
Quadratic forms with absolutely maximal splitting

Oleg Izhboldin and Alexander Vishik

Abstract. Let F be a field and φ be a quadratic form over F . The higher
Witt indices of φ are defined recursively by the rule ik+1(φ) = ik((φan)F (φan)),

where i0(φ) = iW (φ) is the usual Witt index of the form φ. We say that φ has
absolutely maximal splitting if i1(φ) > ik(φ) for all k > 1.

One of the main results of this paper claims that for all anisotropic
forms φ satisfying the condition 2n−1 + 2n−3 < dimφ ≤ 2n, the following
three conditions are equivalent: (i) the kernel of the natural homomorphism
Hn(F, Z/2Z) → Hn(F (φ), Z/2Z) is nontrivial, (ii) φ has absolutely maximal
splitting, (iii) φ has maximal splitting (i.e., i1(φ) = dimφ− 2n−1). Moreover,
we show that if we assume additionally that dim φ ≥ 2n − 7, then these three
conditions hold if and only if φ is an anisotropic n-fold Pfister neighbor. In our
proof we use the technique developed by V. Voevodsky in his proof of Milnor’s
conjecture.

1. Introduction

Let F be a field of characteristic 6= 2 and let Hn(F ) be the Galois cohomol-
ogy group of F with Z/2Z-coefficients. For a given extension L/F , we denote by
Hn(L/F ) the kernel of the natural homomorphism Hn(F ) → Hn(L). Now, let φ
be a quadratic form over F . An important part of the algebraic theory of qua-
dratic forms deals with the behavior of the groups H n(F ) under the field extension
F (φ)/F . Of particular interest is the group

Hn(F (φ)/F ) = ker(Hn(F )→ Hn(F (φ))).

The computation of this group is connected to Milnor’s conjecture and plays an
important role in K-theory and in the theory of quadratic forms.

The first nontrivial result in this direction is due to J. K. Arason. In [1], he
computed the groupHn(F (φ)/F ) for the case n ≤ 3. The case n = 4 was completely
studied by Kahn, Rost and Sujatha ([12]). In the cases where n ≥ 5, there are
only partial results depending on Milnor’s conjecture: the group H n(F (φ)/F ) was
computed for all Pfister neighbors ([20]) and for all 4-dimensional forms ([25]). All
known results make natural the following conjecture.

Conjecture 1.1. Let F be a field, n be a positive integer, and let φ be an
F -form of dimension > 2n−1. Then the following conditions are equivalent:

(1) the group Hn(F (φ)/F ) = ker(Hn(F )→ Hn(F (φ))) is nonzero,
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(2) the form φ is an anisotropic n-fold Pfister neighbor.

Moreover, if these conditions hold, then the group Hn(F (φ)/F ) is isomorphic to
Z/2Z and is generated by en(π), where π is the n-fold Pfister form associated with
φ.

The proof of the implication (2)⇒(1) follows from the fact that the Pfister

quadric is isotropic if and only if the corresponding pure symbol α ∈ KM
n (k)/2 is

zero, and the fact that the norm-residue homomorphism is injective on α (see [28]).
The implication (1)⇒(2) seems much more difficult. In this paper, we give only
partial answer to the conjecture.

1.1. Forms with maximal splitting. It turns out that Conjecture 1.1 is
closely related to a conjecture concerning so called forms with maximal splitting.
Let us recall some basic definition and results. By iW (φ) we denote the Witt index
of φ. For anisotropic quadratic form φ, the first Witt invariant of φ is defined as
follows: i1(φ) = iW (φF (φ)). Since φF (φ) is isotropic, we obviously have i1(φ) ≥ 1.
In [4] Hoffmann proved the following

Theorem 1.2. Let φ be an anisotropic quadratic form. Let n be such that
2n−1 < dimφ ≤ 2n and m be such that dimφ = 2n−1 +m. Then

• i1(φ) ≤ m,
• if φ is a Pfister neighbor, then i1(φ) = m.

This theorem gives rise to the following

Definition 1.3 (see [4]). Let φ be an anisotropic quadratic form. Let us write
dimφ in the form dimφ = 2n−1 + m, where 0 < m ≤ 2n−1. We say that φ has
maximal splitting if i1(φ) = m.

Our interest in forms with maximal splitting is motivated (in particular) by the
following easy observation (which depends on Milnor’s conjecture, see Proposition
7.5): Let φ and n be as in Conjecture 1.1. If Hn(F (φ)/F ) 6= 0, then φ has maximal
splitting and Hn(F (φ)/F ) ' Z/2Z. Therefore, the problem of classification of
forms with maximal splitting is closely related to Conjecture 1.1. On the other
hand, there are many other problems depending on classification of forms with
maximal splitting.

Let us explain known results concerning classification. By Theorem 1.2, all
Pfister neighbors and all forms of dimension 2n +1 have maximal splitting. By [5],
these examples present exhaustive list of forms with maximal splitting of dimension
≤ 9. The case dimφ = 10 is much more complicated. In [9], it was proved that a
10-dimensional form φ has maximal splitting only in the following cases:

• φ is a Pfister neighbor,
• φ can be written in the form φ = 〈〈a〉〉 q, where q is 5-dimensional form.

Structure of quadratic forms with maximal splitting of dimensions 11, 12, 13, 14,
15, and 16 is very simple: they are Pfister neighbors (see [5] or [7]). Since 17 =
24 +1, it follows that any 17-dimensional form has maximal splitting. The previous
discussion shows that for form of dimension ≤ 17, we have complete classification
of forms with maximal splitting.

Conjecture 1.1 together with our previous discussion make natural the following
problem:
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Problem 1.4. Find the condition on the positive integer d such that each d-
dimensional form φ with maximal splitting is necessarily a Pfister neighbor.

The following example is due to Hoffmann. Let F be the field of rational
function k(x1, . . . , xn−3, y1, . . . , y5) and let

q = 〈〈x1, . . . , xn−3〉〉 ⊗ 〈y1, y2, y3, y4, y5〉 .

Then q has maximal splitting and is not a Pfister neighbor. We obviously have
dim q = 2n−1 + 2n−3. This example gives rise to the following

Proposition 1.5. Let d be an integer satisfying condition 2n−1 ≤ d ≤ 2n−1 +
2n−3 for some n ≥ 4. Then there exists a field F and d-dimensional F -from φ with
maximal splitting which is not a Pfister neighbor.

For the proof, we can define φ as an arbitrary d-dimensional subform of the
form q constructed above.

Let us return to Problem 1.4. By Proposition 1.5, it suffices to study Problem
1.4 only in the case where 2n−1 + 2n−3 < d ≤ 2n. Here, we state the following

Conjecture 1.6. Let n ≥ 3 and F be an arbitrary field. For any anisotropic
quadratic F -form with maximal splitting the condition 2n−1 + 2n−3 < dimφ ≤ 2n

implies that φ is a Pfister neighbor.

This conjecture is true in the cases n = 3 and n = 4 (see [5], [7]). At the time
we cannot prove Conjecture 1.6 in the case n ≥ 5. However, we prove the following
partial case of the conjecture.

Theorem 1.7. Let n ≥ 5 and q be an anisotropic form such that 2n − 7 ≤
dim q ≤ 2n. Then the following conditions are equivalent:

(i) q has maximal splitting,
(ii) q is a Pfister neighbor.

Moreover, we show that for any form φ satisfying the condition 2n−1 + 2n−3 <
dimφ ≤ 2n, Conjectures 1.1 and 1.6 are equivalent for all fields of characteristic zero
(here we use Milnor’s conjecture). The equivalence of conjectures follows readily
from the following theorem.

Theorem 1.8. Let n be an integer ≥ 4 and F be a field of characteristic 0. Let
φ be an anisotropic form such that 2n−1 + 2n−3 < dimφ ≤ 2n. Then the following
conditions are equivalent:

(1) φ has maximal splitting,
(2) Hn(F (φ)/F ) 6= 0.

On the other hand, Theorems 1.7 and 1.8 give rise to the proof of the following
partial case of Conjecture 1.1.

Corollary 1.9. Let F be a field of characteristic zero and let n ≥ 5. Then
for any F -form φ satisfying the condition dimφ ≥ 2n − 7, the following conditions
are equivalent:

(1) the group Hn(F (φ)/F ) = ker(Hn(F )→ Hn(F (φ))) is nonzero,
(2) the form φ is an anisotropic n-fold Pfister neighbor.
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1.2. Plan of works. In section 3, we prove Theorem 1.7. Our proof is based
on the following ideas of Bruno Kahn ([10]): First of all, we recall some result
of M. Knebusch: let q be an anisotropic F -form. If the F (q)-form (qF (q))an is
defined over F , then q is a Pfister neighbor. Now, let q be an F -form satisfying
hypotheses of Theorem 1.7 (in particular, dim q > 16). Let us consider the F (q)-
form φ = (qF (q)))an. By the definition of forms with maximal splitting, we obviously
have dimφ ≤ 7. By the construction, the form φ belongs to the image of the
homomorphism W (F ) → W (F (q)). This implies that φ belongs to the unramified
partWnr(F (q)) of the Witt groupW (F (q)). Using some deep results concerning the
groupWnr(F (q)), we prove that all forms of dimension ≤ 7 belonging to Wnr(F (q))
are necessarily defined over F (provided that dim q > 16). In particular, this implies
that φ = (qF (q))an is defined over F . Then Knebusch’s theorem says that q is a
Pfister neighbor. This completes the proof of Theorem 1.7.

