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Motivation

Motivation

Very general approach to produce random tessellations . . .

or other random sets of geometric or discrete objects

Builds on known point processes in Euclidean space

Random tessellations (may) have many possible applications
inside and outside mathematics
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An Explanatory Example

The Voronoi Tessellation

Properties

(Random) point sets build the starting
position for the tessellation

Geometric objects (polytopes) are
derived from points

Objects cover the whole space for
certain point configurations
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An Explanatory Example

What Needs to be Done by the Theory?

Question 1

How can we describe random point sets?

Question 2

What kind of geometric objects are appropriate?

Question 3

How can we combine geometric objects and random point sets in a
valid way?

Question 4

Can we create interesting examples?
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Locality

Phase Spaces

Starting with a measurable space (X,A ), where

X is some set (the space where ’the points’ lie in) and
A is a σ-Algebra in X which contains at least all sets of the
kind {x}, x ∈ X.

For an idea of locality we need the concept of bounded sets, a
class B(X) of subsets of X with certain properties.

’Bounded’ should not necessarily depend on some metric

Definition

We will call a valid triple (X,A ,B(X)) a phase space.
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Locality

Required Properties of Bounded Sets

(B1) Heredity: is B ∈ B(X) and C ⊆ B, then also C ∈ B(X);

(B2) B(X) is stable under finite unions;

(B3) there exists some sequence B1, B2, . . . ∈ B(X) ∩A := B0(X)
with X =

⋃∞
i=1Bi;

(B4) for all B ∈ B(X) exists some B0 ∈ B0(X) with B ⊆ B0.

And we also need some separation axiom:

(C) There exists some countable subclass B̃0(X) of B0(X) which
separates the points of X in the following sence: for all n ∈ N
and x1, . . . , xn there exist pairwise disjoint
B1, . . . , Bn ∈ B̃0(X) with xi ∈ Bi for all i = 1, . . . , n.
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Locality

Easy Examples of Phase Spaces

Main Example: (Rd,B(Rd),B(X)), where B(Rd) are the
Borel sets with respect to the Euclidean topology and B(X)
are the metrically (Euclidean metric) bounded subsets of Rd.
We will call this phase space the Euclidean phase space.

More general: X is some locally compact topological space
with a countable basis. Let A again be the corresponding
Borel sets. As bounded sets we can choose the relative
compact sets.
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Locality

A Slightly Different Example

Let X = R
d × R, A again the

Euclidean Borel sets.

Then the subsets of cylindrical sets of
the kind A× R, where A is a
metrically bounded subset of Rd, are a
valid family of bounded sets.
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Locally Finite and Counting Measures

Locally Finite

Locally Finite Measures

Let (X,A ,B(X)) be a phase space.
Then a measure µ on (X,A ) is called locally finite, if all the
values µ(B), B ∈ B0(X), are finite.
The set of all locally finite measures will be denoted by M (X).

Locally Finite Subsets of X

A subset A of X is called locally finite if cardA ∩B <∞ for all
B ∈ B(X).
Locally finite subsets of X are countable.
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Locally Finite and Counting Measures

Important Subsets of M (X)

Counting Measures

If µ ∈ M (X) has the property that all values µ(B), B ∈ B0(X)
are (positive) integers, then µ is called counting measure.
(µ ∈ M ·· (X))

Can be uniquely expressed in the form µ =
∑

x∈µ∗ nxδx,
where µ∗ is some locally finite subset of X, called the support
of µ, and all nx ∈ N.

Simple Counting Measures

A counting measure is called simple if µ({x}) ∈ {0, 1} for all
x ∈ X. (µ ∈ M · (X))

Can be expressed in the form µ =
∑

x∈µ∗ δx.
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Locally Finite and Counting Measures

Identification of µ and µ∗

From now on we will identify a simple counting measure µ
with its uniquely determined support µ∗.

