On The Tensor Product of Two Composition Algebras

Patrick J. Morandi S. Pumplün

1 Introduction

Let $C_1 \otimes_F C_2$ be the tensor product of two composition algebras over a field F with $\operatorname{char}(F) \neq 2$. R. Brauer [7] and A. A. Albert [1], [2], [3] seemed to be the first mathematicians who investigated the tensor product of two quaternion algebras. Later their results were generalized to this more general situation by B. N. Allison [4], [5], [6] and to biquaternion algebras over rings by Knus [12].

In the second section we give some new results on the Albert form of these algebras. We also investigate the F-quadric defined by this Albert form, generalizing a result of Knus ([13]).

Since Allison regarded the involution $\sigma = \gamma_1 \otimes \gamma_2$ as an essential part of the algebra $C = C_1 \otimes C_2$, he only studied automorphisms of C which are compatible with σ . In the last section we show that any automorphism of C that preserves a certain biquaternion subalgebra also is compatible with σ . As a consequence, if C is the tensor product of two octonion algebras, we show that C does not satisfy the Skolem-Noether Theorem.

Let F be a field and C a unital, nonassociative F-algebra. Then C is a composition algebra if there exists a nondegenerate quadratic form $n: C \to F$ such that $n(x \cdot y) = n(x)n(y)$ for all $x, y \in C$. The form n is uniquely determined by these conditions and is called the norm of C. We will write $n = n_C$. Composition algebras only exist in ranks 1, 2, 4 or 8 (see [10]). Those of rank 4 are called quaternion algebras, and those of rank 8 octonion algebras. A composition algebra C has a canonical involution γ given by $\gamma(x) = t(x)1_C - x$, where the trace map $t: C \to F$ is given by t(x) = n(1, x).

An example of an 8-dimensional composition algebra is Zorn's algebra of vector matrices Zor(F) (see [14, p. 507] for the definition). The norm form of Zor(F) is given by the determinant and is a hyperbolic form.

Composition algebras are quadratic; i.e., they satisfy the identities

$$x^{2} - t(x)x + n(x)1_{C} = 0 \text{ for all } x \in C,$$

$$n(1_{C}) = 1,$$

and are alternative algebras; i.e., $xy^2 = (xy)y$ and $x^2y = x(xy)$ for all $x, y \in C$. In particular, $n(x) = \gamma(x)x = x\gamma(x)$ and $t(x)1_C = \gamma(x) + x$.

For any composition algebra D over F with $\dim_F(D) \leq 4$, and any $\mu \in F^{\times}$, the F-vector space $D \oplus D$ becomes a composition algebra via the multiplication

$$(u, v)(u', v') = (uu' + \mu \gamma(v')v, v'u + v\gamma(u'))$$

for all $u, v, u', v' \in D$, with norm

$$n((u,v)) = n_D(u) - \mu n_D(v).$$

This algebra is denoted by $\operatorname{Cay}(D,\mu)$. Note that the embedding of D into the first summand of $\operatorname{Cay}(D,\mu)$ is an algebra monomorphism. The norm form of $\operatorname{Cay}(D,\mu)$ is obviously isometric to $\langle 1, -\mu \rangle \otimes n_D$. Since two composition algebras are isomorphic if and only if their norm forms are isometric, we see that if C is a composition algebra whose norm form satisfies $n_C \cong \langle 1, -\mu \rangle \otimes n_D$ for some D, then $C \cong \operatorname{Cay}(D,\mu)$. In particular, $\operatorname{Zor}(F) \cong \operatorname{Cay}(D,1)$ for any quaternion algebra D since $\langle 1, -1 \rangle \otimes n_D$ is hyperbolic. A composition algebra is *split* if it contains an isomorphic copy of $F \oplus F$ as a composition subalgebra, which is the case if and only if it contains zero divisors.

2 Albert Forms

From now on we consider only fields F with $\operatorname{char}(F) \neq 2$. It is well known that any norm of a composition algebra is a Pfister form, and conversely, any Pfister form is the norm of some composition algebra.

Let C be a composition algebra. Define $C' = \langle F1 \rangle^{\perp} = \{x \in C : t_1(x) = n_1(x,1) = 0\}$. Then $n' = n|_{C'}$ is the *pure norm* of C. Note that

$$C' = \{x \in C : x = 0 \text{ or } x \notin F1_C \text{ and } x^2 \in F1_C\}$$

= $\{x \in C : \gamma(x) = -x\}.$

Moreover, C is split if and only if its norm n is hyperbolic, two composition algebras are isomorphic if and only if their norms are isometric, and C is a division algebra if and only if n is anisotropic.

We now investigate tensor products of two composition algebras. Following Albert, we associate to the tensor product $C = C_1 \otimes C_2$ of two composition algebras with $\dim(C_i) = r_i$ and $n_{C_i} = n_i$ the $(r_1 + r_2 - 2)$ -dimensional form $n'_1 \perp \langle -1 \rangle n'_2$ of determinant -1. This definition, for C_1 or C_2 an octonion algebra, was first given by Allison in [5]. In the Witt ring W(F), obviously this form is equivalent to $n_1 - n_2$. Like the norm form of a composition algebra, this Albert form contains crucial information about the tensor product algebra C. For biquaternion algebras, this is well-known ([1, Thm. 3], [11, Thm. 3.12]). We introduce some notation and terminology. If q is a quadratic form and if $\mathbb{H} = \langle 1, -1 \rangle$ is the hyperbolic plane, then $q = q_0 \perp i \mathbb{H}$ for some anisotropic form q_0 and integer i. The integer i is called

the Witt index of q and is denoted $i_W(q)$. In the proof of the following proposition, we use the notion of linkage of Pfister forms (see [8, Sec. 4]). Recall that two n-fold Pfister forms q_1 and q_2 are r-linked if there is an r-fold Pfister form h with $q_i = h \otimes q'_i$ for some Pfister forms q'_i . Finally, we call a two-dimensional commutative F-algebra that is separable over F a quadratic étale algebra. Note that any quadratic étale algebra is either a quadratic field extension of F or is isomorphic to $F \oplus F$. Part of the following result has been proved in [9, Thm. 5.1].

Proposition 2.1. Let C_1 and C_2 be octonion algebras over F with norms n_1 and n_2 , and let $i = i_W(N)$ be the Witt index of the Albert-form $N = n'_1 \perp \langle -1 \rangle n'_2$.

- (i) $i = 0 \iff C_1$ and C_2 do not contain isomorphic quadratic étale subalgebras.
- (ii) $i = 1 \iff C_1$ and C_2 contain isomorphic quadratic étale subalgebras, but no isomorphic

quaternion subalgebras.

- (iii) $i = 3 \iff C_1 \text{ and } C_2 \text{ contain isomorphic quaternion subalgebras, but } C_1 \text{ and } C_2$ are not isomorphic.
- (iv) $i = 7 \iff C_1 \cong C_2$.

Proof. By [8, Props. 4.4, 4.5], the Witt index of $n_1 \perp \langle -1 \rangle n_2$ is either 0 or 2^r , where r is the linkage number of $n_1 \perp \langle -1 \rangle n_2$. Note that the Witt index of N is one less than the Witt index of $n_1 \perp \langle -1 \rangle n_2$ since $n_1 \perp \langle -1 \rangle n_2 = \mathbb{H} \perp N$. If $C_1 \cong C_2$, then $n_1 \cong n_2$, so i=7. Conversely, if i=7, then $n_1 \perp \langle -1 \rangle n_2$ is hyperbolic, so $n_1 \cong n_2$, which forces $C_1 \cong C_2$. If C_1 and C_2 are not isomorphic but contain a common quaternion algebra Q, then $C_i = \text{Cay}(Q, \mu_i)$ for some i. Therefore, $n_1 = n_Q \otimes \langle 1, -\mu_1 \rangle$ and $n_2 = n_Q \otimes \langle 1, -\mu_2 \rangle$. These descriptions show that n_1 and n_2 are 2-linked, so i = 3. Conversely, if i = 3, then n_1 and n_2 are 2-linked but not isometric. If $\langle \langle a, b \rangle \rangle$ is a factor of both n_1 and n_2 , then $n_1 = \langle \langle a, b, c \rangle \rangle$ and $n_2 = \langle \langle a, b, d \rangle \rangle$ for some $c, d \in F^{\times}$. If Q = (-a, -b), we get $C_1 = \text{Cay}(Q, -c)$ and Cay(Q, -d), so C_1 and C_2 contain a common quaternion algebra. If C_1 and C_2 contain a common quadratic étale algebra $F[t]/(t^2-a)$ but no common quaternion algebra, then $\langle 1, -a \rangle$ is a factor of n_1 and n_2 , which means they are 1-linked. If n_1 and n_2 are 2-linked, then the previous step shows that C_1 and C_2 have a common quaternion subalgebra, which is false. Conversely, if n_1 and n_2 are 1-linked but not 2-linked, then C_1 and C_2 do not have a common quaternion subalgebra, and if $\langle \langle a \rangle \rangle$ is a common factor to n_1 and n_2 , then C_1 and C_2 both contain the étale algebra $F[t]/(t^2-a)$.

