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1 Introduction


Let C1
�


F C2 be the tensor product of two composition algebras over a field F with


char(F ) �= 2. R. Brauer [7] and A. A. Albert [1], [2], [3] seemed to be the first math-


ematicians who investigated the tensor product of two quaternion algebras. Later their


results were generalized to this more general situation by B. N. Allison [4], [5], [6] and to


biquaternion algebras over rings by Knus [12].


In the second section we give some new results on the Albert form of these algebras.


We also investigate the F -quadric defined by this Albert form, generalizing a result of Knus


([13]).


Since Allison regarded the involution � = � 1
� � 2 as an essential part of the algebra


C = C1
�


C2, he only studied automorphisms of C which are compatible with � . In the


last section we show that any automorphism of C that preserves a certain biquaternion


subalgebra also is compatible with � . As a consequence, if C is the tensor product of two


octonion algebras, we show that C does not satisfy the Skolem-Noether Theorem.


Let F be a field and C a unital, nonassociative F -algebra. Then C is a composition algebra


if there exists a nondegenerate quadratic form n : C � F such that n(x · y) = n(x)n(y) for


all x, y � C. The form n is uniquely determined by these conditions and is called the norm


of C. We will write n = nC . Composition algebras only exist in ranks 1, 2, 4 or 8 (see [10]).


Those of rank 4 are called quaternion algebras, and those of rank 8 octonion algebras. A


composition algebra C has a canonical involution � given by � (x) = t(x)1C − x, where the


trace map t : C � F is given by t(x) = n(1, x).


An example of an 8-dimensional composition algebra is Zorn’s algebra of vector matrices


Zor(F ) (see [14, p. 507] for the definition). The norm form of Zor(F ) is given by the


determinant and is a hyperbolic form.


Composition algebras are quadratic; i.e., they satisfy the identities


x2 − t(x)x + n(x)1C = 0 for all x � C,


n(1C) = 1,


and are alternative algebras; i.e., xy2 = (xy)y and x2y = x(xy) for all x, y � C. In particular,


n(x) = � (x)x = ��� (x) and t(x)1C = � (x) + x.
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For any composition algebra D over F with dimF (D) � 4, and any µ � F ×, the F -vector


space D 	 D becomes a composition algebra via the multiplication


(u, v)(u
 , v 
 ) = (uu
 + ��� (v 
 )v, v 
 u + v � (u
 ))


for all u, v, u
 , v 
 � D, with norm


n((u, v)) = nD(u) − µnD(v).


This algebra is denoted by Cay(D, µ). Note that the embedding of D into the first sum-


mand of Cay(D, µ) is an algebra monomorphism. The norm form of Cay(D, µ) is obviously


isometric to  1, −µ � � nD. Since two composition algebras are isomorphic if and only if their


norm forms are isometric, we see that if C is a composition algebra whose norm form satisfies


nC �=  1, −µ � � nD for some D, then C �= Cay(D, µ). In particular, Zor(F ) �= Cay(D, 1) for


any quaternion algebra D since  1, −1 � � nD is hyperbolic. A composition algebra is split if


it contains an isomorphic copy of F 	 F as a composition subalgebra, which is the case if


and only if it contains zero divisors.


2 Albert Forms


From now on we consider only fields F with char(F ) �= 2. It is well known that any norm


of a composition algebra is a Pfister form, and conversely, any Pfister form is the norm of


some composition algebra.


Let C be a composition algebra. Define C 
 =  F1 ��� = {x � C : t1(x) = n1(x, 1) = 0}.


Then n
 = n|C � is the pure norm of C. Note that


C 
 = {x � C : x = 0 or x /� F1C and x2 � F1C}


= {x � C : � (x) = −x}.


Moreover, C is split if and only if its norm n is hyperbolic, two composition algebras are


isomorphic if and only if their norms are isometric, and C is a division algebra if and only if


n is anisotropic.


We now investigate tensor products of two composition algebras. Following Albert, we


associate to the tensor product C = C1
�


C2 of two composition algebras with dim(Ci) = ri


and nCi
= ni the (r1 + r2 − 2)-dimensional form n
1 � �� 1 � n
2 of determinant −1. This


definition, for C1 or C2 an octonion algebra, was first given by Allison in [5]. In the Witt


ring W (F ), obviously this form is equivalent to n1 −n2. Like the norm form of a composition


algebra, this Albert form contains crucial information about the tensor product algebra C.


For biquaternion algebras, this is well-known ([1, Thm. 3], [11, Thm. 3.12]). We introduce


some notation and terminology. If q is a quadratic form and if H =  1, −1 � is the hyperbolic


plane, then q = q0 � iH for some anisotropic form q0 and integer i. The integer i is called
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the Witt index of q and is denoted iW (q). In the proof of the following proposition, we use


the notion of linkage of Pfister forms (see [8, Sec. 4]). Recall that two n-fold Pfister forms


q1 and q2 are r-linked if there is an r-fold Pfister form h with qi = h
�


q 
i for some Pfister


forms q 
i. Finally, we call a two-dimensional commutative F -algebra that is separable over


F a quadratic étale algebra. Note that any quadratic étale algebra is either a quadratic field


extension of F or is isomorphic to F 	 F . Part of the following result has been proved in [9,


Thm. 5.1].


Proposition 2.1. Let C1 and C2 be octonion algebras over F with norms n1 and n2, and


let i = iW (N) be the Witt index of the Albert-form N = n
1 � �� 1 � n
2.


(i) i = 0 ��� C1 and C2 do not contain isomorphic quadratic étale subalgebras.


(ii) i = 1 ��� C1 and C2 contain isomorphic quadratic étale subalgebras, but no


isomorphic


quaternion subalgebras.


(iii) i = 3 ��� C1 and C2 contain isomorphic quaternion subalgebras, but C1 and C2


are not isomorphic.


