
Abstract

Let D be a division ring of degree m over its centre F . Herstein

has shown that any finite normal subgroup of D
�

:= GL1(D) is cen-

tral. Here, as a generalization of this result, it is shown that any finitely

generated normal subgroup of D
�

is central. This also solves a problem

raised in [1] for finite dimensional division rings. The structure of max-

imal multiplicative subgroups of an arbitrary division ring D is then

investigated. Given a maximal subgroup M of D
�

whose centre is al-

gebraic over F , it is proved that if M satisfies a multilinear polynomial

identity over F , then [D : F ] <
� .

Let D be a division ring of degree m over its centre F . Denote by D
�
the

commutator subgroups of the multiplicative group D
�

= D − {0}. Since each

element d
�

D
�

is contained in a maximal subfield of D, a modification of

the proof of Corollary 1 in [9] shows that dm = RND/F (d)cd for some cd
�

D
�
, where RND/F is the reduced norm of D to F . Thus the abelian group

G(D) := D
�
/RN(D

�
)D

�
is torsion of bounded exponent dividing the degree

m of D over F , where RN(D
�
) is the image of D

�
under the reduced norm

of D to F . This group is not trivial in general. For example, if D is the

real quaternions then G(D) is trivial whereas for rational quaternions G(D) is

isomorphic to a direct product of copies of Z2, as it is easily checked. Assume

that G(D) is not trivial, by Prufer-Baer’s Theorem (cf. [11, p. 105]), we

conclude that G(D) is isomorphic to a direct product of Zri
, where ri divides

m. In this way we may obtain a maximal normal subgroup of finite index in

D
�
. So, if G(D) is not trivial, then D

�
contains maximal subgroups. The aim

of this note is to investigate the structure of maximal subgroups of D
�

using

general linear groups in the finite dimensional case and some results of skew

linear groups for the general case. Given a finite dimensional division ring D

over its centre F , it is shown in [1] that if F is an algebraic extension of the

field of rational numbers, then any finitely generated normal subgroup of D
�
is

central. It is also conjectured there that whether the same result holds for an

arbitrary division ring. Here we show that if D is of finite dimension over F ,

then the result remains true without any condition on F . We then investigate

the structure of maximal multiplicative subgroups M of an arbitrary division
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ring D. In 1978, Herstein [5] conjectured that given a normal subgroup N of

D
�
, if for any x

�
N there exists a positive integer n(x) such that xn(x) � F ,

then N is central. He showed the conjecture is true in the finite dimensional

case, but in general it is still open. Here, we replace “normal” by “maximal” in

the above conjecture and show that the resulting conjecture is also true in the

finite dimensional case. Given a maximal subgroup M of D
�

whose centre is

algebraic over F , it is also proved that if M satisfies a multilinear polynomial

identity over F , then [D : F ] < � . As a consequence, it is shown that if D

is algebraic over F and D
�

contains a soluble maximal subgroup, then D is

locally finite. For some further (and recent) results on subgroups of division

rings see [2], [9] and [10]. We begin our material with

Proposition 1. Let D be a division ring with centre F , and assume that

M is a maximal subgroup of D
�
. Then we have

(i) M contains either F
�
or D

�
.

(ii) Either D = F (M) or M � {0} is a division ring, where F (M) is the

division ring generated by M and F .

Proof. (i) Assume that M does not contain F
�
. Then we must have

D
�
= F

�
M and consequently D

�
= M

���
M .

(ii) Consider the division ring F (M) generated by F and M . By maximality

of M , we have either D
�
= F (M)

�
or M = F (M)

�
. In the first case we obtain

D = F (M) and the other case implies that M � {0} is a division ring.

We observe that, by Proposition 1, we have either D = F (M) or M =

F (M)
�
. In the first case, one can easily see that Z(M) = M � F . For the

second case, put K = Z(M) � {0} so that F
�

K is a field extension. For

any element a
�

K\F , we have M
�

CD(a). Since a is not in F and M is

maximal in D
�
, we conclude that M = CD(a). Now, if D is algebraic over F ,

then CD(M) = CDCD(a) = F (a) which really means that there are no proper

subfields between F and K. In any case, to pose the following conjecture is

natural.

Conjecture 1. Let D be a division ring with centre F and M is a

maximal subgroup of D
�
. Then we have Z(M) = M � F .