Proposition 2.2. Let C_1 be an octonion algebra over F and C_2 be a quaternion algebra over F, with norms n_1 and n_2 . Again consider the Witt index i of the Albert form $N = n'_1 \perp \langle -1 \rangle n'_2$.

(i) $i = 0 \iff C_1$ and C_2 do not contain isomorphic quadratic étale subalgebras.

- (ii) $i = 1 \iff C_1 \text{ and } C_2 \text{ contain isomorphic quadratic étale subalgebras, but } C_2 \text{ is } not \text{ a}$ $quaternion \text{ subalgebra of } C_1.$
- (iii) $i=3 \iff C_1 \cong \operatorname{Cay}(C_2,\mu) \text{ for a suitable } \mu \in F^{\times}, \text{ and } C_2 \text{ is a division algebra.}$
- (iv) $i = 5 \iff C_1 \cong \operatorname{Zor}(F) \text{ and } C_2 \cong M_2(F).$

Proof. In the case that both algebras C_1 and C_2 are division algebras, this is an immediate consequence of [9, Lemma 3.2]. If both C_1 and C_2 is split, then clearly N has Witt index 5. If C_2 is a division algebra and $C_1 = \operatorname{Cay}(C_2, \mu)$ for some μ , then n_2 is anisotropic and $N \perp \mathbb{H} = n_2 \otimes \langle 1, -\mu \rangle \perp \langle -1 \rangle n_2 = 4\mathbb{H} \perp \langle -\mu \rangle n_2$, so N has Witt index 3. Note that the converse is easy, since if i = 3, then n_2 is isomorphic to a subform of n_1 , which forces n_2 to be a factor of n_1 . If $n_1 = \langle 1, a \rangle \otimes n_2$, then $C_1 \cong \operatorname{Cay}(C_2, -a)$, so C_2 is a subalgebra of C_1 . If C_1 and C_2 contain a common quadratic étale algebra $F[t]/(t^2 - a)$ but C_2 is not a quaternion subalgebra of C_1 , then n_1 and n_2 have $\langle \langle a \rangle \rangle$ as a common factor, so i = 1. Finally, if N is isotropic, there are $x_i \in C_i$, both skew, with $n_1(x_1) = n_2(x_2)$. Then, as $t_1(x_1) = 0 = t_2(x_2)$, the algebras $F[x_1]$ and $F[x_2]$ are isomorphic, so C_1 and C_2 share a common quadratic étale subalgebra. This finishes the proof.

If C is a biquaternion algebra; i.e., $C \cong C_1 \otimes C_2$ for two quaternion algebras C_1 and C_2 , then the Albert form $n'_1 \perp \langle -1 \rangle n'_2$ is determined up to similarity by the isomorphism class of the algebra C ([11, Thm. 3.12]). Allison generalizes this result ([5, Thm. 5.4]) to tensor products of arbitrary composition algebras. However, he always considers the involution $\sigma = \gamma_1 \otimes \gamma_2$ as a crucial part of the algebra $C = C_1 \otimes C_2$. Allison proves that $(C_1 \otimes C_2, \gamma_1 \otimes \gamma_2)$ and $(C_3 \otimes C_4, \gamma_3 \otimes \gamma_4)$ are isotopic algebras if and only if they have similar Albert forms, for the cases that C_1, C_3 are octonion and C_2, C_4 quaternion or octonion algebras.

The fact that any F-algebra isomorphism $\varphi: (C_1 \otimes C_2, \gamma_1 \otimes \gamma_2) \to (C_3 \otimes C_4, \gamma_3 \otimes \gamma_4)$ between arbitrary products of composition algebras yields an isometry $n'_1 \perp \langle -1 \rangle n'_2 \cong \mu(n'_3 \perp \langle -1 \rangle n'_4)$ for a suitable $\mu \in F^{\times}$ is easy to see. Also, since for $C = C_1 \otimes C_2$ the map $\langle \ , \ \rangle: C \times C \to F$ given by $\langle x_1 \otimes x_2, y_1 \otimes y_2 \rangle = n_1(x_1, y_1) \otimes n_2(x_2, y_2)$ is a nondegenerate symmetric bilinear form on C such that $\langle \sigma(x), \sigma(y) \rangle = \langle x, y \rangle$, the equation $\langle zx, y \rangle = \langle x, \sigma(z)y \rangle$ holds (that is, an *invariant form* cf. [6, p. 144]), and $\tau: C \times C \to k$, $\tau(x, y) = \langle x, \sigma(y) \rangle$ an associative nondegenerate symmetric bilinear form which is proper, it follows easily that $n_1 \otimes n_2 \cong n_3 \otimes n_4$.

Suppose that we have two algebras that each are a tensor product of an octonion algebra and a quaternion algebra. We obtain a necessary and sufficient condition for when their Albert forms are similar. We use the notation D(q) to denote the elements of F^{\times} represented by a quadratic form q.

Proposition 2.3. Let C_1, C_2 be octonion algebras and Q_1, Q_2 quaternion algebras over F. Let N_1 and N_2 be the Albert forms of $C_1 \otimes Q_1$ and $C_2 \otimes Q_2$, respectively. If $N_1 \cong \mu N_2$ for some $\mu \in F^{\times}$, then $Q_1 \cong Q_2$. Moreover, there is a quaternion algebra Q and elements $c, d \in F^{\times}$ such that $C_1 \cong \operatorname{Cay}(Q, c)$, $C_2 \cong \operatorname{Cay}(Q, d)$, $\operatorname{Cay}(Q_1, \mu) \cong \operatorname{Cay}(Q, cd)$, and $-\mu c \in D(n_{C_2})$. Conversely, if there is a quaternion algebra Q and elements $c, d, \mu \in F^{\times}$ such that C_1 , $Q_1 = Q_2$, and C_2 satisfy the conditions of the previous sentence, then $N_1 \cong \mu N_2$.

Proof. Suppose that $N_1 \cong \mu N_2$ for some $\mu \in F^{\times}$. If $c: W(F) \to \operatorname{Br}(F)$ is the Clifford invariant, then $c(N_1) = c(\mu N_2) = c(N_2)$. Since c is trivial on $I^3(F)$, we have $c(N_1) = c(-n_{Q_1})$ and $c(N_2) = c(-n_{Q_2})$ (see [15, Ch. 5.3]). Therefore, $c(n_{Q_1}) = c(n_{Q_2})$. However, the Clifford invariant of the norm form of a quaternion algebra is the class of the quaternion algebra, by [15, Cor. V.3.3]. This implies that $c(N_1) = [Q_1]$ and $c(\mu N_2) = [Q_2]$. Since $[Q_1] = [Q_2]$, we get $Q_1 \cong Q_2$. As a consequence of this, $n_{Q_1} \cong n_{Q_2}$. Thus,

$$n_{C_1} \perp -\langle 1, -\mu \rangle \otimes n_{Q_1} \cong n_{C_1} \perp (-n_{Q_1} \perp \mu n_{Q_1})$$

 $\cong \mu (n_{C_2} \perp -n_{Q_2}) \perp \mu n_{Q_1} \cong \mu n_{C_1} \perp (-\mu n_{Q_1} \perp \mu n_{Q_2})$
 $\cong \mu n_{C_2} \perp 4\mathbb{H}.$

The forms n_{C_1} and $\langle 1, -\mu \rangle \otimes n_{Q_1}$ are Pfister forms. The line above shows that these Pfister forms are 2-linked, in the terminology of [8]. Therefore, there is a 2-fold Pfister form $\langle \langle -a, -b \rangle \rangle$ with $n_{C_1} \cong \langle \langle -a, -b, -c \rangle \rangle$ and $\langle 1, -\mu \rangle \otimes n_{Q_1} \cong \langle \langle -a, -b, -e \rangle \rangle$ for some $c, e \in F^{\times}$. An elementary calculation shows that

$$\langle \langle -a, -b, -c \rangle \rangle \perp - \langle \langle -a, -b, -e \rangle \rangle \cong 4\mathbb{H} \perp \langle -c, e \rangle \otimes \langle \langle -a, -b \rangle \rangle$$
.

