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Abstract. A Leibniz n-algebra is a vector space equipped with an n-ary
operation which has the property of being a derivation for itself. This
property is crucial in Nambu mechanics. For n = 2 this is the notion of
Leibniz algebra. In this paper we prove that the free Leibniz (n+1)-algebra
can be described in terms of the n-magma, that is the set of n-ary planar
trees. Then it is shown that the n-tensor power functor, which makes a
Leibniz (n + 1)-algebra into a Leibniz algebra, sends a free object to a free
object. This result is used in the last section, together with former results of
Loday and Pirashvili, to construct a small complex which computes Quillen
cohomology with coefficients for any Leibniz n-algebra .
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1. Introduction

Leibniz algebras were introduced by the second author in [4]. They play an
important role in Hochschild homology theory [4], [5] as well as in Nambu
mechanics ([6], see also [1]). Let us recall that a Leibniz algebra is a vector
space g equipped with a bilinear map [−,−] : g ⊗ g → g satisfying the
identity :

(1.1) [x, [y, z]] = [[x, y], z] − [[x, z], y].

One easily sees that Lie algebras are exactly Leibniz algebras satisfying the
relation [x, x] = 0. Hence Leibniz algebras are a non-commutative version
of Lie algebras.

Recently there have been several works dealing with various generaliza-
tion of Lie structures by extending the binary bracket to an n-bracket (see
[1], [2], [9]).

In this paper we introduce the notion of a Leibniz n-algebra — a natural
generalization of both concepts. For n = 2 one recovers Leibniz algebras.
Any Leibniz algebra g is also a Leibniz n-algebra under the following n-
bracket:

[x1, x2, · · · , xn] := [x1, [x2, · · · , [xn−1, xn] · · ·]].
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Conversely, if L is a Leibniz (n + 1)-algebra, then on Dn(L) = L⊗n the
following bracket

[a1 ⊗ · · · ⊗ an, b1 ⊗ · · · ⊗ bn] :=
n∑

i=1

a1 ⊗ · · · ⊗ [ai, b1, · · · , bn]⊗ · · · ⊗ an

makes Dn(L) into a Leibniz algebra. This construction goes back to Gau-
theron [2] and plays an important role in [1].

The main result of this paper is to show that if L is a free Leibniz n-
algebra , then Dn−1(L) is a free Leibniz algebra too (on a different vector
space). This result plays an essential role in the cohomological investigation
of Leibniz n-algebras, which we consider in the last section.

We first introduce a notion of representation of a Leibniz n-algebra L.
This notion for n = 2 was already considered in [5]. One observes that if
M is a representation of a Leibniz n-algebra L, then Hom(L,M) can be
considered as a representation of the Leibniz algebra Dn−1(L). The work
of [2] and [1] suggests to define the cohomology of L with coefficients in
M to be HL∗(Dn−1(L),Hom(L,M)). We deduce from our main theorem
that this theory is exactly the Quillen cohomology for Leibniz n-algebras.

2. Derivations

In the whole paper K is a field. All tensor products are taken over K.
Let A be a vector space equipped with an n-linear operation ω : A⊗n → A.
A map f : A → A is called a derivation with respect to ω if

f(ω(a1, . . . , an)) =
n∑

i=1

ω(a1, . . . , f(ai), · · · , an).

In this case we also say that f is an ω-derivation. We let Derω(A) be the
set of all ω-derivations. The following is well-known.

Proposition 2.1 i) The subset Derω(A) of the Lie algebra of endomor-
phisms End(A) is a Lie subalgebra.

ii) If f ∈ Derω(A) and f ∈ Derσ(A), then f ∈ Derω+σ(A). Here σ :
A⊗n → A is also an n-linear operation.

Proposition 2.2 Let [−,−] : A⊗2 → A be a bilinear operation and let
ω : A⊗n → A be given by

ω(x1, · · · , xn) := [x1, [x2, · · · , [xn−1, xn] · · ·]].
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If f is a derivation with respect to [−,−], then f ∈ Derω(A).

Proof. One has

f(ω(x1, · · · , xn)) = f([x1, [x2, · · · , [xn−1, xn] · · ·]])

= [f(x1), [x2, · · · , [xn−1, xn] · · ·]]) + [x1, f([x2, · · · , [xn−1, xn] · · ·])] =

=
∑

i

[x1, · · · , [f(xi), · · · , xn]] =
∑

i

ω(x1, · · · , f(xi), · · · , xn).

The following is an immediate generalization of Proposition 2.2. Since
it has the same proof, we omit it here.

Proposition 2.3 Let ωi : A⊗ni → A be ni-ary operations for i = 1, . . . , k
and let ω : A⊗k → A be a k-ary operation. If f is a derivation with respect
to ω1, . . . , ωn, ω, then it is also a derivation with respect to the composite
σ : A⊗n → A. Here n = n1 + . . . + nk,

σ(a1, . . . , an) := ω(ω1(a1, . . . , an1
), . . . , ωk(as, . . . , an))

and s = n− nk + 1 = n1 + . . . + nk−1 + 1.