To prove Theorem 1.8, we need Milnor’s conjecture. The implication (1)⇒(2)
is the most difficult part of the theorem. To explain the plan, we introduce the
notion of “forms with absolutely maximal splitting”. First, we recall that for any
F -form φ, we can define the higher Witt indices by the following recursive rule:
is+1(φ) = is((φan)F (φan)).

Definition 1.10. Let φ be an anisotropic quadratic form. We say that φ has
absolutely maximal splitting 1 if i1(φ) > ir(φ) for all r > 1.

It is not difficult to show, that if the form φ has maximal splitting and satisfies
the condition 2n−1 +2n−3 < dimφ ≤ 2n, then φ is an AMS-form. This shows, that
the form φ satisfying the condition (1) of Theorem 1.8, is necessarily an AMS-form.
Therefore, it suffices to prove the following theorem.

Theorem 1.11. Let F be a field of characteristic zero. Let φ be an AMS-form
satisfying the condition 2n−1 < dimφ ≤ 2n. Then Hn(F (φ)/F ) 6= 0.

To prove this theorem, we study the motive of the projective quadric Q cor-
responding to a subform q of φ of codimension i1(φ) − 1. It is well known that
the function fields of the forms φ and q are stably equivalent. Hence, it suffices to
prove that Hn(F (q)/F ) 6= 0. In §5, we show that the motive M(Q) of the quadric
Q has some specific endomorphism ω : M(Q) → M(Q) which we call the Rost
projector. Let us give the definition of the later. First, we recall that the set of
endomorphisms M(Q) → M(Q) is defined as CHd(Q ×Q), where d = dimQ. We
say that ω ∈ End(M(Q)) is a Rost projector, if ω is an idempotent (ω ◦ ω = ω),
and the identity ωF̄ = pt×QF̄ +QF̄ × pt holds over the algebraic closure F̄ of F .
The existence of the Rost projector means that M(Q) contains a direct summand
N such that Nk is isomorphic to the direct sum of the two so-called Tate-motives
Z ⊕ Z(d)[2d]. The final step in the proof of theorem 1.8 is based on the following
theorem.

Theorem 1.12. Let F be a field of characteristic zero. Let Q be the projective
quadric corresponding to an anisotropic F -form q. Assume that Q admits a Rost
projector. Then dim q = 2m−1 + 1 for suitable m. Moreover, Hm(F (q)/F ) 6= 0.

Now, it is very easy to complete the proof of the implication (1)⇒(2) of The-
orem 1.8. Since 2m−1 < dim q ≤ 2m, 2n−1 < dim φ ≤ 2n, and the extensions

1To simplify notation, we will say that φ is an AMS-form



QUADRATIC FORMS WITH ABSOLUTELY MAXIMAL SPLITTING 5

F (φ)/F and F (q)/F are stably equivalent, it follows that n = m (this follows eas-
ily from Hoffmann’s theorem [4]). Therefore, Hn(F (φ)/F ) = Hm(F (q)/F ) 6= 0.
This completes the proof of the implication (1)⇒(2).

The proof of Theorem 1.12 is given in section 6. It is based on the technique
developed by V.Voevodsky for the proof of Milnor’s conjecture (see [28]). All
needed results of Voevodsky’s preprints are collected in Appendix A.

Acknoledgements. An essential part of this work was done while the first
author was visiting the Bielefeld University and the second author was visiting the
Max-Plank Institute für Mathematik. We would like to express our gratitude to
these institutes for their support and hospitality. The support of the Alexander
von Humboldt Foundation for the first author is gratefully acknowledged. Finally,
we would like to thank Professor Ulf Rehmann who made possible the visit of the
second author to the Bielefeld University where this paper was completed.

2. Notation and background

In this article we use the standard quadratic form terminology from [17],[23].
We use the notation 〈〈a1, . . . , an〉〉 for the Pfister form 〈1,−a1〉⊗· · ·⊗〈1,−an〉. The
n-fold Pfister forms provide a system of generators for the abelian group I n(F ).
We recall that the Arason–Pfister Hauptsatz (APH in what follows) states that:
every quadratic form over F of dimension < 2n which lies in In(F ) is necessarily
hyperbolic; if φ ∈ In(F ) and dimφ = 2n, then the form φ is necessarily similar to
a Pfister form. We use the notation en for the generalized Arason invariant 2

In(F )/In+1(F )→ Hn(F ), where 〈〈a1, . . . , an〉〉 7→ (a1, . . . , an).

The following statements describe the relationship between the Witt-ringW (F )
and the cohomologyHn(F ). They will be used extensively in the next two sections.

Theorem 2.1. (Milnor, Arason, Merkurjev, Rost, Suslin, Jacob, Szyjevski)
For n ≤ 4, we have canonical isomorphisms en : In(F )/In+1(F )→ Hn(F )

Theorem 2.2. (Arason, Kahn-Rost-Sujatha) Let 0 ≤ m ≤ n ≤ 4 and π be an
m-fold Pfister form over F . Then Hn(F (π)/F ) = em(π)Hn−m(F ).

Theorem 2.3. (Arason, Kahn-Rost-Sujatha) Let n ≤ 4 and ρ be a form over
F of dimension > 2n. Then Hn(F (ρ)/F ) = 0.

The following statement is an evident corollary of the theorems above.

Corollary 2.4. Let ρ and n be a positive integer ≤ 5. Let ξ be a form such
that ξF (ρ) ∈ I

n(F (ρ)). Then

• if ρ is a Pfister neighbor of Pfister form π, then ξ ∈ πW (F ) + In(F ),
• if dim ρ > 2n−1, then ξ ∈ In(F ).

Remark 2.5. Actually, the restriction on the degree n here is unnecessary -
see Theorem 7.3.

In section 5 we use the notation Z for the trivial Tate-motive (which is just
the motive of a point M(Spec(k))), and Z(m)[2m] for the tensor power Z(1)[2]⊗m

of the Tate-motive Z(1)[2], where the later is defined as a complimentary direct
summand to Z in M(P1) (M(P1) = Z ⊕ Z(1)[2]). For this reason, we use the

2The existence of en was proven by Arason for n ≤ 3, and by Jacob-Rost/Szyjevski for n = 4.
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notation Z for all groups and rings Z throughout the text. In section 5 we work
in the classical Chow-motivic category of Grothendieck (see [3],[18],[24],[22]). We
remind that in this category the group Hom(M(P ),M(Q)) is naturally identified

with CHdim(Q)(P ×Q), for any smooth connected projective varieties P and Q over
k.

In this connection we should mention that the motive of a completely split
quadric P (of dimension d) is a direct sum of Tate-motives:

M(P ) = ⊕0≤i≤dZ(i)[2i], if d is odd;
M(P ) = (⊕0≤i≤dZ(i)[2i])⊕ Z(d/2)[d], if d is even.

The corresponding mutually orthogonal projectors in End(M(P )) are given by h i×
li, and li × h

i, where 0 ≤ i < d/2, and hi ⊂ P is a plane section of codimension i,
and li ⊂ P is a projective subspace of dimension i (in the case d-even we also have
l1d/2 × l

2
d/2 and l2d/2 × l

1
d/2, where l1d/2, l

2
d/2 ⊂ P are the projective subspaces of the

middle dimension from the two different families).

In section 6 we work in the bigger triangulated category of motives DM eff
− (k)

constructed by V.Voevodsky (see [26]). This category contains the category of
Chow-motives as a full additive subcategory closed with respect to direct sum-
mands. All the necessary facts and references are given in the Appendix.

3. Descent problem and Forms with maximal splitting

The main goal of this section is to prove Theorem 1.7. It should be noticed
that in all cases except for dim q = 2n − 7 this theorem was proved earlier:

• if dim q = 2n or 2n − 1, the theorem was proved by M. Knebusch and A.
Wadsworth (independently);
• if dim q = 2n − 2 or 2n − 3, the theorem was proved by D. Hoffmann [4];
• if dim q = 2n− 4 or 2n− 5, the theorem was proved by B. Kahn [10, remerk

after Th.4] (see also more elementary proofs in [5] or [7]);
• In the case dim q = 2n − 6, the theorem follow easily from a result of A.

Laghribi [16].

To prove the theorem in the case dim q = 2n − 7 we use the same method as in
the paper of Bruno Kahn [10]. Namely, we reduce Theorem 1.7 to the study of a
descent problem for quadratic forms (see Proposition 3.8 and Theorem 3.9). As in
the paper of B. Kahn, we work modulo suitable power I n(F ) of the fundamental
ideal I(F ).

We start with the following notation.

Definition 3.1. Let ψ be a form over F and n ≥ 0 be an integer. We define
dimn ψ as follows:

dimn ψ = min{dimφ |φ ≡ ψ (mod In(F ))}

Lemma 3.2. Let ψ be a form over F and L/F be some field extension. Then
dimn ψL ≤ dimn ψ. If L/F is unirational, then dimn ψL = dimn ψ.

Proof. The inequality dimn ψL ≤ dimn ψ is obvious. If L/F is unirational,
the identity dimn ψL = dimn ψ follows easily from the standard specialization ar-
guments.