(iv) i = 7 ��� C1 �= C2.


Proof. By [8, Props. 4.4, 4.5], the Witt index of n1 �  −1 � n2 is either 0 or 2r, where r


is the linkage number of n1 � �� 1 � n2. Note that the Witt index of N is one less than


the Witt index of n1 � �� 1 � n2 since n1 � �� 1 � n2 = H � N . If C1 �= C2, then n1 �= n2,


so i = 7. Conversely, if i = 7, then n1 � �� 1 � n2 is hyperbolic, so n1 �= n2, which forces


C1 �= C2. If C1 and C2 are not isomorphic but contain a common quaternion algebra Q, then


Ci = Cay(Q, µi) for some i. Therefore, n1 = nQ
�  1, −µ1 � and n2 = nQ


�  1, −µ2 � . These


descriptions show that n1 and n2 are 2-linked, so i = 3. Conversely, if i = 3, then n1 and n2


are 2-linked but not isometric. If � a, b ��� is a factor of both n1 and n2, then n1 = � a, b, c ���
and n2 = � a, b, d ��� for some c, d � F ×. If Q = (−a, −b), we get C1 = Cay(Q, −c) and


Cay(Q, −d), so C1 and C2 contain a common quaternion algebra. If C1 and C2 contain


a common quadratic étale algebra F [t]/(t2 − a) but no common quaternion algebra, then


 1, −a � is a factor of n1 and n2, which means they are 1-linked. If n1 and n2 are 2-linked,


then the previous step shows that C1 and C2 have a common quaternion subalgebra, which


is false. Conversely, if n1 and n2 are 1-linked but not 2-linked, then C1 and C2 do not have a


common quaternion subalgebra, and if � a ��� is a common factor to n1 and n2, then C1 and


C2 both contain the étale algebra F [t]/(t2 − a).


Proposition 2.2. Let C1 be an octonion algebra over F and C2 be a quaternion algebra


over F , with norms n1 and n2. Again consider the Witt index i of the Albert form N = n
1 �
�� 1 � n
2.


(i) i = 0 ��� C1 and C2 do not contain isomorphic quadratic étale subalgebras.
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(ii) i = 1 ��� C1 and C2 contain isomorphic quadratic étale subalgebras, but C2 is


not a


quaternion subalgebra of C1.


(iii) i = 3 ��� C1 �= Cay(C2, µ) for a suitable µ � F ×, and C2 is a division algebra.


(iv) i = 5 ��� C1 �= Zor(F ) and C2 �= M2(F ).


Proof. In the case that both algebras C1 and C2 are division algebras, this is an immediate


consequence of [9, Lemma 3.2]. If both C1 and C2 is split, then clearly N has Witt index


5. If C2 is a division algebra and C1 = Cay(C2, µ) for some µ, then n2 is anisotropic and


N � H = n2
�  1, −µ � �  −1 � n2 = 4H � �� µ � n2, so N has Witt index 3. Note that the


converse is easy, since if i = 3, then n2 is isomorphic to a subform of n1, which forces n2 to


be a factor of n1. If n1 =  1, a � � n2, then C1 �= Cay(C2, −a), so C2 is a subalgebra of C1. If


C1 and C2 contain a common quadratic étale algebra F [t]/(t2 −a) but C2 is not a quaternion


subalgebra of C1, then n1 and n2 have � a ��� as a common factor, so i = 1. Finally, if N is


isotropic, there are xi � Ci, both skew, with n1(x1) = n2(x2). Then, as t1(x1) = 0 = t2(x2),


the algebras F [x1] and F [x2] are isomorphic, so C1 and C2 share a common quadratic étale


subalgebra. This finishes the proof.


If C is a biquaternion algebra; i.e., C �= C1
�


C2 for two quaternion algebras C1 and C2,


then the Albert form n
1 � �� 1 � n
2 is determined up to similarity by the isomorphism class


of the algebra C ([11, Thm. 3.12]). Allison generalizes this result ([5, Thm. 5.4]) to tensor


products of arbitrary composition algebras. However, he always considers the involution


� = � 1
� � 2 as a crucial part of the algebra C = C1


�
C2. Allison proves that (C1


�
C2, � 1


� � 2)


and (C3
�


C4, � 3
� � 4) are isotopic algebras if and only if they have similar Albert forms, for


the cases that C1, C3 are octonion and C2, C4 quaternion or octonion algebras.


The fact that any F -algebra isomorphism � : (C1
�


C2, � 1
� � 2) � (C3


�
C4, � 3


� � 4)


between arbitrary products of composition algebras yields an isometry n
1 � �� 1 � n
2 �=
µ(n
3 � �� 1 � n
4) for a suitable µ � F × is easy to see. Also, since for C = C1


�
C2 the map


 , � : C ×C � F given by  x1
�


x2, y1
�


y2 � = n1(x1, y1)
�


n2(x2, y2) is a nondegenerate sym-


metric bilinear form on C such that �� (x), � (y) � =  x, y � , the equation  zx, y � =  x, � (z)y �
holds (that is, an invariant form cf. [6, p. 144]), and � : C × C � k, � (x, y) =  x, � (y) �
an associative nondegenerate symmetric bilinear form which is proper, it follows easily that


n1
�


n2 �= n3
�


n4.


Suppose that we have two algebras that each are a tensor product of an octonion algebra


and a quaternion algebra. We obtain a necessary and �� "!$#&%('&) t condition for when their


Albert forms are similar. We use the notation D(q) to denote the elements of F × represented


by a quadratic form q.


Proposition 2.3. Let C1, C2 be octonion algebras and Q1, Q2 quaternion algebras over F .