In this sense a counting measure ’is’ a sequence of points in
X.
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Locally Finite and Counting Measures

Important Subsets of M (X) (2)

Finite Simple Counting Measures

µ ∈ M · (X) is called finite, if µ(X) <∞. (µ ∈ M ·
f (X))

Diffuse Measures

A locally finite measure µ is called diffuse or free of atoms if
µ({x}) = 0 for all x ∈ X. (µ ∈ M ◦(X))
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Locally Finite and Counting Measures

Counting Variables

The Counting Variables

For B ∈ B0(X) let

ζB : M (X) −→ R
+
0 ,

µ 7−→ µ(B) .

These functions are called counting variables.

If µ ∈ M · (X), then ζB counts the points of µ in B.
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Locally Finite and Counting Measures

Counting Variables (2)

Figure: In this case ζB(µ) = 4
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Locally Finite and Counting Measures

Making a Measurable Space out of M (X)

F (X)

Let F (X) be the σ-Algebra in M (X) which is generated by all
the counting functions ζB, B ∈ B(X).

We now prepare the subclasses of M (X) with the associated
trace σ-algebras of F (X) on them:

F ·· (X), F · (X), F ·
f (X), F ◦(X)

F ·· (X) := M ·· (X) ∩F (X)

F · (X) := M · (X) ∩F (X)

F ·
f (X) := M ·

f (X) ∩F (X)

F ◦(X) := M ◦(X) ∩F (X)
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The Poisson Point Process

Random Measures and Point Processes

We now have several measurable spaces (M (X),F (X)),
(M ·· (X),F ·· (X)), (M · (X),F · (X)), . . .

Random Measures

A probability on (M (X),F (X)) is called a random measure X.

Point Process

A probability on (M ·· (X),F ·· (X)) is called a point process in X.

Simple Point Process

A probability on (M · (X),F · (X)) is called a simple point process
in X.
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The Poisson Point Process

Typical Events

(Recall the counting variables ζB(µ) = µ(B), B ∈ B0(X))

Random Measures

A typical event for a random measure would be of the form

{µ ∈ M (X) | ζB(µ) ∈ [a, b]} , B ∈ B0(X), a, b ∈ R+
0

(Simple) Point Processes

A typical event for a (simple) point process would be of the form

{µ ∈ M (X) | ζB(µ) = k} , B ∈ B0(X), k ∈ N0
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The Poisson Point Process

The Poisson Point Process

Theorem (Existence and Uniqueness of Poisson Processes)

Let ρ ∈ M (X). Then there exists exactly one point process Pρ in
X with the following properties:

1 The counting variables ζB, B ∈ B0(X) have the Poisson
distribution with parameter ρ(B), that is

Pρ ({µ ∈ M (X) | ζB(µ) = k}) =
ρ(B)k

k!
e−ρ(B)

2 If B1, . . . , Bn ∈ B0(X), pairwise disjoint, then the counting
variables ζB1 , . . . , ζBn are independent with respect to Pρ.

This process is called the Poisson point process with intensity ρ.
(c.f. Kerstan, Matthes, Mecke: Infinitely Divisible Point Processes, 1978, p. 57)
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The Poisson Point Process

Further Properties of the Poisson Point Process

Simple Point Process

Pρ is a simple point process, if and only if ρ is diffuse.

Translation Invariant

In case of the Euclidean phase space (Rd,B(Rd),B(X)) the
processes Pzλ, where λ is the Lebesgue measure and z is a positive
constant, the Poisson point process is translation invariant. (The
translation in Rd induces a Translation on the counting measures.)
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The Poisson Point Process

First Answer

How can we describe random point sets?

Point processes, especially the Poisson point process, ’produce’
random point sets.
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Choosing Appropriate Phase Spaces

Important Phase Spaces

We will now fix two special phase spaces.

The Phase Space for ’the points’(
R

d,B(Rd),B(Rd)
)
, the Euclidean phase space

The Phase Space for ’the geometrical objects’(
M ·

f

(
R

d
)
,F ·

f

(
R

d
)
,B

(
M ·

f

(
R

d
)))

, finite subsets of Rd.

