liouville problem

Fix an interval [a,b] C R and functions p € C'[a,b], ¢, w € C [a, b], such that p,w > 0 on
la,b] and consider the following problem on |a, b]:

L D Lo (419

Here x (t) is an unknown function on [a,b] and A is an unknown parameter. Clearly,
x (t) = 0 always solves (4.14).

Definition. The Sturm-Liouville problem is the task to find all non-zero functions x (t)
on [a,b] and constants A that satisfy (4.14).

As we will see later on, such solutions may exist only for specific values of A. Hence,
a part of the problem is to find those A for which non-zero solutions exist.

Definition. The variable A is called the spectral parameter of the problem (4.14). The
values of A for which a non-zero solution of (4.14) exists are called the eigenvalues of
(4.14). A non-zero solution z (t) is called the eigenfunction of (4.14). The condition
x (a) =z (b) = 0 is called the Dirichlet boundary condition.

Similar problems can be considered with other boundary conditions, for example, with
2’ (a) = 2’ (b) = 0 (the Neumann boundary condition) but we will restrict ourselves to
the problem (4.14).

Note that the ODE in (4.14) can be rewritten in the form

pr” +p'r’ +qx + vz = 0,

/
"+ Py 4 \Y = 0,
b p b

13Consider the ODE )

C
" _
U+t—27)—0

where ¢ > % It is the Euler equation and its solution can be found in the form v (t) = t°, where b is

found from the equation
b(b—1)+c*=0

that is, b = % + 183 where 8 = /% — %. Hence, the solutions are

Vitcos(fInt) and isin(G1nt),

and both have sequences of zeros converging to 0. By Theorem 4.5, a solution u to the ODE

2
u"+(1+t—2)u20

will also have a sequence of zeros accumulating to 0, which implies the same property for the solutions

to the Bessel equation with negative a?.
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that is,

"+ Pz’ + Qr + AWz = 0. (4.15)
where .
P=2 g=%aa ==
p p p

In the form (4.15), functions P and @) can be any continuous functions on [a,b] and W
must be a positive continuous function on [a,b]. Under these conditions, the ODE (4.15)
can be converted back to (4.14) by finding p from the equation % = P, which always has
a positive continuously differentiable solution

puy:mp(/fwaﬁ).

Hence, the two forms (4.14) and (4.15) of the ODE are equivalent but (4.14) has certain
advantages that will be seen in Theorem 4.9 below.

Observe that if z (¢) is the eigenfunction then Cx (t) is also the eigenfunction, where
C is a non-zero constant. It turns our that the converse is true as well.

Lemma 4.8 Ifz (t) andy (t) are two eigenfunctions with the same eigenvalue then y (t) =
Cz (t) for some constant C (that is, every eigenvalue has the geometric multiplicity 1).

Proof. Observe that 2’ (a) # 0 (otherwise, a is multiple zero of z) so that we can set
C =29 Then the function

'(a)

z(t) =y (t) = Cx (1)
vanishes at ¢ = a and the derivative 2’ () also vanishes at ¢ = a by the choice of C. Hence,
z(t) =0 on [a, b] whence the result follows. =
Hence, when solving the Sturm-Liouville problem, one needs to find all eigenvalues
and one eigenfunction for each eigenvalue.

Example. Consider the simplest instance of the Sturm-Liouville problem
2+ dx =0
z(0)=xz(a)=0

Let us first observe that if A < 0 then there is no solution. Indeed, in this case the
function y (f) = 1 is a positive supersolution: y” + Ay < 0, whence it follows that a
non-zero solution z (t) cannot have two distinct zeros. Hence, we can restrict to the case
A > 0. The general solution to the ODE z” + Az = 0 is then

x = C] cos <\/Xt) + (5 8in (\/th) )
The boundary condition amount to
i =0
C5 sin (aﬁ) = 0.
Hence, possible values for A are

21.2
A= TR enN

a? ’
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and the corresponding eigenfunctions are
kt
x (t) = sin (\/le) — sin ——.
a

Especially simple form it takes when a = 7: in this case, the eigenvalues are given by
A =k?

and the eigenfunctions are
x (t) = sin kt.