Let N1 and N2 be the Albert forms of C1
�


Q1 and C2
�


Q2, respectively. If N1 �= µN2 for some


µ � F ×, then Q1 �= Q2. Moreover, there is a quaternion algebra Q and elements c, d � F ×
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such that C1 �= Cay(Q, c), C2 �= Cay(Q, d), Cay(Q1, µ) �= Cay(Q, cd), and −µc � D(nC2
).


Conversely, if there is a quaternion algebra Q and elements c, d, µ � F × such that C1,


Q1 = Q2, and C2 satisfy the conditions of the previous sentence, then N1 �= µN2.


Proof. Suppose that N1 �= µN2 for some µ � F ×. If c : W (F ) � Br(F ) is the *,+-%-.0/21�3
invariant, then c(N1) = c(µN2) = c(N2). Since c is trivial on I3(F ), we have c(N1) = c(−nQ1


)


and c(N2) = c(−nQ2
) (see [15, Ch. 5.3]). Therefore, c(nQ1


) = c(nQ2
). However, the *,+-%-.0/21�3


invariant of the norm form of a quaternion algebra is the class of the quaternion algebra, by


[15, Cor. V.3.3]. This implies that c(N1) = [Q1] and c(µN2) = [Q2]. Since [Q1] = [Q2], we


get Q1 �= Q2. As a consequence of this, nQ1 �= nQ2
. Thus,


nC1 � −  1, −µ � � nQ1 �= nC1 � (−nQ1 � µnQ1
)


�= µ (nC2 � −nQ2
) � µnQ1 �= µnC1 � (−µnQ1 � µnQ2


)


�= µnC2 � 4H.


The forms nC1
and  1, −µ � � nQ1


are Pfister forms. The line above shows that these Pfis-


ter forms are 2-linked, in the terminology of [8]. Therefore, there is a 2-fold Pfister form


� −a, −b �4� with nC1 �= ��� a, −b, −c ��� and  1, −µ � � nQ1 �= ��� a, −b, −e �5� for some c, e � F ×.


An elementary calculation shows that


��� a, −b, −c ��� � − ��� a, −b, −e ��� �= 4H �  −c, e � � �6� a, −b ��� .


Therefore, µnC2 �= �� c, e � � �6� a, −b ��� . Thus, nC2 �= −µc � −a, −b, −ce �4� . Since nC2


and ��� a, −b, −ce �5� are Pfister forms, we get nC2 �= ��� a, −b, −ce ��� . If we set d = ce


and let Q be the quaternion algebra (a, b)F , then the isomorphisms nC1 �= ��� a, −b, −c ���
and nC2 �= � −a, −b, −d ��� give C1 �= Cay(Q, c) and C2 �= Cay(Q, d). Moreover, nC2 �=
−µcnC2


, so−µc � D(nC2
). Finally, the isomorphism  1, −µ � � nQ2 �= ��� a, −b, −e ��� gives


Cay(Q1, µ) �= Cay(Q, e) �= Cay(Q, cd).


It is a short calculation to show that if C1 = Cay(Q, c), C2 = Cay(Q, d), and Q1 = Q2


is a quaternion algebra with Cay(Q1, µ) �= Cay(Q, −dc), then n
C1 � �� 1 � n
Q1
�= µ(n
C2 �


�� 1 � n
Q2
).


The argument of the previous proposition does not work for a tensor product of two


octonion algebras since the Albert form is an element of I3(F ), whose *,+-%-.0/21�3 invariant is


trivial.


Corollary 2.4. With the notation in the previous proposition, suppose that N1 �= µN2 for


some µ � F ×. If one of C1 and C2 is split, then the other algebra is isomorphic to Cay(Q1, µ).


Proof. We saw in the proof of the previous proposition that


nC1 � −  1, −µ � � nQ1 �= µnC2 � 4H.
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Suppose that C2 is split. Then nC1 � −  1, −µ � � nQ1
is hyperbolic, so nC1 �=  1, −µ � � nQ2


.


Therefore, C1 �= Cay(Q1, µ). On the other hand, if C1 is split, then nC1 �= 4H, so by Witt


cancellation, −µnC2 �=  1, −µ � � nQ1
. Since nC2


and  1, −µ � � nQ1
are both Pfister forms,


this implies that nC2 �=  1, −µ � � nQ1
, and so C2 �= Cay(Q1, µ).


In Proposition 2.3 above, it is possible for N1 �= µN2 without C1 �= C2. Moreover, the


quaternion algebra Q of the proposition need not be isomorphic to Q1. We verify both these


claims in the following example.


Example 2.5. In this example we produce nonisomorphic octonion algebras C1 and C2 and


a quaternion algebra Q1 that is not isomorphic to a subalgebra of either C1 or C2, and


such that the Albert forms of C1
�


F Q1 and C2
�


F Q1 are similar. To do this we produce


nonisometric Pfister forms � x, y, z ��� and � x, y, w �7� and elements u, v, µ with � x, y, zw ��� �=
� u, v, µ ��� such that the Witt index of � x, y, z ��� � − � u, v, µ �7� and � x, y, w �7� � − � u, v, µ �7�
are both 2, and µz � D( � x, y, w ��� ). We then set Q = (−x, −y), C1 = Cay(Q, −z), C2 =


Cay(Q, −w), and Q1 = (−u, −v). From Proposition 2.3, we have N1 �= µN2. However,


Proposition 2.2 shows that Q1 is not isomorphic to a subalgebra of either C1 or C2. Moreover,


C1 and C2 are not isomorphic since their norm forms are not isometric. Note that Q and C2


are not isomorphic since Q1 is not a subalgebra of C1.


