Übungen zur Vorlesung

Spezielle Aspekte der Stochastik

Blatt 1

Aufgabe 1

a) Durch

sei die Verteilung einer Zufallsvariablen X gegeben. Bestimmen Sie die Verteilungsfunktion F_X von X und zeichnen Sie die Graphen von der Verteilung $x \mapsto P(X = x)$ und von F_X .

b) Durch

$$F_Y(y) = \begin{cases} 0, & \text{falls} & y < -1 \\ 0, 2, & \text{falls} & -1 \le y < 0 \\ 0, 6, & \text{falls} & 0 \le y < 1, 5 \\ 0, 75, & \text{falls} & 1, 5 \le y < 3 \\ 1, & \text{falls} & y \ge 3 \end{cases}$$

ist die Verteilungsfunktion einer Zufallsvariablen Y gegeben. Bestimmen Sie die Verteilung von Y und zeichnen Sie die Graphen der Verteilung $x \mapsto P(Y = x)$ und von F_Y .

c) Kann durch die folgenden Funktionen p, q bzw. r die Verteilung einer Zufallsvariablen gegeben sein, d.h. gibt es eine Zufallsvariable X mit P(X=x)=p(x) (bzw. =r(x),=q(x))? Begründen Sie Ihre Entscheidung.

d) Kann durch die folgenden Funktionen F bzw. G die Verteilungsfunktion einer Zufallsvariablen gegeben sein? Begründen Sie Ihre Entscheidung.

$$F(x) = \begin{cases} 0, & \text{falls} & x < -1 \\ 0, 2, & \text{falls} & -1 \le x < -0, 5 \\ 0, 6, & \text{falls} & -0, 5 \le x < 1 \\ 0, 5, & \text{falls} & 1 \le x < 2 \\ 1, & \text{falls} & x \ge 2 \end{cases} \qquad G(x) = \begin{cases} 0, & \text{falls} & x < -10 \\ 0, 8, & \text{falls} & -10 \le x < -2 \\ 0, 9, & \text{falls} & -2 \le x < 0 \\ 1, & \text{falls} & x \ge 0 \end{cases}$$

Hinweis: Die auf der nächsten Seite folgenden Aufgaben sind vielleicht nicht alle ganz leicht zu lösen, Sie sollten aber wenigstens versuchen, einige Teilaufgaben zu bearbeiten.

Aufgabe 2

Es sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum.

a) Für die Folge $B_1, B_2, ... \in \mathcal{A}$ von Ereignissen gelte

$$B_1 \subseteq B_2 \subseteq B_3 \subseteq \dots$$

Beweisen Sie, dass das Wahrscheinlichkeitsmaß P σ -stetig von unten ist, d.h. dass gilt:

$$P(B_n) \longrightarrow P(\bigcup_{i=1}^{\infty} B_i)$$
 für $n \to +\infty$

Hinweis: Definiere $A_1 := B_1, A_2 := B_2 \setminus B_1, A_3 := B_3 \setminus B_2$, usw., stelle B_n und $\bigcup_{i=1}^{\infty} B_i$ als Vereinigungen der Mengen A_n dar und nutze die σ -Additivität von P.

b) Für die Folge $B_1, B_2, ... \in \mathcal{A}$ von Ereignissen gelte

$$B_1 \supseteq B_2 \supseteq B_3 \supseteq \dots$$

Beweisen Sie, dass das Wahrscheinlichkeitsmaß P σ -stetig von oben ist, d.h. dass gilt:

$$P(B_n) \longrightarrow P(\bigcap_{i=1}^{\infty} B_i)$$
 für $n \to +\infty$

Hinweis: Betrachte statt der Mengen B_n ihre Komplemente und wende a) an!

Aufgabe 3

Sei X eine Zufallsvariable auf dem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) . Zeigen Sie die folgenden Eigenschaften der Verteilungsfunktion F_X von X.

- a) " F_X kommt von 0 und geht nach 1", d.h. es gilt: $\lim_{n\to\infty} F_X(-n) = 0$ und $\lim_{n\to\infty} F_X(n) = 1$.

 Hinweis: Betrachte die Ereignisse $B_n := \{X \le -n\}$ bzw. $C_n := \{X \le n\}$, dann gilt $\bigcap_{i=1}^{\infty} B_i = \emptyset$ bzw. $\bigcup_{i=1}^{\infty} C_i = \Omega$ (warum?). Wende nun Aufgabe 2 an.
- b) $P(X = a) = F_X(a) \lim_{\substack{x \to a \\ x < a}} F_X(x)$ Hinweis: Es reicht offenbar zu zeigen (warum?), dass $P(X < a) = \lim_{\substack{x \to a \\ x < a}} F_X(x)$. Dazu betrachte eine beliebige Folge $(x_n)_{n \in \mathbb{N}}$ mit $x_n < a$ und $x_n \to a$ für $n \to \infty$. Zeige, dass für die Ereignisse $B_n := \{X \le x_n\}$ gilt $\bigcup_{i=1}^{\infty} B_i = \{X < a\}$ und wende dann Aufgabe 2 a) an.
- c) F_X ist rechtsseitig stetig an jeder Stelle $a \in \mathbb{R}$. Zeige dazu, dass für jede Folge $(a_n)_{n \in \mathbb{N}}$ mit $a_n \geq a$ und $a_n \to a$ für $n \to \infty$ gilt: $F_X(a_n) \to F_X(a)$ für $n \to \infty$.

 Hinweis: Definiere die Ereignisse $B_n := \{X \leq a_n\}$, zeige $\{X \leq a\} = \bigcap_{i=1}^{\infty} B_i$ und benutze Aufgabe 2 b).

Abgabe: Freitag, 24.04.09, 12.00 Uhr, Postfach des Tutors in V3-128