Consider an example showing how the Sturm-Liouville problem occurs in applications.

Example. (The heat equation) The heat equation is a partial differential equation (PDE)
for a function u = u (¢, ) of the form

ou_
ot Ox2

One of the problems associated with this PDE is a so called initial-boundary problem

2

% = %, t >0, z €a,b], (the heat equation)

w(0,2) = f (x), € lab], (the initial condition) (4.16)
u(t,a) =u(t,b) =0, t>0, (the boundary condition)

where f () is a given function on [a,b]. Physically this corresponds to finding the tem-
perature u (f,x) at time ¢t at point x provided it is known that the temperature at the
boundary points x = a and = b remains constant 0 for all £ > 0 while the temperature
at the initial time ¢t = 0 was f ().

This problem can be solved by the method of separation of variables as follows. Let
us first try and find solutions to the heat equation in the form w (t) = y (z) z (t) The heat
equation becomes

that is

Hence, we have the identity of two functions one of them depending on ¢ and the other
—on x. Of course, this can happen only if both functions are constants. Denote this
constant by —A\ so that we obtain two separate equations

24X = 0
y' + Ay = 0.

To ensure the boundary conditions for u, it suffices to require that
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Hence, the function y must solve the Sturm-Liouville problem

{ y'+ Ay =0
y(a) =y () =0

(of course, we are interested only in non-zero solutions y). Setting for simplicity a = 0 and
b = 7, we obtain as above the sequence of the eigenvalues )\, = k? and the eigenfunctions

yr () = sin kz,
where k € N. For A\ = k?, the ODE 2’ + Az = 0 has the general solution
2 (t) = Cre ¥,

Hence, we obtain a sequence uy, (t,x) = Cre ¥t sin kz of solutions to the heat equation
that satisfy the boundary condition.

Note that ug (0,2) = Cksinkz. Hence, if the initial function f(x) has the form
Cpsinkx then the solution to the problem (4.16) is the function wy (£,z). In a more
general situation, if

N
f(z) = Z Crsinkx (4.17)
k=1
then the solution to (4.16) is
N
u(t,r) = Z Cre "' sin k. (4.18)
k=1

This is trivial for a finite /N but in certain sense is true also when N = oo. This is the
most useful case because for N = oo the right hand side of (4.17) is a sin-Fourier series.
Given a function f on [0, 7] such that f(0) = 0 = f () (which are necessary condition
for the consistency of (4.16), extend f (z) oddly to [—m,0) so that the Fourier series of f
on [—, 7| contains only the sin-terms. Then one obtains the solution w (¢, ) also in the
form of the Fourier series (4.18). Of course, some justifications are needed here in order
to be able to differentiate (4.18) term-by-term, and some additional restrictions should
be imposed on f. However, we do no go into further details of this subject.

This example shows how the Sturm-Liouville problem occurs naturally in PDEs and
motivates the further study of the Sturm-Liouville problem.

Theorem 4.9 Consider the Sturm-Liouville problem (4.14).
(a) If X is the eigenvalue of (4.14) with the eigenfunction x (t) then

Jo (0 (&)’ — q?) dt

A= v
fa wax2dt

(4.19)

(b) (The orthogonality relations) If z1 (t) and z5 (t) are the eigenfunctions of (4.14)
with the distinct eigenvalues then

/b x1 (t) 2o (t) w () dt = 0. (4.20)
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Remark. Given a continuous positive function w on |[a, b], the expression

(f.9) = / £ (1) g (t)w(t) dt

can be interpreted as an inner product in the linear space C'[a, b]. Indeed, the functional
f,9+— (f,g) is obviously symmetric, bilinear and positive definite, that is, (f, f) > 0 and
f(,f)=0if and only if f = 0. Hence, (f,g) satisfies the definition of an inner product.
Using the inner product, one can introduce the 2-norm of a function f € C'[a, b] by

£l = v/ (f; f)
and the angle a between two non-zero functions f, g € C'[a, b] by
cosa = _9) :
1£1l2 g1l

In particular, f and g are orthogonal (that is, & = 7w /2) if and only if (f,g) = 0.
Hence, part (b) of Theorem 4.9 means that the eigenfunctions of different eigenvalues
are orthogonal with respect to the chosen inner product'4.

