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Abstract

Methods of Harder and Narasimhan from the theory of moduli of vec-

tor bundles are applied to moduli of quiver representations. Using the Hall

algebra approach to quantum groups, an analog of the Harder-Narasimhan

recursion is constructed inside the quantized enveloping algebra of a Kac-

Moody algebra. This leads to a canonical orthogonal system, the HN

system, in this algebra. Using a resolution of the recursion, an explicit

formula for the HN system is given. As an application, explicit formulas

for Betti numbers of the cohomology of quiver moduli are derived, gen-

eralizing several results on the cohomology of quotients in ’linear algebra

type’ situations.

1 Introduction

The geometry of quiver representations is by now recognized as an area with
many connections to such diverse fields as representation theory of algebras,
geometric invariant theory, quantum group theory and representation theory of
(Kac-Moody) Lie algebras.

The connection to methods of Geometric Invariant Theory is provided by the
construction of moduli spaces of quiver representations of [Kin]. In particular,
one can expect analogies to the theory of moduli of vector bundles on curves,
generalizing the approach advertised in [Ra].

On the other hand, the connection to quantum group theory is given by the re-
alization of quantized enveloping algebras of (Kac-Moody) Lie algebras of [Rin],
[Gr] via the Hall algebra approach, which can be interpreted (see [Kap]) as a
convolution algebra construction on parameter spaces of quiver representations.

The aim of the present paper is to develop a synthesis of both methods. We
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start with a particular instance of the above mentioned analogy to vector bun-
dle theory, namely the Harder-Narasimhan recursion [HN], which was originally
used for computing Betti numbers of moduli spaces.

The first main result of this paper (Proposition 4.8) is a materialization of the
Harder-Narasimhan recursion in the quantized enveloping algebra of a symmet-
ric Kac-Moody Lie algebra. It leads to a canonical orthogonal system, the HN
system, in such algebras (Theorem 4.9), which is recursively computable.

The HN system comprises a surprising amount of information on the moduli
spaces of (semi-)stable quiver representations: as the second main result, just
by evaluating at a character of the quantum group, we recover in Theorem 6.7
the Betti numbers of such moduli spaces completely (modulo the standard as-
sumption (see e.g. [Kir]) that semistability and stability coincide). The proof
uses the Weil conjectures, in analogy to the original approach of Harder and
Narasimhan in the vector bundle situation (see also [Kir], [Gö] for similar situ-
ations).

The third main result is a resolution of the Harder-Narasimhan recursion, in the
spirit of [Z], [LR] in the vector bundle case (Theorem 5.1), together with a fast
algorithm for Betti number computation (Corollary 6.9). Whereas the cited
works use involved explicit calculations, resp. the Langlands lemma from the
theory of Eisenstein series, the present proof uses only some simple (polygonal
and simplicial) combinatorics. It should be noted that our materialization of
the Harder-Narasimhan recursion in a non-commutative algebra (the quantum
group) is already anticipated in ([Z], p. 457), where one of the key insights for
resolving the recursion is a noncommutative approach to certain polynomial ex-
pressions.

At the moment, the immediate applications of the HN system to quantum group
theory are largely conjectural: one can expect explicit descriptions of PBW type
bases, and applications to the general structure theory of Hall algebras in the
spirit of [SV] (see section 7).

The applications of the cohomology formulas are more direct (and numerous),
in that they unify, generalize, and make more explicit, several known results on
cohomology of moduli of ’linear algebra type’ problems, for example, the formu-
las for Betti numbers of sequences of subspaces in ([Kir], 16), and for families
of linear maps in [Dr], [ES].

In another direction, note the usage of some of the present methods in [CBV]
for a partial proof of the Kac conjectures (see [Kac]). Finally, one can hope for
analogs of the present methods to be possible in the setup of Hall algebras for
categories of coherent sheaves on curves in the framework of [Kap], which would
probably bring the subject back to its roots in vector bundle theory.

The paper is organized as follows: in section 2, we recall the notions of (semi-)
stability and of the Harder-Narasimhan filtration for categories of quiver repre-
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sentations. These are applied in section 3 to the representation varieties of quiv-
ers; we construct the Harder-Narasimhan stratification of these spaces and prove
some basic geometric properties. In section 4, we first recall the Hall algebra
construction and its relation to quantum groups. Then we use the results of the
previous sections to obtain a quantum group version of the Harder-Narasimhan
recursion, yielding the above mentioned Harder-Narasimhan system. Section 5
is devoted to the resolution of the recursion. In section 6, we take a closer look
at the geometry of quiver moduli over finite fields, in order to apply the Weil
conjectures, and to derive the formulas for Betti numbers. Finally, section 7
contains some conjectural applications, and the above mentioned examples of
quiver moduli which allow for explicit cohomology formulas.

This work was done while the author participated in the TMR-network ERB
RMRX-CT97-0100 ”Algebraic Lie Representations”. I would like to thank K.
Bongartz, R. Huber and M. Rapoport for discussions on the methods of section
6, E. Ossa for a simplification in the proof of Lemma 5.4, and B. Medeke for
inspiring discussions on the algorithm 6.9. Moreover, I would like to thank L.
Hille, S. König, S. Orlik, A. Schofield, M. Van den Bergh and E. Vasserot for
interesting remarks on the results of this paper.

2 Quiver representations and the HN filtration

Let Q be a finite quiver (oriented graph) without oriented cycles. We denote
by I its set of vertices, and by rij for i, j ∈ I the number of arrows from i to
j. The free abelian group ZI generated by I carries a bilinear form, the Euler
form, defined by 〈i, j〉 = δij − rij .

Let k be an arbitrary field. We consider the well-known category modkQ of
finite-dimensional k-representations of Q (see [ARS] for general notions and facts
on quiver representations). For a representation X given by k-vector spaces Xi

for i ∈ I, we define its dimension type dimX as
∑

i∈I dimk(Xi)i ∈ NI. We
have

〈dimX, dimY 〉 = dimk HomkQ(X, Y ) − dimk Ext1kQ(X, Y )

for all representations X, Y ∈ modkQ.