Corollary 3.3. Let ψ and q0 ⊂ q be forms over F . Then dimn ψF (q0) ≤
dimn ψF (q).
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Proof. Since q0 ⊂ q, it follows that qF (q0) is isotropic and hence the extension
F (q, q0)/F (q0) is purely transcendental. By Lemma 3.2, we have dimn ψF (q0) =
dimn ψF (q,q0) ≤ dimn ψF (q).

Now, we recall an evident consequence of Merkurev’s index reduction formula:
if A is a central simple algebra of index 2n and q is a form of dimension > 2n+ 2,
then indAF (q) = indA. The following lemma is an obvious generalization of this
statement.

Lemma 3.4. Let A be a central simple F -algebra of index 2n and q be a qua-
dratic form over F . Let F0 = F, F1, . . . , Fh be the generic splitting tower of q. Let
i ≥ 1 be an integer such that dim((qFi−1

)an) > 2n+ 2. Then indAFi
= indA.

Lemma 3.5. Let A be a central simple F -algebra of index 2n and q be a qua-
dratic form of dimension > 2n+ 4. Then there exists a unirational extension E/F
and a 3-dimensional form q0 ⊂ qE such that ind(AE ⊗ C0(q0)) = 2n+1

Proof. Let F̃ = F (X,Y, Z), q̃ = qF̃ ⊥ −X 〈〈Y, Z〉〉, and Ã = AF̃ ⊗ (Y, Z).

Clearly, ind Ã = 2 indA = 2n+1. Let F̃0 = F̃ , F̃1, . . . , F̃h be the generic splitting
tower for q̃. Let q̃i = (q̃F̃i

)an for i = 0, . . . , h. Let s be the minimal integer such

that dim q̃s ≤ dim q− 2. We have dim q̃s−1 ≥ dim q > 2(n+ 1) + 2. By Lemma 3.4,

we have indAF̃s
= ind Ã = 2n+1.

We set E = F̃s. Since q̃E = qE ⊥ −X 〈〈Y, Z〉〉, the forms qE and X 〈〈Y, Z〉〉
contain a common subform of dimension

1

2
(dim q + dim(X 〈〈Y, Z〉〉)− dim(q̃E)an) =

1

2
(dim q + 4− dim q̃s)

≥
1

2
(dim q + 4− (dim q − 2)) = 3.

Hence, there exists a 3-dimensionalE-form q0 such that q0 ⊂ qE and q0⊂X〈〈Y, Z〉〉E .

Clearly, C0(q0) = (Y, Z). Hence, ind(AE ⊗E C0(q0)) = ind ÃE = 2n+1.
To complete the proof, it suffices to show that E/F is unirational. To prove

this, let us write q in the form q = x 〈1,−y,−z〉 ⊥ q0 with x, y, z ∈ F ∗. Let us
consider the field

K = F̃ (
√

X/x,
√

Y/y,
√

Z/z) = F (X,Y, Z)(
√

X/x,
√

Y/y,
√

Z/z).

Clearly, K/F is purely transcendental. In the Witt ring W (K), we have q̃K =
qK − X 〈〈Y, Z〉〉K = x 〈1,−y,−z〉K + q0 − X 〈1,−Y,−Z,−Y Z〉 = q0 + 〈XY Z〉.
Hence dim(q̃K)an ≤ dim q0 + 1 = dim q − 3 + 1 = dim q − 2. Since s is the minimal

integer such that dim q̃s ≤ dim q − 2, it follows that the extension (K · F̃s)/K is

purely transcendental (see, e.g., [14, Cor. 3.9 and Prop. 5.13]), where K · F̃s is the

free composite of K and F̃s over F̃ . Since K/F is purely transcendental, it follows

that (K · F̃s)/F is also purely transcendental. Hence F̃s/F is unirational. Since

E = F̃s, we are done.

Lemma 3.6. Let ρ be a Pfister neighbor of 〈〈a, b〉〉 and n be a positive integer.
Let ψ be a form such that dimn ψF (ρ) < 2n−1. Then there exist an F -forms µ such
that dim µ = dimn ψF (ρ) and ψF (ρ) ≡ µF (ρ) (mod In(F )).

Proof. Let ξ be a F (ρ)-form such that dim ξ = dimn ψF (ρ) and ψF (ρ) ≡ ξ
(mod In(F (ρ))). By [16, Lemme 3.1], we have ξ ∈ Wnr(F (ρ)/F ). By the excellent
property of F (ρ)/F (see [2, Lemma 3.1]), there exists an F -form µ such that ξ =
µF (ρ).
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Corollary 3.7. Let ρ be a Pfister neighbor of 〈〈a, b〉〉 and n be a positive in-
teger such that n ≤ 5. Let ψ be a form such that dimn ψF (ρ) < 2n−1. Then there
exist an F -forms µ and γ such that dimµ = dimn ψF (ρ) and ψ ≡ µ + 〈〈a, b〉〉 γ
(mod In(F )).

Proof. Let µ be a form as in Lemma 3.6. We have (ψ − µ)F (ρ) ∈ I
n(F (ρ)).

By Corollary 2.4, we have ψ−µ ∈ 〈〈a, b〉〉W (F )+ In(F ). Hence, there exists γ such
that ψ − µ ∈ 〈〈a, b〉〉 γ + In(F ).

Proposition 3.8. Let q be an F -form of dimension > 16 and ψ be a form over
F such that dim5 ψF (q) ≤ 7. Then dim5 ψ = dim5 ψF (q). In particular, dim5 ψ ≤ 7.

Proof. By Lemma 3.2, we have dim5 ψ ≥ dim5 ψF (q). Hence, it suffices to
verify that dim5 ψ ≤ dim5 ψF (q). We start with the following case:

Case 1. either dim5 ψF (q) ≤ 6 or dim5 ψF (q) = 7 and indC0(ψ) 6= 8.
By the definition of dim5 ψF (q), there exists an F (q)-form φ such that dimφ =

dim5 ψF (q) ≤ 7 and φ ≡ ψF (q) (mod I5(F (q))). In particular, we have c(φ) =
c(ψF (q)). Since dimφ ≤ 7 and dim q > 16, index reduction formula shows that
ind c(φ) = ind c(ψ). By the assumption of Case 1, we see that

• either dimφ ≤ 6,
• or dimφ = 7 and indC0(φ) 6= 8.

Since φ ≡ ψF (q) (mod I5(F (q))), it follows that φ ∈ im(W (F ) → W (F (q))) +

I5(F (q)). The principal theorem of [16] shows that φ is defined over F . In other
words, there exists an F -form µ such that φ = µF (q). Therefore, ψF (q) ≡ φ ≡

µF (q) (mod I5(F (q)). By Corollary 2.4, we see that ψ ≡ µ (mod I 5(F )). Hence,
dim5(ψ) ≤ dimµ = dim φ = dim5(ψF (q)). This completes the proof in Case 1.

Case 2. dim5 ψF (q) = 7 and indC0(ψ) = 8.
Lemma 3.2 shows that we can change the ground field by an arbitrary unira-

tional extension. After this, Lemma 3.5 (applying to A = C0(ψ), n = 3 and q)
shows, that we can assume that there exists a 3-dimensional subform q0 ⊂ q such
that ind(C0(ψ)⊗ C0(q0)) = 16.

Let a, b ∈ F ∗ be such that q0 is a Pfister neighbor of 〈〈a, b〉〉.
By Corollary 3.3, we have dim5 ψF (q0) ≤ 7. By Corollary 3.7, there exists a

form µ of dimension ≤ 7 and a form λ such that ψ ≡ µ+ 〈〈a, b〉〉 λ (mod I 5(F )).
First, consider the case where dimλ is odd. Then c(ψ) = c(µ)+(a, b). Therefore

indC0(µ) = ind(C0(ψ) ⊗ (a, b)) = ind(C0(ψ) ⊗ C0(q0)) = 16. On the other hand,
dimµ ≤ 7 and hence indC0(µ) ≤ 8. We get a contradiction.

Now, we can assume that dimλ is even. Then λ ≡ 〈〈c〉〉 (mod I2(F )), where
c = d±λ. Hence, 〈〈a, b〉〉λ ≡ 〈〈a, b, c〉〉 (mod I4(F )). Hence, ψ − µ ≡ 〈〈a, b〉〉λ ≡
〈〈a, b, c〉〉 (mod I4(F )). Let π = 〈〈a, b, c〉〉. We have ψ ≡ µ+ π (mod I4(F )).

Since πF (π) is hyperbolic, it follows that ψF (q,π) ≡ µF (q,π) (mod I4(F (q, π)).
Since dim5 ψF (q) = 7, there exists a 7-dimensional F (q)-form ξ such that ψF (q) ≡ ξ

(mod I5(F (q))). This implies that µF (q,π) ≡ ψF (q,π) ≡ ξF (q,π) (mod I4(F (q, π))).

Since dimµ+ dim ξ ≤ 7 + 7 = 14 < 24, APH shows that µF (q,π) = ξF (q,π). Hence,

ψF (q,π) ≡ ξF (q,π) ≡ µF (q,π) (mod I5(F (q, π))). Since dim q > 16, Corollary 2.4

shows that ψF (π) ≡ µF (π) (mod I5(F (π))). Hence (ψ − µ)F (π) ∈ I
5(F (π)).