Proof of Theorem 4.9. Let \; be the eigenvalue of the eigenfunction z;, + = 1, 2.
Multiplying the ODE
(pr)" + qz1 + \wx; =0

by x5 and integrating over [a, b], we obtain

b b
/ (ph) wodt —I—/ qriTodt + A\ /wxlxgdt =0.

Integrating by parts in the first integral, we obtain that it is equal to

b
el — [ peioit

By the boundary condition xs (a) = x5 (b) = 0, we see that the first term vanishes, and
we obtain the identity

b b b
/px'lx;:/ qmlxgdt+)\1/ wx1Tdt. (4.21)

(a) If z; = 9 =  and A\; = A then (4.21) implies

b b
/]0(3:/)2 dt:/ qx2dt+)\/wx2dt

14This is similar to the fact that the eigenvectors with different eigenvalues of any real symmetric n x n
matrix A are automatically orthogonal with respect to the canonical inner product in R™. Indeed, if x;
and x5 are the eigenvectors with the eigenvalues A; # Ao then Azq = Az implies (A1, z2) = A (21, 22)
and Axs = Aoxy implies (21, Axo) = Ay (21, 22). By the symmetry of A, we have (Axy,22) = (21, Axs)
whence A; (21, 22) = Ao (21, 22) and (z1,22) = 0.

Part (a) of Theorem 4.9 is analogous to the identity A =

(A:E,;E)
llz]1

A, which trivially follows from Az = Az by taking the inner product with z.

for an eigenvector x with the eigenvalue
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whence (4.19) follows.

(b) Switching the indices 1 and 2 in (4.21) and noticing that all the integrals are
symmetric with respect to the indices 1 and 2, we obtain

b b b
/px'lx’gz/ qmlxgdt+)\2/ wx1Tdt. (4.22)

Since A; # Ay, the two identities (4.21) and (4.22) can be simultaneously satisfied only if

b
/ wx1x2dt =0

which was to be proved. m
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Example. Recall that the Sturm-Liouville problem

{ 2+ =0
z(0)=x(r)=0

has the eigenfunctions sin kt, k € N. Hence, the orthogonality relation (4.20) becomes
/ sin kqt sin kot dt = 0 for all ky # ko,
0

which is, of course, obvious without Theorem 4.9. A version of this relation on the interval
[—7, ] is used in the theory of Fourier series.

Let us briefly discuss some more interesting examples. It follows from the proof of
Theorem 4.9(b) that the orthogonality relation remains true in a more general situation
when the given ODE is defined in an open interval (a,b) and the following conditions are
satisfied:

b
() the integral / r1Towdt converges as improper;

a

(17) [pm’lxg]z = [pxlx’z]z = 0 where the values at a and b are understood in the sense of
limit.

Example. The Legendre polynomials are the eigenfunctions of the following problem on
(—1,1):

(1—t)a" —2t’ + Az =0
x (£1) finite.

The ODE can be written in the Sturm-Liouville form as
((1 — t2) x')l + \x = 0.

The eigenvalues are A\, = n(n + 1), where n is non-negative integer. The eigenfunction

of A\, is Lo
Pa(t) = g [~ 1)
1

which is obviously a polynomial of degree n (the coefficient 57— is chosen for normalization
purposes). Since p(t) = 1 — t* vanishes at +1, the above conditions (i) and (i) are
satisfied, and we obtain that the sequence {P,} is orthogonal in [—1, 1] with the weight
function w = 1.

Here are the first few Legendre polynomial and their graphs:

Po(t)=1, P(t)=t, P(t)==(3*-1), P3(t) == (5t = 3t), ...

N =
N —
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Example. The Chebyshev polynomials are the eigenfunctions of the following problem
on (—1,1):
(1—t)z" —tz' + Xz =0
{ x (£1) finite.