Therefore, $\mu n_{C_2} \cong \langle -c, e \rangle \otimes \langle \langle -a, -b \rangle \rangle$. Thus, $n_{C_2} \cong -\mu c \langle \langle -a, -b, -ce \rangle \rangle$. Since n_{C_2} and $\langle \langle -a, -b, -ce \rangle \rangle$ are Pfister forms, we get $n_{C_2} \cong \langle \langle -a, -b, -ce \rangle \rangle$. If we set d = ce and let Q be the quaternion algebra $(a, b)_F$, then the isomorphisms $n_{C_1} \cong \langle \langle -a, -b, -c \rangle \rangle$ and $n_{C_2} \cong \langle \langle -a, -b, -d \rangle \rangle$ give $C_1 \cong \operatorname{Cay}(Q, c)$ and $C_2 \cong \operatorname{Cay}(Q, d)$. Moreover, $n_{C_2} \cong -\mu c n_{C_2}$, so $-\mu c \in D(n_{C_2})$. Finally, the isomorphism $\langle 1, -\mu \rangle \otimes n_{Q_2} \cong \langle \langle -a, -b, -e \rangle \rangle$ gives $\operatorname{Cay}(Q_1, \mu) \cong \operatorname{Cay}(Q, e) \cong \operatorname{Cay}(Q, cd)$.

It is a short calculation to show that if $C_1 = \operatorname{Cay}(Q,c)$, $C_2 = \operatorname{Cay}(Q,d)$, and $Q_1 = Q_2$ is a quaternion algebra with $\operatorname{Cay}(Q_1,\mu) \cong \operatorname{Cay}(Q,-dc)$, then $n'_{C_1} \perp \langle -1 \rangle n'_{Q_1} \cong \mu(n'_{C_2} \perp \langle -1 \rangle n'_{Q_2})$.

The argument of the previous proposition does not work for a tensor product of two octonion algebras since the Albert form is an element of $I^3(F)$, whose Clifford invariant is trivial.

Corollary 2.4. With the notation in the previous proposition, suppose that $N_1 \cong \mu N_2$ for some $\mu \in F^{\times}$. If one of C_1 and C_2 is split, then the other algebra is isomorphic to $Cay(Q_1, \mu)$.

Proof. We saw in the proof of the previous proposition that

$$n_{C_1} \perp -\langle 1, -\mu \rangle \otimes n_{Q_1} \cong \mu n_{C_2} \perp 4\mathbb{H}.$$

Suppose that C_2 is split. Then $n_{C_1} \perp -\langle 1, -\mu \rangle \otimes n_{Q_1}$ is hyperbolic, so $n_{C_1} \cong \langle 1, -\mu \rangle \otimes n_{Q_2}$. Therefore, $C_1 \cong \operatorname{Cay}(Q_1, \mu)$. On the other hand, if C_1 is split, then $n_{C_1} \cong 4\mathbb{H}$, so by Witt cancellation, $-\mu n_{C_2} \cong \langle 1, -\mu \rangle \otimes n_{Q_1}$. Since n_{C_2} and $\langle 1, -\mu \rangle \otimes n_{Q_1}$ are both Pfister forms, this implies that $n_{C_2} \cong \langle 1, -\mu \rangle \otimes n_{Q_1}$, and so $C_2 \cong \operatorname{Cay}(Q_1, \mu)$.

In Proposition 2.3 above, it is possible for $N_1 \cong \mu N_2$ without $C_1 \cong C_2$. Moreover, the quaternion algebra Q of the proposition need not be isomorphic to Q_1 . We verify both these claims in the following example.

Example 2.5. In this example we produce nonisomorphic octonion algebras C_1 and C_2 and a quaternion algebra Q_1 that is not isomorphic to a subalgebra of either C_1 or C_2 , and such that the Albert forms of $C_1 \otimes_F Q_1$ and $C_2 \otimes_F Q_1$ are similar. To do this we produce nonisometric Pfister forms $\langle \langle x, y, z \rangle \rangle$ and $\langle \langle x, y, w \rangle \rangle$ and elements u, v, μ with $\langle \langle x, y, zw \rangle \rangle \cong \langle \langle u, v, \mu \rangle \rangle$ such that the Witt index of $\langle \langle x, y, z \rangle \rangle \perp - \langle \langle u, v, \mu \rangle \rangle$ and $\langle \langle x, y, w \rangle \rangle \perp - \langle \langle u, v, \mu \rangle \rangle$ are both 2, and $\mu z \in D(\langle \langle x, y, w \rangle \rangle)$. We then set Q = (-x, -y), $C_1 = \operatorname{Cay}(Q, -z)$, $C_2 = \operatorname{Cay}(Q, -w)$, and $Q_1 = (-u, -v)$. From Proposition 2.3, we have $N_1 \cong \mu N_2$. However, Proposition 2.2 shows that Q_1 is not isomorphic to a subalgebra of either C_1 or C_2 . Moreover, C_1 and C_2 are not isomorphic since their norm forms are not isometric. Note that Q and C_2 are not isomorphic since Q_1 is not a subalgebra of C_1 .

Let k be a field of characteristic not 2, and let F = k(x, y, z, w) be the rational function field in 4 variables over k. Set $\mu = xyzw$, $n_1 = \langle \langle x, y, z \rangle \rangle$, and $n_2 = \langle \langle x, y, w \rangle \rangle$. By embedding F in the Laurent series field k(x, y, z)((w)), we see that n_1 and $n_2 = \langle \langle x, y \rangle \rangle \perp w \langle \langle x, y \rangle \rangle$ are not isomorphic over this field by Springer's theorem [15, Prop. VI.1.9], so n_1 and n_2 are not isomorphic over F. Also, $\mu z = z^2(xyw)$, which is clearly represented by n_3 . Set $Q_1 = (-zw, -xzw)$. A short calculation shows that $\langle \langle x, y, zw \rangle \rangle = \langle \langle zw, xzw, \mu \rangle \rangle$. Finally, for the Witt indices, we have

$$n_{1} \perp -n_{Q_{1}} = \langle 1, x, y, xy, z, xz, yz, xyz \rangle \perp -\langle 1, zw, xzw, x \rangle$$

$$= 2\mathbb{H} \perp \langle y, xy, z, xz, yz, xyz, -zw, -xzw \rangle$$

$$= 2\mathbb{H} \perp \langle y, xy, z, xz, yz, xyz \rangle \perp w \langle -z, -xz \rangle.$$

The Springer theorem shows that this form has Witt index 2. Similarly,

$$n_{3} \perp -n_{Q_{1}} = \langle 1, x, y, xy, w, xw, yw, xyw \rangle \perp -\langle 1, zw, xzw, x \rangle$$
$$= 2\mathbb{H} \perp \langle y, xy, w, xw, yw, xyw, -zw, -xzw \rangle$$
$$= 2\mathbb{H} \perp \langle y, xy \rangle \perp w \langle 1, x, y, xy, -z, -xz \rangle$$

has Witt index 2.

For the remainder of this section we will also consider the case that $\operatorname{char}(F) = 2$. Let C_1 and C_2 be composition algebras over F of $\dim_F(C_i) = r_i \geq 2$, and let n_i be the norm form of C_i . Using the notation of [13], the subspace $Q(C_1, C_2) = \{u = x_1 \otimes 1 - 1 \otimes x_2 : t_1(x_1) = t_2(x_2)\}$

has dimension $r_1 + r_2 - 2$, and $Q(C_1, C_2) = \{z - (\gamma_1 \otimes \gamma_2)(z) : z \in C_1 \otimes C_2\}$ is the set of alternating elements of $C_1 \otimes C_2$ with respect to $\gamma_1 \otimes \gamma_2$. The nondegenerate quadratic form $N: Q(C_1, C_2) \to F$ given by $N(x_1 \otimes 1 - 1 \otimes x_2) = n_1(x_1) - n_2(x_2)$ is isometric to the Albert form $n'_1 \perp \langle -1 \rangle n'_2$ of $C_1 \otimes C_2$.