Remark. Let D be a finite dimensional division algebra over its centre
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F . If N is a non-central finitely generated normal subgroup of D
�
, we claim

that there exists a finite set 	 �
F such that F = P 
�	
��� where P is the prime

subfield of F . To see this, assume that L is the division algebra generated by

all elements of N . Since L is invariant under all inner automorphisms of D, by

Cartan-Brauer-Hua’s Theorem, L = D or L is central. If L is central, then N

is central, a contradiction. Thus, we may assume that L = D. Suppose that

[D : F ] = n and consider the regular matrix representation of D in GLn(F ).

Since N is finitely generated, there exist matrices A1, . . . , Ak
�

GLn(F ), such

that N =< A1, . . . , Ak >. Let 	 be the set of all elements in F occurring as

the entries of Ai and A−1
i , i = 1, . . . , k. If H is the subring generated by N ,

then we have H
�

GLn(P 
�	
����� where P 
�	�� is the subfield of F generated by

	�� Now, since L
�

GLn(P 
�	
��� we have aI
�

GLn(P 
�	
����� for any a
�

F
�

and

so a
�

P 
�	���� Hence, F = P 
�	
� and the claim is established.

It is shown in [1] that if F is an algebraic extension of the field of rational

numbers, then D
�
contains no non-central finitely generated normal subgruops.

The next theorem shows that the result remains true without any conditions

on F .

Theorem 2. Let D be a finite dimensional division ring with centre F .

Then any finitely generated normal subgroup of D
�

is central.

Proof. If N is a non-central finitely generated normal subgroup of D
�
,

then by the remark made above, there exist elements r1, . . . , rs
�

F such that

F = P (r1, . . . , rs), where P is the prime subfield of F . If F is algebraic over

P , we may consider two cases. If CharD = p > 0, then D is algebraic over a

finite field and consequently D is commutative which is in contradiction with

the fact that N is non-central. If CharD = 0, then the result follows from

Theorem 4 of [1]. Finally, we may assume that F is not algebraic over P .

Put Ki = P (r1, . . . , ri), where 1 � i � s and consider the chain of subfields

P = K0

�
K1

�
K2

�
· · ·

�
Ks = F . By our assumption, there exists

j, 1 � j � s such that Kj is not algebraic over Kj−1. Now, consider the

least such j so that F = Ks is of finite dimension over Kj . Put K = Kj−1,

y = rj, and L = K(y). Thus, we have [F : L] < � and y is transcendental

over K. Since n = [D : F ] < � we conclude that k = [D : L] < � .
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Therefore, D
�

has a matrix representation in GLk(L). Let 1, � 2, . . . , � n be an

F -basis of D. Let us consider an element a
�

N\F . Since a is not in the

centre we conclude that a does not commute with all � i’s. Without loss of

generality, assume that ��� 2 �= � 2a. Assume also that A,B
�

GLk(L) are the

matrix representations of a, � 2, respectively. It is clear that for each x
�

L,

the matrix representation of x + � 2 is Bx = xI + B. Since N is finitely

generated, by the argument used in the remark, we conclude that there is a

set 	 = {m1/n1, . . . ,mt/nt}
�

L, where mi, ni
�

K[y] such that each element

of N has a matrix representation in GLk(K[y ����	������ and K[y ����	
� is the subring

of L generated by 	 over K[y]. On the other hand, N � D
�

and so for each

element x
�

L we have BxAB−1
x

�
GLk(K[y ����	
����� Since detBx is a polynomial

in x of degree k, and for each 1 � i, j � k, the (i, j)-th entry of B−1
x is of the

form fij(x)/g(x)
�

L(x), where deg g(x) = k, deg fij(x) � k − 1, we conclude

that the (i, j)-th entry of the matrix BxAB−1
x is of the form fij(x)/g(x), where

for each 1 � i, j � k, we have deg fij(x) � k. If for each 1 � i, j � k, there

are elements qij
�

L such that for any x
�

L, fij(x)/g(x) = qij, then for any

x1, x2
�

L with x1 �= x2, we have (x1+ � 2)a(x1+ � 2)
−1 = (x2+ � 2)a(x2+ � 2)

−1.

This implies that x1( ��� 2 − � 2a) = x2( ��� 2 − � 2a) and since � � 2 − � 2a �= 0 we

conclude that x1 = x2, a contradiction. Thus, there exists an entry of BxAB−1
x ,

say (i, j)-th which depends on x. Put fij(x) = ! k
i=0aix

i, g(x) = xk + ! k−1
i=0 bix

i.