The ODE can be rewritten in the Sturm-Liouville form

(Vi—ew) + _ff _ =0
1

sothat p =+v1 —t? and w = o The eigenvalues are A = n? where n is a non-negative
integer, and the eigenfunction of )\, is

T, (t) = cos (narccost),

which is a polynomial of the degree n. Since p(£+1) = 0 and fjlw(t) dt < oo, the

conditions (¢) and (7i) are satisfied so that {7},} are orthogonal with the weight ﬁ
Here are the first few Chebyshev polynomials and their graphs:

To(t)=1, Ti(t)=t, Tp(t)=2t—1, Ts(t) =4t> - 3t, ...

05T

057
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Example. The Hermite polynomials are the eigenfunctions of the problem on (—oo, +00)

' —td + =0
z(t) =o(t") ast — +oc.
The ODE can be rewritten in the Sturm-Liouville form
(a:'e_tz/Q)/ + e PP =0,
—t2/2

sothat p=w =¢
eigenfunction of A, is

. The eigenvalues are A\, = n, n is a non-negative integer, and the

ﬁ —t2/2
ar
which is a polynomial of degree n. Since p (t) decays fast enough as ¢ — oo, the conditions
(i) and (i7) are satisfied and we obtain that {H,} is orthogonal on (—o0, +00) with the
weight e~ /2.

Here are the first few Hermite polynomials and their graphs:

Ho(t)=1, Hi(t)=t, Hy(t)=t"—1, H3(t)=t>—6t, ...

H, (t) = (—1)" e/

PO

Theorem 4.10 (The Sturm-Liouville theorem) Assume that p € C?[a,b], q,w € C|a, ]
and p,w >0 on [a,b]. Then the Sturm-Liouville problem

{ (pr) + qr + Awz =0
z(a)=z(b)=0

has a sequence { M}, of eigenvalues and the corresponding eigenfunctions xy, (t) such
that

(@) Mg < Apy1 and A\, — +o0 as k — 0.

(b) The eigenfunction xy (t) has exactly k — 1 zeros in (a,b).
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Proof. Write the Sturm-Liouville equation in the form

"+ Pz’ + Qr + AWz =0, (4.23)
where .
P=2 =% an Q=2
p p p

Note that P € C' [a,b]. As in the proof of Theorem 4.5, we can get rid of P by the change

w(t) = 2 (1) exp (% / Pdt) — 2 (t)exp G / %dt) — 2 () /P,

which leads to the ODE B
' + Q) u+ AW (t)u=0.
where . P
)=Q—-P>——.
Q=Q-7 5
This means that we can assume from the very beginning that p = 1 and write the Sturm-

Liouville problem in the form

{x”+qx+)\wx:0

r(a) = (b) = 0. (4.24)

Also, g can be assumed non-positive because replacing g by ¢ — Cw we just replace A
by A + C without changing the eigenfunctions. Hence, assume in the sequel that ¢ < 0
on [a,b]. It follows (for example, from the Example after Theorem 4.5 or from Theorem
4.9(a)) that all the eigenvalues are positive. Thus, we can assume in the sequel that the
spectral parameter A is positive.

Extend the functions ¢ (¢), w (t) continuously to all ¢ € R so that, for large enough
t, q(t) =0 and w (t) = 1; hence, the ODE for large ¢t becomes x” + Az = 0. For a fixed
A > 0, consider the following IVP on R

"+ (g+ w)z =0
z(a)=0
2 (a) =1

and denote the solution by z (¢, ). We are interested in those A > 0, for which
z(b,A) =0,

because these A will be exactly the eigenvalues, and the corresponding solutions z (¢, A)
(restricted to [a, b]) — the eigenfunctions. In other words, we look for those A for which b
is a zero of the function x (¢, \) (as a function of t).

For any A > 0, consider all zeros of z (t,\) in t € [a,+00). For large enough ¢, the
equation becomes z” + Az = 0 and its zeros form an increasing sequence going to +oc.
For a bounded range of ¢, there is only finitely many zeros of z (¢, \) (Lemma 4.4). Hence,
for any A > 0, all zeros of z (¢, \) in [a,4+00) can be enumerated in the increasing order.
Denote them by {z; (A\)},—, where 2o (A\) = a and 2z (X\) > a for £ € N. The condition
x (b, A) = 0 means that b is one of zeros of x (¢, \), that is

2k, (\) = b for some k € N.
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In order to be able to solve this equation for A, consider some properties of the functions
2L ()\), k € N.
Claim 1 For any fized k € N, the function z (X) is continuous function of \.