We introduce a (non-canonical) notion of stability in modkQ. Fix once and for
all a linear form Θ =

∑
i∈I Θii

∗ on ZI, called a weight for Q. We define a slope
function on NI \{0} by µ(d) = Θ(d)/ dim d, where the linear form dim on ZI is
defined by dim i = 1 for i ∈ I. Using the slope function, we can define a notion
of stability for representations of Q; for a representation 0 6= X ∈ modkQ, we
set µ(X) = µ(dimX).

Definition 2.1 A k-representation X of Q is called semistable (resp. stable) if
µ(U) ≤ µ(X) (resp. µ(U) < µ(X)) for all proper subrepresentations 0 6= U ⊂ X.
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Examples: In each of the following examples, it is easy to work out the corre-
sponding meaning of stability; we just state the results. The examples illustrate
that the quiver setup unifies several ’linear algebra type’ problems. They will
be used as standard examples throughout the paper.

A If Q = i1 → i2 → . . . → in and Θ(ik) = −k, then the stable representations
are precisely the unique indecomposables Ekl of dimension type ik+. . .+il
for k ≤ l, and the semistables are their powers (see section 7 for a possible
generalization).

B Let Q be given by vertices I = {i0, i1, . . . , in} and arrows ik → i0 for
k = 1 . . . n. Let d = mi0 + i1 + . . . + in, Θ = −i∗0. Then a semistable
(resp. stable) representation corresponds to a tuple (v1, . . . , vn) of non-
zero vectors in km such that for any proper non-zero subspace U ⊂ km,
the number of vectors vk in U is ≤ (resp. <) n

m · dimU . Thus, we arrive
at one of the principal examples of Mumford’s GIT ([M], 3.).

C More generally, fix r, N ∈ N. Let Q be given by vertices I = {i0, iν,p : ν =
1 . . . r, p = −N . . . N}, arrows iν,p → iν,p−1 for ν = 1 . . . r, p = N . . . 1−N ,
and iν,−N → i0 for ν = 1 . . . r. Let d =

∑
ν,p dν,piν,p + d0i0, where

0 = dν,N ≤ . . . ≤ dν,−N = d0 for ν = 1 . . . k, and Θ = −i∗0. Then
the semistable (resp. stable) representations correspond to d0-dimensional
k-vector spaces V together with a family of descending flags F p

ν (where
dimF p

ν = dν,p), fulfilling the conditions of [F].

D If Q = i
(n)
→ j (with n arrows pointing from i to j), d = ai + bj, Θ = i∗, then

semistable (resp. stable) representations correspond to tuples (f1 . . . fn)
of linear maps fk : ka → kb such that for each non-zero proper subspace
U ⊂ ka, the dimension of

∑
k fk(U) is ≥ (resp. >) b

a · dim U (see [ES],
[Dr]).

The following properties of semistable (resp. stable) representations are well-
known and easy to prove (see e.g. [HN], [Sh], [Ru], . . . ).

Lemma 2.2 Given a short exact sequence 0 → M → X → N → 0 in modkQ,
we have

µ(M) ≤ µ(X) iff µ(X) ≤ µ(N) iff µ(M) ≤ µ(N)

and
min(µ(M), µ(N)) ≤ µ(X) ≤ max(µ(M), µ(N)).

If µ(M) = µ(X) = µ(N), then X is semistable if and only if M and N are
semistable.

Denote by mod µ
kQ the full subcategory of mod kQ consisting of semistable rep-

resentations of Q of slope µ ∈ Q.
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Lemma 2.3 For all µ ∈ Q, the category modµ
kQ is an abelian subcategory of

modkQ whose simple objects are the stable representations of Q of slope µ.
Moreover, we have HomQ(modµ

kQ, modν
kQ) = 0 provided µ > ν.

Finally, we introduce the key notion of this section.

Definition 2.4 Let X be a representation of Q. A Harder-Narasimhan (HN)
filtration of X is a filtration 0 = X0 ⊂ X1 ⊂ . . . ⊂ Xs = X such that the
quotients Xk/Xk−1 are semistable for k = 1 . . . s, and µ(X1/X0) > µ(X2/X1) >
. . . > µ(Xs/Xs−1).

Proposition 2.5 Any k-representation X of Q posesses a unique Harder-Na-
rasimhan filtration.

Proof: We proceed by induction on the dimension of X . Let X1 ⊂ X be
a subrepresentation of maximal slope, and of maximal dimension among the
subrepresentations with this property. It is easy to see that this determines X1

uniquely. By induction, X/X1 possesses a unique HN filtration, which we can
lift to one of X via the projection X → X1. Uniqueness follows inductively
from the fact that the first term of a HN filtration already has to be the X1 just
constructed.

2

Definition 2.6 An element d ∈ NI is called semistable if there exists a semista-
ble representation of dimension type d. A tuple d∗ = (d1, . . . , ds) is called a HN
type if each dk is semistable and µ(d1) > . . . > µ(ds). The sum |d∗| =

∑s
k=1 dk

is called the weight of d∗, and l(d∗) = s is called the length of d∗.

3 Representation varieties and the HN stratifi-

cation

We first recall the varieties of quiver representations of fixed dimension type.

Definition 3.1 For d =
∑

i∈I dii ∈ NI, define Rd =
⊕

α:i→j Homk(kdi ,kdj )

and Gd =
∏

i∈I GLdi
(k) ⊂ Ed =

⊕
i∈I End(kdi). The group Gd acts on Rd via

(gi)i · (Xα)α = (gjXαg−1
i )α:i→j .

Rd is an affine k-variety parametrizing the k-representations of Q of dimension
type d. The Gd-orbits OX in Rd correspond bijectively to the isomorphism
classes [X ] of representations X ∈ modkQ of dimension type d. The unique
closed orbit of Gd in Rd corresponds to the unique semisimple representation of
dimension type d, so the invariant ring k[Rd]

Gd reduces to the scalars.