Let $V_N \subset \mathbb{P}^{r_1+r_2-3}$ be the F-quadric defined via N. In the case that $\operatorname{char}(F) \neq 2$, V_N coincides with the open subvariety U_N of closed points $x_1 \otimes 1 - 1 \otimes x_2$ with $x_1 \notin F1$ and $x_2 \notin F1$. We now generalize [13, Prop.] in the following two propositions. We will make use of the following fact that comes from Galois theory: Let $F[z_i]$ be the commutative F-subalgebra of dimension two of C_i generated by $z_i \in C_i$ for i = 1, 2. Then there exists an isomorphism $\alpha : F[z_1] \xrightarrow{\sim} F[z_2]$ such that $\alpha(z_1) = z_2$ if and only if $n_1(z_1) = n_2(z_2)$ and $t_1(z_1) = t_2(z_2)$.

Proposition 2.6. There exists a bijection Φ between the set of F-rational points of U_N and the set of triples (K_1, K_2, α) , where K_i is a two-dimensional commutative subalgebra of C_i , and where $\alpha: K_1 \xrightarrow{\sim} K_2$ is an F-algebra isomorphism:

$$\Phi: \{P \in U_N \mid P \text{ an } F\text{-rational point}\} \xrightarrow{\sim} \{(K_1, K_2, \alpha) \mid K_1, K_2, \alpha \text{ as above}\}$$

$$P = z_1 \otimes 1 - 1 \otimes z_2 \longmapsto \begin{pmatrix} F[z_1], F[z_2], \alpha : F[z_1] \xrightarrow{\sim} F[z_2] \\ z_1 \mapsto z_2 \end{pmatrix}$$

Proof. Any F-rational point $P \in U_N$ corresponds with an element $x_1 \otimes 1 - 1 \otimes x_2 \in Q(C_1, C_2)$ with $t_1(x_1) = t_2(x_2)$ and $n_1(x_1) = n_2(x_2)$. Then there exists an F-algebra isomorphism $\alpha : F[x_1] \xrightarrow{\sim} F[x_2]$ with $x_1 \mapsto x_2$. For $x_1 \otimes 1 - 1 \otimes x_2 = z_1 \otimes 1 - 1 \otimes z_2$ it can be easily verified that

$$\begin{pmatrix} F[x_1], F[x_2], \alpha : F[x_1] \xrightarrow{\sim} F[x_2] \\ x_1 \mapsto x_2 \end{pmatrix} = \begin{pmatrix} F[z_1], F[z_2], \beta : F[z_1] \xrightarrow{\sim} F[z_2] \\ z_1 \mapsto z_2 \end{pmatrix}$$

Therefore, the mapping Φ is well defined.

Given a triple (K_1, K_2, α) , there are elements $z_i \in C_i'$ such that $K_i = F[z_i]$ and α : $F[z_1] \xrightarrow{\sim} F[z_2]$ with $z_1 \mapsto z_2$. By the remark before the proposition, we have $n_1(z_1) = n_2(z_2)$ and $t_1(z_1) = t_2(z_2)$; thus $N(z_1 \otimes 1 - 1 \otimes z_2) = 0$, and the triple defines the F-rational point $P \in U_N$ corresponding to $z_1 \otimes 1 - 1 \otimes z_2$. So Φ is surjective.

To prove injectivity, suppose that $\Phi(x_1 \otimes 1 - 1 \otimes x_2) = \Phi(z_1 \otimes 1 - 1 \otimes z_2)$. Then $F[x_1] = F[z_1]$, $F[x_2] = F[z_2]$ and the maps $\alpha : F[x_1] \xrightarrow{\sim} F[x_2]$, $x_1 \mapsto x_2$ and $\beta : F[z_1] \xrightarrow{\sim} F[z_2]$, $z_1 \mapsto z_2$ are equal. Since $F[x_i] = F[z_i]$, write $x_1 = a + bz_1$ and $x_2 = c + dz_2$ with $a, b, c, d \in F$. We have a = c since $t_1(x_1) = t_2(x_2)$. Therefore, we may replace x_1 with bz_1 and x_2 by dz_2 without changing $x_1 \otimes 1 - 1 \otimes x_2$. Thus, $x_1 \otimes 1 - 1 \otimes x_2 = bz_1 \otimes 1 - 1 \otimes dz_2$, and $n_1(x_1) = n_2(x_2)$, $n_1(z_1) = n_2(z_2)$ imply that $n_1(x_1) = b^2 n_1(z_1)$ and $n_2(x_2) = d^2 n_2(z_2)$. Therefore, $b^2 = d^2$, so $b = \pm d$. Now $x_2 = \alpha(x_1) = \alpha(bz_1) = bz_2$ yields b = d and we get $x_1 \otimes 1 - 1 \otimes x_2 = b(z_1 \otimes 1 - 1 \otimes z_2)$ which shows that Φ is injective. \square

In the case that char(F) = 2, the set $U_N = \{x_1 \otimes 1 - 1 \otimes x_2 : x_1 \notin F1, x_2 \notin F1\}$ is a

proper open subvariety of V_N . The proof of the previous proposition shows that Φ again is a bijection between the F-rational points of U_N and the triples (K_1, K_2, α) , where K_i is a two-dimensional commutative F-subalgebra of C_i and $\alpha : K \xrightarrow{\sim} L$ an F-algebra isomorphism. We can say more in this situation.

Proposition 2.7. Let $\operatorname{char}(F) = 2$. There exists an F-rational point in V_N if and only if there exists a triple (K_1, K_2, α) such that K_i is a quadratic étale subalgebra of C_i and $\alpha: K_1 \xrightarrow{\sim} K_2$ an F-algebra isomorphism. In addition, there exists an F-rational point in $V_N \cap \{t_1(x_1) = 0\}$ if and only if there exists a triple (K_1, K_2, α) such that K_1 and K_2 are purely inseparable quadratic extensions and $\alpha: K_1 \xrightarrow{\sim} K_2$ an F-algebra isomorphism.

Proof. As pointed out before the proposition, there is a bijection between F-rational points in U_N and triples (K_1, K_2, α) with $K_i \subseteq C_i$ commutative subalgebras of dimension 2 over F. To prove the first statement, only one half needs further argument. Suppose V_N has an F-rational point. Since V_N is a quadric hypersurface, V_N is then birationally equivalent to $\mathbb{P}^{r_1+r_2-3}$. The F-rational points of projective space are dense, so there is an F-rational point in U_N . Therefore, we get a triple (K_1, K_2, α) with K_i a quadratic étale subalgebra of C_i .

For the second statement, an F-rational point in $V_N \cap \{t_1(x_1) = 0\}$ corresponds with an element $x_1 \otimes 1 - 1 \otimes x_2$ such that $n_1(x_1) = n_2(x_2)$ and $t_1(x_1) = t_2(x_2) = 0$, so $F[x_i]$ is a purely inseparable extension. There exists an isomorphism $\alpha : F[x_1] \xrightarrow{\sim} F[x_2]$ with $\alpha(x_1) = x_2$ and thus a triple $(F[x_1], F[x_2], \alpha)$. Conversely, if there is a triple (K_1, K_2, α) with K_i purely inseparable, there are $x_i \in C_i$ with $t_i(x_i) = 0$ such that $K = F[x_1], L = F[x_2]$ and $\alpha : F[x_1] \xrightarrow{\sim} F[x_2], x_1 \mapsto x_2$, so $n_1(x_1) = n_2(x_2)$, and $x_1 \otimes 1 - 1 \otimes x_2$ defines an F-rational point in $V_N \cap \{t_1(x_1) = 0\}$.