By Corollary 2.4, there exists an F -form γ such that ψ − µ ≡ πγ (mod I 5(F )).
Since ψ − µ ≡ π (mod I4(F )), it follows that either π is hyperbolic or dim γ is
odd. In any case, we can assume that dim γ is odd. Then γ ≡ 〈k〉 (mod I 2(F )),
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where k = d±γ. Hence, ψ − µ ≡ πγ ≡ kπ (mod I5(F )). Therefore, ξ ≡ ψF (q) ≡

(µ+ kπ)F (q) (mod I5(F (q))). Since dim ξ + dimµ+ dimπ = 7 + 7 + 8 < 25, APH
shows that ξ = (ζF (q))an, where ζ = (µ ⊥ kπ)an. Since dim ζ ≤ dim(µ ⊥ kπ) ≤

7 + 8 < 24 < dim q, Hoffmann’s theorem shows that ζF (q) is anisotropic. Hence,

ξ = ζF (q). In particular, dim ζ = 7. We have ψF (q) ≡ ξ ≡ ζF (q) (mod I5(F (q))).

Since dim q > 16, Corollary 2.4 shows that ψ ≡ ζ (mod I 5(F )). Hence, dim5 ψ ≤
dim ζ = 7. On the other hand, dim5 ψ ≥ dim5 ψF (q) = 7. The proof is complete.

The essential part of the following theorem was proved by Ahmed Laghribi in
[16].

Theorem 3.9. (cf. [16, Théorème principal]). Let q be a form of dimension
> 16. Let φ be a form of dimension ≤ 7 over the field F (q). Then the following
conditions are equivalent.

(1) φ is defined over F ,
(2) φ ∈ im(W (F )→W (F (q))),
(3) φ ∈ im(W (F )→W (F (q))) + I5(F (q)),
(4) φ ∈Wnr(F (q)/F ).

Proof. This theorem is proved in [16] except for the case where dimφ = 7
and indC0(φ) = 8. Implications (1)⇒(2)⇒(3) ⇐⇒ (4) are also proved in [16]. It
suffices to prove implication (3)⇒(1).

Condition (3) shows that there exists a form ψ over F such that ψF (q) ≡ φ

(mod I5(F (q))). Therefore dim5 ψF (q) ≤ dimφ ≤ 7. By Proposition 3.8, we have
dim5 ψ ≤ 7. Hence there exists an anisotropic F -form µ of dimension ≤ 7 such
that ψ ≡ µ (mod I5(F )). Thus φ ≡ ψF (q) ≡ µF (q) (mod I5(F (q))). Since dimφ+

dimµ = 7 + 7 < 25, APH shows that φan = (µF (q))an. Since dimµ < 8 < dim q,
Hoffmann’s theorem shows that µF (q) is anisotropic. Hence φan = µF (q). Therefore
φan is defined over F . Hence, φ is defined over F .

Proof of theorem 1.7. (i)⇒(ii). Let φ = (qF (q))an. By [15, Th. 7.13], it
suffices to prove that φ is defined over F . Since n ≥ 5, we have dim q ≥ 2n−7 > 16.
Clearly, φ ∈ im(W (F )→W (F (q))). Since q has maximal splitting, it follows that
dimφ = 2n − dim q ≤ 7. By Theorem 3.9, we see that φ is defined over F .

(ii)⇒(i). Obvious.

4. Elementary properties of AMS-forms

In this section we start studying the forms with absolutely maximal splitting
(AMS-forms) defined in the introduction (Definition 1.10).

Lemma 4.1. Let φ be an anisotropic form and n be an integer such that 2n−1 +
2n−3 < dimφ ≤ 2n. Suppose that φ has maximal splitting. Then φ has absolutely
maximal splitting.

Proof. Let m = dimφ − 2n−1. Clearly, dimφ = 2n−1 +m and 2n−3 < m ≤
2n−1. Since φ has maximal splitting, we have i1(φ) = m. Let F = F0, F1, . . . , Fh

be the generic splitting tower of φ. Let φi = (φFi
)an for i = 0, . . . , h. Let us fix

r > 1. To prove that φ has absolutely maximal splitting, we need to verify that
ir(φ) < m. Clearly, ir(φ) = i1(φr). Thus, we need to verify that i1(φr) < m. In
the case where dim φr ≤ 2n−2, we have i1(φr) ≤

1
2 dimφr ≤

1
22n−2 = 2n−3 < m.
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Thus, we can suppose that dimφr > 2n−2. Since r ≥ 1, we have dimφr ≤
dimφ1 = dimφ − 2i1(φ) = 2n−1 +m − 2m = 2n−1 −m. Hence, 2n−2 < dimφr ≤
2n−2 + (2n−2−m). By Theorem 1.2, we have i1(φr) ≤ 2n−2−m. Since m > 2n−3,
we have 2n−2 −m < m. Hence i1(φr) ≤ 2n−2 −m < m.

From the results proven in the next sections (see Theorem 7.1) it follows that
in dimension range we are interested in (2n−1 + 2n−3 < dimφ ≤ 2n) the form has
maximal splitting if and only if it has absolutely maximal splitting.

Remark 4.2. We cannot change the strict inequality 2n−1 + 2n−3 < dimφ
by 2n−1 + 2n−3 ≤ dimφ in the formulation of the lemma. Indeed, for any n ≥ 3
there exists an example of (2n−1+2n−3)-dimensional form φ with maximal splitting
which is not an AMS-form. The simplest example is the following:

φ = 〈〈x1, x2, . . . , xn−3〉〉 ⊗ 〈1, 1, 1, 1, 1〉 over the field R(x1, . . . , xn−3).

In this case i1(φ) = i2(φ) = 2n−3.

5. Motivic decomposition of AMS-Quadrics

In this section we will produce some “binary” motive related to AMS-quadric.
Let X,Y and Z be smooth projective varieties over k of dimensions l,m and

n, respectively. Then we have natural (associative) pairing:

◦ : CHn+b(Y × Z)⊗ CHm+a(X × Y )→ CHn+a+b(X × Z),

where v ◦ u := (πX,Z)∗(π
∗
X,Y (u) ∩ π∗Y,Z(v)), and πX,Y : X × Y × Z → X × Y ,

πY,Z : X × Y × Z → Y × Z, πX,Z : X × Y × Z → X × Z are natural projections.
In particular, taking X = Spec(k), we get a pairing:

CHn+b(Y × Z)⊗ CHr(Y )→ CHr−b(Z).

In this case, we will denote v ◦ u as v(u).

Theorem 5.1. (cf. [25, Proof of Statement 6.1]) Let Q be an AMS-quadric.
Let P ⊂ Q be subquadric of codimension = i1(q) − 1. Then P possesses a Rost
projector.

Proof. We say that “we are in the situation (∗)”, if we have the following
data:

Q - some quadric; P ⊂ Q - some subquadric of codimension d;
Φ ∈ CHm(Q×Q), where m := dim(P ).

In this case we have Ψ ∈ CHm+d(P × Q) - the class of the graph of the natural

embedding P ⊂ Q, and Ψ∨ ∈ CHm+d(Q × P ) - the dual cycle, and can define:
ε := Ψ∨ ◦ Φ ◦Ψ ∈ CHm(P × P ).

The action on CH∗(Pk) identifies: CHm(Pk × Pk) =
∏

r End(CHr(Pk)) (see
[22, Lemma 7]), and we will denote as ε(r) ∈ End(CHr(Pk)) the corresponding
coordinate of εk .

• If 0 ≤ s < m/2, then CHs(Pk) = Z with the generator ls - the class of
projective subspace of dimension s on Pk ;
• if m/2 < s ≤ m, then CHs(Pk) = Z with the generator hm−s - the class of

plane section of codimension m− s on Pk ;
• if s = m/2, then CHs(Pk) = Z⊕ Z with the generators l1m/2 and l2m/2 - the

classes of m/2-dimensional projective subspaces from two different families.
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This permits to identify End(CHs(Pk)) with Z if 0 ≤ s ≤ m, s 6= m/2, and with
Mat2×2(Z), if s = m/2. We should mention, that since for arbitrary field extension
E/k, the natural map CHs(P |k) → CHs(P |E) is an isomorphism (preserving the
generators above), we have an equality: (εE)(s) = ε(s) (in Z, resp. Mat2×2(Z)).

We will need the following easy corollary of Springer’s theorem. Under the
degree of the cycle A ∈ CHs(Q) we will understand the degree of the 0-cycle A∩hs.

Lemma 5.2. Let 0 ≤ s ≤ dim(Q)/2. Then the following conditions are equiva-
lent:

(1) q = (s+ 1) ·H ⊥ q′, for some form q′;
(2) Q contains (projective subspace) P

s as a subvariety;
(3) CHs(Q) contains cycle of odd degree.

Proof. (1) ⇒ (2) and (2) ⇒ (3) - evident. (3) ⇒ (1) Use induction on s.
For s = 0 the statement is equivalent to the Theorem of Springer. If now s > 0,
then CH0(Q) also contains a cycle of odd degree (obtained via intersection with
hs). So, q = H ⊥ q′′. And we have the natural degree preserving isomorphism:
CHs(Q) = CHs−1(Q

′′). By induction, q′′ = s ·H ⊥ q′.