The main use of the notion of (semi-)stability lies in the following result.
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Theorem 3.2 [Kin] Let k be algebraically closed. For each d ∈ NI, the subset
Rss

d ⊂ Rd of semistable representations is an open subvariety. It admits a
categorial (GIT) quotient Mss

d = Rss
d /Gd, which is a projective variety. The

quotient Mss
d contains a smooth open subvariety Ms

d, which is a geometric
quotient by Gd of Rs

d ⊂ Rss
d , the subset of stable representations.

Remark: In fact, the notions of (semi-)stability for representations translate
into the corresponding notions of [M] for points in Rd, with respect to the trival
line bundle on Rd with Gd-action twisted by a suitable character χ of Gd. The
moduli space can be defined as

Mss
d = Proj(⊕n∈Nk[Rd]

Gd,χn

),

where k[Rd]Gd,χn

consists of semi-invariant polynomial functions f : Rd → k of
weight χn.

Examples:

1. In example B of section 2, we recover the quotient (Pm−1)
n
stable/PGLm of

([M], 3).

2. The situation of example D of section 2 is related to moduli of bundles on
P2, see [Dr].

3. As a particular case of example D, the moduli space Mss
mi+mj compactifies

the affine variety given by k[Mm(k)n−1]GLm , the ring of invariants of
n − 1-tuples of m × m-matrices under simultaneous conjugation. In fact,
if the first map f1 is invertible, then its stabilizer G ≃ GLm under the
GLm × GLm-action acts by simultaneous conjugation on f2, . . . , fn.

Next, we introduce the Harder-Narasimhan stratification. Note that the term
stratification is used in a weak sense, meaning a finite decomposition of a variety
into irreducible, locally closed subsets (see [Kir], Introduction).

Definition 3.3 For a HN type d∗, we denote by RHN
d∗ ⊂ Rd the subset of repre-

sentations whose HN filtration is of type d∗. RHN
d∗ is called the HN stratum for

the HN type d∗. More generally, we denote by Rd∗

d the subset of representations
possessing some filtration of type d∗, i.e. dimXk/Xk−1 = dk for k = 1 . . . s in
the notation of Definition 2.4.

Proposition 3.4 The HN strata for HN types d∗ of weight d define a strati-
fication of Rd into irreducible, locally closed subvarieties. The codimension of
RHN

d∗ in Rd is given by −
∑

1≤k<l≤s〈d
k, dl〉.

Proof: Let F ∗ : 0 = F 0 ⊂ F 1 ⊂ . . . ⊂ F s be a flag of type d∗ in the I-

graded vector space kd = ⊕i∈Ik
di , i.e. F k/F k−1 ≃ kdk

for k = 1 . . . s, and
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denote by F k
i the i-component of F k. Denote by Z the closed subvariety of

Rd of representations X which are compatible with F ∗, i.e. Xα(F k
i ) ⊂ F k

j for
k = 1 . . . s and for all arrows α : i → j in Q. It is easy to see that Z is a
trivial vector bundle of rank

∑
k<l

∑
i→j dl

id
k
j over Rd1 × . . . × Rdk , via the

projection p mapping X ∈ Z to the sequence of subquotients with respect to
F ∗. Thus, the inverse image of Rss

d1 × . . . × Rss
ds under p is an open subvariety

Z0 of Z. The action of Gd on Rd induces actions of the parabolic subgroup
Pd∗ of Gd, consisting of elements fixing the flag F ∗, on Z0 and Z. The image
of the associated fibre bundle Gd ×Pd∗ Z under the action morphism m equals
Rd∗

d , which is thus a closed subvariety of Rd. The image of Gd ×Pd∗ Z0 under
m equals RHN

d∗ , and Gd ×Pd∗ Z0 is the full preimage. By the uniqueness of
the HN filtration, the morphism m is bijective over RHN

d∗ , which therefore is an
irreducible, open subvariety of Rd∗

d . The codimension is now easily computed
as −

∑
k<l〈d

k, dl〉, using the identity 〈d, d〉 = dimGd − dimRd and the above
description of Z.

2

From this description, we can derive a recursive criterion for the existence of
semistable representations, complementing a criterion for the existence of stable
representations in [Kin].

Corollary 3.5 A dimension type d ∈ NI is semistable if and only if there exists
no HN type d∗ of weight d such that 〈dk, dl〉 = 0 for all 1 ≤ k < l ≤ s.

Proof: A dimension type d is semistable if and only if there exists no dense HN
stratum, i.e. a stratum RHN

d∗ of codimension 0, which by the above codimension
formula means 〈dk, dl〉 = 0 for all 1 ≤ k < l ≤ s.

2

We have seen in the proof of Proposition 3.4 that the closure of the HN stratum
RHN

d∗ equals Rd∗

d . In general, this is not anymore a union of HN strata (see the
example below). But at least it is contained in such a union, and the strata
involved in this union can be controlled using polygonal combinatorics. We
proceed as in the vector bundle situation, following [Sh].

Definition 3.6 Given an arbitrary tuple d∗ = (d1, . . . , ds) in NI, we denote by

P (d∗) the polygon in N2 with vertices (
∑k

l=1 dim dl,
∑k

l=1 Θ(dl)) for k = 0 . . . s.
For two such tuples d∗, e∗, define d∗ ≤ e∗ (resp. d∗ < e∗) if P (d∗) lies on or
below (resp. strictly below) P (e∗) (see [Sh]). We call d∗ convex if the polygon
P (d∗) is convex.

Note that, by definition, HN types are always convex.

Proposition 3.7 The closure Rd∗

d of the HN stratum for the HN type d∗ is
contained in the union of the HN strata for HN types e∗ ≥ d∗.