The elements of M ·
f (X) will be shortly referred to as clusters

(in Rd).
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Choosing Appropriate Phase Spaces

Bounded Sets for M ·
f

(
R
d
)

B(M ·
f

(
R

d
)
)

A ⊆ M ·
f

(
R

d
)

belongs to B
(
M ·

f

(
R

d
))

if it is a subset of at least

one of the sets

FB :=
{
x ∈ M ·

f

(
R

d
) ∣∣∣x(B) ≥ 1

}
, B ∈ B0(R

d)
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Choosing Appropriate Phase Spaces

Bounded Sets for M ·
f

(
R
d
)

(2)

Figure: x is in FA but not in FB
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Choosing Appropriate Phase Spaces

M ·
f

(
R
d
)

One can check that by that definition of the bounded sets(
M ·

f

(
R

d
)
,F ·

f

(
R

d
)
,B

(
M ·

f

(
R

d
)))

really is a valid phase
space.

Therefore we also have

M
(
M ·

f

(
R

d
))

, M ··
(
M ·

f

(
R

d
))

, . . .

F
(
M ·

f

(
R

d
))

, F ··
(
M ·

f

(
R

d
))

, . . .
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Convex Polytopes and Simplices

Ideas

The objects that we have in mind for our tessellations are
convex polytopes or even more specific simplices

Basic Concepts

Take the known phase space(
M ·

f

(
R

d
)
,F ·

f

(
R

d
)
,B

(
M ·

f

(
R

d
)))

.

A convex Polytope is uniquely determined by its vertices.

Identify the finitely many vertices of a polytope with the
support of a finite simple counting measure.
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Convex Polytopes and Simplices

Discrete Polytopes

Discrete Polytope

x ∈ M ·
f

(
R

d
)

is called a discrete
polytope if its support x∗ is the vertice
set of a convex polytope.

The set of all discrete polytopes is
denoted by K

(
R

d
)
.

The convex hull of the support of a
discrete polytope is a convex polytope.
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Convex Polytopes and Simplices

Identification of the Vertices

Figure: A polytope 〈x〉 is identified with its vertices x
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Convex Polytopes and Simplices

Discrete Simplices

Discrete Simplices

x ∈ M ·
f

(
R

d
)

is called a discrete
simplex if its support x∗ is an affinely
independent set of points.

The set of all discrete simplices is
denoted by S

(
R

d
)
.

The convex hull of the support of a
discrete simplex is a simplex.

A discrete simplex is a discrete
polytope.
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Convex Polytopes and Simplices

Circumballs

Circumballs

Let x ∈ S
(
R

d
)

be full-dimensional
(cardx∗ = d). Then there exists some
uniquely determined ball K(x) in Rd,
which has all the points of x in its
boundary S(x).

K(x) will be called the circumball of
x, S(x) the circumsphere. (We will
also denote the center of the
circumball with z(x).)
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Tessellations

Locally Finite Tessellations

Locally Finite Tessellations

A configuration µ ∈ M ·
(
M ·

f

(
R

d
))

is

called a locally finite tessellation if

1 x ∈ µ ⇒ x ∈ K
(
R

d
)

and

2 the corresponding convex polytopes
are face to face.

The set of all locally finite tessellations is
denoted by M(Rd)
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The set of all locally finite tessellations is
denoted by M(Rd)
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Tessellations
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A configuration µ ∈ M ·
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d
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d
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Tessellations

’Locally Finite’ in the Context of Tessellations

µ ∈ M · (M ·
f

(
R

d
))

For a locally finite tessellation ’locally finite’ means, that only
finitely many discrete polytopes of the tessellation have vertices in
a given bounded set of Rd.
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Tessellations

Face to Face

Figure: Polytopes intersect in a
vertex

Figure: Polytopes intersect in an
edge
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Tessellations

Not Face to Face

Figure: Polytopes have
vertices in the interior
of each other

Figure: One polytope
has a vertex in the
relative interior of an
edge of the other one

Figure: One polytope
lies totally in the
interior of the other one
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Tessellations

More Specific Tessellations

Complete Tessellations

A locally finite tessellation µ is called complete, if⋃
x∈µ

〈x〉 = R
d

The set of all complete locally finite tessellations is denoted by
Mv(R

d).

