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Abstract. We will show the Gauss decomposition with prescribed torus
elements for a Kac-Moody group over a field in general case.

1. Introduction

Kac-Moody groups are equipped with canonical decompositions of
���������	��


t
kinds. Let us note, for instance, the decompositions of Bruhat, � ���	
������ and
Gauss. As in finite dimensional case, they play an important part in calcula-
tions with these groups. However, for Kac-Moody situation all of them have
their own peculiarities (look, for example, [19] where J.Tits gives a comparison
of the Bruhat and the � ���	
������ decompositions and some of their applications).

The aim of this paper is to establish the so-called prescribed Gauss decom-
position for Kac-Moody groups.

The prescribed Gauss decomposition appeared in [17], [9] for the general
linear group and then it was proved in full generality in [3],[4], [5] for Chevalley
and twisted Chevalley groups. It happens to be the main tool for proving the
substantial Ore and Thompson conjectures.

Namely, Ore [13] conjectured that every element of a finite simple group is
a single commutator.
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2 GAUSS DECOMPOSITION

The proof of this statement for all simple groups of Lie type is given in [6].
There are similar facts for infinite simple groups as well. Let us mention the
paper of Ree [15], who proved that every element of a connected semisimple
algebraic group over an algebraically closed field is a commutator. The survey
of the results on Ore problem (before the results of Ellers-Gordeev and A.Lev)
can be found in [21].

This paper is the continuation of the paper [12], in which the prescribed
Gauss decomposition was established for Kac-Moody groups of the rank 2.
The general result became possible due to the recent paper [2] where the
elegant idea of V.Chernousov gives rise to a uniform proof of prescribed Gauss
decomposition for all groups of Lie type. Moreover, we mostly follow the
method of this paper, adjusting it to Kac-Moody case.

We do not consider in this paper Ore and Thompson type conjectures for
Kac-Moody groups. These groups are perfect but not, generally speaking,
simple, and their commutator structure can be very delicate.

2. Kac-Moody groups

Let A = (aij) be an n × n generalized Cartan matrix. Let g be the Kac-
Moody Lie algebra over a field C defined by A with the so-called Cartan
subalgebra h (cf. [7], [10]). Let ��� h � be the root system of g with respect
to h with the fundamental system � = { � 1, · · · , � n }. Let � + (resp. � −) be
the set of positive (resp. negative) roots defined by ��� and � re the set of real
roots. Put � re

± = � ± � � re. Then we obtain

g = h � ���! g
�

(root space decomposition)

and

g = g− � h � g+ (triangular decomposition),

where g± = � ���" 
±
g
�
. Let M be an integrable g-module, which means that

M = � µ

�
h# Mµ,

where Mµ = { v $ M | hv = µ(h)v (% h $ h) }, and that x is locally
nilpotent on M for all x $ g

�
with �&$'� re. For the set of real roots, � re, we

can choose and fix a Chevalley basis { e
�

| �($)� re } (cf. [11]). We now
suppose that M has a basis { v* | +,$.- } whose Z-span, MZ, is invariant
under the action of em

�
/m! for all m / 0. Such a basis exists, for example, for

the cases of adjoint representations, highest weight integrable representations,
lowest weight integrable representations, and some others (see [7], [19] and
references therein). Then, for any field K, we put M(K) = K 0 MZ and
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define x
�
(t) $ GL(M(K)) by

x
�
(t)(s 0 v) =

1
m=0

tms 0 em
�

m!
v.

Let G be the subgroup of GL(M(K)) generated by x
�
(t) for all �'$2� re and

t $ K. We call G a (standard or elementary) Kac-Moody group (cf. [14], [16],
[20]). Sometimes G is called of type A. Let G = G(A,K) be the family of all
Kac-Moody groups over a field K of type A. Then, there is a unique, up to
isomorphism, element of G which dominates all other elements. We fix it, and
also we call it G. Let

w
�
(t) = x

�
(t)x−

�
(−t−1)x

�
(t),

h
�
(t) = w

�
(t)w

�
(−1)

for t $ K×. Then, we put

U = 3 x
�
(a) | �4$'� re

+ , a $ K 5 ,
T = 3 h

�
(t) | �&$'� re, t $ K× 5 ,

V = 3 x
�
(a) | �&$6� re

− , a $ K 5 ,
Define the maps 7 i by

7 i :
1 a
0 1 89 x

�
i
(a),

7 i :
t 0
0 t−1 89 h

�
i
(t),

7 i :
1 0
a 1 89 x−

�
i
(a),

These maps are not necessarily injective. The subgroups U :i and V :i are defined
as follows

U :i = 3 x
�

i
(s)x; (t)x�

i
(−s) | s, t $ K, <=$'� re

+ \ { � i} 5 ,
V :i = 3 x−

�
i
(s)x; (t)x−

�
i
(−s) | s, t $ K, <>$'� re

−
\ {− � i} 5 .