Thus for each x
�

L we have fij(x)/g(x)
�

K[y �"��	���� If ak = mt+1/nt+1, then

for each x
�

L we obtain fij(x)/g(x) − ak
�

K[y ����	#� {mt+1/nt+1}]. So there

exists a nonzero polynomial f(x)
�

L[x] such that deg f(x) � k − 1 and for

each x
�

L we have f(x)/g(x)
�

K[y �"��	$� {mt+1/nt+1}] . Multiplying f(x) and

g(x) by suitable elements of K[y], we may assume that f(x), g(x)
�

K[y][x].

Put f(x) = ! k−1
i=0 a

�
ix

i, g(x) = ! k
i=0b

�
ix

i. Since detB �= 0, we may assume that

b
�
0 �= 0. Now, change the variable x to b

�
0x to obtain f1(x), g1(x)

�
K[y][x],

such that deg g1 = k, degf1 � k − 1, and the constant term of g1(x) is 1.

Further, for each x
�

L we have f1(x)/g1(x)
�

K[y �"��	%� {mt+1/nt+1}]. Assume

that S = {p1, . . . , pl} be the set of all irreducible polynomials occurring in the

factorizations of n1, . . . , nt+1 into irreducible polynomials. For each natural

number r, put xr = (p1p2 . . . pl)
r. Since deg f1 < deg g1, for a large enough

number r, the degree of the denominator of f1(xr)/g1(xr) with respect to y
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is greater than that of the nominator. On the other hand, for each r & 1,

and each 1 � i � l, g1(xr) and pi are coprime, that is, (g1(xr), pi) = 1. It

is not hard to see that if u/v
�

K[y][m1/n1, . . . ,mt+1/nt+1] with (u, v) = 1,

then each irreducible factor of v belongs to S. Now since f1(xr)/g1(xr)
�

K[y][m1/n1, . . . ,mt+1/nt+1] and for each 1 � i � l, r & 1, (g1(xr), pi) = 1, we

arrive at a contradiction, and so the result follows.

As a consequence of the above theorem, we have the following

Corollary 3. Let D be an infinite division ring with centre F such that

[D : F ] < � . Then D
�

contains no finitely generated maximal subgroups.

Corollary 4. Let D be a division ring with centre F , and assume that

M is a maximal subgroup of D
�
containing F

�
. If [M : F

�
] < � , then D = F .

Proof. First assume that [D : F ] < � . Let x1, . . . , xt be the repre-

sentatives for cosets of F
�

in M , i.e., M = F
�
x1 � . . . � F

�
xt. Then, we

have M =< x1, . . . , xt > F
�
, where < x1, . . . , xt > is the group generated

by x1, . . . , xt. Assume that x
�

D\M . By maximality of M , we obtain

D
�

=< x1, . . . , xt, x > F
�
. Put H =< x1, . . . , xt, x >. Thus, D

�
= HF

�
and consequently we have D

�
= H

� �
H, i.e., H is normal in D

�
. Now, by

Theorem 2, we conclude that H
�

F
�
, i.e., D

�
= F

�
which implies that D = F .

Now consider the case [D : F ] = � . As in the above case we may assume

M = F
�
x1 � . . . � F

�
xt. Put A = { ! n

i=1fixi; fi
�

F}. It is clearly seen that

A is a division ring of finite dimension over F and we have M
�

A
�
. Since

A is of finite dimension over F we conclude that A �= D and so M = A
�

by

the maximality of M in D
�
. Thus we have [A

�
: F

�
] < � . If A is infinite,

then, by a result of Faith (cf. [8, p. 225]), A = F and so M
�

F which

implies that D = F . So, we may assume that A is finite. Now, Wedderburn’s

Theorem implies that A is a finite field. So there exists an element a
�

D
�

such that A
�

=< a >, i.e., an = 1 for some positive integer n. Since a is

non-central in D, by Herstein’s Lemma (cf. [8]), there is an element b
�

D
�

such that bab−1 = ai �= a. Thus, b
�

ND ' (A �
) and so < M, b >

�
ND ' (A �

).

Now, by maximality of M , we conclude that ND ' (A �
) = D

�
. Therefore, by

Cartan-Brauer-Hua’s Theorem, we have either A
�

F or A = D, and it is
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clear that none of these cases can occur. This completes the proof.

We shall also need the following result of Kolchin-Maltsev in the proof of

our main theorem, for a proof see [7, p. 146].

Theorem A. Every soluble linear group has a normal subgroup of finite

index with unipotent commutator subgroup.