Lemma 5.3. In the situation of (∗), suppose, for some 0 ≤ s < m/2, ε(s) ∈ Z

is odd. Then for arbitrary field extension E/k, if QE contains a projective space of
dimension s, then it contains a projective space of dimension s+ d.

Proof. LetE/k be such an extension that ls ∈ image(CHs(QE)→ CHs(QE)),
and ε(s) - odd. We have: Ψ ◦Ψ∨ ◦ Φ(ls) = λ · ls ⊂ CHs(QE), where λ ∈ Z is odd
(since Ψ : CHs(PE)→ CHs(QE) is an isomorphism). On the other hand, the com-
position Ψ ◦ Ψ∨ : CHs+d(QE) → CHs(QE) is given by the intersection with the
plane section of codimension d, so it preserves the degree of the cycle. This implies
that Φ(ls) ∈ image(CHs+d(QE) → CHs+d(QE)) has odd degree. By Lemma 5.2,
QE contains projective space of dimension s+ d.

Lemma 5.4. In the situation of (∗), suppose, for some m/2 < s ≤ m, ε(s) ∈ Z

is odd. Then for arbitrary field extension E/k, if QE contains a projective space of
dimension (m− s), then it contains a projective space of dimension (m− s+ d).

Proof. Consider the cycle ε∨ ∈ CHm(P × P ) dual to ε. Since (A ◦ B)∨ =
B∨ ◦A∨, we have: ε∨ = Ψ∨ ◦ Φ∨ ◦Ψ. On the other hand, (ε∨)(s) = ε(m−s). Now,
the statement follows from Lemma 5.3.

Lemma 5.5. In the situation of (∗), if d > 0, then εk(l1m/2) = εk(l2m/2) =

c · hm/2, where c ∈ Z.

Proof. Clearly, Ψ(lim/2) = lm/2 ∈ CHm/2(Qk). On the other hand, Φ ◦

Ψ(lim/2) ∈ CHm/2+d(Qk), the later group is generated by hm/2 (since (m/2)+ d>

(m+ d)/2), and Ψ∨(hm/2) = hm/2.

Let now Q be AMS-quadric, and P ⊂ Q be subquadric of codimension i1(q)−1.
By the definition of AMS-quadrics, either dim(Q) = 0, or i1(q) > 1 and P is a
proper subform of Q. Clearly, it is enough to consider the second possibility.

By the definition of i1(q), we have: qk(Q) = i1(q) · H ⊥ q1. So, the quadric
Qk(Q) contains (i1(q)− 1)-dimensional projective subspace l(i1(q)−1). Denote: d :=
i1(q) − 1, and m := dim(P ). Let Φ ∈ CHm(Q × Q) be the class of the closure of
ld ⊂ Spec(k(Q))×Q ⊂ Q×Q. Let us denote this particular case of (∗) as (∗∗).
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Lemma 5.6. In the situation of (∗∗), εk = Pk × l0 +
∑

0<i<m bi · (h
m−i×hi) +

a · l0 × Pk, where b1, . . . , bm−1, a ∈ Z.

Proof. If for some 0 ≤ i < m/2, the coordinate ε(i) is odd, then by Lemma
5.3, in the generalized splitting tower k = F0 ⊂ F1 ⊂ · · · ⊂ Fh for the quadrics Q,
there exists 0 ≤ t < h such that iW (qFt

) ≤ i < i+ i1(q)− 1 < iW (qFt+1
). Since q is

AMS-form, this can happen only if i = 0. In the same way, using Lemma 5.4, we
get that for all m/2 < i < m, the coordinates ε(i) are even.

This implies that on the group CHi(Pk), where 0 < i < m, i 6= m/2, the map
εk acts as some (integral) multiple of hm−i × hi (notice also that hm−i × hi acts
trivially on all CHj(Pk), j 6= i). The same holds for i = m/2 by Lemma 5.5.

Clearly, Pk×l0 (resp. l0×Pk) acts on CH0(Pk) (resp. CHm(Pk)) as a generator
of End(CH0(Pk)) = Z (resp. End(CHm(Pk)) = Z), and acts trivially on CHj(Pk),
j 6= 0 (resp. j 6= m). So, we need only to observe that ε(0) = 1 (since Ψ∨◦Φ◦Ψ(l0) =
Ψ∨◦Φ(l0) = Ψ∨(ld) = l0)(this is the only place where we use the specifics of Φ).

Now we can use ε to construct the desired projector in End(M(P )), where
M(P ) is a motive of the quadric P , considered as an object of the classical Chow-
motivic category of Grothendieck Choweff (k) (see [3],[18],[24],[22]). We remind
that End(M(P )) is naturally identified with CHm(P × P ) with the composition
given by the pairing ◦.

Take ω := ε−
∑

0<i<m bi · (h
i × hm−i)− [a/2] · (hm × P ) ∈ End(M(P )). Then

ωk is a projector equal to either (Pk × l0 + l0 × Pk), or to Pk × l0 (depending on
the oddness of a).

We have the following easy consequence of the Rost Nilpotence Theorem ([22,
Corollary 10]):

Lemma 5.7. ([25, Lemma 3.12]) If for some ω ∈ End(M(P )), ωk is an idem-

potent, then for some r, ω2r

is an idempotent.

Mutually orthogonal idempotents Pk × l0 and l0×Pk give the direct summands
Z and Z(m)[2m] in M(Pk). By lemma 5.7, we get a direct summand L in M(P )
such that either Lk = Z⊕ Z(m)[2m], or Lk = Z. The later possibility is excluded
by the following lemma.

Lemma 5.8. Let L be a direct summand of M(P ), s.t. Lk ' Z. Then P is
isotropic.

Proof. Let w ∈ CHdim(P )(P × P ) be the projector, corresponding to L. We
have: End(M(Pk)) =

∏

r End(CHr(Pk)). So, if dim(P ) > 0, then the restriction

wk of our projector to k has no choice but to be Pk × l0 ∈ CHdim(P )(Pk × Pk).
Then, evidently, degree(w ∩∆P ) = 1, and on P × P , and, consequently, on P we
get a point of odd degree. By Springer’s Theorem, P is isotropic. If dim(P ) =
0, then End(M(P )) has nontrivial projector if and only if det±(p) = 1 (⇔ p is
isotropic).

Theorem 5.1 is proven.

6. Binary direct summands in the motives of quadrics

The following result was proven (but not formulated) by the second author in
his thesis (see the proof of Statement 6.1 in [25]). We will reproduce it’s proof here
for the reader’s convenience.
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Theorem 6.1. ([25]) Let k be a field of characteristic 0, and P be smooth
anisotropic projective quadric of dimension n whose Chow-motive M(P ) contains
a direct summand N such that N |k = Z⊕ Z(n)[2n]. Then n = 2s − 1 for some s.

Proof of Theorem 6.1. The construction we use here is very close to that
used by V.Voevodsky in [28].

The category of Chow-motives Choweff (k) which we used in the previous sec-
tion is a full additive subcategory (closed under taking of direct summands) in the

triangulated category DM eff
− (k) - see [26]. The category DM eff

− (k) contains the
“motives” of all smooth simplicial schemes over k. If P is a smooth projective
variety over k, we denote as Č(P )· the standard simplicial scheme corresponding
to the pair P → Spec(k) - see Definition A.8. We will denote it’s motive as XP .

From the natural projection: Č(P )·
pr
→ Spec(k), we get a map: XP

M(pr)
−→ Z. By

Theorem A.9, M(pr)k is an isomorphism. From this point, we will denote M(pr)
simply as pr (since we will not use simplicial schemes themselves any more).

By Theorem A.11, we get that in DM eff
− (k),

N := Cone[−1](XP
µ′

−−−−→ XP (n)[2n+ 1]),

where µ′ is some (actually, the only) nontrivial 3 element from

Hom(XP ,XP (n)[2n+ 1]).

By Theorem A.14, pr : XP → Z induces the natural isomorphism for all a, b:

pr∗ : Hom(XP ,XP (a)[b])→ Hom(XP ,Z(a)[b]).

Denote: µ := pr∗(µ
′) ∈ Hom(XP ,Z(n)[2n+ 1]).

Sublemma 6.2. The map

(µ′)∗ : Hom(XP ,Z(c)[d]) → Hom(XP ,Z(c+ n)[d+ 2n+ 1])

coincides with the multiplication by µ ∈ Hom(XP ,Z(n)[2n+ 1]).

Proof. The maps ∆XP
: XP → XP ⊗ XP , and πi : XP ⊗ XP → XP are

mutually inverse isomorphisms (by Theorem A.13). Clearly, µ · u = ∆XP
(µ⊗ u).

The map µ⊗ u : XP ⊗XP → Z(n)[2n+ 1]⊗Z(c)[d] coincides with the compo-
sition:

XP
µ′

−−−−→ XP (n)[2n+ 1]
pr(n)[2n+1]
−−−−−−−→ Z(n)[2n+ 1]

⊗ ⊗ ⊗

XP
id

−−−−→ XP
u

−−−−→ Z(c)[d]

which can be identified with the composition:

XP
µ′

→ XP (n)[2n+ 1]
u
→ Z(n+ c)[2n+ 1 + d],

which is equal to (µ′)∗(u).