Simplicial Tessellations

If a tessellation has only simplices as elements, it is called
simplicial. The set of all simplicial tessellations is denoted by
M

s(Rd), the complete ones by Ms
v(R

d).
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Tessellations

Random Tessellations

Random Tessellation

A simple point process Q in M ·
f

(
R

d
)

is called random tessellation,

if a realization µ ∈ M ·
(
M ·

f

(
R

d
))

is Q-almost-surely a locally

finite tessellation.
The terms complete and simplicial are applied analogously to the
non random case.
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Tessellations

Answer to Question 2

What kind of geometric objects are appropriate?

We can take discrete polytopes/simplices and place them into
locally finite tessellations. A random tessellation then gets chance
into the game.
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Cluster Properties

Outline
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Cluster Properties

Cluster Properties

Cluster Property

An element D of the product-σ-algebra F ·
f

(
R

d
)
⊗F · (

R
d
)

is

called cluster property (in Rd).

The easiest example for a cluster property:
D = M ·

f

(
R

d
)
×M · (

R
d
)
.

(Ideas in this chapter are based on several publications/preprints of Hans Zessin)
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Cluster Properties

Clusters of Type D

Let D be a cluster property in Rd and η ∈ M · (
R

d
)

Clusters for η

An element x ∈ M ·
f

(
R

d
)

is called a cluster (of type D) for η, if
(x, η) ∈ D.

Clusters in η

An element x ∈ M ·
f

(
R

d
)

is called a cluster (of type D) in η, if
(x, η) ∈ D and x∗ ⊆ η∗.
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Cluster Properties

Clusters of Type D

Let D be a cluster property in Rd and η ∈ M · (
R

d
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Clusters for η
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f
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R
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Clusters in η

An element x ∈ M ·
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Cluster Properties

The Cluster Counting Function

Cluster Counting Function

cdD : M · (
R

d
)

−→ R
+
0 ∩ {+∞}

η 7−→
∑

x∈M ·
f(Rd), x∗⊆η∗

1D(x, η)

cdD counts the clusters in a given η ∈ M · (
R

d
)
.
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Cluster Properties

Locally Finite Cluster Properties

Let D be a cluster property and η ∈ M · (
R

d
)
. Define

Dη :=
{
x ∈ M ·

f

(
R

d
) ∣∣∣x cluster in η

}
,

Do
η :=

{
x ∈ M ·

f

(
R

d
) ∣∣∣x cluster for η

}
.

Weak Locally Finite Cluster Properties

A cluster property is called weakly locally finite, if for all
η ∈ M · (

R
d
)

the set Dη ⊆ M ·
f

(
R

d
)

is locally finite.

Strong Locally Finite Cluster Properties

A cluster property is called strongly locally finite, if for all
η ∈ M · (

R
d
)

the set Do
η ⊆ M ·

f

(
R

d
)

is locally finite.
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Cluster Properties

The Inner Cluster Function

Inner Cluster Function

Let D be a weak locally finite cluster property.

ϕD : M · (
R

d
)

−→ M ·
(
M ·

f

(
R

d
))

,

η 7−→
∑

x∈Dη

δx .

ϕD is called the inner cluster function.
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Cluster Properties

The Outer Cluster Function

Outer Cluster Function

Let D be a strong locally finite cluster property.

ψD : M · (
R

d
)

−→ M ·
(
M ·

f

(
R

d
))

,

η 7−→
∑

x∈Do
η

δx .

