Übungen zur Vorlesung

Methoden der angewandten Mathematik

Blatt 2

Aufgabe 1

Bei einem Straßenfest findet ein Wettbewerb im Kirschkern-Weitspucken statt. Gegeben ist die folgende Urliste der Ergebnisse (in cm) aller Spuckversuche:

397	394	443	449	487	387	401	433	405	416	412
388	382	398	401	471	391	423	401	398	431	459
452	421	419	383	425	477	390	439	395	419	456

- a) Stellen Sie die Daten übersichtlich in einem Stamm-Blatt-Diagramm und einem geeigneten Histogramm dar!
- b) Berechnen Sie das arithmetische Mittel, das geometrische Mittel und das harmonische Mittel der Stichprobenwerte.

Aufgabe 2 (Geometrisches und harmonisches Mittel)

- a) Zeigen Sie mithilfe eines einfachen Beispiels, dass geometrisches und harmonisches Mittel keine Lagemaße im Sinne der Bedingung (\star) aus der Vorlesung sind: Verschiebt man alle Stichprobenwerte um einen festen Wert a>0 nach rechts, so erhält man als geometrisches (bzw. harmonisches) Mittel im Allgemeinen *nicht* das um a nach rechts verschobene geometrische (bzw. harmonische) Mittel der ursprünglichen Werte.
- b) Zeigen Sie: Der Durchschnittszinssatz für ein Kapital K, das für n Jahre angelegt wird und im j-ten Jahr (j=1,2,...,n) mit dem Zinssatz p_j % verzinst wird, ist gleich $(\overline{x}_g-1)\cdot 100\%$, wobei \overline{x}_g das geometrische Mittel der Werte $x_j:=1+\frac{p_j}{100}, j=1,2,...,n$, ist. (Hinweis: Bevor Sie diesen und den Aufgabenteil c) gar nicht bearbeiten, denken Sie sich für die vorkommenden Variablen konkrete Werte aus, mit denen Sie dann rechnen!)
- c) Ein Rohr bestehe aus n gleich langen Teilrohren. Eine Flüssigkeit fließt durch das j-te Teilrohr mit der konstanten Geschwindigkeit v_j m/s (j=1,2,...,n). Zeigen Sie, dass die durchschnittliche Fließgeschwindigkeit der Flüssigkeit auf der gesamten Strecke gerade das harmonische Mittel \overline{v}_h der Werte $v_1,...,v_n$ ist.

(Hinweis: Wenn die Gesamtstrecke die Länge s hat, wie lang sind dann die Teilstrecken und wieviel Zeit benötigt die Flüssigkeit auf den Teilstrecken?)

d) Vergleich von arithmetischem, geometrischem und harmonischem Mittel: Für reelle Zahlen $x_1, x_2 > 0$ gelten die Ungleichungen:

$$\frac{2}{\frac{1}{x_1} + \frac{1}{x_2}} \leq \sqrt{x_1 \cdot x_2} \quad \text{und} \quad \sqrt{x_1 \cdot x_2} \leq \frac{1}{2} \cdot \left(x_1 + x_2\right)$$

Beweisen Sie die beiden Ungleichungen!

(Hinweis: Verwenden Sie die offensichtliche Ungleichung $(x_1 - x_2)^2 \ge 0$.)

Abgabe: Mittwoch, 29.10.08, 11.00 Uhr, Postfächer der Tutoren im Kopierraum V3-128