Then (G,U, T, V, { 7 1, · · · , 7 n}) is a triangular system. Hence,

G = UV TU
= u

�
U u(V TU)u−1,

and every Kac-Moody group G over a field has a Gauss decomposition (cf.
[12]).

Put
N = 3 w

�
(t) | �&$'� re, t $ K× 5 ,
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then T ? N , and N/T is isomorphic to the Weyl group W (cf. [7], [10]). We
sometimes identify W with N/T . For each w $ W , we can write

wUw−1 = w̄Uw̄−1

if w̄ $ N and w = w̄ mod T . Then

w

�
W

wUw−1 = 1

and

w

�
W

wV w−1 = 1

(cf. [8], [14]).
Therefore, if 1 @= u $ U (resp. 1 @= v $ V ), then there exists w̄ $ N such

that
w̄uw̄−1 = uiu:i, ui @= 1

(resp. w̄vw̄−1 = v :ivi, vi @= 1),

for some i = 1, 2, · · · , n, where ui $ Ui, u:i $ U :i (resp. vi $ Vi, v :i $ V :i ).
This property is important for us, and later we will use it. And, we need one
more thing about substructures of Kac-Moody groups. For a subset X of ���
we denote by � X the sub-root system of � generated by X, and we define the
following subgroups:

GX = 3 x±

�
(t) | �&$ X, t $ K 5 ,

TX = 3 h
�
(t) | �&$ X, t $ K× 5 ,

T :X = 3 h
�
(t) | �&$'� \ X, t $ K× 5 ,

UX = 3 x
�
(t) | �&$'� re

+ � � X , t $ K 5 ,
U :X = 3 yx; (t)y−1 | <=$'� re

+ \ � X, t $ K, y $ GX 5 ,
VX = 3 x

�
(t) | �&$'� re

− � � X , t $ K 5 ,
V :X = 3 yx; (t)y−1 | <=$'� re

− \ � X, t $ K, y $ GX 5 .
Then, using the commutator formula (cf. [11]), we see U = UXU :X A U :X and
V = VXV :X A V :X . Also clearly we obtain T = TXT :X. At the end of this section,
we will deal with the center Z(G) of G. Actually, Z(G) � T and we can
explicitly describe as folows:

Z(G) = {
n

i=1

h
�

i
(ti) |

n

i=1

t
; (h B

i
)

i = 1 for all <>$'� }.

3. Theorems

Here first, we review the result on the prescribed version of Gauss decom-
positions for the rank two Kac-Moody groups. For this result and for the
definition of Gauss decompositions with prescribed torus elements associated
with triangular systems, see [12].
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Theorem ([12]). Let A =
2 −a

−b 2
be a generalized Cartan matrix

with ab / 4. Put m = max { a, b }. Let K be a field with | K | > m + 3.
Then every Kac-Moody group, G $ G(A,K), over K of type A has a Gauss
decomposition with prescribed elements in T . This means that given arbitrary

semisimple element element h � ,
G = Z(G) C

g

�
G

g(V h � U)g−1,

where Z(G) is the center of G.
The similar result holds for 0 D ab D 3 in rank two case, in which case there

is no restriction to the cardinality of K. Moreover, in the case of Chevalley
groups, there is a general result about Gauss decomposition with prescribed
semisimple elements.

Theorem ([2]). Let A be a Cartan matrix, and let K be a field. Then every
Chevalley group, G $ G(A,K), over K of type A has a Gauss decomposition
with prescribed elements in T .

In the remaining of this paper, we will present the following result on Kac-
Moody groups G for all generalized Cartan matrices. For a generalized Cartan
matrix A = (aij), we put

m = max { | aij | (1 D i @= j D n) }.

Theorem 1. Suppose | K | > m + 3. Then, every Kac-Moody group G
over K has the Gauss decomposition with prescribed elements in T .

Corollary. Every element of a Kac-Moody group G can be expressed as a
product of two unipotent elements in G.

4. Some inductive method

Here we will show the following proposition. We put I = { 1, 2, · · · , n }.