Theorem 5. Let D be a finite dimensional division ring with centre F

whose characteristic is (*),+.-�/ ent from the degree of D over F . If M is a maxi-

mal subgroup of D
�

and for each element x
�

M there exists a positive integer

n(x), depending on x, such that xn(x) � F , then D = F . Furthermore, if D is

algebraic over F and M is torsion, then D is commutative.

Proof. By Proposition 1, either D
�0�

M or F
� �

M . If the first case

occurs, then we conclude that D = F , by Lemma 2 of [9]. Thus we may

assume that M does not contain D
�
. We now divide the rest of the proof into

two cases:

Case 1. CharF = 0. We may view M as a linear group in GLn(F ), where

[D : F ] = n. By Theorem 1 of [16], either M contains a non-abelian free

subgruop or it contains a soluble subgroup S of finite index. The first case can

not occur since M/F
�
is torsion. Thus, there is a soluble subgruop S in M with

[M : S] < � . Now, using Theorem A, we conclude that S contains a subgroup

T of finite index such that T
�
is unipotent. Since the only unipotent elemtent in

a division ring is the identity, we obtain T
�
= {1}. Thus S contains an abelian

group of finite index and consequently M contains an abelian normal subgroup

A of finite index. Put K = F (A). Then we have < K
�
,M >

�
ND ' (K �

). If

K
� �� M , then ND ' (K �

) = D
�

and so, by Cartan-Brauer-Hua’s Theorem, we

conclude that K = F , and consequently [M : F
�
] < � . Now, using Corollary

4 establishes the result. Otherwise, assume that K
� �

M . If K = F , the

result follows from Corollary 4. Otherwise, K is radical over F . Thus, using

Kaplansky’s Lemma, we obtain CharF = p > 0 which is a contradiction. This

completes the proof for the zero characteristic case.

Case 2. CharF = p > 0. Consider the group G = D
� � M and assume that

x
�

G. We know that xn(x) = a
�

F
�
. Taking the reduced norm of D to F

from both sides of the last equation we conclude that 1 = RND/F (x)n(x) = am,
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where m is the degree of D over F . This means that G is a torsion group.

Thus, M
�
�

G is torsion and consequently M
�
is locally finite by Burnside’s

Theorem. If x, y
�

M
�
, then the subgroup < x, y > generated by x and y is

finite. Since we are in characteristic p we conclude that < x, y > is cyclic, and

so M
�
is abelian. Thus M is a maximal soluble subgroup of D

�
. By Proposition

1, two cases may arise: (a) D = F (M), (b) D1 = M � {0} is a division ring.

If D = F (M), then M is a maximal soluble irreducible subgroup of D
�
. By

a result of Suprunenko (cf. [14]), there exists a subfield K which is Galois

over F such that [M : K
�
] < � . If K

�
= F

�
, then the result follows from

Corollary 4. Otherwise, F
� �

K
� �

M which means that K is radical over F .

By Kaplansky’s Lemma, we conclude that either K is purely inseparable over

F or K is algebraic over the prime subfield P . The first case can not happen

since K is Galois over F . If the second case occurs, then D will be algebraic

over a finite subfield and so by a result of Jacobson we conclude that D = F .

In the case (b), by Kaplansky’s Theorem (cf. [8]), we conclude that D1 =

Z(D1). If Z(D1) = F , then we obtain M = F
�

which in turn implies that

D = F , by maximality of M . Otherwise, Z(D1) is radical over F and so

either Z(D1) is purely inseparable over F or Z(D1) is algebraic over the prime

subfield. The second case reduces to D = F as above. Thus, D1 = Z(D1) := L

is purely inseparable over F . Since L
�

= M is maximal in D
�

one can easily

conclude that L is a maximal subfield of D. Now, take an element a
�

L

not in F . We then have L
�

CD(F (a))
�

and so by maximality of L
�

we

obtain CD(F (a)) = L. Thus, by the double centeralizer theorem, we have

F (a) = CD(CD(F (a))) = CD(L) = L, i.e., L is a simple extension of F . Now,

take t minimal such that apt �
F and put b = apt−1

. Then we have L = F (b)

and b is of degree p over F . Consequently, we obtain [D : F ] = p2 which is a

contradiction. This completes the first part of the proof.

Furthermore, if D
�1�

M , then D
�
is torsion. Thus, by Lemma 2 of [9], we

obtain the result. Otherwise, F
� �

M and so F
�

is torsion. This implies that

CharD = p > 0 and D is algebraic over the prime subfield. Therefore, by a

theorem of Jacobson (cf. [6]), the result follows.