Proposition 2.4 Let ω : A⊗(n+1) → A be an (n + 1)-linear map and let
µi : g⊗ g→ g be the bilinear map given by

µi(a1 ⊗ . . .⊗ an, b1 ⊗ . . . ⊗ bn) = a1 ⊗ · · · ⊗ ω(ai, b1 ⊗ . . .⊗ bn)⊗ · · · ⊗ an.

Here g = A⊗n and 1 ≤ i ≤ n. Suppose that f : A → A is an ω-derivation
and ϕ : g→ g is given by

ϕ(a1 ⊗ . . .⊗ an) =
n∑

j=1

a1 ⊗ . . .⊗ f(aj)⊗ · · · ⊗ an.

Then ϕ is a derivation with respect to µi, for any 1 ≤ i ≤ n.

Proof. One has

ϕ(µi(a1⊗ . . .⊗an, b1⊗ . . .⊗bn)) = ϕ(a1⊗· · ·⊗ω(ai, b1⊗ . . .⊗bn)⊗· · ·⊗an).

Since f is an ω-derivation, we see that this expression is equal to

f(a1)⊗ · · · ⊗ ω(ai, b1 ⊗ . . . ⊗ bn)⊗ · · · ⊗ an + · · ·+

+a1 ⊗ · · · ⊗ ω(f(ai), b1 ⊗ . . .⊗ bn)⊗ · · · ⊗ an+
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+a1 ⊗ · · · ⊗ ω(ai, f(b1)⊗ . . .⊗ bn)⊗ · · · ⊗ an + · · ·+

+a1 ⊗ · · · ⊗ ω(ai, b1 ⊗ . . .⊗ f(bn))⊗ · · · ⊗ an + · · ·+

+a1 ⊗ · · · ⊗ ω(ai, b1 ⊗ . . .⊗ bn)⊗ · · · ⊗ f(an).

On the other hand the expression

µi(ϕ(a1 ⊗ . . . ⊗ an), b1 ⊗ . . .⊗ bn) + µi(a1 ⊗ . . .⊗ an, ϕ(b1 ⊗ . . .⊗ bn)),

is clearly equal to the previous expression thanks to the definition of µi and
ϕ. This proves that ϕ is a derivation with respect to µi.

3. Leibniz n-algebras

A Leibniz algebra of order n, or simply a Leibniz n-algebra, is a vec-
tor space L equipped with an n-linear operation [−, . . . ,−] : L⊗n → L
such that for all x1, . . . , xn−1 the map ad(x1, . . . , xn−1) : L → L given
by ad(x1, · · · , xn−1)(x) = [x, x1, . . . , xn−1] is a derivation with respect to
[−, . . . ,−]. This means that the following Leibniz n-identity holds:

(3.1) [[x1, x2, . . . , xn], y1, y2, . . . , yn−1] =

n∑

i=1

[x1, . . . , xi−1, [xi, y1, y2, . . . , yn−1], xi+1, · · · , xn].

We let nLb be the category of Leibniz n-algebras. Let us observe that for
n = 2 the identity (3.1) is equivalent to (1.1). So a Leibniz 2-algebra is
simply a Leibniz algebra in the sense of [4], and so Leibniz 2-algebras are
called just Leibniz algebras, and we use Lb instead of 2Lb.

Clearly a Lie algebra is a Leibniz algebra such that [x, x] = 0 holds.
Similarly for n ≥ 3 an n-Lie or an n-Nambu-Lie algebra is a Leibniz n-
algebra such that [x1, . . . , xi, xi+1, . . . , xn] = 0 as soon as xi = xi+1 for
1 ≤ i ≤ n− 1. Such algebras appear in the so called Nambu mechanics and
there exists several interesting papers about them (see [1], [2] and references
given there).

Another big class of Leibniz 3-algebras which were considered in the
literature are the so called Lie triple systems. Let us recall that a Lie
triple system [3] is a vector space equipped with a bracket [−,−,−] that
satisfies the same identity (3.1) and, instead of skew-symmetry, satisfies the
conditions

[x, y, z] + [y, z, x] + [z, x, y] = 0
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and
[x, y, y] = 0.

Proposition 3.2 Let g be a Leibniz algebra. Then g is also a Leibniz
(n + 1)-algebra with respect to the operation ω : g⊗(n+1) → g given by

ω(x0, x1, · · · , xn) := [x0, [x1, · · · [xn−1, xn]].

Proof. From the definition of Leibniz algebra we know that

ad(x) = [−, x] : g→ g

is a derivation with respect to 2-bracket. By Proposition 2.2 we know that
it is also a derivation with respect to ω. Since for all x1, x2, · · · , xn ∈ g one
has ad(x1, x2, · · · , xn) = [x1, · · · [xn−1, xn] · · ·] the Proposition follows. Here
ad(x1, x2, · · · , xn) = ω(−, x1, x2, · · · , xn) : g→ g.

Proposition 3.2 shows that there exists a “forgetful” functor

Un : Lb → nLb.

Here are more examples of Leibniz 3-algebras.