3 Automorphisms

Let (Q_i, γ_i) be a quaternion algebra with its standard involution, and let $C_i = \operatorname{Cay}(Q_i, \mu_i)$ be an octonion algebra. We also write γ_i for the standard involution on C_i . Let $C = C_1 \otimes_F C_2$ and $\sigma = \gamma_1 \otimes \gamma_2$. Let $A = Q_1 \otimes_F Q_2$, an F-central associative subalgebra of C. In this section we will prove that any automorphism of C that preserves A is compatible with the involution σ . As a consequence, we show that the Skolem-Noether theorem does not hold for A.

Let

$$e = (0,1) \otimes (1,0),$$

 $f = (1,0) \otimes (0,1),$
 $q = (0,1) \otimes (0,1).$

We can decompose C as an F-vector space as

$$C = A \oplus Ae \oplus Af \oplus Ag$$
.

Note that an automorphism of C is determined by its action on A and on $\{e, f, g\}$. Elementary calculations show that Ae = eA = A(Ae) = (Ae)A, and similar relations hold for f and g.

We point out some properties of this decomposition. We have, for $a \in A$,

$$ea = (\gamma_1 \otimes id)(a)e$$

$$fa = (id \otimes \gamma_2)(a)f$$

$$ga = \sigma(a)g.$$

For example, if $a = (x, 0) \otimes (y, 0)$, then

$$ga = (0,1) \otimes (0,1) \cdot (x,0) \otimes (y,0) = (0,\gamma_1(x)) \otimes (0,\gamma_2(y))$$

= $(\gamma_1(x),0) \otimes (\gamma_2(y),0)g = \sigma(a)g.$

The other properties follow similarly.

Lemma 3.1. For any $d, a \in A$, we have $(dg)a = \sigma(a)(dg)$. Also, a(dg) = (da)g.

Proof. Let
$$d = \sum_{i} (u_i, 0) \otimes (v_i, 0)$$
. For $a = (x, 0) \otimes (y, 0)$, we have

$$(dg)a = \sum_{i} (0, u_i) \otimes (0, v_i) \cdot (x, 0) \otimes (y, 0) = \sum_{i} (0, u_i \gamma_1(x)) \otimes (0, v_i \gamma_2(y))$$

and

$$\sigma(a)(dg) = (\gamma_1(x), 0) \otimes (\gamma_2(x), 0) \sum_i (0, u_i) \otimes (0, v_i) = \sum_i (0, u_i \gamma_1(x)) \otimes (0, v_i \gamma_2(y)).$$

This proves the first assertion. For the second, we see that

$$a(dg) = (x,0) \otimes (y,0) \cdot \sum_{i} (0,u_i) \otimes (0,v_i) = \sum_{i} (0,u_ix) \otimes (0,v_iy)$$

and

$$(da)g = \left(\sum_{i} (u_i, 0) \otimes (v_i, 0) \cdot (x, 0) \otimes (y, 0)\right)g$$

$$= \left(\sum_{i} (u_i x, 0) \otimes (v_i y, 0)\right)g = \sum_{i} (0, u_i x) \otimes (0, v_i y).$$

Lemma 3.2. The right multiplication maps R_e , R_f , and R_g are injective. If $\varphi \in \operatorname{Aut}_F(C)$, then $R_{\varphi(e)}$, $R_{\varphi(f)}$, and $R_{\varphi(g)}$ are injective.

Proof. The second statement is obvious from the first, so we prove the first. The arguments are similar, so we only prove that R_e is injective. Let $c = \sum_i (u_i, v_i) \otimes (w_i, x_i) \in C$. Then

$$ce = \sum_{i} (u_i, v_i) \otimes (w_i, x_i) \cdot (0, 1) \otimes (1, 0)$$
$$= \sum_{i} (\mu_1 v_i, u_i) \otimes (w_i, x_i),$$

and

$$(ce)e = \sum_{i} (\mu_{1}v_{i}, u_{i}) \otimes (w_{i}, x_{i}) \cdot (0, 1) \otimes (1, 0)$$

$$= \sum_{i} (\mu_{1}u_{i}, \mu_{1}v_{i}) \otimes (w_{i}, x_{i}) = \mu_{1}c.$$

Since $R_e \circ R_e$ is multiplication by the scalar μ_1 , we see that R_e is injective. By similar calculations, we see that R_f^2 is multiplication by μ_2 and R_g^2 is multiplication by $\mu_1\mu_2$, so R_f and R_g are also injective.

One fact we will use often is that if Q is a quaternion algebra with standard involution γ , and if $a \in Q$ satisfies $ab = \gamma(b)a$ for all $b \in Q$, then a = 0. This can be verified by an elementary calculation. The following lemma is a slight generalization of this fact.

Lemma 3.3. If $x \in A$ satisfies $xa = (\gamma_1 \otimes id)(a)x$ for all $a \in A$, then x = 0. Similarly, if $xa = (id \otimes \gamma_2)(a)x$ for all a, then x = 0.

Proof. Suppose x satisfies the first condition above. If $a \in Q_2$, then xa = ax, so $x \in C_A(Q_2) = Q_1$. We then let $a \in Q_1$, so $xa = \gamma_1(a)x$. Since this is true for all $a \in Q_1$, the remark before the lemma shows that x = 0. A similar argument works for the second statement.

In the proof of the following theorem, we make use of the following well known result: if $A = Q_1 \otimes_F Q_2$ is a biquaternion algebra with involution $\sigma = \gamma_1 \otimes \gamma_2$, where γ_i is the standard involution on Q_i , then any automorphism of A that is compatible with σ either preserves the Q_i or interchanges them. To aid the reader we recall one proof of this fact. If φ is such an automorphism, then φ restricts to a Lie algebra automorphism of Skew (A, σ) , the space of skew-symmetric elements of A with respect to σ . This Lie algebra is the direct sum of the two simple Lie subalgebras Skew (Q_1, γ_1) and Skew (Q_2, γ_2) . Since these are the unique simple Lie ideals of Skew (A, σ) , the map φ must preserve them or interchange them. As $Q_i = F \oplus \text{Skew}(Q_i, \gamma_i)$, this clearly shows that φ preserves the Q_i or interchanges them.

We now give the main result of this section.

Theorem 3.4. If $\varphi \in \operatorname{Aut}_F(C)$ satisfies $\varphi(A) = A$, then $\varphi \circ \sigma = \sigma \circ \varphi$.

Proof. We first prove that either

$$\varphi(e) \in Q_1 e,$$

$$\varphi(f) \in Q_2 f,$$

$$\varphi(g) \in Ag,$$

or

$$\varphi(e) \in Q_2 f,$$

$$\varphi(f) \in Q_1 e,$$

$$\varphi(g) \in Ag.$$

For simplicity, we write $\tau_1 = (\gamma_1 \otimes id)|_A$ and $\tau_2 = (id \otimes \gamma_2)|_A$. We begin by writing

$$\varphi(e) = a_1 + b_1 e + c_1 f + d_1 g,$$

$$\varphi(f) = a_2 + b_2 e + c_2 f + d_2 g,$$

$$\varphi(g) = a_3 + b_3 e + c_3 f + d_3 g.$$

with the coefficients in A. Let $b \in A$. Applying φ to the equations $eb = \tau_1(b)e$, $fb = \tau_2(b)f$, and $gb = \sigma(b)g$ and setting $a = \varphi(b)$ gives

$$\begin{split} \varphi(e)a &= \tau_1'(a)\varphi(e), \\ \varphi(f)a &= \tau_2'(a)\varphi(f), \\ \varphi(g)a &= \sigma'(a)\varphi(g), \end{split}$$

where $\sigma' = (\varphi \sigma \varphi^{-1})|_A$ and $\tau'_i = (\varphi \tau_i \varphi^{-1})|_A$. In particular, looking at the g-coefficients, we get

$$(d_1g)a = \tau'_1(a)(d_1g),$$

 $(d_2g)a = \tau'_2(a)(d_2g),$
 $(d_3g)a = \sigma'(a)(d_3g).$

Now, we have $(dg)a = \sigma(a)(dg) = (d\sigma(a))g$ for all $d \in A$ by Lemma 3.1. So, we get

$$d_1\sigma(a) = d_1\tau_1'(a),$$

$$d_2\sigma(a) = d_2\tau_2'(a),$$

$$d_3\sigma(a) = d_3\sigma'(a).$$
(1)

It is clear that $\sigma \neq \tau'_i$ as τ'_i is not an involution. If A is a division algebra, then this forces $d_1 = d_2 = 0$. We prove that $d_1 = d_2 = 0$ in general in Corollary 3.9 below. From this we see

that $\operatorname{im}\varphi \subseteq A \oplus Ae \oplus Af \oplus (d_3A) g$. Since φ is surjective, we get $d_3A = A$ (using Lemma 9), so d_3 is a unit in A. From Equation 1, this forces $\sigma' = \sigma$. Thus, $(\varphi \sigma \varphi^{-1})|_A = \sigma|_A$, so $\varphi|_A$ is compatible with $\sigma|_A$. Note that this forces φ either to fix the Q_i or to interchange them, as pointed out before the theorem. So, $(\varphi \tau_1 \varphi^{-1})|_A$ is either τ_1 or τ_2 , and similarly for $(\varphi \tau_2 \varphi^{-1})|_A$.