7



Proof: Let X be a representation in Rd∗

d , and let e∗ be the HN type of X .
Since the polygon P (e∗) is convex by definition, it suffices to prove that the
slope µ(dimU) of an arbitrary subrepresentation U ⊂ X lies on or below P (e∗).
We proceed by induction over the length t of e∗; in case t = 1 there is nothing
to prove, since then X is semistable. By induction, the slope of (U + X1)/X1

lies on or below P (e∗+1), where e∗+1 is the HN type of X/X1. It follows that
the slope of U + X1 lies on or below P (e∗). Using the obvious exact sequences
relating U , X1 and U + X1, we get by the maximality property of X1:

µ(U + X1) ≤ µ(X1) ≤ µ(X1/(U ∩ X1)), thus µ(U) ≤ µ(U + X1),

which proves the desired property.
2

Example: Let Q be the quiver i → j → k, d = i + j + k, θ = 2i∗ + 3j∗. Thus

Rd ≃ k2, where a point (x, y) corresponds to the representation k
x
→ k

y
→ k.

The HN stratum for the HN type (i, j + k) equals k∗ × 0 ⊂ k2, and the HN
stratum for the HN type (j, i, k) equals 0×k ⊂ k2. Thus, the closure of R(i,j+k)

is contained in R(i,j+k) ∪ R(j,i,k), but is not a union of HN strata.

4 Quantum groups and the HN system

In this and the following sections, k denotes a finite field, whose cardinality is
denoted by v2 for v ∈ C.

To get a relation between the methods of the previous sections and (quantized)
Kac-Moody algebras, we first define the Hall algebra (see [Rin], [Gr]) in the
version of Kapranov (see [Kap]).

Definition 4.1 For d ∈ NI, define Hd = CGd [Rd], the C-vector space of (ar-
bitrary) Gd-invariant functions from Rd to C. Define a NI-graded C-vector
space H = H(Q) =

⊕
d∈NI Hd with the multiplication

(f ∗ g)(X) = v〈e,d〉
∑

U⊂X

f(U)g(X/U)

on homogeneous elements f, g of degree |f | = d (i.e. f ∈ Hd) and e, respectively.
Define a scalar product on H by

(f, g) = (#Gd)
−1

∑

X

f(X)g(X)

for f, g ∈ Hd, where #S denotes the cardinality of a finite set S, and (Hd,He) =
0 for d 6= e.

By [Rin], [Gr], H is an associative, NI-graded C-algebra.

An immediate induction yields:
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Lemma 4.2 For fk ∈ Hdk , k = 1 . . . s, we have

(f1 ∗ . . . ∗ fs)(X) = v〈d
∗〉

∑

0=X0⊂X1⊂...⊂Xs=X

f1(X1/X0) . . . fs(Xs/Xs−1),

where
〈d∗〉 =

∑

k<l

〈dl, dk〉.

Next, we define the so-called composition subalgebra of H.

Definition 4.3 For d ∈ NI, define χd = χRd
, the characteristic function of

the variety Rd. Define C as the C-subalgebra of H generated by the functions
χi for i ∈ I.

Lemma 4.4 We have χd ∈ C for all d ∈ NI.

Proof: We order the set of vertices of Q as I = {1, . . . , n} such that i > j if
there exists an arrow i → j, which is possible since Q has no oriented cycles.
It is easy to see that any representation X ∈ Rd has a unique filtration 0 =
X0 ⊂ . . . ⊂ Xn = X such that dimXk/Xk−1 = dkk ∈ NI, so that the product
χd11 ∗ . . . ∗ χdnn equals χd up to some power of v. But since Rni for n ∈ N,
i ∈ I consists of a single point, χni equals a (non-zero) scalar multiple of χ∗ni .
This shows that χd is generated by the χi.

2

The connection to quantum groups is given by the following theorem, due to
J. A. Green [Gr], which generalizes a theorem of C. M. Ringel [Rin] in the finite
type case.

Theorem 4.5 The composition algebra C is isomorphic to Uv(n
+), the quan-

tized enveloping algebra of the positive part of the symmetric Kac-Moody algebra
corresponding to the quiver Q, specialized at v.

Here, the Kac-Moody algebra corresponding to Q is defined by the generalized
Cartan matrix (〈i, j〉 + 〈j, i〉)i,j∈I as in [Kac].

The link between the HN filtration and the Hall algebra is provided by the
following definition.

Definition 4.6 For a HN type d∗ = (d1, . . . , ds) of weight d, define

χHN
d∗ = χRHN

d∗
∈ Hd,

the characteristic function of the HN stratum for d∗. In particular, define χss
d =

χHN
(d) .

9



We find the following analogue of the description of the HN stratum in Propo-
sition 3.4.

Lemma 4.7 For a HN type d∗ = (d1, . . . , ds), we have in H the following
identity:

χHN
d∗ = v−〈d

∗〉χss
d1 ∗ . . . ∗ χss

ds .

Proof: Any filtration X∗ of type d∗ with semistable subquotients is a HN
filtration by definition, which is unique by Proposition 2.5. The statement
follows from the description Lemma 4.2 of the convolution product in H(Q).

2

We easily derive the Harder-Narasimhan recursion, in analogy to [AB] and [HN].

Proposition 4.8 For all d ∈ NI, we have

χss
d = χd −

∑

d∗

v−〈d
∗〉χss

d1 ∗ . . . ∗ χss
ds ,

where the sum runs over all HN types d∗ 6= (d) of weight d. We have χss
d = χd

if and only if Θ is constant on supp d = {i ∈ I : di 6= 0}, the support of d in I.

Proof: In case Θ is constant on supp d, any representation X ∈ Rd is obviously
semistable, thus χss

d = χd. Otherwise, we have a disjoint union Rd =
⋃

d∗ RHN
d∗

(the union being over all HN types of weight d), which translates into the identity
χd =

∑
d∗ χHN

d∗ . Using Lemma 4.7, the recursion is proved.
2

As an immediate consequence, we get:

Theorem 4.9 For all HN types d∗, the element χHN
d∗ already belongs to the

composition algebra C. The scalar product of two such elements is given by

(χHN
d∗ , χHN

e∗ ) = δd∗,e∗(#Gd)
−1#RHN

d∗ .

If µ(ds) > µ(e1), then χHN
d∗ ∗ χHN

e∗ = χHN
(d1...dse1...et).