Examples 3.3 i) Let g be a Leibniz algebra with involution σ. This means
that σ is an automorphism of g and σ2 = id. Then

L := {x ∈ g | x + σ(x) = 0}

is a Leibniz 3-algebra with respect to the bracket

[x, y, z] := [x, [y, z]].

ii) Let V be a 4-dimensional vector space with basis i, j, k, l. Then we define
[x, y, z] := det(A), where A is the following matrix







i j k l
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4







One sees that this gives rise to a Leibniz 3-algebra. Moreover it is a Nambu-
Lie algebra. Here x = x1i + x2j + x3k + x4l and so on. One easily gen-
eralizes this example to obtain an n-Nambu-Lie algebra starting with an
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(n + 1)-dimensional vector space. This example was a starting point for
investigating n-Lie (or Nambu-Lie) algebras.

Let L be a Leibniz n-algebra. Thanks to Proposition 2.1 i) we know
that

Der(L) = {f : L → L | f is a derivation}

is a Lie algebra.

Proposition 3.4. Let L be a Leibniz (n + 1)-algebra. Then Dn(L) = L⊗n

is a Leibniz algebra with respect to the bracket

[a1 ⊗ · · · ⊗ an, b1 ⊗ · · · ⊗ bn] :=
n∑

i=1

a1 ⊗ · · · ⊗ [ai, b1, · · · , bn]⊗ · · · ⊗ an

Moreover

ad : L⊗n → Der(L), x1 ⊗ · · · ⊗ xn 7→ ad(x1, x2, · · · , xn)

is a homomorphism of Leibniz algebras.

Proof. Fix x1, · · · , xn ∈ L. We have to prove that

ϕ : Dn(L) → Dn(L)

given by

ϕ(a1 ⊗ . . .⊗ an) =
n∑

j=1

a1 ⊗ . . . ⊗ f(aj)⊗ · · · ⊗ an,

is a derivation with respect to [−,−]. Here f = [−, x1, · · · , xn] : L → L.
Thanks to Proposition 2.4 we know that ϕ is a derivation with respect of
all µi, 1 ≤ i ≤ n, where

µi(a1 ⊗ . . .⊗ an, b1 ⊗ . . . ⊗ bn) = a1 ⊗ · · · ⊗ ω(ai, b1 ⊗ . . .⊗ bn)⊗ · · · ⊗ an.

Then ϕ is also a derivation with respect to [−,−] =
∑n

i=1 µi thanks to
Proposition 2.1 ii) and the first part of the Proposition follows. Let us
show that ad is a homomorphism of Leibniz algebras. Indeed, one sees that

ad([a1 ⊗ · · · ⊗ an, b1 ⊗ · · · ⊗ bn])(a) =
n∑

i=1

[a, [a1, · · · , [ai, b1, · · · , bn], · · · , an]].
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On the other hand

[ad(a1 ⊗ · · · ⊗ an), ad(b1 ⊗ · · · ⊗ bn)](a) =

= ad(a1⊗· · ·⊗an)ad(b1⊗· · ·⊗bn)(a)−ad(b1⊗· · ·⊗bn)ad(a1⊗· · ·⊗an)(a)

= [[a, [b1, · · · , bn]], a1 ⊗ · · · ⊗ an]− [[a, a1 ⊗ · · · ⊗ an], b1, · · · , bn].

Therefore (3.1) shows that

ad([a1 ⊗ · · · ⊗ an, b1 ⊗ · · · ⊗ bn]) = [ad(a1 ⊗ · · · ⊗ an), ad(b1 ⊗ · · · ⊗ bn)].

Hence ad : DnL → Der(L) is a homomorphism of Leibniz algebras.

Remark 3.5 One can prove that if A is a Leibniz (kn + 1)-algebra, then
A⊗k is a Leibniz (n + 1)-algebra with respect to the following bracket

[x01 ⊗ x02 . . . ⊗ x0k, . . . , xn1 ⊗ xn2 . . .⊗ xnk] :=

[x01, x11, . . . , x1k, . . . , xn1, . . . , xnk]⊗ x02 ⊗ . . . ⊗ x0k+

· · ·+ x01 ⊗ . . .⊗ x0k−1 ⊗ [x0k, x11, . . . , xnk].

By Proposition 3.4 the map L 7→ Dn(L) from Leibniz (n + 1)-algebras
to Leibniz algebras is a functor that we denote by Dn. More generally, by
Remark 3.5, there exist functors Dn

kn : kn+1Lb → n+1Lb (so Dn = D1
n)

and we have D1
n ◦ D

n
kn = D1

kn.

4. The main theorem

The goal of this section is to prove that the functor Dn : n+1Lb → Lb

sends free objects to free objects. For more specific statements see Theorem
4.4 and Theorem 4.8 below. Since D1 is nothing but the identity functor,
we have to consider the case n ≥ 2. To avoid long formulas we will first
restrict ourself to the case n = 2 and, second, we indicate how to modify
the argument for n ≥ 3.

Let us recall (see [8]) that a magma M is a set together with a map
(binary operation)

M×M→M , (x, y) 7→ x ? y.