Let k be a field of characteristic not 2, and let F = k(x, y, z, w) be the rational function


field in 4 variables over k. Set µ = xyzw, n1 = � x, y, z ��� , and n2 = � x, y, w �7� . By embedding


F in the Laurent series field k(x, y, z)((w)), we see that n1 and n2 = � x, y ��� � w � x, y ���
are not isomorphic over this field by Springer’s theorem [15, Prop. VI.1.9], so n1 and n2


are not isomorphic over F . Also, µz = z2(xyw), which is clearly represented by n3. Set


Q1 = (−zw, −xzw). A short calculation shows that � x, y, zw ��� = � zw, xzw, µ ��� . Finally,


for the Witt indices, we have


n1 � −nQ1
=  1, x, y, xy, z, xz, yz, xyz � � −  1, zw, xzw, x �
= 2H �  y, xy, z, xz, yz, xyz, −zw, −xzw �
= 2H �  y, xy, z, xz, yz, xyz � � w �� z, −xz � .


The Springer theorem shows that this form has Witt index 2. Similarly,


n3 � −nQ1
=  1, x, y, xy, w, xw, yw, xyw � � −  1, zw, xzw, x �
= 2H �  y, xy, w, xw, yw, xyw, −zw, −xzw �
= 2H �  y, xy � � w  1, x, y, xy, −z, −xz �


has Witt index 2.


For the remainder of this section we will also consider the case that char(F ) = 2. Let C1


and C2 be composition algebras over F of dimF (Ci) = ri 8 2, and let ni be the norm form of


Ci. Using the notation of [13], the subspace Q(C1, C2) = {u = x1
�


1−1
�


x2 : t1(x1) = t2(x2)}
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has dimension r1 + r2 − 2, and Q(C1, C2) = {z − (� 1
� � 2)(z) : z � C1


�
C2} is the set of


alternating elements of C1
�


C2 with respect to � 1
� � 2. The nondegenerate quadratic form


N : Q(C1, C2) � F given by N(x1
�


1 − 1
�


x2) = n1(x1) − n2(x2) is isometric to the Albert


form n
1 � �� 1 � n
2 of C1
�


C2.


Let VN 9 P
r1+r2−3 be the F -quadric defined via N . In the case that char(F ) �= 2, VN


coincides with the open subvariety UN of closed points x1
�


1 − 1
�


x2 with x1 /� F1 and


x2 /� F1. We now generalize [13, Prop.] in the following two propositions. We will make


use of the following fact that comes from Galois theory: Let F [zi] be the commutative F -


subalgebra of dimension two of Ci generated by zi � Ci for i = 1, 2. Then there exists an


isomorphism : : F [z1] ;� F [z2] such that : (z1) = z2 if and only if n1(z1) = n2(z2) and


t1(z1) = t2(z2).


Proposition 2.6. There exists a bijection < between the set of F -rational points of UN and


the set of triples (K1, K2, : ), where Ki is a two-dimensional commutative subalgebra of Ci,


and where : : K1 ;� K2 is an F -algebra isomorphism:


< : {P � UN | P an F -rational point} ;� {(K1, K2, : ) | K1, K2, : as above}


P = z1
�


1 − 1
�


z2 =�>� F [z1], F [z2], : : F [z1] ;� F [z2]


z1 =� z2


Proof. Any F -rational point P � UN corresponds with an element x1
�


1−1
�


x2 � Q(C1, C2)


with t1(x1) = t2(x2) and n1(x1) = n2(x2). Then there exists an F -algebra isomorphism


: : F [x1] ;� F [x2] with x1 =� x2. For x1
�


1−1
�


x2 = z1
�


1−1
�


z2 it can be easily verified


that


F [x1], F [x2], : : F [x1] ;� F [x2]


x1 =� x2
=


F [z1], F [z2], ? : F [z1] ;� F [z2]


z1 =� z2


Therefore, the mapping < is well defined.


Given a triple (K1, K2, : ), there are elements zi � C 
i such that Ki = F [zi] and : :


F [z1] ;� F [z2] with z1 =� z2. By the remark before the proposition, we have n1(z1) = n2(z2)


and t1(z1) = t2(z2); thus N(z1
�


1 − 1
�


z2) = 0, and the triple defines the F -rational point


P � UN corresponding to z1
�


1 − 1
�


z2. So < is surjective.


To prove injectivity, suppose that <A@ x1
�


1 − 1
�


x2) = <A@ z1
�


1 − 1
�


z2). Then


F [x1] = F [z1], F [x2] = F [z2] and the maps : : F [x1] ;� F [x2], x1 =� x2 and ? : F [z1] ;�
F [z2], z1 =� z2 are equal. Since F [xi] = F [zi], write x1 = a + bz1 and x2 = c + dz2 with


a, b, c, d � F . We have a = c since t1(x1) = t2(x2). Therefore, we may replace x1 with bz1


and x2 by dz2 without changing x1
�


1 − 1
�


x2. Thus, x1
�


1 − 1
�


x2 = bz1
�


1 − 1
�


dz2,


and n1(x1) = n2(x2), n1(z1) = n2(z2) imply that n1(x1) = b2n1(z1) and n2(x2) = d2n2(z2).


Therefore, b2 = d2, so b = ±d. Now x2 = : (x1) = : (bz1) = bz2 yields b = d and we get


x1
�


1 − 1
�


x2 = b(z1
�


1 − 1
�


z2) which shows that < is injective.


In the case that char(F ) = 2, the set UN = {x1
�


1 − 1
�


x2 : x1 /� F1, x2 /� F1} is a
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proper open subvariety of VN . The proof of the previous proposition shows that < again is


a bijection between the F -rational points of UN and the triples (K1, K2, : ), where Ki is a


two-dimensional commutative F -subalgebra of Ci and : : K ;� L an F -algebra isomorphism.


We can say more in this situation.


Proposition 2.7. Let char(F ) = 2. There exists an F -rational point in VN if and only


if there exists a triple (K1, K2, : ) such that Ki is a quadratic étale subalgebra of Ci and


: : K1 ;−� K2 an F -algebra isomorphism. In addition, there exists an F -rational point in


VN B {t1(x1) = 0} if and only if there exists a triple (K1, K2, : ) such that K1 and K2 are


purely inseparable quadratic extensions and : : K1 ;−� K2 an F -algebra isomorphism.