The following result may be viewed as a generalization of the Noether-

Jacobson Theorem (cf. [8]).
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Corollary 6. Let D be a non-commutative division ring of degree m

over its centre F , and assume that M is a maximal subgroup of D
�
. If the

characteristic of D does not divide m, then there is an element in M\F which

is separable over F .

To prove our next theorem, we need the following results from [13, p. 215]

and [4, p. 114], respectively.

Theorem B. Let H be a locally nilpotent normal subgroup of the absolutely

irreducible subgroup G of GLn(D). Then H is centre by locally finite and

G/CG(H) is periodic.

Theorem C. Let G be a completely reducible linear group. If G is nilpo-

tent, then [G : Z(G)] < � .

Theorem 7. Let D be a non-commutative division ring with centre F , and

assume that M is a nilpotent maximal subgroup of D
�
. Then we have F

� �
M .

Also, there exists a maximal subfield K of D such that either M = K
�
or M/F

�
is locally finite. Furthermore, if [D : F ] < � , then the second case can not

occur, i.e., M is the multiplicative group of a maximal subfield of D.

Proof. M is completely reducible since F (M) is a division ring. By

Proposition 1, we have either F (M)
�
= M or D = F (M). In the first case, by

Hua’s Theorem (cf. [8]), we conclude that M is abelian. Now, put K = F (M)

so that K
�
= M and the result follows. Thus, we may assume that D = F (M).

By Theorem B, with H = G = M , we conclude that M/F
�

is locally finite.

Furthermore, suppose [D : F ] < � so that M is a linear group. The

case where F (M)
�

= M is treated as above. Finally, we claim that the case

D = F (M) leads to a contradiction. Suppose D = F (M). We now show that

Z(M) = F
�
. We note that if D

�
is nilpotent, then D

�
is soluble. Thus, by

Hua’s Theorem, D is commutative which is a contradiction. Therefore, D
�

is not contained in M and so, by Proposition 1, F
� �

M and consequently

Z(M) = F
�
. Now, as noted above, M is completely reducible since F (M) = D

is a division ring. Thus, by Theorem C, we conclude that [M : F
�
] < � . We

may now use Corollary 4 to obtain the contradiction D = F , and so the result

follows.
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The next result essentially says that Theorem 7 may be generalized to

soluble groups. To present it, we need the following result which is due to

Snider, (cf. [13, p. 207].

Theorem D. A soluble absolutely irreducible skew linear group is abelian

by locally-finite.

Theorem 8. Let D be a non-commutative division ring with centre F ,

and assume that M is a soluble maximal subgroup of D
�
. Then F

� �
M .

Also, either M/F
�

is locally finite or there exists a maximal subfield K of D

such that K
�

is normal in M and M/K
�

is locally finite. Furthermore, if

[D : F ] < � , then either M is the multiplicative group of a maximal subfield

of D or there is a maximal subfield K of D such that K
�
is normal in M such

that K/F is Galois and [M : K
�
] < � .

Proof. By Proposition 1, we have two cases to consider. If F (M)
�
= M ,

as in the proof of Theorem 7 we conclude that F
� �

M and M is commutative

and so K = M � {0} is our required maximal subfield of D. Otherwise, assume

that F (M) = D and so M is absolutely irreducible. By Theorem D, there

exists an abelian group A of M such that A is normal in M and M/A is locally

finite. Put D1 = CD(K), where K = F (A). We have < D
�
1,M >

�
ND ' (K �

).

If D
�
1 is not contained in M , then D

�
= ND ' (K �

) and consequently either

K = D or K
�

F . The first case can not occur since D is non-commutative,

and the second case implies that M/F
�

is locally finite. Thus, we may assume

that D
�
1

�
M . Then D1 is commutative since M is soluble and so K is a

maximal subfield of D. Since A is normal in M we conclude that K
�
= F (A)

�
is also normal in M . Finally, since M/A is locally finite we obtain that M/K

�
is locally finite and this completes the first part of the proof.

Furthermore, if [D : F ] < � , as above we are faced with two cases, i.e.,

either F (M)
�

= M or D = F (M). The first case is treated as above. In

the second case we conclude that M is an irreducible maximal soluble linear

subgroup of D
�
. By a result of Suprunenko (cf. [14]), there is a subfield K of

D such that K/F is Galois, K
�
is normal in M and [M : K

�
] < � . It remains

to show that K is a maximal subfield of D. To see this, assume that CD ' (K �
)

is not contained in M . Then < CD(K
�
),M >

�
ND ' (K �

) and consequently
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D = ND ' (K �
) which implies that K

�
F , i.e., [M : F

�
] < � . Now, by

Corollary 4, we conclude that D is commutative which is a contradiction.