Let Y be the free magma with one generator e. We recall from [8] the
construction of Y . First one defines the sequence of sets (Ym)m≥1 as follows:

Y1 = {e}, Ym =
∐

p+q=m

Yp × Yq, (m ≥ 2; p, q ≥ 1).
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We let Y be the disjoint union

Y =
∐

m≥1

Ym.

One defines ? : Y × Y → Y by means of

Yp × Yq → Yp+q ⊆ Y.

Then Y is a magma, which is freely generated by e. Let Cm be the number
of elements of Ym+1. Clearly C0 = 1, C1 = 1 and

Cm+1 =
∑

i+j=m

CiCj .

Hence the function f(t) =
∑∞

m=0 Cmtm satisfies the functional equation

(4.1) f(t)− 1 = tf2(t).

Of course this equation is well known, as well as the fact that Cm is equal
to the Catalan number, that is

Cm =
(2m)!

m!(m + 1)!
.

So one has

C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42, C6 = 132, . . .

If ω ∈ Ym, then we say that ω is of length m and we write l(ω) = m. Clearly
if ω ∈ Y , then ω = e or ω = ω1?ω2, with unique (ω1, ω2) ∈ Y ×Y . Moreover
l(ω) = l(ω1) + l(ω2). Recall that the elements of Yn can be interpreted as
planar binary trees with n leaves. Under this interpretation the operation
? is simply the grafting operation (join the roots to a new vertex and add
a new root).

The following proposition is the analogue for Leibniz 3-algebras of Lemma
1.3 in [5] concerning Leibniz algebras.

Proposition 4.2 Let K[Y ] be the vector space spanned by Y . Then there
exists a unique structure of Leibniz 3-algebra on K[Y ] such that

[ω1, ω2, e] = ω1 ? ω2.
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Moreover K[Y ] with this structure is a free Leibniz 3-algebra generated by
e.

Proof. We use the method devised in [5] for the case of Leibniz algebras.
Let us observe that (3.1) for Leibniz 3-algebras is equivalent to

(4.2.1) [a, b, [c, x, y]] = [[a, b, c], x, y] − [[a, x, y], b, c] − [a, [b, x, y], c].

The 3-bracket [ω1, ω2, ω3] has been already defined for ω3 = e. If ω3 6= e,
then it is of the form ω ? ω′ for some elements ω and ω′. Hence

[ω1, ω2, ω3] = [ω1, ω2, ω ? ω′] = [ω1, ω2, [ω, ω′, e]],

and one can use (4.2.1) to rewrite it with 3-brackets whose last variable is
either ω or ω′. Since l(ω) and l(ω′) are less than l(ω3), we get, by recursivity,
the element [ω1, ω2, ω3] as a unique algebraic sum of elements in Y .

We now have to prove that, with this definition, the 3-bracket satisfies
the Leibniz 3-identity (4.2.1). Clearly it holds when y = e, since it is
precisely this formula which was used to compute the left part. So we can
work by induction with respect to l(y). If l(y) ≥ 2 then y = y1 ? y2 and
therefore

[a, b, [c, x, y]] = [a, b, [c, x, [y1, y2, e]]] =

[a, b, [[c, x, y1], y2, e]]− [a, b, [[c, y2, e], x, y1]]− [a, b, [c, [x, y2, e], y1]]

= [[a, b, [c, x, y1]], y2, e]− [[a, y2, e], b, [c, x, y1]]− [a, [b, y2, e], [c, x, y1]]−

[[a, b, [c, y2, e]], x, y1] + [[a, x, y1], b, [c, y2, e]] + [a, [b, x, y1], [c, y2, e]]−

[[[a, b, c], [x, y2, e], y1] + [[a, [x, y2, e], y1], b, c] − [a, [b, [x, y2, c], y1], c] =

[[a, b, c], x, y1], y2, e]− [[[a, x, y1], b, c], y2, e] − [[a, [b, x, y1], c], y2, e]

−[[[a, y2, e], b, c], x, y1] + [[[a, y2, e], x, y1], b, c] + [[a, y2, e], [b, x, y1], c]

−[[a, [b, y2, e], c], x, y1] + [[a, x, y1], [b, y2, e], c] + [a, [[b, y2, e], x, y1], c]

−[[[a, b, c], y2, e], x, y1] + [[[a, y2, e], b, c], x, y1] + [[a, [b, y2, e], c], x, y1]

+[[[a, x, y1], b, c], y2, e]− [[[a, x, y1], y2, e], b, c] − [[a, x, y1], [b, y2, e], c]

+[[a, [b, x, y1], c], y2, e]− [[a, y2, e], [b, x, y1], c] − [a, [[b, x, y1], y2, e], c]

−[[a, b, c], [x, y2, e], y1] + [[a, [x, y2, e], y1], b, c] + [a, [b, [x, y2, e], y1], c].
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One sees that 2nd and 13th, as well as 3rd and 16th, 4th and 11th, 6th and
17th, 7th and 12th, 8th and 15th terms cancel. Hence we have

[a, b, [c, x, y]] =

[[[a, b, c], x, y1], y2, e] + [[[a, y2, e], x, y1], b, c] + [a, [[b, y2, e], x, y1], c]

−[[[a, b, c], y2, e], x, y1]− [[[a, x, y1], y2, e], b, c] − [a, [[b, x, y1], y2, e], c]

−[[a, b, c], [x, y2, e], y1] + [[a, [x, y2, e], y1], b, c] + [a, [b, [x, y2, e], y1], c].