Proof. As pointed out before the proposition, there is a bijection between F -rational points


in UN and triples (K1, K2, : ) with Ki C Ci commutative subalgebras of dimension 2 over


F . To prove the first statement, only one half needs further argument. Suppose VN has an


F -rational point. Since VN is a quadric hypersurface, VN is then birationally equivalent to


P
r1+r2−3. The F -rational points of projective space are dense, so there is an F -rational point


in UN . Therefore, we get a triple (K1, K2, : ) with Ki a quadratic étale subalgebra of Ci.


For the second statement, an F -rational point in VN B {t1(x1) = 0} corresponds with


an element x1
�


1 − 1
�


x2 such that n1(x1) = n2(x2) and t1(x1) = t2(x2) = 0, so F [xi]


is a purely inseparable extension. There exists an isomorphism : : F [x1] ;� F [x2] with


: (x1) = x2 and thus a triple (F [x1], F [x2], : ). Conversely, if there is a triple (K1, K2, : ) with


Ki purely inseparable, there are xi � Ci with ti(xi) = 0 such that K = F [x1], L = F [x2] and


: : F [x1] ;� F [x2], x1 =� x2, so n1(x1) = n2(x2), and x1
�


1 − 1
�


x2 defines an F -rational


point in VN B {t1(x1) = 0}.


3 Automorphisms


Let (Qi, � i) be a quaternion algebra with its standard involution, and let Ci = Cay(Qi, µi) be


an octonion algebra. We also write � i for the standard involution on Ci. Let C = C1
�


F C2


and � = � 1
� � 2. Let A = Q1


�
F Q2, an F -central associative subalgebra of C. In this


section we will prove that any automorphism of C that preserves A is compatible with the


involution � . As a consequence, we show that the Skolem-Noether theorem does not hold


for A.


Let


e = (0, 1)
�


(1, 0),


f = (1, 0)
�


(0, 1),


g = (0, 1)
�


(0, 1).


We can decompose C as an F -vector space as


C = A 	 Ae 	 Af 	 Ag.
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Note that an automorphism of C is determined by its action on A and on {e, f, g}. Elemen-


tary calculations show that Ae = eA = A(Ae) = (Ae)A, and similar relations hold for f and


g.


We point out some properties of this decomposition. We have, for a � A,


ea = (� 1
�


id)(a)e


fa = (id
� � 2)(a)f


ga = � (a)g.


For example, if a = (x, 0)
�


(y, 0), then


ga = (0, 1)
�


(0, 1) · (x, 0)
�


(y, 0) = (0, � 1(x))
�


(0, � 2(y))


= (� 1(x), 0)
�


(� 2(y), 0)g = � (a)g.


The other properties follow similarly.


Lemma 3.1. For any d, a � A, we have (dg)a = � (a)(dg). Also, a(dg) = (da)g.


Proof. Let d = i(ui, 0)
�


(vi, 0). For a = (x, 0)
�


(y, 0), we have


(dg)a =
i


(0, ui)
�


(0, vi) · (x, 0)
�


(y, 0) =
i


(0, ui � 1(x))
�


(0, vi� 2(y))


and


� (a)(dg) = (� 1(x), 0)
�


(� 2(x), 0)
i


(0, ui)
�


(0, vi) =
i


(0, ui � 1(x))
�


(0, vi� 2(y)).


This proves the first assertion. For the second, we see that


a(dg) = (x, 0)
�


(y, 0) ·
i


(0, ui)
�


(0, vi) =
i


(0, uix)
�


(0, viy)


and


(da)g =
i


(ui, 0)
�


(vi, 0) · (x, 0)
�


(y, 0) g


=
i


(uix, 0)
�


(viy, 0) g =
i


(0, uix)
�


(0, viy).


Lemma 3.2. The right multiplication maps Re, Rf , and Rg are injective. If �D� AutF (C),


then RE (e), RE (f), and RE (g) are injective.
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Proof. The second statement is obvious from the first, so we prove the first. The arguments


are similar, so we only prove that Re is injective. Let c = i(ui, vi)
�


(wi, xi) � C. Then


ce =
i


(ui, vi)
�


(wi, xi) · (0, 1)
�


(1, 0)


=
i


(µ1vi, ui)
�


(wi, xi),


and


(ce)e =
i


(µ1vi, ui)
�


(wi, xi) · (0, 1)
�


(1, 0)


=
i


(µ1ui, µ1vi)
�


(wi, xi) = µ1c.


Since Re F Re is multiplication by the scalar µ1, we see that Re is injective. By similar


calculations, we see that R2
f is multiplication by µ2 and R2


g is multiplication by µ1µ2, so Rf


and Rg are also injective.


One fact we will use often is that if Q is a quaternion algebra with standard involution


� , and if a � Q satisfies ab = � (b)a for all b � Q, then a = 0. This can be verified by an


elementary calculation. The following lemma is a slight generalization of this fact.


Lemma 3.3. If x � A satisfies xa = (� 1
�


id)(a)x for all a � A, then x = 0. Similarly, if


xa = (id
� � 2)(a)x for all a, then x = 0.


Proof. Suppose x satisfies the first condition above. If a � Q2, then xa = ax, so x �
CA(Q2) = Q1. We then let a � Q1, so xa = � 1(a)x. Since this is true for all a � Q1,


the remark before the lemma shows that x = 0. A similar argument works for the second


statement.


