Übungen zur Maß- und Integrationstheorie

Blatt 10

Abgabe: Freitag, 29.01.2021

Digitale Abgabe im Lernraum des Tutoriums

Aufgabe 1 (Bemerkung 12.1).

a) Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $g \colon \Omega \to \mathbb{R}$ eine \mathcal{A} -messbare, nicht-negative Abbildung. Sei $\nu := g \cdot \mu$ definiert durch

$$\nu(A) := (g \cdot \mu)(A) := \int_A g \, d\mu$$

für alle $A \in \mathcal{A}$. Zeigen Sie, dass ν wieder ein Maß auf (Ω, \mathcal{A}) ist.

(2 Punkte)

b) Beweisen Sie, dass eine A-messbare Funktion $f: \Omega \to \mathbb{R}$ genau dann $(g \cdot \mu)$ -integrierbar ist wenn $f \cdot g$ μ -integrierbar ist und dass in diesem Fall

$$\int f \cdot g \, d\mu = \int f \, d(g \cdot \mu)$$

gilt. (2 Punkte)

Aufgabe 2.

Sei $d \in \mathbb{N}$, sei $U \subseteq \mathbb{R}^d$ eine offene Menge. Bemerke, dass $\mathcal{B}(\mathbb{R}^d)$ definiert ist als die kleinste σ -Algebra, die alle offenen Mengen des \mathbb{R}^d enthält. Wir definieren $\mathcal{B}(U)$ als die kleinste σ -Algebra, die alle offenen Mengen von U enthält. Bemerke, dass eine Menge $V \subseteq \mathbb{R}^d$ offen in \mathbb{R}^d ist genau dann wenn die Menge $V \cap U$ offen in U ist.

Sei $\mathcal{B}(\mathbb{R}^d) \cap U$ definiert wie in Definition 2.6 (Spur- σ -Algebra). Beweisen Sie, dass

$$\mathcal{B}(U) = \mathcal{B}(\mathbb{R}^d) \cap U$$

gilt. (2 Punkte)

Hinweis: Überlegen Sie sich geeignete Erzeuger für die beiden σ -Algebren

Aufgabe 3.

Sei $d \in \mathbb{N}$, seien $U, V \subseteq \mathbb{R}^d$ offene Mengen und sei $\varphi \colon U \to V$ ein C^1 -Diffeomorphismus. Zeigen Sie, dass eine Funktion $f \colon V \to \mathbb{R}$ genau dann m-integrierbar über V ist, wenn $(f \circ \varphi)|\det D\varphi|$ m-integrierbar über U ist und dass in diesem Fall

$$\int\limits_V f \ \mathrm{d} m = \int\limits_U (f \circ \varphi) |\det D\varphi| \ \mathrm{d} m$$

gilt. (2 Punkte)

Aufgabe 4 (Nachtrag zum Bildmaß).

Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum. Sei $(\tilde{\Omega}, \tilde{\mathcal{A}})$ ein messbarer Raum und sei $T \colon \Omega \to \tilde{\Omega}$ eine $\mathcal{A}/\tilde{\mathcal{A}}$ -messbare Abbildung und $T(\mu) = \mu \circ T^{-1}$ das Bildmaß von μ unter T. Beweisen Sie, dass eine $\tilde{\mathcal{A}}$ -messbare Funktion $f \colon \tilde{\Omega} \to \mathbb{R}$ genau dann $T(\mu)$ -integrierbar ist, wenn $f \circ T$ μ -integrierbar ist und dass in diesem Fall

$$\int f \circ T \, d\mu = \int f \, dT(\mu)$$

qilt. (2 Punkte)