On the other hand we have

[[a, b, c], x, y] =

[[[a, b, c], x, y1], y2, e]− [[[a, b, c], y2, e], x, y1]− [[a, b, c], [x, y2, e], y1].

Similarly
−[[a, x, y], b, c] =

−[[[a, x, y1], y2, e], b, c] + [[[a, y2, e], x, y1], b, c] + [[a, [x, y2, e], y1], b, c]

and
−[a, [b, x, y], c] =

−[a, [[b, x, y1], y2, e], c] + [a, [[b, y2, e], x, y1], c] + [a, [b, [x, y2, e], y1], c].

One checks that after substitution in (3.1) all terms cancel and therefore
K[Y ] has a well defined structure of Leibniz 3-algebra. If L is any Leibniz
3-algebra and x ∈ L, then by induction one can check that there exists a
unique homomorphism

f : K[Y ] → L

such that f(e) = x and Proposition 4.2 is proved.

Now we can formulate the following

Theorem 4.3. The vector space spanned by the set Ȳ = Y − {e} has a
unique Leibniz algebra structure such that

[x ? y, z ? e] = (x ? z) ? y + x ? (y ? z).

It is a free Leibniz algebra over the set Y ′ = {x ? e | x ∈ Y } ⊂ Ȳ .
Moreover one has isomorphisms of Leibniz algebras

D2(K[Y ]) ∼= K[Ȳ ] ∼= T (K[Y ′]).
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Proof. 1st Step: Uniqueness. Assume that such a Leibniz algebra struc-
ture exists. Then ad(u) = [−, u] is uniquely determined when u = x ? e.
We will prove by induction on l(q) that ad(u) is uniquely determined when
u = x ? q. If l(q) > 1, then q = y ? z and by assumption

u = [x ? y, z ? e]− (x ? z) ? y.

Therefore
ad(u) = −ad((x ? z) ? y) + ad[x ? y, z ? e] =

= −ad((x ? z) ? y) + ad(z ? e) · ad(x ? y)− ad(x ? y) · ad(z ? e)

and by induction assumption ad(u) is uniquely determined.

2nd Step: Bijection. There is a linear isomorphism K[Y ]⊗K[Y ] ∼= K[Ȳ ],
which is given by

(x, y) 7→ x ? y, for x, y ∈ Y.

It yields indeed a bijection because

K[Y ]⊗K[Y ] ∼=
⊕

p,q≥1

K[Yp]⊗K[Yq] ∼=
⊕

p,q≥1

K[Yp × Yq]

∼=
⊕

m≥2

⊕

p+q=m

K[Yp × Yq] ∼=
⊕

m≥2

K[Ym] = K[Ȳ ].

3rd Step: Algebra isomorphism D2(K[Y ]) ∼= K[Ȳ ]. Let us consider
K[Ȳ ] as a Leibniz algebra induced by the linear isomorphism from Step 2.
Since x ? y and z ? e are the images of x ⊗ y and z ⊗ e ∈ K[Y ] ⊗ K[Y ]
under the isomorphism of Step 2, we have to show that, in this algebra, the
following identity

[x ? y, z ? e] = (x ? z) ? y + x ? (y ? z)

holds. By definition of the functor D2 one has

[x⊗ y, z ⊗ e] = [x, z, e] ⊗ y + x⊗ [y, z, e] = (x ? z)⊗ y + x⊗ (y ? z)

and this element goes to (x ? z) ? y + x ? (y ? z) under the isomorphism of
Step 2. This proves also the existence part of the Theorem.

4th Step: Y ′ generates K[Ȳ ]. Indeed let X be the subalgebra of K[Ȳ ]
generated by Y ′. We have to prove that Ȳ ⊂ X. Let x? y be an element in
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Ȳ . We will show by induction on l(y) that x ? y ∈ X. When l(y) = 1, then
x ? y = x ? e ∈ Y ′ ⊂ X. If l(y) > 1 then y = y1 ? z and by the assumption

x ? y = −(x ? z) ? y1 + [x ? y1, z ? e].

But, by the induction assumption, one has (x ? z) ? y1, x ? y1, z ? e ∈ X.
Therefore x ? y ∈ X as well.

5th Step: K[Ȳ ] as a graded Leibniz algebra. For x ∈ Ȳ we let d(x) to
be l(x) − 1. Then K[Ȳ ] can be considered as a graded vector space by
declaring that the degree of an element x ∈ Ȳ is d(x). We claim that under
this grading K[Ȳ ] is a graded Leibniz algebra, that is, if d(x) = k and
d(y) = m, then [x, y] is a linear combination of elements of degree k + m.
The claim is clear when y = x′ ? y′ and l(y′) = 1 and it can be proved by
the same induction arguments as in Step 1.

6th Step: Y ′ freely generates K[Ȳ ]. Let us recall from [5] that for
a vector space U the free Leibniz algebra generated by U is the unique
Leibniz algebra structure on

T̄ (U) =
⊕

m≥1

U⊗m

such that for any u ∈ U one has

[x, u] = x⊗ u, x ∈ T̄ (U).