In the proof of the following theorem, we make use of the following well known result: if


A = Q1
�


F Q2 is a biquaternion algebra with involution � = � 1
� � 2, where � i is the standard


involution on Qi, then any automorphism of A that is compatible with � either preserves


the Qi or interchanges them. To aid the reader we recall one proof of this fact. If � is such


an automorphism, then � restricts to a Lie algebra automorphism of Skew(A, � ), the space


of skew-symmetric elements of A with respect to � . This Lie algebra is the direct sum of


the two simple Lie subalgebras Skew(Q1, � 1) and Skew(Q2, � 2). Since these are the unique


simple Lie ideals of Skew(A, � ), the map � must preserve them or interchange them. As


Qi = F 	 Skew(Qi, � i), this clearly shows that � preserves the Qi or interchanges them.


We now give the main result of this section.


Theorem 3.4. If �G� AutF (C) satisfies � (A) = A, then � F � = � F � .
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Proof. We first prove that either


� (e) � Q1e,


� (f) � Q2f,


� (g) � Ag,


or


� (e) � Q2f,


� (f) � Q1e,


� (g) � Ag.


For simplicity, we write � 1 = (� 1
�


id) |A and � 2 = (id
� � 2) |A. We begin by writing


� (e) = a1 + b1e + c1f + d1g,


� (f) = a2 + b2e + c2f + d2g,


� (g) = a3 + b3e + c3f + d3g


with the co '&!$#&%('&) ts in A. Let b � A. Applying � to the equations eb = � 1(b)e, fb = � 2(b)f ,


and gb = � (b)g and setting a = � (b) gives


� (e)a = �H
1(a) � (e),


� (f)a = � 
2(a) � (f),


� (g)a = �"
 (a) � (g),


where � 
 = ( �I��� −1) |A and � 
i = ( �0� i � −1) |A. In particular, looking at the g-co 'J!K#J%-'J) ts, we


get


(d1g)a = � 
1(a)(d1g),


(d2g)a = �H
2(a)(d2g),


(d3g)a = � 
 (a)(d3g).


Now, we have (dg)a = � (a)(dg) = ( LM� (a))g for all d � A by Lemma 3.1. So, we get


d1 � (a) = d1 �H
1(a), (1)


d2 � (a) = d2 �H
2(a),


d3 � (a) = d3 �"
 (a).


It is clear that �N�= � 
i as � 
i is not an involution. If A is a division algebra, then this forces


d1 = d2 = 0. We prove that d1 = d2 = 0 in general in Corollary 3.9 below. From this we see
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that im � C A 	 Ae 	 Af 	 (d3A) g. Since � is surjective, we get d3A = A (using Lemma


9), so d3 is a unit in A. From Equation 1, this forces � 
 = � . Thus, ( �O��� −1) |A = � |A, so


� |A is compatible with � |A. Note that this forces � either to fix the Qi or to interchange


them, as pointed out before the theorem. So, ( �0� 1 � −1) |A is either � 1 or � 2, and similarly for


( �P� 2 � −1) |A.


We next consider the co 'J!K#J%-'J) ts a3, b3 and c3. Since � F � |A = � F � |A, we have


a3a = � (a)a3,


(b3e)a = � (a)(b3e),


(c3f)a = � (a)(c3f).


for all a � A. Clearly a3 = 0. Writing b3 = i(ui, 0)
�


(vi, 0) with {ui} an F -independent


set, for a = (x, 0)
�


(y, 0) we have


(b3e)a =
i


(0, ui)
�


(vi, 0) · (x, 0)
�


(y, 0)


=
i


(0, ui � 1(x))
�


(viy, 0),


� (a)(b3e) = (� 1(x), 0)
�


(� 2(y), 0) ·
i


(0, ui)
�


(vi, 0)


=
i


(0, ui � 1(x))
�


(� 2(y)vi, 0).


Setting these two equal with x = 1, and using the independence of {ui} yields viy = � 2(y)vi,


so vi = 0 for all i. Thus, b3 = 0. Similarly, c3 = 0. We have thus proven that � (g) = d3g.


We next show that � (e) � Q1e or � (e) � Q2f . From the condition eb = � 1(b)e, applying


� , we see that


a1a = � 
1(a)a1,


(b1e)a = �H
1(a)(b1e),


(c1f)a = � 
1(a)(c1f),


and � 
1 is either � 1 or � 2, as we saw above. We see that a1 = 0 by Lemma 3.3. Suppose


that � 
1 = � 1. For c1, write c1 = i(ui, 0)
�


(vi, 0). We have (c1f)a = � 1(a)(c1f). For


a = (x, 0)
�


(y, 0) we have


i


(ui, 0)
�


(0, vi) · (x, 0)
�


(y, 0) =
i


(uix, 0)
�


(0, vi � 2(y)),


(� 1(x), 0)
�


(y, 0)
i


(ui, 0)
�


(0, vi) =
i


(� 1(x)ui, 0)
�


(0, viy).


By assuming that the {vi} are F -independent, and setting y = 1, we get uix = � 1(x)ui,
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which forces each ui = 0, so c1 = 0. Since a1 = c1 = d1 = 0, we have � (e) � Ae. On


the other hand, if � 
1 = � 2, a similar calculation shows that � (e) = c1f � Af . We further


need to show that in the first case that b1 � Q1 and that c1 � Q2 in the second case. For


the first case write b1 = i(ui, 0)
�


(vi, 0) with {ui} an F -independent set. Since we have


(b1e)a = � 1(a)(b1e), for a = (x, 0)
�


(y, 0),


(b1e)a =
i


(0, ui)
�


(vi, 0) · (x, 0)
�


(y, 0) =
i


(0, ui � 1(x))
�


(viy, 0)


and


� 1(a)(b1e) = (� 1(x), 0)
�


(y, 0)
i


(0, ui)
�


(vi, 0) =
i


(0, ui� 1(x))
�


(yvi, 0).


By setting x = 1 and using the independence of the {ui}, we see that viy = yvi for all y � Q2.