Proof: The first statement follows from Proposition 4.8 by induction on the
dimension type, using Lemma 4.4. The second statement just reformulates the
disjointness of different HN strata, using the definition of the scalar product on
H. For the third part, we just have to note that, by assumption, the concate-
nation (d1, . . . , ds, e1, . . . , et) is again a HN type.

2

Definition 4.10 The set of elements χHN
d∗ for various HN types d∗ is called the

Harder-Narasimhan system in C ≃ Uv(n
+).
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We thus have found a natural orthogonal system of elements in Uv(n+), which
is neccessarily linearly independent by orthogonality and the fact that χHN

d∗ is
non-zero by definition of a HN type. This system is recursively computable by
combining Lemma 4.7, Proposition 4.8 and Corollary 3.5. Furthermore, it is
partially multiplicative. The HN system can be viewed as a replacement for
PBW type bases (which have ’good’ properties only for finite type cases) in the
Kac-Moody situation.

We end this section with a compact reformulation of the HN recursion 4.8.

Definition 4.11 Consider the skew Laurent polynomial ring Ĥ = H[[Ti, : i ∈
I]], where χi ∗ Tj = v〈i,j〉Tj ∗ χi for all i, j ∈ I. Define generating functions

X(T ) =
∑

d∈NI

χd ∗ T d, Xss
µ (T ) =

∑

d∈NI
µ(d)=µ

χss
d ∗ T d,

where T d =
∏

i∈I T di

i for d ∈ NI.

Using these definitions, the recursion 4.8 allows the following notation:

Proposition 4.12 In Ĥ, the generation function X(T ) equals the ’descending
product’

∏←
µ∈Q Xss

µ (T ) :=
∑

µ1>...>µs
Xss

µ1
(T ) ∗ . . . ∗ Xss

µs
(T ).

Proof: First note that for each f ∈ C ∩ Hd, we have f ∗ T e = v〈d,e〉T e ∗ f by
definition. We calculate using Lemma 4.7:

←∏

µ∈Q

Xss
µ (T ) =

∑

µ1>...>µs

Xss
µ1

(T ) ∗ . . . ∗ Xss
µs

(T )

=
∑

d∗

χss
d1 ∗ T d1

∗ . . . ∗ χss
ds ∗ T ds

=
∑

d∗

v−
∑

k<l〈d
l,dk〉χss

d1 ∗ . . . ∗ χss
ds ∗ T d1

∗ . . . ∗ T ds

=
∑

d∗

χHN
d∗ ∗ T |d

∗| =
∑

d∈NI

χd ∗ T d = X(T ),

where the sums run over all HN types d∗.
2

5 Resolving the recursion

Motivated by similar results in [Z],[LR] (but with different methods), we will
now derive a resolution of the recursion 4.8. This gives an explicit formula for
the elements χss

d :

11



Theorem 5.1 For all d ∈ NI, we have:

χss
d =

∑

d∗

(−1)s−1v−〈d
∗〉χd1 ∗ . . . ∗ χds ,

where the sum runs over all tuples of non-zero dimension types d∗ = (d1 . . . ds) of

weight d such that d∗ = (d) or d∗ > (d), i.e. µ(
∑k

l=1 dl) > µ(d) for k = 1 . . . s−1.

Proof: The proof proceeds along the following lines:

First, we reduce the statement by an explicit calculation to a purely combina-
torial formula. This will be interpreted in terms of the Euler characteristic of a
simplicial complex (encoding convex coarsenings of a polygon). By explicit com-
binatorics, we show that this simplicial complex is in fact always contractible,
proving the Theorem.

We start with some definitions.

Definition 5.2 Let d∗ = (d1, . . . , ds) be a tuple of dimension types.

1. For a subset I = {s1 < . . . < sk} ⊂ {1, . . . , s− 1}, define the I-coarsening
of d∗ as

c∗I(d
∗) = (d1 + . . . + ds1 , ds1+1 + . . . + ds2 , . . . , dsk+1 + . . . + ds).

2. The subset I is called d∗-admissible if the following holds:

(a) c∗I(d
∗) is convex,

(b) For all i = 0 . . . k, we have (dsi+1, . . . , dsi+1) ≥ (dsi+1 + . . .+dsi+1) =
(ci

I(d
∗)).

3. Define A(d∗) as the set of all d∗-admissible subsets of {1, . . . , s − 1}.

In polygonal language, a coarsening is thus admissible if it is convex and lies on
or below the polygon P (d∗).

Lemma 5.3 For all sequences d∗, the set A(d∗) is a simplicial complex.

Proof: If I is d∗-admissible, and J ⊂ I is a subset, then c∗J (d∗) = c∗J (c∗I(d
∗)).

Thus, c∗J(d∗) is a coarsening of the convex tuple c∗I(d
∗). Therefore, it obviously

has to be convex again, and it has to lie on or below c∗I(d
∗), which lies on or

below P (d∗) by assumption. We conclude that J is also d∗-admissible.
2

Using these definitions, we can reduce the formula of Theorem 5.1 to a purely
combinatorial problem. We adopt Proposition 4.8. If Θ is constant on supp d,
then any dimension type e ≤ d has the same slope as d, which means that the
sum in Theorem 5.1 just runs over the single tuple (d), and the formula is trivial.

12



Otherwise, we consider the HN recursion and replace any term χss
di on its right

hand side by the claimed formula:

χd =
∑

d∗

v−〈d
∗〉χss

d1 ∗ . . . ∗ χss
ds

=
∑

d∗

∑

d1,∗,...,ds,∗

v−〈d
∗〉(−1)

∑s
i=1(ti−1)v−

∑ s
i=1〈d

i,∗〉 ×

×χd1,1 ∗ . . . χd1,t1 ∗ . . . ∗ χds,1 ∗ . . . ∗ χds,ts .

In this equation, the outer sum runs over all HN types d∗ of weight d, and the
inner sums run over all sequences (d1,∗, . . . , ds,∗) of tuples di,∗ of weight di and
length ti such that di,∗ = (di) or di,∗ > (di).