We next consider the coefficients a_3 , b_3 and c_3 . Since $\varphi \circ \sigma|_A = \sigma \circ \varphi|_A$, we have

$$a_3 a = \sigma(a)a_3,$$

$$(b_3 e)a = \sigma(a)(b_3 e),$$

$$(c_3 f)a = \sigma(a)(c_3 f).$$

for all $a \in A$. Clearly $a_3 = 0$. Writing $b_3 = \sum_i (u_i, 0) \otimes (v_i, 0)$ with $\{u_i\}$ an F-independent set, for $a = (x, 0) \otimes (y, 0)$ we have

$$(b_3 e)a = \sum_{i} (0, u_i) \otimes (v_i, 0) \cdot (x, 0) \otimes (y, 0)$$

$$= \sum_{i} (0, u_i \gamma_1(x)) \otimes (v_i y, 0),$$

$$\sigma(a)(b_3 e) = (\gamma_1(x), 0) \otimes (\gamma_2(y), 0) \cdot \sum_{i} (0, u_i) \otimes (v_i, 0)$$

$$= \sum_{i} (0, u_i \gamma_1(x)) \otimes (\gamma_2(y) v_i, 0).$$

Setting these two equal with x = 1, and using the independence of $\{u_i\}$ yields $v_i y = \gamma_2(y) v_i$, so $v_i = 0$ for all i. Thus, $b_3 = 0$. Similarly, $c_3 = 0$. We have thus proven that $\varphi(g) = d_3 g$.

We next show that $\varphi(e) \in Q_1 e$ or $\varphi(e) \in Q_2 f$. From the condition $eb = \tau_1(b)e$, applying φ , we see that

$$a_1 a = \tau'_1(a) a_1,$$

 $(b_1 e) a = \tau'_1(a) (b_1 e),$
 $(c_1 f) a = \tau'_1(a) (c_1 f),$

and τ_1' is either τ_1 or τ_2 , as we saw above. We see that $a_1 = 0$ by Lemma 3.3. Suppose that $\tau_1' = \tau_1$. For c_1 , write $c_1 = \sum_i (u_i, 0) \otimes (v_i, 0)$. We have $(c_1 f)a = \tau_1(a)(c_1 f)$. For $a = (x, 0) \otimes (y, 0)$ we have

$$\sum_{i} (u_{i}, 0) \otimes (0, v_{i}) \cdot (x, 0) \otimes (y, 0) = \sum_{i} (u_{i}x, 0) \otimes (0, v_{i}\gamma_{2}(y)),$$
$$(\gamma_{1}(x), 0) \otimes (y, 0) \sum_{i} (u_{i}, 0) \otimes (0, v_{i}) = \sum_{i} (\gamma_{1}(x)u_{i}, 0) \otimes (0, v_{i}y).$$

By assuming that the $\{v_i\}$ are F-independent, and setting y=1, we get $u_ix=\gamma_1(x)u_i$,

which forces each $u_i = 0$, so $c_1 = 0$. Since $a_1 = c_1 = d_1 = 0$, we have $\varphi(e) \in Ae$. On the other hand, if $\tau'_1 = \tau_2$, a similar calculation shows that $\varphi(e) = c_1 f \in Af$. We further need to show that in the first case that $b_1 \in Q_1$ and that $c_1 \in Q_2$ in the second case. For the first case write $b_1 = \sum_i (u_i, 0) \otimes (v_i, 0)$ with $\{u_i\}$ an F-independent set. Since we have $(b_1e)a = \tau_1(a)(b_1e)$, for $a = (x, 0) \otimes (y, 0)$,

$$(b_1 e)a = \sum_i (0, u_i) \otimes (v_i, 0) \cdot (x, 0) \otimes (y, 0) = \sum_i (0, u_i \gamma_1(x)) \otimes (v_i y, 0)$$

and

$$\tau_1(a)(b_1e) = (\gamma_1(x), 0) \otimes (y, 0) \sum_i (0, u_i) \otimes (v_i, 0) = \sum_i (0, u_i \gamma_1(x)) \otimes (yv_i, 0).$$

By setting x=1 and using the independence of the $\{u_i\}$, we see that $v_iy=yv_i$ for all $y\in Q_2$. Thus, each $v_i\in F$. Therefore, $b_1=\sum_i(u_i,0)\otimes(v_i,0)=(\sum_iu_iv_i,0)\otimes(1,0)\in Q_1$. The argument for c_1 is similar. Finally, similar calculations show that $\varphi(f)\in Q_1e$ or $\varphi(f)\in Q_2f$.

We now have proved that either

$$\varphi(e) = be \text{ for some } b \in Q_1,$$

$$\varphi(f) = cf \text{ for some } c \in Q_2,$$

$$\varphi(g) = dg \text{ for some } d \in A.$$

or

$$\varphi(e) = cf \text{ for some } c \in Q_2,$$

$$\varphi(f) = be \text{ for some } b \in Q_1,$$

$$\varphi(g) = dg$$
 for some $d \in A$.

We claim that either of these cases implies that $\varphi \circ \sigma = \sigma \circ \varphi$. Note that $\sigma|_A \circ \tau_1 = \tau_1 \circ \sigma|_A = \tau_2$ and $\sigma|_A \circ \tau_2 = \tau_2 \circ \sigma|_A = \tau_1$. We consider the first case. Note that $\sigma(e) = -e$, $\sigma(f) = -f$, and $\sigma(g) = g$. We have

$$\varphi(\sigma(x+ye+zf+wg)) = \varphi(\sigma(x) - e\sigma(y) - f\sigma(z) + g\sigma(w))$$

$$= \varphi(\sigma(x) - \tau_2(y)e - \tau_1(z)f + wg)$$

$$= \varphi\sigma(x) - \varphi\tau_2(y)(be) - \varphi\tau_1(z)(cf) + \varphi(w)(dg)$$

and

$$\sigma(\varphi(x+ye+zf+wg)) = \sigma(\varphi(x)+\varphi(y)(be)+\varphi(z)(cf)+\varphi(w)(dg))
= \sigma\varphi(x) - (e\sigma(b))\sigma\varphi(y) - (f\sigma(c))\sigma\varphi(z) + (g\sigma(d)\sigma\varphi(w))
= \sigma\varphi(x) - (\tau_2(b)e)\sigma\varphi(y) - (\tau_1(c)f)\sigma\varphi(z) + (dg)\sigma\varphi(w)
= \sigma\varphi(x) - (be)\sigma\varphi(y) - (cf)\sigma\varphi(z) + (dg)\sigma\varphi(w)
= \sigma\varphi(x) - \tau_2\varphi(y)(be) - \tau_1\varphi(z)(cf) + \varphi(w)(dg).$$

We used $b \in Q_1$ and $c \in Q_2$ to simplify the fourth line of the display above. Also, because $b \in Q_1$, we can see by a short calculation that $(be)a = \tau_1(a)(be)$ for all $a \in A$. Similarly, since $c \in Q_2$, we have $(cf)a = \tau_2(a)(cf)$. This shows how we obtained the fifth line of the display.

We will have $\varphi \circ \sigma = \sigma \circ \varphi$ once we know that $(\varphi \circ \sigma)|_A = (\sigma \circ \varphi)|_A$ and $\varphi|_A \circ \tau_i = \tau_i \circ \varphi|_A$. We saw earlier that $(\varphi \sigma \varphi^{-1})|_A = \sigma|_A$, so $(\varphi \circ \sigma)|_A = (\sigma \circ \varphi)|_A$. Moreover, we obtained the first case above by having $(\varphi \tau_i \varphi^{-1})|_A = \tau_i$. So, we have $\varphi \circ \sigma = \sigma \circ \varphi$. The second case is similar.