Take U = K[Y ′]. Then we obtain the natural epimorphism

ϕ : T̄ (K[Y ′]) → K[Ȳ ].

We have to show that ϕ is injective. The vector space K[Y ′] is a graded
subspace of K[Ȳ ]. Therefore T̄ (K[Y ′]) is also graded and ϕ is a morphism
of graded Leibniz algebras. Since each component is of finite dimension, it
is enough to show that the degree p part of T̄ (K[Y ′]) and K[Ȳ ] have the
same dimension.

The dimension of the degree p part of K[Ȳ ] is equal to Cp (Catalan
number), while the dimension of the degree p part of T̄ (K[Y ′]) is equal to
the coefficient of tp in the expansion of

g(t) =
∞∑

m=1

(
∞∑

k=1

Ck−1t
k)m,

12



because the degree m part of K[Y ′] is of dimension Cm−1. Hence we have
to prove that g(t) = f(t)− 1. But

g(t) =
∞∑

m=1

(tf(t))m =
tf(t)

1− tf(t)

and it is equal to f(t)− 1, thanks to (4.1).

Let us now show the following parametrized version of Theorem 4.3.

Theorem 4.4. Let V be a vector space, and put

F (V ) :=
⊕

m≥1

K[Ym]⊗ V ⊗2m−1.

(i) There exists a unique Leibniz 3-algebra structure on F (V ) such that

[ω1 ⊗ x1, ω2 ⊗ x2, e⊗ x] = (ω1 ? ω2)⊗ x1 ⊗ x2 ⊗ x,

where ω1 ∈ K[Yp], x1 ∈ V ⊗(2p−1), ω2 ∈ K[Yq], x2 ∈ V ⊗(2q−1) and x ∈ V .
(ii) Equipped with this structure F (V ) is a free Leibniz 3-algebra gen-

erated by V .
(iii) The Leibniz algebra D2(F (V )) is isomorphic to the free Leibniz

algebra generated by the vector space

E =
⊕

m≥1

K[Ym]⊗ V ⊗2m.

Proof. The proof is similar to the proof of Theorem 4.2. At the end, in order
to show that the vector spaces F (V ) and T (E) have the same dimension
we use the following identity of formal power series:

(x+x3 +2x5 +5x7 +14x9 + · · ·)2 =
∞∑

m=1

(x2 +x4 +2x6 +5x8 +14x10 + · · ·)m,

which is an immediate consequence of the functional equation (4.1).

Let us now state the results for (n + 1)-Leibniz algebras. Since the
proofs follow the same pattern as in the case n + 1 = 2 + 1, we mention
only the main modifications. By definition an n-magma is a set M together
with a map (n-ary operation)

(−, · · · ,−) : M× · · · ×M
︸ ︷︷ ︸

n copies

→M .

13



Let Z be the free n-magma with one generator e. It can be described as
follows. The sequence of sets (Zm)m≥1 is given by:

Z1 = {e}, Zm =
∐

p1+···+pn=m

Zp1
× · · · × Zpn

, (m ≥ 2; pi ≥ 1).

Observe that Zm = ∅ unless m = (n− 1)k + 1 for some k ≥ 0. We let Z be
the disjoint union

Z =
∐

m≥1

Zm.

One defines (−, · · · ,−) : Z × · · · × Z → Z by means of

Z(n−1)k1+1 × · · · × Z(n−1)kn+1 → Z(n−1)(k1+···+kn+1)+1 ⊆ Z.

Then Z is a n-magma, which is freely generated by e. Let Dk be the number
of elements of Z(n−1)k+1. Clearly D0 = 1,D1 = 1 and

Dk+1 =
∑

k1+···+kn=k

Dk1
· · ·Dkn

.

Hence the function f(t) =
∑∞

k=0 Dkt
k satisfies the functional equation

(4.5) f(t)− 1 = tf(t)n.

If ω ∈ Z(n−1)k+1, then we say that ω is of length k and we write l(ω) = k.
Clearly if ω ∈ Z, then ω = e or ω = (ω1, · · · , ωn), for some unique elements
ω1, · · · , ωn in Z. Moreover l(ω) = l(ω1) + · · · + l(ωn) + 1. Recall that
the elements of Zm can be interpreted as n-ary planar trees, that is each
vertex has one root and n leaves. Under this interpretation the operation
(−, · · · ,−) is simply the grafting operation. Observe that the number of
vertices (resp. edges) of a tree in Z(n−1)k+1 is k (resp. kn + 1).

Proposition 4.6 Let K[Z] be the vector space spanned by Z. Then there
exists a unique structure of (n + 1)-Leibniz algebra on K[Z] such that

[ω1, · · · , ωn, e] = (ω1, · · · , ωn).

Moreover K[Z] with this structure is a free (n+1)-Leibniz algebra generated
by e.