Thus, each vi � F . Therefore, b1 = i(ui, 0)
�


(vi, 0) = ( i uivi, 0)
�


(1, 0) � Q1. The


argument for c1 is similar. Finally, similar calculations show that � (f) � Q1e or � (f) � Q2f .


We now have proved that either


� (e) = be for some b � Q1,


� (f) = cf for some c � Q2,


� (g) = dg for some d � A.


or


� (e) = cf for some c � Q2,


� (f) = be for some b � Q1,


� (g) = dg for some d � A.


We claim that either of these cases implies that � F � = � F � . Note that � |A F � 1 = � 1 F � |A = � 2


and � |A F � 2 = � 2 F � |A = � 1. We consider the first case. Note that � (e) = −e, � (f) = −f ,


and � (g) = g. We have


� ( � (x + ye + zf + wg)) = � ( � (x) − QR� (y) − f � (z) + g � (w))


= � ( � (x) − � 2(y)e − � 1(z)f + wg)


= �I� (x) − �0� 2(y)(be) − �P� 1(z)(cf) + � (w)(dg)
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and


� ( � (x + ye + zf + wg)) = � ( � (x) + � (y)(be) + � (z)(cf) + � (w)(dg))


= ��� (x) − ( QR� (b)) ��� (y) − (f � (c)) �S� (z) + (g � (d) ��� (w))


= ��� (x) − (� 2(b)e) ��� (y) − (� 1(c)f) ��� (z) + (dg) ��� (w)


= ��� (x) − (be) ��� (y) − (cf) �S� (z) + (dg) ��� (w)


= ��� (x) − � 2 � (y)(be) − � 1 � (z)(cf) + � (w)(dg).


We used b � Q1 and c � Q2 to simplify the fourth line of the display above. Also, because


b � Q1, we can see by a short calculation that (be)a = � 1(a)(be) for all a � A. Similarly,


since c � Q2, we have (cf)a = � 2(a)(cf). This shows how we obtained the fifth line of the


display.


We will have � F � = � F � once we know that ( � F � ) |A = ( � F � ) |A and � |A F � i = � i F � |A.


We saw earlier that ( �I��� −1) |A = � |A, so ( � F � ) |A = ( � F � ) |A. Moreover, we obtained the


first case above by having ( �0� i � −1) |A = � i. So, we have � F � = � F � . The second case is


similar.


We now need to prove that Equation 1 above forces d1 = d2 = 0. To do this it �� H!K#&'J�
to go to a splitting field of A. Thus, let A = M4(F ). Recall that the first line of Equation


1 says that d1 � (a) = d1 � 
1(a) for all a � A, and where � 
1 = �P� 1 � −1. We see that the left


multiplication map Ld1
annihilates X = { � (a) − � 
1(a) : a � A}, and so it annihilates the


right ideal I generated by X. Let


S = Sym(A, � ),
K = Skew(A, � ),


P = {a � A : � 
1(a) = −a} ,


T = {a � A : � 
1(a) = a} .


For simplicity, we write � = � 
1. It is a short argument to see that T = � (Q2), so T is a


quaternion algebra. Our approach will be to show that the assumption I �= A forces T to


be a commutative algebra, a contradiction to T = � (Q2). Thus, A = I C ker(Ld1
), which


forces d1 = 0. Similarly we get d2 = 0.


We now get information about I. We have P = Skew( � (Q1), �0� 1 � −1)
�


Q2, so dimF (P) =


12. By dimension count, dimF (S B P) 8 6. If a � S B P, then � (a) − � (a) = 2a � X. So


S B P C X C I. The ideal I thus contains a 6-dimensional subspace of Sym(A, � ). We


claim, and prove in the lemma below, that this forces dimF (I) 8 12 and, if dimF (I) = 12,


that I B S = S B P has dimension 6. Furthermore, the kernel of the map P � S given by


x =� � (x) + x is P B K. Since the image is contained in I B S = S B P, we see that the


image has dimension 6, so the kernel has dimension 12 − 6 = 6. Thus, K C P. Moreover,


by the descriptions of P and T above, we see that T P C P. Therefore, T K C P. Since
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dimF (S B P) = 6 = dim(K B P) = 1
2
dimF (P), we have P = (S B P) 	 K. From this, we see


that if t � T and k � K, then tk � P and tk + k � (t) � K C P, so tk − k � (t) � S B P. We


consider this situation after the following lemma.


Lemma 3.5. Let I be a right ideal of M4(F ). If dimF (I) = 12, then dimF (I B S) = 6. If


dimF (I) < 12, then dimF (I B S) < 6.


Proof. We first show that we may assume � is the transpose T . Since � is orthogonal,


� = Int(s) F T for some s with sT = s. Then S = sSym(A, T ). So,


dimF (I B S) = dimF (I B sSym(A, T )) = dimF (s−1I B Sym(A, T )).


Thus, by replacing I by s−1I, we may assume � = T .


First suppose that dimF (I) = 12. Since I is generated by a single element, we see that


there are : , ? , � , TU� F , not all 0, with


I = a � A : : ? � T a = 0 .


Suppose that s � I B S. Write


s =


a b c d


b e f g


c f h i


d g i j


for appropriate entries in F . The condition : ? � T s = 0 0 0 0 corresponds


to a homogeneous system of 4 equations in the 10 variables a, . . . , j. This system has


co 'J!K#&%('&) t matrix


: ? � T 0 0 0 0 0 0


0 : 0 0 ? � T 0 0 0


0 0 : 0 0 ? 0 � T 0


0 0 0 : 0 0 ? 0 � T
.


Since at least one of : , ? , � , T is nonzero, this matrix clearly has rank 4. Therefore, its kernel


is dimension 6. However, its kernel is I B S, so dimF (I B S) = 6, as desired.