Proposition 1. Let - be the group generated by an abstract symbol E
and our Kac-Moody group G satisfying that E acts on G by conjugation as an
diagonal automorphism. Let Z FG-IH be the center of -IJ Suppose | K | > m+3.
Then, for every element E g $K- with g $ G and E g @$ Z FG-IHL� and for every
element h � = n

i=1 h
�

i
(t ��

i
) $ T , there exists an element z $ G such that

z( E g)z−1 = E (vh � u)
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for some v $ V and u $ U .

The proof of this proposition can be given exactly in the same way as in
[2]. We proceed by induction on n. We have already known that Proposition
1 holds for n = 1, 2 (cf. [2], [12]). We suppose n / 3.

We take E g $.- with g $ G in general. Since E U = U E and G = UV TU ,
we see E G = U E V TU . Hence, for our purpose, we can assume that E g is just
of the form E g = E vhu with v $ V, h $ T, u $ U . Then, using the conjugate
action of W = N/T , we fall into one of the following three cases.

(Case 1) There exists w $ W satisfying

+ = w( E g)w−1 = E (v :ivih: uiu:i)
with v :i $ V :i , vi $ Vi, h:M$ T, ui $ Ui, u:i $ U :i and viui @= 1 for some i $ I.

(Case 2) The element E g is of the form

+ = E g = E h:
with h:M$ T and +2@$ Z FN-IH	J

(Case 3) The element E g is of the form

+ = E g = E h:
with h:M$ T and +O$ Z FN-IH	J

In (Case 2), we can find an element x
�

j
(t) with t @= 0 for some j $ I such

that

x
�

j
(t)( E h: )x�

j
(−t) = E (h: uj)

with uj @= 1. Therefore, we can reach (Case 1) in this case. Since we need
not consider the situation of (Case 3) by our assumption, we can assume that
(Case 1) holds. And now we fix such i $ I described in (Case 1).

Put X = { � 1, � 2, · · · , � n−1 } and Y = { � 2, � 3, · · · , � n }. We write

h: = h
�

1
(t1) · · · h

�
n
(tn),

hX = h
�

1
(t1) · · · h

�
n−1

(tn−1),
hY = h

�
2
(t2) · · · h

�
n
(tn)

with t1, · · · , tn $ K×.

If i > 1, then we put E Y = E h�
1
(t1) and - Y = 3PE Y , GY 5 . Then,

+ = v :Y ( E Y vY hY uY )u:Y
for some v :Y $ V :Y , vY $ VY , uY $ UY , u:Y $ U :Y with vY uY @= 1. Then, we
choose t:2 $ K× such that E h � h�

2
(t:2) is noncentral in - X = 3QE X, GX 5 , where
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E X = E h�
n
(t ��

n
). This is actually possible since we have enough elements in

K. Applying our induction to

+ Y = E Y (vY hY uY ) $'- Y ,

we can find an element zY $ GY such that zY + Y z−1
Y = E Y v : :Y h: :Y u: :Y with v : :Y $

VY , u: :Y $ UY and E h � h�
2
(t:2) = E Y h: :Y . Then, we have

+ : = zY + z−1
Y = E v : : h:R: u: :

with v : : $ V, u: : $ U and h:R: = h � h�
2
(t:2). Next, we write

+ : = vX( E XvXhXuX)u:X
with v :X $ V :X , vX $ VX , uX $ UX , u:x $ U :X and

hX = h
�

1
(t1)h

�
2
(t ��

2
t:2)h� 3

(t ��
3
) · · · h

�
n−1

(t ��
n−1

).

Then, we apply our induction to

+ X = E X(vXhXuX) $'- X .

Since + X is noncentral in - X , we can find an element zX $ GX such that
zX + Xz−1

X = E Xv : :Xh:R:Xu:R:X with v : :X $ VX , u: :X $ UX and E h � = E Xh: :X. Therefore,
we have + :R: = zX + : z−1

X = E v : :R: h � u:R: :
with v : : :S$ V, u:R: :T$ U . This is what we wanted.

If i = 1, then we can take X first and then Y next. Then the same process
as above works. We should choose � n, � n−1 and � 1 instead of � 1, � 2 and� n respectively. Hence we have completed the proof of Proposition 1. Then,
Proposition 1 implies Theorem 1.
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[19] J.Tits : Groups and group functors attached to Kac-Moody data. Arbeitsta-

gung, Bonn 1984, Springer Verlag LN 1111 (1985), 193 – 223.
[20] J.Tits : Uniqueness and presentation of Kac-Moody groups over fields, J. Alge-

bra, 105 (1987), 542 – 573.
[21] L.Vaserstein and E.Wheland : Commutators and Companion Matrices over

Rings of Stable Rank 1, Linear algebra and its applications 142 (1990), 263
–277.