Thus, we must have CD ' (K �
)
�

M and since M is soluble we obtain CD ' (K �
)

is soluble. Now, by Hua’s Theorem, we conclude that CD(K) is commutative.

This implies that K is maximal in D and the result follows.

Considering Theorem 7 and Theorem 8, one is tempted to pose the following

conjectures:

Conjecture 2. Let D be a division ring and M a nilpotent maximal

subgroup of D
�
. Then D is commutative.

Conjecture 3. Let D be a division ring and M a soluble maximal sub-

group of D
�
. Then D is commutative.

To present our next result, we need the following result from [3, p. 391].

Theorem E. Let D be a division ring, ! a multiplicative subset of D and

K its centralizer in D. If for all c
�

D
�
, Kc ! is infinite-dimensional as left

K-space, then any non-zero multilinear element of DK < X > has a non-zero

value for some choice of values of X in ! .

We recall that given a multiplicative set ! of D and a non-zero polynomial

p(x1, . . . , xn)
�

F [x1, . . . , xn], we say that ! satisfies p(X) if p(X) = 0 for any

X = (x1, . . . , xn)
� ! × · · · × !0� Let D be a division ring with centre F and

G a subgroup of D
�
. We shall say that G is algebraic if each element of G is

algebraic over F .

Theorem 9. Let D be a division ring with centre F , and assume that

M is a maximal subgroup of D
�

such that Z(M) is algebraic over F . If M

satisfies a non-zero multilinear polynomial p(X)
�

F [X], then [D : F ] < � .

Proof. By Proposition 1, we have either F (M) = D or F (M)
�

= M .

If F (M) = D, it is clearly seen that CD(M) = F . Thus, by Theorem E,

there exists an element c
�

D
�

such that FcM and consequently F [M ] is

of finite dimension over F . Therefore, we obtain D = F (M) = F [M ] and

so [D : F ] < � . Thus, we may assume that F (M)
�

= M and put D1 =

F (M). Since D
�
1 = M satisfies a multilinear non-zero polynomial identity,

by Theorem E, we conclude that [D1 : F1] < � , where F1 = Z(D1). Now,
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we may consider two cases: (i) CD(D1) = F or (ii) CD(D1) �= F . In the

first case we have [D1 : F ] < � . Thus D1 = CDCD(D1) = CD(F ) = D,

by the double centralizer theorem, and consequently [D : F ] < � . Finally,

assume CD(D1) �= F and consider a
�

CD(D1)\F . By maximality of M ,

it is easily checked that a
�

Z(M) and so a is algebraic over F . Since D
�
1

is maximal in D
�

we have D1

�
CD(a) and thus D1 = CD(a) . Now, we

have D 2 F F (a) 3= Mr(CD(a)) = Mr(D1), where r = [F (a) : F ]. Since

[D1 : F1] = s < � we may embed D1 in Ms(F1) and so D is embeddable in

Mrs(F1). Now, the Capelli polynomial is a polynomial identity for Ms(F1) and

so is for D (cf. [12, p.441]). Thus, by Theorem E, we obtain the result.

It is believed that the condition on Z(M) being algebraic over F is super-

fluous.

Corollary 10. Let D be a division ring algebraic over its centre F such

that [D : F ] = � . Then D
�

contains no commutative maximal subgroups.

To prove our final result, we need the following theorem (cf. [15, p. 175]

or [17]).

Theorem F. Let A be a an algebraic algebra over a field F and G a locally

solvable subgroup of A
�
. Then F (G) is locally finite dimensional.

Corollary 11. Let D be a division ring algebraic over its centre F . If

D
�

contains a soluble maximal subgroup, then D is locally finite.

Proof. If D is of finite dimension over F , there is nothing to prove. Thus,

assume that [D : F ] = � and M is a maximal subgroup of D
�
which is soluble.

By Proposition 1, we have either D = F (M) or M = F (M)
�
. If the second

case occurs, by Hua’s Theorem we conclude that M is commutative. This

contradicts Corollary 10. Therefore, we may assume that D = F (M). Now,

use Theorem F to complete the proof.

The authors are indebted to the Research Council of Sharif University of

Technology and the Institute for Studies in Theoretical Physics and Mathe-

matics for their support.
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