We now need to prove that Equation 1 above forces $d_1 = d_2 = 0$. To do this it suffices to go to a splitting field of A. Thus, let $A = M_4(F)$. Recall that the first line of Equation 1 says that $d_1\sigma(a) = d_1\tau'_1(a)$ for all $a \in A$, and where $\tau'_1 = \varphi \tau_1 \varphi^{-1}$. We see that the left multiplication map L_{d_1} annihilates $X = \{\sigma(a) - \tau'_1(a) : a \in A\}$, and so it annihilates the right ideal I generated by X. Let

$$S = \operatorname{Sym}(A, \sigma),$$

$$\mathcal{K} = \operatorname{Skew}(A, \sigma),$$

$$\mathcal{P} = \{a \in A : \tau'_1(a) = -a\},$$

$$\mathcal{T} = \{a \in A : \tau'_1(a) = a\}.$$

For simplicity, we write $\tau = \tau'_1$. It is a short argument to see that $\mathcal{T} = \varphi(Q_2)$, so \mathcal{T} is a quaternion algebra. Our approach will be to show that the assumption $I \neq A$ forces \mathcal{T} to be a commutative algebra, a contradiction to $\mathcal{T} = \varphi(Q_2)$. Thus, $A = I \subseteq \ker(L_{d_1})$, which forces $d_1 = 0$. Similarly we get $d_2 = 0$.

We now get information about I. We have $\mathcal{P} = \operatorname{Skew}(\varphi(Q_1), \varphi \gamma_1 \varphi^{-1}) \otimes Q_2$, so $\dim_F(\mathcal{P}) = 12$. By dimension count, $\dim_F(\mathcal{S} \cap \mathcal{P}) \geq 6$. If $a \in \mathcal{S} \cap \mathcal{P}$, then $\sigma(a) - \tau(a) = 2a \in X$. So $\mathcal{S} \cap \mathcal{P} \subseteq X \subseteq I$. The ideal I thus contains a 6-dimensional subspace of $\operatorname{Sym}(A, \sigma)$. We claim, and prove in the lemma below, that this forces $\dim_F(I) \geq 12$ and, if $\dim_F(I) = 12$, that $I \cap \mathcal{S} = \mathcal{S} \cap \mathcal{P}$ has dimension 6. Furthermore, the kernel of the map $\mathcal{P} \to \mathcal{S}$ given by $x \mapsto \sigma(x) + x$ is $\mathcal{P} \cap \mathcal{K}$. Since the image is contained in $I \cap \mathcal{S} = \mathcal{S} \cap \mathcal{P}$, we see that the image has dimension 6, so the kernel has dimension 12 - 6 = 6. Thus, $\mathcal{K} \subseteq \mathcal{P}$. Moreover, by the descriptions of \mathcal{P} and \mathcal{T} above, we see that $\mathcal{T}\mathcal{P} \subseteq \mathcal{P}$. Therefore, $\mathcal{T}\mathcal{K} \subseteq \mathcal{P}$. Since

 $\dim_F(\mathcal{S} \cap \mathcal{P}) = 6 = \dim(\mathcal{K} \cap \mathcal{P}) = \frac{1}{2} \dim_F(\mathcal{P})$, we have $\mathcal{P} = (\mathcal{S} \cap \mathcal{P}) \oplus \mathcal{K}$. From this, we see that if $t \in \mathcal{T}$ and $k \in \mathcal{K}$, then $tk \in \mathcal{P}$ and $tk + k\sigma(t) \in \mathcal{K} \subseteq \mathcal{P}$, so $tk - k\sigma(t) \in \mathcal{S} \cap \mathcal{P}$. We consider this situation after the following lemma.

Lemma 3.5. Let I be a right ideal of $M_4(F)$. If $\dim_F(I) = 12$, then $\dim_F(I \cap S) = 6$. If $\dim_F(I) < 12$, then $\dim_F(I \cap S) < 6$.

Proof. We first show that we may assume σ is the transpose T. Since σ is orthogonal, $\sigma = \text{Int}(s) \circ T$ for some s with $s^T = s$. Then S = sSym(A, T). So,

$$\dim_F(I \cap \mathcal{S}) = \dim_F(I \cap s \operatorname{Sym}(A, T)) = \dim_F(s^{-1}I \cap \operatorname{Sym}(A, T)).$$

Thus, by replacing I by $s^{-1}I$, we may assume $\sigma = T$.

First suppose that $\dim_F(I) = 12$. Since I is generated by a single element, we see that there are $\alpha, \beta, \gamma, \delta \in F$, not all 0, with

$$I = \{ a \in A : (\alpha \beta \gamma \delta) a = 0 \}.$$

Suppose that $s \in I \cap \mathcal{S}$. Write

$$s = \left(\begin{array}{cccc} a & b & c & d \\ b & e & f & g \\ c & f & h & i \\ d & g & i & j \end{array}\right)$$

for appropriate entries in F. The condition $(\alpha \beta \gamma \delta) s = (0 0 0 0)$ corresponds to a homogeneous system of 4 equations in the 10 variables a, \ldots, j . This system has coefficient matrix

Since at least one of $\alpha, \beta, \gamma, \delta$ is nonzero, this matrix clearly has rank 4. Therefore, its kernel is dimension 6. However, its kernel is $I \cap \mathcal{S}$, so $\dim_F(I \cap \mathcal{S}) = 6$, as desired.

If $\dim_F(I) < 12$, then $\dim_F(I) \in \{0,4,8\}$. If $\dim_F(I) = 8$, then we can write $I = \{a \in A : xa = 0\}$ for some 2×4 matrix x of rank 2. By writing xs = 0 for a symmetric matrix s, we then obtain a coefficient matrix of size 8×10 , and by writing it out we see that it has rank 8. Thus, its kernel has dimension 2, so $\dim_F(I \cap S) = 2 < 6$. Clearly if $\dim_F(I) \le 4$, then $\dim_F(I \cap S) < 6$. This completes the proof of the lemma.

We are now consider the following situation. Let I be a right ideal of dimension 12 in A,

let σ be an orthogonal involution on A, and define

$$R_{I,\sigma} = \{ a \in A : ak - k\sigma(a) \in I \text{ for all } k \in \mathcal{K} \}.$$

Lemma 3.6. If σ and τ are orthogonal involutions on A, then $R_{I,\sigma} = R_{I,\tau}$ for any I.

Proof. Since τ and σ are both orthogonal, there is an $s \in A^*$ with $\tau = \text{Int}(s) \circ \sigma$. Then $\text{Skew}(A,\tau)s = \text{Skew}(A,\sigma)$. Let $a \in R_{I,\tau}$. Then $ay - y\tau(a) \in I$ for all $y \in \text{Skew}(A,\tau)$. So, $ay - ys\sigma(a)s^{-1} \in I$, so $a(ys) - (ys)\sigma(a) \in Is = I$. Thus, $a \in R_{I,\sigma}$. The reverse inclusion is similar.

Lemma 3.7. If $J = \alpha I$ for some $\alpha \in A^*$, then $R_{J,\sigma} = \alpha R_{I,\sigma} \alpha^{-1}$.

Proof. We point out any right ideal of A of dimension 12 can be written in the form αI for some $\alpha \in A^*$. Let $a \in R_{I,\sigma}$ and $x \in \text{Skew}(A,\sigma)$. Then $\alpha^{-1}x\sigma(\alpha)^{-1} \in \text{Skew}(A,\sigma)$. Therefore,

$$(\alpha a \alpha^{-1})x - x(\alpha a \alpha^{-1}) = \alpha a \alpha^{-1}x - x\sigma(\alpha)^{-1}\sigma(a)\sigma(\alpha)$$
$$= \alpha \left(a\alpha^{-1}x\sigma(\alpha)^{-1} - \alpha^{-1}x\sigma(\alpha)^{-1}\sigma(a)\right)\sigma(\alpha)$$
$$\in \alpha I\sigma(\alpha) = \alpha I = J.$$

Thus, $\alpha R_{I,\sigma} \alpha^{-1} \subseteq R_{J,\sigma}$. The reverse inclusion is similar.