Sublemma 6.3. Multiplication by µ performs an isomorphism:

Hom(XP ,Z(c)[d])→ Hom(XP ,Z(c+ n)[d+ 2n+ 1])

for any d− c > 0, and is surjective for d = c. The same is true about cohomology
with Z/2-coefficients.

3Since, otherwise, XP would be a direct summand in M(P ), and by Lemma 5.8, p would be
isotropic
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Proof. Since N is a direct summand in M(P ), Hom(N,Z(a)[b]) = 0, for
b− a > n = dim(P ), by Theorem A.2(1). And the same is true about cohomology
with Z/2-coefficients.

Consider Hom’s from the exact triangle N → XP
µ′

→ XP (n)[2n+ 1]→ N [1] to
Z(n+ c)[2n+ d+ 1]. We have: Hom(N,Z(n+ c)[2n+ d+ 1]) = 0, if d− c ≥ 0, and
Hom(N,Z(n + c)[2n + d]) = 0, if d − c > 0. This, combined with Sublemma 6.2,
implies the statement for Z-coefficients. Considering Hom’s to Z/2(n+c)[2n+d+1],
we get the Z/2-case.

We can also consider X̃P := Cone[−1](XP
pr
→ Z).

Sublemma 6.4. Let a and b be integers such that b > a. Then

• Hom(XP ,Z(a)[b]) is a 2-torsion group,
• Hom(XP ,Z(a)[b]) embeds into Hom(XP ,Z/2(a)[b]),

• the natural map X̃P
δ
→ XP induces an isomorphism

Hom(XP ,Z/2(a)[b])
=
→ Hom(X̃P ,Z/2(a)[b]).

Proof. For the finite field extension E/k we have the action of transfers on
motivic cohomology:

Tr : Hom(X |E,Z(a)[b])→ Hom(X,Z(a)[b]),

which is induced by the natural map Z → M(Spec(E)) (given by the generic
cycle on Spec(k) × Spec(E) = Spec(E)). The main property of the transfer is:
Tr ◦j = ·[E : k], where

j : Hom(X,Z(a)[b])→ Hom(X |E,Z(a)[b])

is the natural restriction.
Quadric P has a point E of degree 2, and over E, XP becomes Z (by Theorem

A.9), so we have that Hom(XP |E ,Z(a)[b]) = 0 for b− a > 0 (by Theorem A.2(1)).
Considering the composition Tr ◦j = ·[E : k] we get that Hom(XP ,Z(a)[b]) is

a 2-torsion group for b > a. In particular, the natural map Hom(XP ,Z(a)[b]) →
Hom(XP ,Z/2(a)[b]) is injective for b > a.

Since Hom(Z,Z/2(a)[b]) = 0 for any b > a (see Theorem A.2(1)), we also have

that for b > a, δ∗ : Hom(XP ,Z/2(a)[b]) → Hom(X̃P ,Z/2(a)[b]) is an isomorphism.

We have the action of motivic cohomological operations Q i on
Hom(XP ,Z(∗)[∗′]) and Hom(X̃P ,Z(∗)[∗′]) - see Theorems A.5 and A.6. The differ-

ential Qi acts without cohomology on Hom(X̃P ,Z/2(∗)[∗′]) for any i ≤ [log2(n+1)]
- see Theorem A.15.

Denote η := µ(mod2), i.e. the image of µ in the cohomology with Z/2 coeffi-
cients. From Sublemma 6.4 it follows that η 6= 0.

Denote r = [log2(n)].

Sublemma 6.5. Qi(η) = 0, for all i ≤ r.

Proof. Really, Qi(η) ∈ Hom(XP ,Z/2(n + 2i − 1)[2n + 2i+1]), and the later
group is an extension of 2-cotorsion in Hom(XP ,Z(n + 2i − 1)[2n + 2i+1]), and
2-torsion in Hom(XP ,Z(n+ 2i − 1)[2n+ 2i+1 + 1]).

But, by Sublemma 6.3, the multiplication by µ performs a surjections
Hom(XP ,Z(2i − 1)[2i+1 − 1])→ Hom(XP ,Z(n+ 2i − 1)[2n+ 2i+1]), and
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Hom(XP ,Z(2i−1)[2i+1])→ Hom(XP ,Z(n+2i−1)[2n+2i+1+1]). And the groups:
Hom(XP ,Z(2i − 1)[2i+1 − 1]), Hom(XP ,Z(2i − 1)[2i+1]) are zero.

Really, from the exact triangle N → XP → XP (n)[2n + 1] → N [1], we have
exact sequence: Hom(N,Z(2i − 1)[2i+1 − 1]) ← Hom(XP ,Z(2i − 1)[2i+1 − 1]) ←
Hom(XP (n)[2n + 1],Z(2i − 1)[2i+1 − 1]) The first group is zero since N is a di-
rect summand in the motive of a smooth projective variety, and (consequently)
Hom(N,Z(a)[b]) = 0 for b > 2a (see Theorem A.2(2)). The third group is zero,
since n > 2i − 1 (see Theorem A.1). So, the second is zero as well. Analogously, in
the case of Hom(XP ,Z(2i − 1)[2i+1]).

So, Qi(η) = 0.

Sublemma 6.6. Let 0 ≤ j ≤ r. Then Qj is injective on Hom(X̃P ,Z/2(c)[d]),
if d− c = n+ 1 + 2j.

Proof. Let ṽ ∈ Hom(X̃P ,Z/2(c)[d]), where d− c = n+ 1 + 2j. If Qj(ṽ) = 0,

then ṽ = Qj(w̃), for some w̃ ∈ Hom(X̃P ,Z/2(c − 2j + 1)[d − 2j+1 + 1]) (since

Qj acts without cohomology on Hom(X̃P ,Z/2(∗)[∗′]), by Theorem A.15). Since
(d− 2j+1 + 1)− (c− 2j + 1) = n+ 1 > 0, we have that δ∗ : Hom(XP ,Z/2(c− 2j +

1)[d− 2j+1 + 1])→ Hom(X̃P ,Z/2(c− 2j + 1)[d− 2j+1 + 1]) is an isomorphism, and
there exists w ∈ Hom(XP ,Z/2(c− 2j + 1)[d− 2j+1 + 1]), s.t. w̃ = δ∗(w).

By Sublemma 6.3, w = η ·u, for some u ∈ Hom(XP ,Z/2(c−2j+1−n)[d−2j+1−
2n]). By Theorem A.6(2), Qj(η · u) = Qj(η) · u+ η ·Qj(u) +

∑

{−1}xiφi(η) ·ψi(u),
where xi > 0, and φi, ψi are cohomological operations of some bidegree (∗)[∗ ′],
where ∗′ > 2∗ ≥ 0.

Notice, that c − 2j + 1 − n = d − 2j+1 − 2n =: s. But by Theorem A.17, we

have that Hom(Z,Z/2(a)[b])
pr∗

→ Hom(XP ,Z/2(a)[b]) is an isomorphism for a ≥ b.

So, u = pr∗(u0), where u0 ∈ Hom(Z,Z/2(s)[s]) = KM
s (k)/2. We have: Qj(u0) = 0

and ψi(u0) = 0 (since Hom(Z,Z/2(a)[b]) = 0, for b > a).
But pr∗ commutes with Qj and ψi. So, Qj(u) = 0 and ψi(u) = 0. That means:

Qj(w) = Qj(η · u) = Qj(η) · u = 0, by Sublemma 6.5.
We get: ṽ = Qj(w̃) = Qj ◦ δ

∗(w) = δ∗ ◦ Qj(w) = 0. I.e., Qj is injective on

Hom(X̃P ,Z/2(c)[d]).

Denote: η̃ := δ∗(η) ∈ Hom(X̃P ,Z/2(n)[2n+ 1]). Since η 6= 0, we have: η̃ 6= 0
(by Sublemma 6.4).

Sublemma 6.7. Let 0 ≤ m < r, and η̃ = Qm ◦ · · · ◦ Q1 ◦ Q0(η̃m), for some

η̃m ∈ Hom(X̃P ,Z/2(n−2m+1+m+2)[2n−2m+2+m+4]), Then there exists η̃m+1,
s.t. η̃m = Qm+1(η̃m+1).

Proof. Since Qm+1 acts without cohomology on Hom(X̃P ,Z/2(∗)[∗′]), it is
enough to show that Qm+1(η̃m) = 0.

Denote: ṽ := Qm+1(η̃m). We have: ṽ ∈ Hom(X̃P ,Z/2(n+m+ 1)[2n+m+3]).
SinceQi commutes withQj (by Theorem A.6(1)), we have: Qm◦Qm−1◦· · ·◦Q0(ṽ) =
Qm◦Qm−1◦· · ·◦Q0◦Qm+1(η̃m) = Qm+1◦Qm◦Qm−1◦· · ·◦Q0(η̃m) = Qm+1(η̃) = 0,
by Sublemma 6.5.

But, for any 0 ≤ t ≤ m, Qt−1 ◦ · · · ◦Q0(ṽ) ∈ Hom(X̃P ,Z(c)[d]), where d− c =

n+1+2t, and Qt is injective on Hom(X̃P ,Z(c)[d]), by Sublemma 6.6. So, from the
equality: Qm ◦Qm−1 ◦ · · · ◦Q0(ṽ) = 0, we get: ṽ = 0.
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From Sublemma 6.7 it follows that η̃ = Qr ◦ · · · ◦Q1 ◦Q0(η̃r). Denote: γ̃ := η̃r.