We now want to exchange the order of summation. So denote by e∗ the con-
catenation e∗ = (d1,1, . . . , ds,ts) of all the tuples di,∗. Obviously, the resulting
tuples e∗ run over all tuples of weight d such that e∗ = (d) or e∗ > (d). By the
above definitions, the HN type d∗ of the outer sum is an admissible coarsening
of e∗. The sign and the v-exponent in the above sum are easily computed as
(−1)l(e∗)−l(d∗)v−〈e

∗〉. So the above sum can be rewritten as:

χd =
∑

e∗

(−1)l(e∗)−1v−〈e
∗〉

∑

d∗

(−1)l(d∗)−1χe1 ∗ . . . ∗ χel(e) ,

where the outer sum runs over all tuples e∗ of weight d such that e∗ = (d) or
e∗ ≥ d, and the inner sum runs over all admissible coarsenings of e∗. Theorem
5.1 thus reduces to the following statement:

Lemma 5.4 For each tuple d∗ of weight d such that d∗ = (d) or d∗ > (d), we
have ∑

I∈A(d∗)

(−1)#I =

{
0 , d∗ 6= (d),
1 , d∗ = (d)

Proof: We proceed by induction on s = l(d∗). In case s = 1, we have d∗ = (d),
and there is nothing to prove. Otherwise, consider the slopes of the first two
entries d1, d2.

If µ(d1) < µ(d2), we define I0 ⊂ {1, . . . , s − 1} as the subset of all k such
that µ(d1) ≥ µ(d1 + . . . + dk). It is then easy to see from the definitions that
A(d∗) = A(c∗I0(d

∗)). Since 2 6∈ I0, the Lemma holds for the I0-coarsening by
induction.

If µ(d1) ≥ µ(d2), we define d′∗ = (d2, . . . , ds) and d′′∗ = (d1 + d2, d3, . . . , ds).
Again, it is then easy to see from the definitions that we have a disjoint union

A(d∗) = A(d′′∗) ∪ ({1} ∪ (A(d′∗) + 1)),

13



where {1}∪(A(d′∗)+1) consists of the sets {1, s1+1, . . . , sk+1} for {s1, . . . , sk} ∈
A(d′∗). This leads to the calculation

∑

I∈A(d∗)

(−1)#I =
∑

I∈A(d′′∗)

(−1)#I +
∑

I∈A(d′∗)

(−1)#I+1,

which thus equals zero by induction.
2

Combining the above calculation and the Lemma, we see that Theorem 5.1 is
proved.

2

Remarks:

1. Implicitely in the proof of the above Lemma, we have proved the con-
tractibility of the simplicial complex A(d∗).

2. The statement is easily generalized to give an explicit formula for arbitrary
elements of the HN system, using Lemma 4.7.

3. The summation can be viewed as running over all lattice paths with arbi-
trary step length in the lattice of all elements e ∈ NI such that e ≤ d and
µ(e) > µ(d).

The last remark gives a key to a compact reformulation of the above formula.
We adopt a version of the transfer matrix method (see [St]).

Corollary 5.5 Let Td be the quadratic matrix with rows and columns indexed
by I(d) = {e ∈ NI : e ≤ d, µ(e) > µ(d)}∪{0, d}, and with entries in C given by
v〈e−f,e〉χf−e if e ≤ f , and zero otherwise. Then the (0, d)-entry of the inverse
matrix T −1

d equals −χss
d .

Proof: Since the matrix T is upper unitriangular with respect to the ordering
≤ on I(d), an entry of the inverse matrix can be computed as

−(T −1)0,d =
∑

0=e0<e1<...<es=d

(−1)s−1Te0,e1 . . . Tes−1,es

=
∑

0=e0<e1<...<es=d

(−1)s−1v〈e
0−e1,e0〉+...+〈es−1−es,es−1〉 ×

×χe1−e0 ∗ . . . ∗ χes−es−1

=
∑

d1,...,ds

(−1)s−1v−
∑

k<l〈d
l,dk〉χd1 ∗ . . . ∗ χds

by substituting dk = ek − ek−1. Noting that the defining properties of I(d)
translate into µ(dk) > µ(d) for all k = 1 . . . s − 1, we arrive at the formula of

14



Theorem 5.1.
2

This reformulation of the formula will be used in the next section to derive a
fast algorithm for the computation of Betti numbers (see Corollary 6.9).

6 Cohomology of quiver moduli

We still keep the assumption that k is a finite field with v2 elements. As the main
application of the HN system and its explicit formula Theorem 5.1, we derive
a formula for the Poincare polynomial of ordinary cohomology of the complex
moduli spaces Mss

d (C) ’in the coprime case’ (see below for the definition).

The strategy is similar to the approach of [HN]: First, we count numbers of
rational points of varieties. Then, we use results of [M] to prove compatibilities
between these numbers. Finally, we relate these numbers to Betti numbers of
complex varieties with the aid of the Weil conjectures.

The link between the HN system and numbers of rational points is provided by
a twisted character of the Hall algebra H.

Lemma 6.1 The map ev : H → C, defined by ev(f) = (#Gd)−1
∑

X f(X) on
Hd, fulfills

ev(f ∗ g) = v−〈e,d〉ev(f)ev(g)

for |f | = d, |g| = e.

Proof: Without loss of generality, we can assume f (resp. g) to be the char-
acteristic function of an orbit OM (resp. ON ). By the definitions, we have
ev(χOM

) = #Aut(M)−1, and χOM
∗χON

= v〈e,d〉
∑

[X] F
X
N,MχOX

, where FX
N,M

denotes the number of subrepresentations of X which are isomorphic to M , with
quotient isomorphic to N . By a formula of C. Riedtmann [Rie], we have

FX
N,M = v−2 dim Hom(N,M) #Aut(X)

#Aut(M) · #Aut(N)
#Ext1(N, M)X ,

where Ext1(N, M)X denotes the set of extension classes with middle term iso-
morphic to X . Using this formula, the Lemma follows by an easy calculation.

