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Motivation

(Possible) Applications

Generalization of Voronoi tilings

Voronoi tilings are a special case of
Laguerre tilings

Might describe certain problems in
more detail

Simulation of granular media

”detect” collision in sets of spheres
with different radius
(s.f. Ferrez, Liebling & Müller in Lecture Notes in Physics
Vol. 554: “Dynamic Triangulations for Granular Media
Simulations”)

. . .
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Phase spaces: (X, A ,B(X)), where

X is the set where the points lie,
A a σ-Algebra in X, containing at least all sets of the kind
{x}, x ∈ X and
B(X), the bounded sets in X, a valid set of subsets of X.
They define locality. (B0(X): measurable bounded sets.)

Measure spaces:
M (X) locally finite measures, prepared with σ-Algebra
F (X) = σ (ζB ;B ∈ B0(X)), ζB : M (X) → R

+
0 ,

ζB(µ) := µ(B);
M ·· (X) counting measures, F ·· (X) := M ·· (X) ∩F (X);
M · (X) simple counting measures,
F ·· (X) := M · (X) ∩F ·· (X).

Probabilities on measure spaces: random measures, point
processes, simple point processe respectively.

(All point process theory used in this talk is based on Kerstan, Matthes, Mecke ”Unbegrenzt teilbare

Punktprozesse” and Ripley ”Locally finite random sets: foundations for point process theory” in Ann. Probability

4(6):983-994, 1976.)
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The Phase Space of Clusters

Cluster Space

Consider the phase space (Rd,B(Rd),B(Rd)), where B(Rd) is
the set of Borel sets in Rd with respect to the Euclidean
topology and B(Rd) is the set of metrically bounded subsets
of Rd.

Γ, G

We define the cluster space as follows

Γ :=
{

x ∈ M ·
(
Rd

) ∣∣ x(Rd) < +∞
}

.

And the corresponding σ-Algebra

G := Γ ∩F ·
(
Rd

)
.
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The Phase Space of Clusters

Locality in Cluster Space

Bounded Sets

A subset F of Γ belongs to the bounded sets B (Γ), iff there exists
some B ∈ B0(R

d) such that

F ⊆ FB := {x ∈ Γ |x(B) > 0}

Remarks: FB ∈ G for all B ∈ B0(R
d), even

G = σ
(
FB; B ∈ B0(R

d)
)
.
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The Phase Space of Clusters

Figure: x is in FA but not in FB
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The Phase Space of Clusters

Locally Finite Cluster Configurations

Proposition 1

(Γ,G ,B (Γ)) is a valid phase space.

We can now talk about M · (Γ), (locally finite) cluster
configurations

”Locally finite” in this context means that only finitely many
clusters of a configuration have points in a fixed bounded set of Rd.
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Special Clusters or Geometry

Convex Polytopes

Discrete Convex Polytopes

A cluster x ∈ Γ is called
discrete convex polytope (in
Rd), if for all points a ∈ x there
exists some (d− 1)-dimensional
hyperplane H with
H ∩ 〈x〉 = {a}. We denote the
set of discrete convex polytopes
by K (Rd).
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Special Clusters or Geometry

Figure: We identify convex polytopes with their vertices
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Special Clusters or Geometry

Special Cluster Configurations: Tilings

Tilings

A configuration µ ∈ M · (Γ) is
called tiling in Rd, if

1 x ∈ µ ⇒ x ∈ K (Rd),

2 the convex hulls of the
elements of µ are
face-to-face and

3
⋃

x∈µ〈x〉 = Rd.

The set of all tilings in Rd will
be denoted by M(Rd).
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Special Clusters or Geometry

Random Tilings: Point Processes in Cluster Space

Random Tilings

A probability P on M · (Γ) is called random tiling, if all measurable
sets M such that M(Rd) ⊆ M have probability 1.
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Locality and Bounded Sets for Laguerre Configurations
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Locality and Bounded Sets for Laguerre Configurations

Preparations

Now we go over to E = Rd × R and prepare it with the standard
Borel sets B(E). We define the projections q : E → Rd,
e = (qe, ge) 7→ q(e) = qe and g : E → R, e = (qe, ge) 7→ g(e) = ge.

What subsets of E should be considered bounded to have an
apropriate notion of ”locally finite”?

The metrically bounded sets

but we need more. . .
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Locality and Bounded Sets for Laguerre Configurations

Cylindrical Sets

All subsets of cylindrical sets
A× R, A ∈ B(Rd), should be
bounded, because the
projection

q : M (E) −→ M
(
Rd

)
,

η 7−→ q(η) ,

needs to be well defined. (This
projection is the induced
mapping of q : E → Rd.)
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Locality and Bounded Sets for Laguerre Configurations

A Special Symmetric Form

Consider the following symmetric form:

s : E × E −→ R ,

(e, f) 7−→ (q(e)− q(f))2 − (g(e) + g(f)) .

Remark: s ((q1, 0), (q2, 0)) = (d(q1, q2))
2.
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Locality and Bounded Sets for Laguerre Configurations

Paraboloid Sets

Paraboloid Sets

We define the paraboloid with
focus in f ∈ E by

p(f) := {e ∈ E | s(e, f) ≤ 0} .

Finite unions of such
paraboloids should also
belong to the bounded
sets B(E).
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Locality and Bounded Sets for Laguerre Configurations

Locally Finite Measures in (E, B(E),B(E))

Proposition 2

Let ρ = z · λd ⊗ τ , where z ∈ R+, λd is the Lebesgue measure in
Rd and τ is some finite measure in R. If for all g ∈ R∫ +∞

−g
λd

(
B√g+t(0)

)
τ(dt) < +∞ ,

then ρ ∈ M (E).