If dimF (I) < 12, then dimF (I) � {0, 4, 8}. If dimF (I) = 8, then we can write I =


{a � A : xa = 0} for some 2 × 4 matrix x of rank 2. By writing xs = 0 for a symmetric


matrix s, we then obtain a co 'J!K#J%-'J) t matrix of size 8 × 10, and by writing it out we see


that it has rank 8. Thus, its kernel has dimension 2, so dimF (I B S) = 2 < 6. Clearly if


dimF (I) � 4, then dimF (I B S) < 6. This completes the proof of the lemma.


We are now consider the following situation. Let I be a right ideal of dimension 12 in A,
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let � be an orthogonal involution on A, and define


RI V W = {a � A : ak − k � (a) � I for all k � K} .


Lemma 3.6. If � and � are orthogonal involutions on A, then RI V W = RI V X for any I.


Proof. Since � and � are both orthogonal, there is an s � A Y with � = Int(s) F � . Then


Skew(A, � )s = Skew(A, � ). Let a � RI V X . Then ay − y � (a) � I for all y � Skew(A, � ).


So,ay − y Z[� (a)s−1 � I, so a(ys) − (ys) � (a) � Is = I. Thus, a � RI V W . The reverse inclusion


is similar.


Lemma 3.7. If J = : I for some :\� A Y , then RJ V W = : RI V W : −1.


Proof. We point out any right ideal of A of dimension 12 can be written in the form : I for


some :\� A Y . Let a � RI V W and x � Skew(A, � ). Then : −1 �]� ( : )−1 � Skew(A, � ). Therefore,


( :_^M: −1)x − x( :O^M: −1) = :_^M: −1x − �]� ( : )−1 � (a) � ( : )


= : ^M: −1 �]� ( : )−1 − : −1 �]� ( : )−1 � (a) � ( : )


� : I � ( : ) = : I = J.


Thus, : RI V W : −1 C RJ V W . The reverse inclusion is similar.


Proposition 3.8. With the notation above, RI V W is a 4-dimensional commutative F -subalgebra


of M4(F ) and R has a two-sided ideal J of F -dimension 3 with J2 = 0.


Proof. By Lemma 3.6, we may assume that � = T is the transpose involution. By Lemma


3.7, the set RI V W is, up to conjugation, independent of the ideal I, so we may choose I to


be the right ideal consisting of all matrices whose first row is zero. We determine RT,I for


this right ideal. Let a = i,j : ijeij � RI V W . We note that {eij − eji : i > j} is a basis for


Skew(A, T ). Let k = euv − evu with u > v. Then


ak − kaT =
i,j


: ijeij(euv − evu) −
i,j


: ij(euv − evu)eji


=
i


: iueiv −
i


: iveiu −
i


: iveui +
i


: iuevi.


The first row of this matrix is : 1ue1v − : 1ve1u if v > 1, and : 1ue1v − : 1ve1u + i : iue1i if


v = 1. In any case, the first row is zero. Thus, : 1u = : 1v = 0 for all u > v > 1, and if


v = 1, we get ( : 1u + : 1u)e11 + ( : uu − : 11)e1u + i=̀u,1 : iue1i = 0, so : iu = 0 if i �= u, 1,


and : uu = : 11. Thus, the diagonal entries of a are all the same. Also, the only nonzero


non-diagonal entries are in the first column. There is no restriction on : i1 for i > 1, so we
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have shown that


R =


a 0 0 0


b a 0 0


c 0 a 0


d 0 0 a


: a, b, c, d � F .


From this description, it is clear that dimF (R) = 4 and that R is a commutative F -subalgebra


of A. Moreover, if J = I B R = {a � R : trace(a) = 0}, then we see that J is an ideal of R


of dimension 3, and that J2 = 0. This completes the proof.


We can now finish the proof of Theorem 3.4.


Corollary 3.9. In Equation 1 above, we have d1 = d2 = 0.


Proof. The first line of Equation 1 is that d1( � (a)− � 
1(a)) = 0 for all a � A. We have shown


above that the right ideal I generated by { � (a) − � 
1(a) : a � A} has dimension at least 12,


and that if it is dimension 12, then we have � (Q2) C RI V W . However, Proposition 3.8 shows


that this set is a 4-dimensional commutative F -algebra. This is a contradiction since � (Q2)


is a quaternion algebra. Thus, I = A. Since 0 = d1I = d1A, we get d1 = 0. Similarly,


d2 = 0.


From this result we can show that the Skolem-Noether theorem does not hold for the


tensor product of two octonion algebras.


Corollary 3.10. There exists simple F -subalgebras B and B 
 of C and an F -algebra iso-


morphism f : B � B 
 such that there is no F -algebra automorphism � of C with � |B = f .


Proof. Let f be an F -algebra automorphism of A that is not compatible with � |A; such maps


exist since we can take f to be the inner automorphism of an element t � A with � (t)t /� F .


The condition � (t)t � F is precisely the condition needed to ensure that f is compatible


with � |A. For example, we can take t = 1 + i1i2 � A = Q1
�


F Q2 (where the standard


generators of Qr are ir and jr). If f extends to an automorphism � of C, then � (A) = A,


so � is compatible with � . This forces � |A = f to be compatible with � |A, and f is chosen


so that this does not happen.


Remark 3.11. Consider the slightly more general situation that �a� Aut(C) satisfies


� (A) = Ã with Ã = Q̃1
�


Q̃2 a biquaternion algebra, where Q̃i is a quaternion subalge-


bra of Ci, i = 1, 2, or of Cj, j = 1, 2, i �= j. Then a similar argument shows that also


� F � = � F � , i.e., �b� Aut(C, � ) = (G2 × G2) Z2. In particular, this means that for any


�G� Aut(C) which is not compatible with � , the image of any biquaternion subalgebra A of


the type investigated above (i.e., each factor a subalgebra of one of the octonion algebras)


cannot be of this type again.
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