2

Applying the evaluation map ev to both sides of the formula Theorem 5.1, using
its definition and the previous lemma, we get immediately:

Corollary 6.2 For all d ∈ NI, we have:

#Rss
d

#Gd
=

∑

d∗

(−1)s−1v−2〈d∗〉
s∏

k=1

#Rdk

#Gdk

,

where the sum runs over all tuples of non-zero dimension types d∗ = (d1 . . . ds)

of weight d such that µ(
∑k

l=1 dl) > µ(d) for k = 1 . . . s − 1.
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We thus have to relate the number of points in Rss
d to the number of points in

the geometric quotient Mss
d . This is directly possible only in the following case.

Definition 6.3 A dimension type d ∈ NI is called coprime if the numbers
Θ(d), dim d ∈ Z are coprime.

(This property seems to be very restrictive at first sight; see however section 7
for enough interesting examples.)

Lemma 6.4 For coprime d, we have Rss
d = Rs

d, and EndkQ(X) ≃ k for all
X ∈ Rss

d .

Proof: If X ∈ Rss
d is not stable, there exists a proper subrepresentation U ⊂ X

such that Θ(U)/dimU = Θ(X)/dimX, contradicting coprimality. Consider
now the scalar extension X = k ⊗k X to the algebraic closure of k; we claim
that it is still semistable. In fact, its HN filtration is unique, hence stable un-
der Frobenius, and thus it descends to the HN filtration of X , which is trivial
by semistability of X . We conclude that X is semistable, having trivial HN
filtration. By the first part of the Lemma, X is already stable, thus its endo-
morphism ring reduces to scalars by a Schur’s Lemma type argument. Thus the
same holds for X .

2

Lemma 6.5 For coprime d, the action of PGd = Gd/k
∗ on Rss

d is free in the
sense of Mumford (see ([M], 0.8. iv)).

Proof: Since PGd acts set-theoretically free on Rss
d by Lemma 6.4, the natural

map Ψ : PGd×Rss
d → Rss

d ×Rss
d is injective; we have to prove that it is a closed

immersion. Consider the map Φ : Rss
d × Rss

d → Homk(Ed, Rd) given by

Φ(X, Y )(φi)i∈I = (φjXα − Yαφi)α:i→j .

Since the kernel of Φ(X, Y ) can be identified with the space of kQ-homomor-
phisms from X to Y , the image Z of Ψ is precisely the set of pairs (X, Y ) such
that Φ(X, Y ) has non-trivial kernel (i.e. where Φ(X, Y ) has a fixed rank r) by
Lemma 6.4. On the open subset of Z where a fixed r × r minor of Φ(X, Y ) is
non-vanishing, we can thus recover from the pair (X, Y ) a matrix 6= 0 in Ed

intertwining X and Y , i.e. we can recover algebraically the unique element of
PGd mapping X to Y . Thus, we have constructed locally an inverse morphism
Ψ−1 : Z → PGd × Rss

d .
2

Proposition 6.6 For coprime d, we have the following formula for the number
of k-rational points:

#Mss
d =

#Rss
d

#PGd
.
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Proof: From the proof of Lemma 6.4 above we see that semistability is stable
under base change. By coprimality, the same holds for stability. Together
with Proposition 1.14. of [M], this implies that Rss

d , the variety of semistable
representations over k, coincides with the semistable locus of the k-variety Rd.
Thus, there exists a uniform geometric quotient π : Rss

d → Mss
d (in the sense

of ([M], 0.7.)) of Rss
d by PGd. Using Lemma 6.5, we can apply ([M], 0.9.) to

conclude that π turns Rss
d into a principal PGd-bundle over Mss

d , in the sense
that PGd×Rss

d ≃ Rss
d ×Mss

d
Rss

d . We conclude that each fibre of π is isomorphic
to PGd, and the formula for the number of k-rational points follows.

2

Using the Weil conjectures [De], we can conclude:

Theorem 6.7 Assume that d is coprime, and let Mss
d (C) be the moduli space

of semistable representations of Q over the field k = C. Then the Poincare
polynomial of the cohomology with complex coefficients of Mss

d (C) is given by

∑

i∈Z

dimC Hi(Mss
d (C))vi = (v2 − 1)

∑

d∗

(−1)s−1v−2〈d∗〉
s∏

k=1

#Rdk

#Gdk

,

where the sum runs over all tuples of non-zero dimension types d∗ = (d1 . . . ds)

of weight d such that µ(
∑k

l=1 dl) > µ(d) for k = 1 . . . s − 1.

Proof: By Corollary 6.2, the right hand side equals #Rss
d /#Gd, which by

Proposition 6.6 equals 1
v2−1#Mss

d . A standard argument (see ([Kir], 15.), ([Gö],
1.2.)), together with the generic compatibility of formation of invariants and
base change (see ([CBV], Lemma B.4.)) shows that the number of rational
points (viewed as a function of v) is precisely the Poincare polynomial of the
cohomology of Mss

d (C).
2

Using the obvious formulas for #Rd and #Gd, the above formula can be sim-

plified and made more explicit. For N ∈ N, denote [N ] = v2N−1
v2−1 and [N ]! =

[1][2] . . . [N ].

Corollary 6.8 For coprime d =
∑

i∈I dii, we have

∑

i∈Z

dimC Hi(Mss
d (C))vi = (v2 − 1)1−

∑
i div−

∑
i di(di−1) ×

×
∑

d∗

(−1)s−1v2
∑

k≤l

∑
i→j dl

id
k
j

s∏

k=1

∏

i

([dk
i ]!)−1,

where the sum runs over all tuples of non-zero dimension types d∗ = (d1 . . . ds)

of weight d such that µ(
∑k

l=1 dl) > µ(d) for k = 1 . . . s − 1.

We can also apply the evaluation map ev to the transfer matrix analogue 5.5 of
the resolved recursion. We easily get:
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Corollary 6.9 Let Td be the quadratic matrix with rows and columns indexed
by I(d), and with entries in C(v) given by v2〈e−f,e〉#Rf−e

#Gf−e
if e ≤ f , and zero

otherwise. Then for coprime d, the (0, d)-entry of the inverse matrix T−1
d equals

(1 − v2)−1
∑

i∈Z dimC Hi(Mss
d ,C)vi.