ψD is called the outer cluster function.
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Cluster Properties

Inner Cluster Processes

Inner Cluster Process

Let D be a weak locally finite cluster property and P a simple
point process in Rd, then P ◦ ϕ−1

D is a well defined point process in
M ·

f

(
R

d
)
, called the inner cluster process for P with respect to D.
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Cluster Properties

Outer Cluster Processes

Outer Cluster Process

Let D be a strong locally finite cluster property and P a simple
point process in Rd, then P ◦ ψ−1

D is a well defined point process in
M ·

f

(
R

d
)
, called the outer cluster process for P with respect to D.
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The 0-∞-Law of Stochastic Geometry

Outline
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The 0-∞-Law of Stochastic Geometry

Stationary Cluster Properties

Stationary Cluster Properties

A cluster property D is called stationary, if for all e ∈ Rd

(x, η) ∈ D ⇐⇒ (x+ a, η + a) ∈ D .
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The 0-∞-Law of Stochastic Geometry

The 0-∞-Law of Stochastic Geometry

Theorem (The 0-∞-Law of Stochastic Geometry)

Let P be a translation invariant point process in Rd and D be a
stationary cluster property. Then

P
({
η ∈ M ·

(
R

d
) ∣∣ 0 < cdD η < +∞

})
= 0 .
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The 0-∞-Law of Stochastic Geometry

Some Result Derived from The Theorem

Corollary

Let D be a stationary cluster property and P be a translation
invariant simple point process such that

P
({
η ∈ M ·

(
R

d
) ∣∣ cdD η ≥ 1

})
> 0 .

The process

PD = P
(
·
∣∣∣ {
η ∈ M ·

(
R

d
) ∣∣ cdD η ≥ 1

})
is concentrated on

{
η ∈ M · (

R
d
) ∣∣ cdD η = +∞

}
.
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The 0-∞-Law of Stochastic Geometry

Answer to Question 3

How can we combine geometric objects and random point sets
in a valid way?

With a cluster property we have a connection between our
geometric objects and point sets.

If we take appropiate translation invariant point processes and
stationary cluster properties, we even have infinitely many
geometric objects in a random realization.
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Radius Restricted Delaunay Clusters
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Radius Restricted Delaunay Clusters

A Special Cluster Property

Radius Restricted Delaunay Clusters

Let 0 < R < +∞. The tuple (x, η) ∈ M ·
f

(
R

d
)
×M · (

R
d
)

is in
DR, iff

1 x ∈ S
(
R

d
)
,

2 cardx = d,

3 The radius of K(x) is smaller than R and

4 η(K(x) r x∗) = 0 (Delaunay property).
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Radius Restricted Delaunay Clusters

Cluster Property!

Proposition 1

DR is a stationary weak locally finite cluster property.

So now we are interested in the clusters in a point
configuration η.
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Radius Restricted Delaunay Clusters

Clusters of Type DR in η

Figure: An example for a cluster of type DR in a configuration η
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Radius Restricted Delaunay Clusters

No Clusters of Type DR in η

Figure: The circum ball is to big
Figure: The configuration η has
additional points in the circum
ball
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Radius Restricted Delaunay Clusters

First Result

(Recall the inner cluster function ϕD(η) =
∑

x is a cluster in η δx)

Proposition 2

Let η ∈ M · (
R

d
)
. Then µ := ϕDR

(η) is a simplicial locally finite
tessellation.

(Idea based on: Boris Delaunay (Delone): Sur la sphére vide, Bull. Acad. Sci. URSS VI,

Class. Sci. Math. Nat., p. 793-800 (1934))
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Radius Restricted Delaunay Clusters

Sketch of the Proof of Proposition 2

µ is locally finite, thanks to the weak local finiteness of DR.

The elements of µ are simplices per Definition of DR.