Examples:

τ = δg1 + . . . + δgn , n ∈ N, g1, . . . , gn ∈ R,

τ concentrated on some bounded interval in R,

τ has some density f with respect to λ1 such that for all g ∈ R∫ +∞

−g
(g + t)d/2 f(t)λ1(dt) < +∞ .
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Laguerre Tilings

Laguerre Configurations

Analogously to the Voronoi tessellations we need an additional
property of the underlying point configurations to get proper
tilings:

L

We define the Laguerre Configurations L ⊂ M · (E) by

η ∈ L :⇐⇒ q(η)
(
H+(u, α)

)
≥ 1 ∀u ∈ Qd r {0}, ∀α ∈ Q ,

where H+(u, α) :=
{
v ∈ Rd |u · v ≥ α

}
.

Remark: L ∈ F · (E)
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Laguerre Tilings

The Cells

Laguerre Cells

Let η ∈ L . The Laguerre cell of a point e ∈ η is defined by

Lη(e) :=
{

v ∈ Rd
∣∣ s (e, (v, 0)) ≤ s (f, (v, 0)) , ∀f ∈ η

}
A special case:

Voronoi Cells

Let η ∈ L such that g(e) = g = const. for all e ∈ η, then the
Laguerre cells ”are” the Voronoi cells of the configuration
µ = q(η):

Lη(e) = Vµ (q(e)) =
{

v ∈ Rd
∣∣ d (v, q(e)) ≤ d (v, u) ∀u ∈ µ

}
.
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Laguerre Tilings

Example Cells

Figure: Same weights: the
Voronoi case

Figure: General case: the faces are
shiftet according to the relative
weights
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Laguerre Tilings

Properties of the Cells

Proposition 3

For η ∈ L the Laguerre cells Lη(e), e ∈ η are convex polytopes.

Cells are compact: due to the points in ”enough” half spaces,

Cells are polygones: because of η (p(f1) ∪ · · · ∪ p(fn)) < +∞
for arbitrary n ∈ N and f1, . . . , fn ∈ η.

Proposition 4

For η ∈ L the collection of the Laguerre cells Lη(e), e ∈ η is a
face-to-face collection.

Follows almost immediately from definition of the cells, because
the sets

{
v ∈ Rd | s(e, (v, 0)) = s(f, (v, 0))

}
, e, f ∈ η are

hyperplanes. Proofs of these results are modifications of the ones in M. Schlottmann, ”Periodic and

Quasi-Periodic Laguerre Tilings” in International Journal of Modern Physics B, Vol. 7 (1993).
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Construction of the Cluster Process

Laguerre Cluster Property

DL

We define the Laguerre cluster property DL ⊂ Γ×M · (E) by
(x, η) ∈ DL , iff

(L1) η ∈ L and

(L2) there exists some e ∈ η such that Lη(e) 6= ∅ and
x =

∑
q∈vert Lη(e) δq

Remark: DL ∈ G ⊗F · (E).

(x, η) ∈ DL means that x ”is” a Laguerre cell of the point
configuration η.
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Construction of the Cluster Process

The Laguerre Cluster Function

ϕL

We define the Laguerre cluster function by

ϕL : L −→ M · (Γ) ,

η 7−→
∑

(x,η)∈DL

δx .

Proposition 5

The Laguerre cluster function is well defined, that is ϕL (η) is
locally finite for all η ∈ L , and measurable.

Main Lemma

If η ∈ L , then ϕL (η) is a tiling.
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Random Laguerre Tessellations

Random Laguerre Tessellations

Just by applying the transformation theorem we get the following
result:

Proposition 6

Let P be a probability on M · (E) such that P (L ) = 1. Then
Q := ϕL (P ) is a random tessellation.

We call such a cluster process a random Laguerre tessellation (or
random Laguerre tiling).
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Random Laguerre Tessellations

A Prominent Example

Proposition 7

Let ρ = z · λd ⊗ τ , such that τ complies the condition of
proposition 2, that is, for all g ∈ R∫ +∞

−g
λd

(
B√g+t(0)

)
τ(dt) < +∞ .

Then Pρ(L ) = 1.
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Random Laguerre Tessellations

Poisson Laguerre Process

Thus we get the main result for this talk:

Theorem

The image of Pρ, ρ as in proposition 7, under the laguerre cluster
function ϕL is a random tiling in Rd.

We call this process the Poisson Laguerre process.

Corollary

Let ρ = z · λd ⊗ δr with z ∈ R+ and r ∈ R. Then Pρ-almost surely
all ϕL (η) are tilings in Rd, consisting of the Voronoi cells of q(η).

Such a process is called Poisson Voronoi process.
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Existing Expansion of the Theory

The Dual Tiling

Analogously to the Voronoi and Delone Tilings there exists some
dual Laguerre Tiling. But the construction differs slightly:

You take the vertices of the Laguerre tiling as point
configurations,

give them ”apropriate” weights and then

consider the Laguerre Cells on the new configurations.
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Outlook

Possible, not yet Fully Developed Expansions

Go over from the symmetric form s to some general
symmetric form, having certain properties.

Replace s by some other well known symmetric forms, for
instance the Minkowski quadratic form m : E × E → R,
m(e, f) := (q(e)− q(f))2 − (g(e)− g(f))2, which might have
applications in special relativity.

Go over to tilings in E and not in the projected space Rd.
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Thank you for your audience!
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Questions or remarks?

Kai Matzutt Construction of Random Laguerre Tessellations



Thank you again!
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