Theorem 4.7. The vector space spanned by the set Z̄ = Z − {e} has a
unique Leibniz algebra structure such that

[(ω1, · · · , ωn), (ω′1, · · · , ω
′
n−1, e)] =

n∑

i=1

(ω1, · · · , (ωi, ω
′
1, · · · , ω

′
n−1), · · · , ωn).
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As a Leibniz algebra it is free over the Z ′ = {(ω1, · · · , ωn−1, e) | ωi ∈ Z}.
Moreover one has isomorphisms of Leibniz algebras:

Dn(K[Z]) ∼= K[Z̄] ∼= T (K[Z ′]).

Proof. Let us just mention the computation of the dimensions of the
vector spaces. Let Ek be the number of n-ary trees with k vertices which
are of the form (ω1, · · · , ωn−1, e). One has

Ek =
∑

k1+···+kn−1+1=k

Dk1
× · · · ×Dkn−1

.

Hence we get
∑

Ekt
k = t

∑
Dk1

tk1 · · ·Dkn−1
tkn−1 = tf(t)n−1. Therefore

the generating series for T (K[Z′]) is tf(t)n−1

1−tf(t)n−1 . By the functional equation

(4.6) this is equal to f(t)− 1, which is the generating series for K[Z̄].

Theorem 4.8. Let V be a vector space, and put

F (V ) :=
⊕

k≥0

K[Z(n−1)k+1]⊗ V ⊗nk+1.

(i) There exists a unique (n+1)-Leibniz algebra structure on F (V ) such
that

[ω1 ⊗ x1, · · · , ωn ⊗ xn, e⊗ x] = (ω1, · · · , ωn)⊗ x1 ⊗ · · · ⊗ xn ⊗ x,

where ωi ∈ K[Z(n−1)ki+1], xi ∈ V ⊗nki+1 and x ∈ V .
(ii) Equipped with this structure F (V ) is a free (n + 1)-Leibniz algebra

generated by V .
(iii) The Leibniz algebra Dn(F (V )) is isomorphic to the free Leibniz

algebra generated by the vector space

E =
⊕

k≥0

K[Z(n−1)k+1]⊗ V ⊗n(k+1).

Remark 4.9 By the same kind of argument one can show that the functor
Dk

kn :kn+1 Lb →k+1 Lb sends free objects to free objects.
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5. Cohomology of Leibniz n-algebras

An abelian extension of Leibniz n-algebras

(5.1) 0 → M → K → L → 0

is an exact sequence of Leibniz n-algebras such that [a1, · · · , an] = 0 as
soon as ai ∈ M and aj ∈ M for some 1 ≤ i 6= j ≤ n. Here a1, · · · , an ∈ K.
Clearly then M is an abelian Leibniz n-algebra, that is the bracket vanishes
on M . Let us observe that the converse is true only for n = 2.

If (5.1) is an abelian extension of Leibniz n-algebras, then M is equipped
with n actions

[−, · · · ,−] : L⊗i ⊗M ⊗ L⊗n−1−i → M, 0 ≤ i ≤ n− 1

satisfying (2n − 1) equations, which are obtained from (3.1) by letting
exactly one of the variables x1, · · · , xn, y1, · · · yn−1 be in M and all the
others in L.

By definition a representation of the Leibniz n-algebra L is a vector
space M equipped with n actions of [−, · · · ,−] : L⊗i⊗M ⊗L⊗n−1−i → M
satisfying these (2n − 1) axioms. For example L is a representation of L.
The notion of representation of a Leibniz n-algebra for n = 2 coincides with
the corresponding notion given in [5]. Let L be a Leibniz n-algebra and let
M be a representation of L. Let

(K) 0 → M → K → L → 0

be an abelian extension, such that the induced structure of representation
of L on M induced by the extension is the prescribed one. If this condition
holds, then we say that we have an abelian extension of L by M . Two
such extensions (K) and (K′) are isomorphic when there exists a Leibniz
n-algebra map from K to K′ which is compatible with the identity on M
and on L. One denotes by Ext(L,M) the set of isomorphism classes of
extensions of L by M .

Let f : L⊗n → M be a linear map. We define an n-bracket on K =
M ⊕ L by

[(m1, x1), (m2, x2) · · · , (mn, xn)] :=
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(
n∑

i=1

[x1, · · · ,mi, · · · , xn] + f(x1, · · · , xn), [x1, · · · , xn]).

Then K is a Leibniz n-algebra if and only if

(5.2) f([x1, · · · , xn], y1, · · · , yn−1]) + [f(x1, · · · , xn), y1, · · · , yn−1] =

n∑

i=1

(f(x1, · · · , [xi, y1 · · · , yn−1], · · · , xn]+[x1, · · · , f(xi, y1 · · · , yn−1), · · · , xn])

for all x1, · · · , xn, y1, · · · , yn−1 ∈ L. If this condition holds, then we obtain
an extension

0 → M → K → L → 0

of Leibniz n-algebras. Moreover this extension is split in the category of
Leibniz n-algebras if and only if there exists a linear map g : L → M such
that

(5.3) f(x1, · · · , xn) =
n∑

i=1

[x1, · · · , g(xi), · · · , xn]− g([x1, · · · , xn]).

An easy consequence of these facts is the following natural bijection :

(5.4) Ext(L,M) ∼= Z(L,M)/B(L,M).