We only have to check ’face to face’ position of the simplices.
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Radius Restricted Delaunay Clusters

Sketch of the Proof of Proposition 2, µ is Face to Face

Let x, y ∈ µ∗, 〈x〉 ∩ 〈y〉 6= ∅. Then also K(x) ∩K(y) 6= ∅.
We have to consider four cases:

1 S(x) ∩ S(y) = ∅,
2 S(x) ∩ S(y) is a single point,
3 S(x) ∩ S(y) is a d− 2-dimensional sphere or
4 S(x) = S(y).
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Radius Restricted Delaunay Clusters
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Radius Restricted Delaunay Clusters
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Radius Restricted Delaunay Clusters
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Radius Restricted Delaunay Clusters

Sketch of the Proof of Proposition 2, µ is Face to Face
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Radius Restricted Delaunay Clusters

Case 1: S(x) ∩ S(y) = ∅

Figure: Case 1 cannot occur because of the Delaunay property
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Radius Restricted Delaunay Clusters

Case 2: S(x) ∩ S(y) is a single point

Figure: Case 2 is possible and does not interfere with ’face to face’: the
polytopes intersect in a vertex
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Radius Restricted Delaunay Clusters

Case 3: S(x) ∩ S(y) is a d− 2 dimensional sphere

Figure: Case 3 is only possible if
it does not interfere with ’face to
face’: the polytopes intersect in a
face

Figure: Case 3 is not possible if it
does interfere with ’face to face’:
the Delaunay property is broken
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Radius Restricted Delaunay Clusters

Case 4: S(x) = S(y)

Figure: Case 4 cannot occur because of the Delaunay property
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Radius Restricted Delaunay Clusters

An Appropiate Point Process

The Poisson Point Process and DR

Let P = Pzλ, z > 0, λ the Lebesgue
measure in Rd. Then

P is translation-invariant,

P
({
η ∈ M · (

R
d
) ∣∣ cdDR

η ≥ 1
})

> 0,

even P = PDR
=

P
(
·
∣∣ {η | cdDR

η = +∞}
)
.
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Radius Restricted Delaunay Clusters
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Radius Restricted Delaunay Clusters

Theorem

Let P = Pzλ. Then QDR
= P ◦ ϕ−1

DR
is a random simplicial

tessellation. (Follows directly from the previous thoughts and the
transformation theorem.)
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Radius Restricted Delaunay Clusters

A Typical Tessellation Produced by QDR
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Radius Restricted Delaunay Clusters

Answer to Question 4

Can we create interesting examples?

With QDR
we have an interesting random simplicial tessellation.
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Additional: A Tessellation with Holes
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Additional: A Tessellation with Holes

QDR
is not complete

Proposition 3

There exists some QDR
-0-set N such that Mv(R

d) ⊂ N
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Additional: A Tessellation with Holes

Sketch of the Proof of Proposition 3

Need to show that Pzλ-almost-surely ϕDR
produces ’holes’.

Idea

Make a testing lattice of small ε-balls.

Check if all balls are covered by simplices of the tessellation.
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Additional: A Tessellation with Holes

The Testing Lattice

Figure: All ε-balls have to be covered
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Additional: A Tessellation with Holes

How to Get Holes

Next Idea

Thanks to the restricted radius of the simplices too big holes in the
point configuration will produce holes in the tessellation.
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Additional: A Tessellation with Holes

Possible Holes

Figure: No points in a big area produce holes

Kai Matzutt Random Tessellations



Additional: A Tessellation with Holes

Test Area Around ε-Balls

Figure: We have to check the areas around the ε-balls of the lattice
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Additional: A Tessellation with Holes

Slightly More Precise

Pzλ

η ∈ M ·
(
R

d
) ∣∣∣∣∣ ⋂

x∈ϕDR
(η)

⊂ R
d


 〈x〉

≤ Pzλ (Every ε-ball is covered by ϕDR
(η))

≤ Pzλ (η has points in every (3R+ ε)-ball)

=
∏

All Lattice Points

P

(
η has Points in a Ball of Radius (3R+ ε)

centered at 0

)
︸ ︷︷ ︸

<1

= 0
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Additional: A Tessellation with Holes

Thank you for your audience!
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