Lineare Algebra 1 Präsenzübungsblatt 8

Seien K ein Körper und V ein K-Vektorraum.

Aufgabe 1. Seien W_1 und W_2 K-lineare Unterräume von V. Betrachten Sie die Abbildung

$$\phi: W_1 \oplus W_2 \to V$$
$$(w_1, w_2) \mapsto w_1 + w_2.$$

Zeigen Sie, dass ϕ K-linear ist, und beschreiben Sie im (ϕ) und ker (ϕ) . Folgern Sie, dass ϕ genau dann ein K-linearer Isomorphismus ist, wenn W_1 und W_2 komplementär in V sind. (Man sagt in diesem Fall auch, dass V die (interne) direkte Summe von W_1 und W_2 ist, und schreibt $V = W_1 \oplus W_2$.)

Aufgabe 2. Angenommen $\dim_K V < \infty$. Es sei

$$W_1 \subseteq W_2 \subseteq \cdots \subseteq W_n$$

eine Folge¹ K-linearer Unterräume von V.

(1) Zeigen Sie, dass es für $i=1,\ldots,n$ jeweils ein Komplement W_i' von W_i in V gibt derart, dass

$$W'_n \subseteq \dots W'_2 \subseteq W'_1$$

gilt.

(2) Bestimmen Sie eine solche komplementäre Fahne (W_i') für die Fahne im \mathbb{Q} -Vektorraum \mathbb{Q}^3 bestehend aus den \mathbb{Q} -linearen Unterräumen

$$W_1 = \langle (3, -3, 1) \rangle_{\mathbb{Q}},$$

 $W_2 = W_1 + \langle (-2, 1, 1) \rangle_{\mathbb{Q}},$
 $W_3 = W_2 + \langle (0, 3, -1) \rangle_{\mathbb{Q}}.$

Aufgabe 3. Für welche Werte von $\lambda \in \mathbb{R}$ gibt es eine \mathbb{R} -lineare Abbildung $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ mit

$$\phi((3,-1)) = (1,1),$$

$$\phi((-3,5)) = (1,\lambda),$$

$$\phi((0,4)) = (2,3)?$$

¹Man spricht auch von einer Fahne in V – sehen Sie, warum?