This last corollary gives a simple and fast algorithm for computing the Poincare
polynomials, since we just have to solve a linear equation defined by the upper
unitriangular matrix Td. This is clearly a problem of polynomial order. More
precisely, it is of quadratic order in the size of the set I(d), which is approxi-
mately quadratic in the product

∏
i(di + 1). In contrast to this, both the HN

recursion 4.8 and the explicit formula 5.1 are of exponential order compared
to the size of the entries of d, since the summations run over certain classes of
lattice paths.

7 Applications and examples

As a first (potential) application of the HN system, we consider the case where
Q is of Dynkin type, i.e. the underlying unoriented graph is a disjoint union of
Dynkin diagrams of type A, D, E. Generalizing example A of section 2, we have
the following:

Conjecture 7.1 If Q is of Dynkin type, there exists a weight Θ such that the
stable representations are precisely the indecomposables.

By Gabriel’s theorem (see [ARS]), the dimension types of the indecomposables
are precisely the positive roots for the corresponding root system, and the con-
jecture can be reduced to a purely combinatorial problem.

Provided the conjecture holds, the HN strata for the corresponding slope func-
tion µ are precisely the (finitely many) Gd-orbits in Rd. The HN system is thus
a basis for Uv(n

+). By orthogonality, it has to coincide with a PBW basis (in
the sense of [L]) up to scalars. The formula 5.1 thus gives an explicit description
of a PBW basis, and in particular of root elements in Uv(n+).

Note however that the HN system can never be a basis for infinite types due to
the non-trivial root multiplicities of the corresponding Kac-Moody algebra.

Another impact of the developed methods is on the structure of the Hall alge-
bra H(Q) itself, which is much larger than C ≃ Uv(n+) if Q is not of Dynkin
type. In fact, H is a specialization of the quantized enveloping algebra of a
Borcherds algebra by [SV]; the structure of this Borcherds algebra remains un-
known. Using the concepts of sections 2, 4, we can define µ-local Hall algebras
by Hµ =

⊕
d: µ(d)=µ CGd [Rss

d ]. This is a subalgebra of H by Lemma 2.2 and Def-

inition 4.1. Using [SV], it should again be possible to relate Hµ to a Borcherds
algebra, whose structure should be intimately related to the geometry of the
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moduli spaces Mss
d .

After these conjectural applications, we turn to the examples of section 2 and
make the formula 6.8 explicit in some cases.

In the case of example B, assume that m and n are coprime. Then we can apply
formula 6.8 to this particular case. After some elementary reformulations, we
get the Poincare polynomial of cohomology of the quotient (Pm−1)n

stable/PGLm

as (note the multinomial coefficient):

(v2 − 1)1−m−nv−m(m−1)
∑

m∗,n∗

(−1)s−1

(
n

n1 . . . ns

)
v2

∑
k≤l mknl

∏

k

([mk]!)−1,

where the sum runs over all tuples m∗ = (m1 . . . ms), n∗ = (n1 . . . ns) such that∑
k mk = m,

∑
k nk = n, (mk, nk) 6= (0, 0) for all k, and (m1 + . . . + mk)/m <

(n1 + . . . + nk)/n for all k = 1 . . . s − 1. This formula generalizes the formulas
of ([Kir], 16)

Similarly, we can deal with example D. Considering the dimension vector ai+bj

for the quiver Q = i
(n)
→ j such that a and b are coprime, the Poincare polynomial

Pn
a,b(v) of the quotient Wn

a,b = Hom(Ca,Cb)n
stable/GLa × GLb is given by:

(v2 − 1)1−a−bv−a(a−1)−b(b−1)
∑

a∗,b∗

(−1)s−1v2n
∑

k≤l albk

∏

k

([ak]![bk]!)−1,

where the sum runs over all tuples a∗ = (a1 . . . as), b∗ = (b1 . . . bs) such that∑
k ak = a,

∑
k bk = b, (ak, bk) 6= (0, 0) for all k, and (a1 + . . . + ak)/a >

(b1 + . . . + bk)/b for all k = 1 . . . s − 1.

It is possible to make this formula more tractable; the neccessary calculations
are elementary, but quite tedious, so they will be omitted here. The idea is to
separate the zero and non-zero entries among the ak, and to use some standard

identities for the v-binomial coefficients
[

M
N

]
= [M+N ]!

[M ]![N ]! (see e.g. [L]). The final

result is

Pn
a,b(v) = (v2 − 1)1−av−a(a−1)

∑

a∗,b∗

(−1)s−1v2
∑

k<l(nal−bl)bk

s∏

k=1

([ak]!)−1

[
nak

bk

]
,

where the sum runs over all tuples a∗ = (a1 . . . as), b∗ = (b1 . . . bs) such that∑
k ak = a,

∑
k bk = b, ak 6= 0 for all k, and (a1 + . . .+ ak)/a > (b1 + . . .+ bk)/b

for all k = 1 . . . s − 1.

Since the summation runs only over non-zero ak, this formula has the advantage
of being easily computable for small a:

For a = 1, we just get
[

n
b

]
, the Poincare polynomial of the cohomology of the
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Grassmanian Grn
b ≃ Wn

1,b. For a = 2, we get

Pn
2,b(v) = (v2 − 1)−1v−2(

1

v2 + 1

[
2n

b

]
−

(b−1)/2∑

k=0

v2(n−b+k)k
[n

k

] [
n

b − k

]
),

generalizing results of [Dr]. This leads to a formula for the Euler characteristic
(which can not be read off directly from the general formulas):

χ(Wn
2,b) =

bn − 1

4

(
2n

b

)
− n

(b−1)/2∑

k=0

k

(
n

k

)(
n

b − k

)
,

generalizing results of [ES]. Similar results can be obtained for example B.

Finally, let us remark that the algorithm 6.9 opens the possibility for com-
puter experiments in many non-trivial cases. These experiments suggest several
formulas for generating functions and asymptotical behaviours of Poincare poly-
nomials and Euler characteristics. One may hope that such experiments lead to
further insights into the geometry of quiver moduli.
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