Now let us prove by induction in k& > 0 that z () is continuous in A\. The case k =0
is trivial because z; (A) = a. Assuming that the function zx_; (\) is continuous, let us
prove that z; (A\) is also continuous. Fix some \g > 0 and write for simplicity of notation
2k = 2 (Ao). We need to prove that for any € > 0 there is 6 > 0 such that

A= ol <6 = |z (\) — 2] <e.

It suffices to prove this for sufficiently small .

Choose € > 0 so small that the function z (¢, \g) has in the interval (z; — €, 2 + €)
only one zero (which is possible by Lemma 4.4). By the continuity of x (¢, \) in A, there
is 6 > 0 such that if |[A — Ag| < 6 then the function x (¢, \) has the same sign at t = z;, £ ¢
as z (t, \o). Hence, by the intermediate value theorem, the function x (¢, \) must have a
zero in (zp — €, 2 + €).

How to ensure that x (¢, \) has exactly one zero in this interval? Let M = supw and
consider the ODE

y" + AMy =0,

that has solution y = sin (\/ AMt + <p>. Since z (t, A) solves the ODE

"+ (¢g+ A w)z =0

and ¢ + A\w < AM, Theorem 4.5 implies that between any two zeros of z (¢, \) is a zero
of y (t). It follows that the distance between two consecutive zeros of x (¢, ) is at least

T _T

VAM ~ V2X M’

where we have assumed that A < 2\g which is true if X is close enough to \g. Assuming
further that

™

V2o M’

we obtain that x (¢, \) cannot have two zeros in (z; — €, 2z + €).

Now we are left to ensure that the unique zero of z (¢, \) in (2x — €&, 2, +¢€) is ex-
actly the k-th zero, that is z; (A). Write for simplicity zx_; = 2zx_1 (A\o). Then, by the
choice of ¢, the interval (z;_1 — €, 2,1 + €) contains exactly one zero of z (¢,\). By the
inductive hypothesis, the function zj_; (A) is continuous. If A is close enough to Ag then
|2k—1 (A) — zk—1] < € so that the unique zero of z (£, A) in the interval (zx_; — €, zx—1 +€)
is zg—1 (A). Between the intervals (zx_1 —¢€,2zx_1 +¢) and (2 — ¢, 2, +¢€), that is, in
[2k—1 + €, 2z — €], function z (¢, A\g) has no zeros and, hence, keep the sign, say, positive.
Hence, by the continuity of x (¢, \) in (¢, A), the function x (¢, A) is positive in this interval
as well, provided A is closed enough to A\g. Hence, the zero of x (¢,\) in (2 — e, 2, +¢) is
the next zero after zx_; (\), that is, z; (A). This proves that |z (\) — zx| < € and, hence,
the continuity of z ().

The next claim is a slight modification of the Sturm theorem (Theorem 4.5).

Claim 2 Let 2" + ¢, (t)x = 0 and y" + ¢ (t) y = 0 on some interval I where q; (t) < g2 (1)
onI. If x Z0 and o, B are distinct zeros of x then there is a zero of y in («, ().

2e <
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Indeed, as in the proof of Theorem 4.5, we can assume that «, § are consecutive zeros
of x and z (t) > 0 in (a,B). Also, if y has no zeros in (a, ) then we can assume that
y (t) > 0 on (o, B) whence y (o) > 0 and y () > 0. Then as in the proof of Theorem 4.5,

s
'y — 2y’ = / (g2 — 1) zydt.

The integral in the right hand side is positive because ¢ > ¢; and z,y are positive on
(e, ), while the left hand side is

2 (B)y (B) —2' () y () <0

because 2’ (§) < 0 and 2’ (a)) > 0. This contradiction finishes the proof.