We have: γ̃ ∈ Hom(X̃P ,Z/2(n− 2r+1 + 2 + r)[2n− 2r+2 + 4 + r]).
But, (2n− 2r+2 + 4 + r)− (n− 2r+1 + 2 + r) = n− 2r+1 + 2, and r = [log2(n)],

so: 2r ≤ n < 2r+1. Since we know, that Hom(X̃P ,Z/2(a)[b]) = 0, for a ≥ b (by
Theorem A.17), and η̃ 6= 0, the only possible choice for n is n = 2r+1 − 1.

Theorem 6.1 is proven.

Lemma 6.8. Let 0 ≤ j ≤ r. Then Qj is injective on Hom(X̃P ,Z/2(c)[d]), if
d− c = 2j.

Proof. Let ṽ ∈ Hom(X̃P ,Z/2(c)[d]), where d − c = 2j . If Qj(ṽ) = 0, then

ṽ = Qj(w̃), for some w̃ ∈ Hom(X̃P ,Z/2(c − 2j + 1)[d − 2j+1 + 1]) (since Qj acts

without cohomology on Hom(X̃P ,Z/2(∗)[∗′]), by Theorem A.15). But (c−2j +1) =

(d−2j+1+1), and Hom(X̃P ,Z/2(c−2j +1)[d−2j+1+1]) = 0, by Theorem A.17.

Theorem 6.9. (compare with [8, Theorem 3.1]) Let k be a field of character-
istic 0, P be smooth n-dimensional anisotropic projective quadric over k, and N be
a direct summand in M(P ), s.t. N |k = Z⊕Z(n)[2n]. Then n = 2s−1−1, and there

exists α ∈ KM
s (k)/2, s.t. for any field extension E/k, the following conditions are

equivalent:
1) α|E = 0; 2) P |E is isotropic.

In particular, α ∈ Ker(KM
s (k)/2→ KM

s (k(P ))/2) 6= 0.

Proof. It follows from Theorem 6.1 that n = 2r+1 − 1, for some r, and there
exists γ̃ ∈ Hom(X̃P ,Z/2(r+1)[r+2]), s.t. η̃ = Qr ◦ · · · ◦Q1 ◦Q0(γ̃). By Sublemma

6.4, the map δ∗ : Hom(XP ,Z/2(r + 1)[r + 2]) → Hom(X̃P ,Z/2(r + 1)[r + 2]) is an
isomorphism, and γ̃ = δ∗(γ) for some γ ∈ Hom(XP ,Z/2(r + 1)[r + 2]). Let τ be
the only nontrivial element of Hom(Z/2,Z/2(1)) = Z/2. Denote as α the element
corresponding to τ ◦γ via identification (by Theorem A.17) Hom(XP ,Z/2(r+2)[r+

2]) = Hom(Z,Z/2(r + 2)[r + 2]) = KM
r+2(k)/2. Then, by Theorem A.18, for any

field extension E/k, α|E = 0 if and only if γ|E = 0. But γ|E = 0 ⇔ γ̃|E = 0. By
Lemma 6.8, γ̃|E = 0⇔ η̃|E = 0. By Sublemma 6.4, η̃|E = 0⇔ η|E = 0⇔ µ|E = 0.
Finally, µ|E = 0 ⇔ XP |E is a direct summand in N and, consequently, in M(P ),
which by Lemma 5.8, is equivalent to: P |E is isotropic.

Remark 6.10. 1) Theorem 6.9 basically says that under the mentioned

conditions, the quadric P is a norm-variety for α ∈ KM
s (k)/2.

2) Taking into account the Milnor’s conjecture ([28]) and the definition of the
Rost projector, we see that Theorem 6.9 implies Theorem 1.12.

3) It should be mentioned that in small-dimensional cases it is possible to prove
the result (in arbitrary characteristic 6= 2) without the use of Voevodsky’s
technique. For example, the case n = 7 was considered in [13].

7. Properties of forms with absolutely maximal splitting

In this section we work with fields satisfying the conditions charF = 0. We
begin with the following modification of Theorem 1.11.

Theorem 7.1. Let φ be an anisotropic quadratic form over a field F satisfying
the conditions charF = 0. Suppose that φ is an AMS-form. Then

(1) φ has maximal splitting,
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(2) the group Hs(F (φ)/F ) is nontrivial, where s is the integer such that 2s−1 <
dimφ ≤ 2s.

Proof. (1) Let ψ be subform of φ of codimension i1(q)−1. Let X be the pro-
jective quadric corresponding to ψ. By Theorem 5.1, X possesses a Rost projector.
Theorem 6.1 shows that dim(X) = 2s−1−1 for suitable s. Hence dimψ = 2s−1 +1.
By the definition of ψ, we have dimφ − i1(φ) = dimψ − 1 = 2s−1. Therefore
dimφ = 2s−1 +m, where m = i1(φ). To prove that φ has maximal splitting, it suf-
fices to verify that m ≤ 2n. It is obvious because 2s−1 +m = dim φ ≥ 2i1(φ) = 2m.

(2) Obvious in view of Theorem 6.9 and the isomorphism ks(F ) ' Hs(F ).

Theorem 7.1 and Conjecture 1.1 make natural the following

Conjecture 7.2. If an anisotropic quadratic form has absolutely maximal
splitting, then it is a Pfister neighbor.

In the proof of Theorem 1.8 we will need some deep results related to Milnor
conjecture.

Theorem 7.3. (see [28],[20]). Let F be a field of characteristic 0. Then for
any n ≥ 0

(1) there exists an isomorphism en : In(F )/In+1(F )
'
→ Hn(F ) such that

en(〈〈a1, . . . , an〉〉) = (a1, . . . , an).

(2) If φ is a Pfister neighbor of π ∈ GPn(F ). Then Hn(F (φ)/F ) is generated
by en(π).

(3) If dim τ > 2n, then Hn(F (τ)/F ) = 0.
(4) The ideal In(F ) coincides with the Knebusch’s ideal Jn(F ). In other words,

for any τ ∈ In(F )\In+1(F ), we have deg τ = n.

We need also the following easy consequence of a Hoffmann’s result:

Lemma 7.4. Let φ be an anisotropic form such that dimφ ≤ 2n. Let τ be an
anisotropic quadratic form and F0 = F, F1, . . . , Fh be the generic splitting tower of
τ . Let j be such that dim(τFj−1

)an > 2n. Suppose that φFj
has maximal splitting.

Then φ has maximal splitting.

Proof. Obvious in view of [4, Lemma 5].

Proposition 7.5. Let F be a field of characteristic 0. Let φ be a quadratic
form over F and n be such that 2n−1< dimφ≤ 2n. Suppose that Hn(F (φ)/F ) 6= 0.
Then Hn(F (φ)/F ) ' Z/2Z and φ has maximal splitting.

Proof. Let u be an arbitrary nonzero element of the group H n(F (φ)/F ).
Since the homomorphism en : In(F )/In+1(F ) → Hn(F ) is an isomorphism, there
exists anisotropic τ ∈ In(F ) such that τ /∈ In+1(F ) and en(τ ) = u ∈ Hn(F (φ)/F ).
Let F0 = F, F1, . . . , Fh be the generic splitting tower of τ . Let τi = (τFi

)an. Since
τ ∈ In(F )\In+1(F ), Item (4) of Theorem 7.3 shows that deg τ = n. Therefore,
τh−1 is a nonhyperbolic form from GPn(Fh−1). Since en(τ) ∈ Hn(F (φ)/F ), we
have en((τh−1)Fh−1(φ)) = 0. Hence, τh−1 is hyperbolic over the function field of
φFh−1

. Since τh−1 is anisotropic form from GPn(Fh−1), Cassels–Pfister subform
theorem shows that φFh−1

is a Pfister neighbor of τFh−1
. Hence φFh−1

has maximal
splitting. Lemma 7.4 shows that φ has maximal splitting.
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Since φFh−1
is a Pfister neighbor of τFh−1

, Item (2) of Theorem 7.3 shows that
|Hn(Fh−1(φ)/Fh−1)| ≤ 2. By Item (3) of Theorem 7.3, we have Hn(Fh−1/F ) =
0. Hence |Hn(Fh−1(φ)/F )| ≤ 2. Since Hn(F (φ)/F ) ⊂ Hn(Fh−1(φ)/F ), we get
|Hn(F (φ)/F )| ≤ 2. Now, since Hn(F (φ)/F ) 6= 0, we have Hn(F (φ)/F ) ' Z/2Z.

Corollary 7.6. Let n ≥ 5 and φ be an anisotropic form such that 2n − 7 ≤
dimφ ≤ 2n Then the following conditions are equivalent:

(a) φ has maximal splitting,
(b) φ is a Pfister neighbor,
(c) Hn(F (φ)/F ) ' Z/2Z.
(d) Hn(F (φ)/F ) 6= 0.

Proof. (a)⇒(b) follows from Theorem 1.7. (b)⇒(c) follows from Theorem
7.3; (c)⇒(d) is obvious; (d)⇒(a) is proved in Proposition 7.5.