Here Z(L,M) is the set of all linear maps f : L⊗n → M satisfying (5.2)
and B(L,M) is the set of such f which satisfy (5.3) for some k-linear map
g : L → M .

Let L be a Leibniz n-algebra and let M be a representation of L. A
map f : L → M is called a derivation if

f([a1, · · · , an]) =
n∑

i=1

[a1, · · · , f(ai), · · · , an].

We let Der(L,M) be the vector space of all derivations from L to M .
The next goal is to construct a cochain complex for Leibniz n-algebras

so that the derivations and the elements of Z are cocycles in this complex.
It turns out that this problem reduces to the case n = 2, that is for Leibniz
algebras, which was the subject of the paper [5]. Let us recall the main
construction of [5]. Let g be a Leibniz algebra and let M be a representation
of g. We let CL∗(g,M) be a cochain complex given by

CLm(g,M) := Hom(g⊗m,M), m ≥ 0,
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where the coboundary operator dm : CLm(g,M) → CLm+1(g,M) is de-
fined by

(dmf)(x1, · · · , xm+1) := [x1, f(x2, · · · , xm+1)]

+
m+1∑

i=2

(−1)i[f(x1, · · · , x̂i, · · · , xm+1), xi]

+
∑

1≤i<j≤m

(−1)j+1f(x1, · · · , xi−1, [xi, xj ], xi+1, · · · , x̂j, · · · , xm).

According to [5] cohomology of the Leibniz algebra g with coefficients in the
representation M is defined by

HL∗(g,M) := H∗(CL∗(g,M), d).

In order to generalize this notion to Leibniz n-algebras for n ≥ 3 we need
the following Proposition. Let us recall that if L is an (n + 1)-Leibniz
algebra, then the Leibniz algebra Dn(L) was defined in Section 3. Let L be
an (n+1)-Leibniz algebra and let M be a representation of L. One defines
the maps

[−,−] : Hom(L,M)⊗Dn(L) → Hom(L,M)

[−,−] : Dn(L)⊗Hom(L,M) → Hom(L,M)

by
[f, x1 ⊗ · · · ⊗ xn](x) := [f(x), x1, · · · , xn]− f([x, x1, · · · , xn]),

[x1⊗· · ·⊗xn, f ](x) := f([x, x1, · · · , xn])−[f(x), x1, · · · , xn]−· · ·−[x, x1, · · · , f(xn)].

The proof of the next result is a straightforward (but somehow tedious)
calculation.

Proposition 5.5 Let L be an (n + 1)-Leibniz algebra and let M be a rep-
resentation of L. Then the above homomorphisms define a structure of
representation of Dn(L) on Hom(L,M).

Let L be a Leibniz n-algebra and let M be a representation of L. One
defines the cochain complex nCL∗(L,M) to be CL∗(Dn−1(L),Hom(L,M)).
We also put

nHL∗(L,M) := H∗(nCL∗(L,M))
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Thus, by definition one has nHL∗(L,M) ∼= HL∗(Dn−1(L),Hom(L,M)).
Let us observe that for n = 2, one has 2CLm(L,M) ∼= CLm+1(L,M) for
all m ≥ 0. Thus

2HLm(L,M) ∼= HLm+1(L,M), m ≥ 1

and 2HL0(L,M) ∼= Der(L,M). Comparison of the definitions shows that

nHL0(L,M) ∼= Der(L,M)

holds for any Leibniz n-algebras L. Similarly one has

Ker (d : nCL1(L,M) → nCL2(L,M)) ∼= Z(L,M)

and therefore

(5.6) Ext(L,M) ∼= nHL1(L,M).

Proposition 5.7. Let L be a free n-Leibniz algebra and let M be a repre-
sentation of L. Then

nHLm(L,M) = 0, m ≥ 1.

Proof. The main result of Section 4 shows that Dn−1(L) is a free Leibniz
algebra. Thanks to Corollary 3.5 of [5] we have HLi(Dn−1(L),−) = 0 for
i ≥ 2 and thus nHLm(L,−) = 0, m ≥ 1.

Let us recall that in [7] Quillen developped the cohomology theory in a
very general framework. This theory can be applied to Leibniz n-algebras.
It has the following description. Let L be a Leibniz n-algebra and let M
be a representation of L. Then Quillen cohomology of L with coefficients
in M is defined by

H∗
Quillen(L,M) := H∗(Der(P∗,M)).

Here P∗ → L is an augmented simplicial n-Leibniz algebra, such that P∗ →
L is a weak equivalence and each component of P∗ is a free Leibniz n-
algebra.

Corollary 5.8. Let L be a Leibniz n-algebra and let M be a representation
of L. Then

H∗
Quillen(L,M) ∼= nHL∗(L,M).
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Proof. Since P∗ → L is a weak equivalence, we obtain from the Künneth

theorem that nCLm(P∗,M) → nCLm(L,M) is also a weak equivalence.
This fact, together with Proposition 5.7, shows that both spectral sequences
for the bicomplex nCL∗(P∗,M) degenerate and give the expected isomor-
phism.
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