Claim 3 For any k € N, 2 (\) strictly monotone decreases in .
We need to prove that if A < ) then

2 (V) < 2 (A) (4.25)

By Claim 2, strictly between any two zeros of z (t,\) there is a zero of z (t,\). In
particular, the interval (zx_1 (), zx (\)) contains a zero of x (¢, \'), that is,

z; (N') € (zk—1 (), 2z (X)) for some j € N. (4.26)

Now let us prove (4.25) by induction in k. Inductive basis for £ = 1: since the interval
(20 (A), 21 (\)) contains z; (\'), we obtain

2 (N) <z (N) <z (V).
Inductive step from k£ — 1 to k. By the inductive hypothesis, we have
21 () <z (V).
Therefore, (4.26) can be true only if j > k — 1 that is, j > k. It follows that
2t (V) <z (N) <z (V)

which finishes the proof.

Claim 4 For any k € N, we have supy.  zx (A\) = +00 and infysg 2, (\) = a.
We have
q+ \w < supq+ Asupw.

Since sup ¢ < 0 and supw < +o0, for any € > 0 there is A > 0 such that

sup (¢ + \w) < e.
teR

Comparing with the ODE y” + ey = 0, we obtain that the distance between any two zeros
of z (t,\) is at least J=» whence

21 ()\) — 20 ()\) Z %,
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which implies that
sup zx (A) > sup z1 (A) = 0.
A>0 A>0
Similarly, we have
q+ Aw > inf ¢ + Ninf w.

Since inf w > 0 and inf ¢ > —o0, for any F > 0 there is A > 0 such that

%gﬂg (q+ \w) > E.
Comparing with the ODE 3" + Fy = 0, we obtain that the distance between any two
zeros of x (¢, \) is at most 5> Whence it follows that

2k () < a+k——.

VE

Since F can be arbitrarily big, we obtain

}\I;fo 2zt (A) = a.

Hence, the function zj (A) on (0, 400) is continuous, strictly decreasing, its inf is a and
sup is +o0. By the intermediate value theorem, z;, (\) takes exactly once all the values in
(a,+00). Therefore, there is a unique value of A such that z; (A) = b. Denote this value
by Ax so that z (Ax) = b. On a plot below, one can see the graphs of zj (A) with two
horizontal lines at the levels a and b, respectively. The intersections with the latter one
give the sequence {\;}.

—

Since z (a, A\x) = x (b, \x) = 0, we obtain that the function zy () := x (¢, \) is the
eigenfunction with the eigenvalue \g.
Let us show that Ay < A\r11. For any k£ > 0, we have
o1 (M) > 2 (Ak) = b= 2ps1 (A1)
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which implies by Claim 3 that Ay < A\py1.
Let us show that A\, — oo as k — oco. Indeed, if {\z} is bounded, say, A\;, < A for all
k, then
b=z () > 2 (A),

which contradicts the fact that z; (A) — oo as k — 0.

By construction, all zeros of xy (t) on [a, +00) are z; (A;). Since zi, (A\;) = b, all zeros
of zj (t) in (a,b) are z; () with j =1,...,k — 1. Hence, zj (¢) has exactly k — 1 zeros on
(a,b), which finishes the proof. m

Remark. The Sturm-Liouville theorem has the second half (which was actually proved
by Steklov) that states the following: the sequence of eigenfunctions {z},., constructed
above is complete. This means, in particular, that any function f € C'[a,b] (and more
generally, any square integrable function f on [a,b]) can be split into the series

FO) =) (t), (4.27)

where the convergence is understood in the quadratic mean, that is, if f, is the n-th
partial sum then

/b’f(t)—fn(t)|2dt—>0asn—>oo.

The completeness of the sequence of the eigenfunctions has important consequences for
applications. As we have seen in the example of the heat equation, the representation of
the form (4.27) with zy, (t) = sin kt was used for the initial function f. The existence of
such a representation leads to the solvability of the initial-boundary value problem for a
wide enough class of the initial functions f. Similar results for other PDEs require the
completeness of the sequence of the eigenfunctions of the general Sturm-Liouville problem.

The proof of the completeness requires additional tools (that will be introduced in
Functional Analysis) and is beyond the scope of this course.
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