Proof of Theorem 1.8. Let φ and n be as in Theorem 1.8. If φ has max-
imal splitting, then Lemma 4.1 shows that φ has absolutely maximal splitting.
Then Theorem 7.1 shows that Hn(F (φ)/F ) 6= 0. Conversely, if we suppose that
Hn(F (φ)/F ) 6= 0, then Proposition 7.5 shows that φ has maximal splitting.

Appendix A.

In this section we will list some results of V.Voevodsky, which we use in the
proof of Theorems 6.1 and 6.9.

We will assume everywhere that char(k) = 0.
First of all, we need some facts about triviality of motivic cohomology of

smooth simplicial schemes. If not specified otherwise, under Hom(−,−) we will
mean HomDMeff

−
(k)(−,−).

Theorem A.1. ([28, Corollary 2.2(1)]) Let X be smooth simplicial scheme over
k. Then Hom(M(X)(a)[b],Z(c)[d]) = 0, for any a > c.

In the case of smooth variety we have further restrictions on motivic cohomol-
ogy:

Theorem A.2. ([28, Corollary 2.3]) Let N be a direct summand in M(X),
where X is a smooth scheme over k. Then Hom(N,Z(a)[b]) = 0 in the following
cases:

1 If b− a > dim(X);
2 If b > 2a.

The same is true about cohomology with Z/2-coefficients.

In [28] the Stable homotopy category of schemes over Spec(k), SH(k) was
defined (see also [19]). SH(k) is a triangulated category, and there is functor

S : SmSimpl/k → SH(k), and triangulated functor G : SH(k) → DM eff
− (k),

s.t. the composition G ◦ S : SmSimpl/k → DM eff
− (k) coincides with the usual

motivic functor: X 7→M(X) (here SmSimpl/k is the category of smooth simplicial
schemes over Spec(k). In [28], Section 3.3, the Eilenberg-MacLane spectrum HZ/2

(as an object of SH(k)) is defined, together with it’s shifts HZ/2(a)[b], for a, b ∈ Z.
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Theorem A.3. ([28, Theorem 3.12]) If X is a smooth simplicial scheme, then
there exist canonical isomorphisms

HomSH(k)(S(X),HZ/2(a)[b]) = HomDMeff
−

(k)(M(X),Z/2(a)[b]).

Definition A.4. ([28, p.31]) The Motivic Steenrod algebra is the algebra of
endomorphisms of HZ/2 in SH(k), i.e.:

Ab,a(k,Z/2) = HomSH(k)(HZ/2,HZ/2(a)[b]).

The composition gives pairing:

HomSH(k)(U,HZ/2(c)[d]) ⊗A
b,a(k,Z/2)→ HomSH(k)(U,HZ/2(c+ a)[d+ b]),

which is natural on U .
Let now f : X → Y be morphism in SmSimpl/k. In SH(k) we have an exact

triangle: cone(S(f))[−1]
δ′
→ S(X)

S(f)
→ S(Y )→ cone(f).

Theorem A.3 imply:

Theorem A.5. We have an action of Motivic Steenrod algebra A∗,∗(k,Z/2) on
⊕a,b HomDMeff

−
(k)(M(X),Z/2(a)[b]), ⊕a,b HomDMeff

−
(k)(M(Y ),Z/2(a)[b]), and

⊕a,b Hom(cone(M(f))[−1],Z/2(a)[b]), which is compatible with M(f)∗ and δ∗.

We have some special elements Qi ∈ A
2i+1−1,2i−1(k,Z/2) - see [28, p.32], which

satisfy:

Theorem A.6. ([28, Theorems 3.17 and 3.14])

1) Q2
i = 0, and QiQj +QjQi = 0.

2) Let u, v ∈ HomDMeff

−
(k)(M(X),Z(∗)[∗′]), for smooth simplicial scheme X.

Then Qi(u ·v) = Qi(u) ·v+u ·Qi(v)+
∑

{−1}njφj(u) ·ψj(v), where nj > 0,
and φj , ψj ∈ A(k,Z/2) are some (homogeneous) elements of bidegree (b, a),
where b > 2a ≥ 0.

3) Qi = [β, qi], where β is Bockstein, and qi ∈ A(k,Z/2).

Following [28], we define:

Definition A.7. ([28, p.32]) Morgulis motivic cohomology H̃M b,a
i (U) are co-

homology groups of the complex: HomSH(k)(U,HZ/2(a − 2i + 1)[b− 2i+1 + 1])
Qi
→

HomSH(k)(U,HZ/2(a)[b])
Qi
→ HomSH(k)(U,HZ/2(a + 2i − 1)[b + 2i+1 − 1]), for any

U ∈ Ob(SH(k)).

If U is Cone[−1](S(f)), for some morphism f : X → Y of simplicial schemes,

then by Theorems A.3 and A.5, H̃M b,a
i (U) coincides with the cohomology of the

complex

Hb−2i+1+1,a−2i+1
M

(M(U),Z/2)
Qi
→ Hb,a

M
(M(U),Z/2)

Qi
→ Hb+2i+1

−1,a+2i
−1

M
(M(U),Z/2),

where Hd,c

M
(∗,Z/2) := Hom

DM
eff
−

(k)
(∗,Z/2(c)[d]), and M(U) = Cone[−1](M(f)).

Since H̃M b,a
i (Cone[−1](S(f))) depends only on M(f), we can denote it simply as

H̃M b,a
i (Cone[−1](M(f))).
Let P be some smooth projective variety over Spec(k).

Definition A.8. The standard simplicial scheme Č(P )·, corresponding to the
pair P → Spec(k) is the simplicial scheme, s.t. Č(P )n = P × · · · ×P (n+ 1-times),
with faces and degeneration maps given by partial projections and diagonals.
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In SmSimpl/k we have natural projection: pr : Č(P )· → Spec(k). Let us
denote XP := M(Č(P )·). We get the natural map M(pr) : XP → Z.

Theorem A.9. ([28, Lemma 3.8]) If P has a rational k-point, then M(pr) :
XP → Z is an isomorphism.

Remark A.10. Actually, M(pr) is an isomorphism if and only if P has a 0-
cycle of degree 1 (see [25, Theorem 2.3.4]).

Theorem A.9 shows that XP |k = Z, which means that XP is a form of Tate-
motive.

Theorem A.11. ([28, Theorem 4.4]) Let P be anisotropic projective quadrics
of dimension n. Let N be a direct summand in M(P ), s.t. N |k = Z ⊕ Z(n)[2n].

Then in DMeff
− (k) there exist distinguished triangle of the form:

XP (n)[2n]→ N → XP
µ′

→ XP (n)[2n+ 1].

Remark A.12. Actually, Theorem 4.4 of [28] is formulated only for the case of
Rost motive (as a direct summand in the motive of the small Pfister quadric). But
the proof does not use any specific of the Pfister case, and works with any “binary”
direct summand of dimension = dim(P ). At the same time, Theorem A.11 is a
very particular case of [25, Lemma 3.23].

Theorem A.13. ([28, Lemma 3.8]) The natural diagonal map ∆XP
: XP →

XP ⊗XP is an isomorphism.

Theorem A.14. ([28, Lemma 4.7])
M(pr)∗ : Hom(XP ,XP (a)[b])→ Hom(XP ,Z(a)[b]) is an isomorphism, for any a, b.

Let us denote: X̃P := Cone[−1](M(pr)). By above, it has sense to speak about

Morgulis cohomology H̃M b,a
i (X̃P ) of X̃P .

Suppose now P be a smooth projective quadric of dimension ≥ 2i − 1.
The following result of V.Voevodsky is the main tool in studying of motivic

cohomology of quadrics:

Theorem A.15. ([28, Theorem 3.25 and Lemma 4.11]) Let P be a smooth

projective quadric of dimension ≥ 2i − 1, then H̃M b,a
i (X̃P ) = 0, for any a, b.

Remark A.16. In [28, Lemma 4.11], the result is formulated only for the case
of (2i − 1)-dimensional Pfister quadric (corresponding to the form 〈〈a1, . . . , ai〉〉 ⊥
− 〈ai+1〉). But the proof does not use any specific of the Pfister case (the only thing
which is used is: for any j ≤ i, P has plane section of dimension 2j − 1, which is
again a quadric).

The following statement is a consequence of Beilinson-Lichtenbaum Conjecture
for Z/2-coefficients.

Theorem A.17. ([28, Proposition 2.7, Corollary 2.13(2) and Theorem 4.1])
The map M(pr)∗ : Hom(Z,Z/2(a)[b]) → Hom(XP ,Z/2(a)[b]) is an isomorphism
for any b ≤ a.

Motivic cohomology of XP can be used to compute the kernel on Milnor’s
K-theory (mod 2):
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Theorem A.18. ([27, Lemma 6.4], [28, Theorem 4.1] ; or [11, Theorem A.1])
Let τ ∈ HomDMeff

−
(k)(Z/2,Z/2(1)) = Z/2 be the only nontrivial element. Let P be

smooth projective quadric over k. Then the composition

Hom(XP ,Z/2(m− 1)[m])
τ◦
→Hom(XP ,Z/2(m)[m]) = Hom(Z,Z/2(m)[m])= KM

m (k)/2

identifies the first group with the ker(KM
m (k)/2→ KM

m (k(P ))/2).
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