Proposition 3.8. With the notation above, $R_{I,\sigma}$ is a 4-dimensional commutative F-subalgebra of $M_4(F)$ and R has a two-sided ideal J of F-dimension 3 with $J^2 = 0$.

Proof. By Lemma 3.6, we may assume that $\sigma = T$ is the transpose involution. By Lemma 3.7, the set $R_{I,\sigma}$ is, up to conjugation, independent of the ideal I, so we may choose I to be the right ideal consisting of all matrices whose first row is zero. We determine $R_{T,I}$ for this right ideal. Let $a = \sum_{i,j} \alpha_{ij} e_{ij} \in R_{I,\sigma}$. We note that $\{e_{ij} - e_{ji} : i > j\}$ is a basis for Skew(A,T). Let $k = e_{uv} - e_{vu}$ with u > v. Then

$$ak - ka^{T} = \sum_{i,j} \alpha_{ij} e_{ij} (e_{uv} - e_{vu}) - \sum_{i,j} \alpha_{ij} (e_{uv} - e_{vu}) e_{ji}$$
$$= \sum_{i} \alpha_{iu} e_{iv} - \sum_{i} \alpha_{iv} e_{iu} - \sum_{i} \alpha_{iv} e_{ui} + \sum_{i} \alpha_{iu} e_{vi}.$$

The first row of this matrix is $\alpha_{1u}e_{1v} - \alpha_{1v}e_{1u}$ if v > 1, and $\alpha_{1u}e_{1v} - \alpha_{1v}e_{1u} + \sum_{i}\alpha_{iu}e_{1i}$ if v = 1. In any case, the first row is zero. Thus, $\alpha_{1u} = \alpha_{1v} = 0$ for all u > v > 1, and if v = 1, we get $(\alpha_{1u} + \alpha_{1u})e_{11} + (\alpha_{uu} - \alpha_{11})e_{1u} + \sum_{i \neq u,1}\alpha_{iu}e_{1i} = 0$, so $\alpha_{iu} = 0$ if $i \neq u,1$, and $\alpha_{uu} = \alpha_{11}$. Thus, the diagonal entries of a are all the same. Also, the only nonzero non-diagonal entries are in the first column. There is no restriction on α_{i1} for i > 1, so we

have shown that

$$R = \left\{ \begin{pmatrix} a & 0 & 0 & 0 \\ b & a & 0 & 0 \\ c & 0 & a & 0 \\ d & 0 & 0 & a \end{pmatrix} : a, b, c, d \in F \right\}.$$

From this description, it is clear that $\dim_F(R) = 4$ and that R is a commutative F-subalgebra of A. Moreover, if $J = I \cap R = \{a \in R : \operatorname{trace}(a) = 0\}$, then we see that J is an ideal of R of dimension 3, and that $J^2 = 0$. This completes the proof.

We can now finish the proof of Theorem 3.4.

Corollary 3.9. In Equation 1 above, we have $d_1 = d_2 = 0$.

Proof. The first line of Equation 1 is that $d_1(\sigma(a) - \tau'_1(a)) = 0$ for all $a \in A$. We have shown above that the right ideal I generated by $\{\sigma(a) - \tau'_1(a) : a \in A\}$ has dimension at least 12, and that if it is dimension 12, then we have $\varphi(Q_2) \subseteq R_{I,\sigma}$. However, Proposition 3.8 shows that this set is a 4-dimensional commutative F-algebra. This is a contradiction since $\varphi(Q_2)$ is a quaternion algebra. Thus, I = A. Since $0 = d_1 I = d_1 A$, we get $d_1 = 0$. Similarly, $d_2 = 0$.

From this result we can show that the Skolem-Noether theorem does not hold for the tensor product of two octonion algebras.

Corollary 3.10. There exists simple F-subalgebras B and B' of C and an F-algebra isomorphism $f: B \to B'$ such that there is no F-algebra automorphism φ of C with $\varphi|_B = f$.

Proof. Let f be an F-algebra automorphism of A that is not compatible with $\sigma|_A$; such maps exist since we can take f to be the inner automorphism of an element $t \in A$ with $\sigma(t)t \notin F$. The condition $\sigma(t)t \in F$ is precisely the condition needed to ensure that f is compatible with $\sigma|_A$. For example, we can take $t = 1 + i_1 i_2 \in A = Q_1 \otimes_F Q_2$ (where the standard generators of Q_r are i_r and j_r). If f extends to an automorphism φ of C, then $\varphi(A) = A$, so φ is compatible with σ . This forces $\varphi|_A = f$ to be compatible with $\sigma|_A$, and f is chosen so that this does not happen.

Remark 3.11. Consider the slightly more general situation that $\varphi \in \operatorname{Aut}(C)$ satisfies $\varphi(A) = \tilde{A}$ with $\tilde{A} = \tilde{Q}_1 \otimes \tilde{Q}_2$ a biquaternion algebra, where \tilde{Q}_i is a quaternion subalgebra of C_i , i = 1, 2, or of C_j , $j = 1, 2, i \neq j$. Then a similar argument shows that also $\varphi \circ \sigma = \sigma \circ \varphi$, i.e., $\varphi \in \operatorname{Aut}(C, \sigma) = (G_2 \times G_2) \rtimes \mathbb{Z}_2$. In particular, this means that for any $\varphi \in \operatorname{Aut}(C)$ which is not compatible with σ , the image of any biquaternion subalgebra A of the type investigated above (i.e., each factor a subalgebra of one of the octonion algebras) cannot be of this type again.

References

- [1] A. A. Albert, On the Wedderburn norm condition for cyclic algebras, Bull. Amer. Math. Soc. **37** (1931), 301-312.
- [2] A. A. Albert, A construction of non-cyclic normal division algebras, Bull. Amer. Math. Soc. 38 (1932), 449-456.
- [3] A. A. Albert, Tensor products of quaternion algebras, Proc. Amer. Math. Soc. **35** (1972), 65-66.
- [4] B. N. Allison, Structurable division algebras and relative rank one simple Lie algebras, Canadian Math. Soc. Conference Proc. 5 (1986), 149-156.
- [5] B. N. Allison, Tensor products of composition algebras, Albert forms and some exceptional simple Lie algebras. Trans. Amer. Math. Soc. **306** (2) (1988), 667-695.
- [6] B. N. Allison, A class of nonassociative algebras with involution containing the class of Jordan algebras. Math. Ann. **237** (1978), 133-156.
- [7] R. Brauer, Untersuchungen über die arithmetischen Eigenschaften von Gruppen bilinearer Substitutionen, II, Math. Zeit. **31** (1929), 733-747.
- [8] R. Elman, T.-Y. Lam, Pfister forms and K-theory of fields. J. Algebra 23, (1972) 181-213.
- [9] D. HOFFMANN, Twisted Pfister forms. Doc. Math. 1 (03) (1996), 67-102.
- [10] N. Jacobson, Composition algebras and their automorphisms, Rend. Circ. Mat. Palermo (2) 7 (1958), 55-80.
- [11] N. Jacobson, Some applications of Jordan norms to involutorial simple associative algebras. Adv. in Math. 48 (1983), 149-165.
- [12] M.-A. Knus, Quadratic and Hermitian forms over rings, Grundlehren der Mathematischen Wissenschaften, vol. 294, Springer-Verlag, Berlin, 1991.
- [13] M.-A. Knus, Sur la forme d'Albert et le produit tensoriel de deux algébres de quaternions. Bull. Soc. Math. Belg. **45** (3) (1993), 332-337.
- [14] M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The book of involutions, Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998.
- [15] T.-Y. LAM, The Algebraic Theory of Quadratic Forms, Mathematics Lecture Notes Series, Benjamin, Reading, MA, 1973.

Department of Mathematical Sciences, New Mexico State University, Las Cruces NM $88003~\mathrm{USA}$

 $E ext{-}mail\ address: pmorandi@nmsu.edu}$

Facultat für Mathematik, Universität Regensburg, Universitatstrasse 31, D-93040 Regensburg, Germany

 $E\text{-}mail\ address: \verb"susanne.pumpluen@mathematik.uni-regensburg.de"$