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Capitolo 1

Introduzione



Questa tesi raccoglie 1 risultati del lavoro svolto durante i tre anni del dottorato di ricerca in
Elettronica presso il Politecnico di Torino. Parte di questo lavoro e stato portato avanti presso
I’Ecole Nationale Supérieure des Télécommunications (E.N.S.T.) di Parigi, Francia e presso
I"Istituto per le Telecomunicazioni del centro di riceche aerospaziali DLR di Oberpfaffenhofen,
Monaco, Germania.

[’argomento trattato si inquadra nell’ambito della teoria delle comunicazioni digitali con
rilavanza sia per la codifica di canale che per quella di sorgente. In entrambii casi il problema
e quello di progettare una costellazione di segnali tale da ottimizzare una opportuna quantita
che identifica la qualita del sistema. Nel primo caso si vuole minimizzare la probabilita di
errore di trasmissione mentre nel secondo si vuole minimizzare 1’errore quadratico medio di
quantizzazione.

Un risultato fondamentale nella teoria dell'informazione, dovuto a Shannon, stabilisce
che le prestazioni ottimali di queste costellazioni migliorano al crescere della dimensionalita
dello spazio. Purtroppo, questo risultato non e costruttivo nel senso che non fornisce alcun
metodo sistematico per ottenere tali costellazioni ottimali. Infatti la dimostrazione del teo-
rema di Shannon sulla codifica di canale e basata sulla tecnica del random coding che ora
illustreremo. Non avendo a disposizione alcuna tecnica per costruire buoni codici, Shan-
non considero uno spazio di codici probabilistico e stimo la probabilita di errore media per
questa famiglia di codici. Tale probabilita puo essere resa piccola a piacere aumentando la
lunghezza dei codici pur di trasmettere ad un tasso (rate) inferiore alla capacita del canale.
Il teorema di Shannon asserisce quindi che esiste almeno un codice all'interno della famiglia
che raggiunge la probabilita di errore media calcolata. I.a dimostrazione, essendo basata su
un ragionamento di media di un insieme di codici, non offre alcun modo per determinare il
codice ottimo che fornisce la probabilita suddetta.

I.a ricerca di costellazioni che abbiano comunque buone prestazioni nei termini sopra
citati, risulta inevitabilmente vincolata dalla complessita del metodo di codifica o decodifica
(co/decodifica) utilizzato in pratica. Tale complessita, in genere, cresce in modo esponenziale
con la dimensione e con il numero totale di segnali della costellazione, tuttavia quando essa
presenta una struttura molto regolare la co/decodifica puo essere notevolmente semplificata.
Ad esempio, la struttura ricca di simmetrie, di alcuni reticoli facilita molto tali operazioni.

[.a ricerca di buone costellazioni di segnali per la trasmissione, condotta dapprima con la
teoria dei codici di correzione d’errore, si e successivamente sviluppata nella teoria delle mo-
dulazioni codificate nell’ambito della quale si collocano le costellazioni a reticolo, argomento
di questa tesi.

['interesse per le costellazioni a reticolo per la trasmissione sul canale gaussiano risale ai
primi anni Ottanta, anche se la teoria dei reticoli fa parte di alcune branche ormai classiche
della matematica quali la geometria dei numeri e la teoria algebrica dei numeri.

In questa tesi si sono esplorati alcuni settori di queste discipline con I'intento di trovare
nuove tecniche per 'analisi, il progetto e la co/decodifica di costellazioni a reticolo per la
trasmissione su canale gaussiano e su canale con fading. In particolare si sono trovate alcune
nuove tecniche computazionali che permettono di co/decodificare e calcolare le prestazioni
di costellazioni a reticolo qualsiasi.



l.a tesi e cosi ripartita. Nel capitolo 2 sono forniti i concetti fondamentali sui reticoli.
Partendo dalla definizione di reticolo si illustrano poi i vari problemi fondamentali della teoria
dei reticoli quali il problema dell'impacchettamento delle sfere, il problema del ricoprimento
dello spazio con sfere, il problema della quantizzazione ed infine il problema della codifica
di canale per la trasmissione sul canale gaussiano. In questo capitolo sono infine raccolti i
parametri fondamentali di alcuni tra i reticoli pin noti.

Nel capitolo 3 viene presentato un algoritmo di decodifica valido per reticoli generici. Dato
un punto arbitrario nello spazio I’algoritmo determina il punto del reticolo a minima distanza
euclidea. Questo algoritmo risulta utile per la decodifica a massima verosimiglianza nella
trasmissione sul canale gaussiano. Con alcune modifiche si e ottenuto un analogo algoritmo
valido nella trasmissione sul canale con fading. Questi algoritmi sono stati ampiamente
usati per valutare le prestazioni dei nuovi reticoli presentati nel capitolo 5, per i quali non si
conosce uno specifico algoritmo di decodifica.

Nel capitolo 4 viene proposto un algoritmo che permette di valutare in modo esatto tutti
i parametri fondamentali di un reticolo, costruendo passo a passo la sua regione di Voronoi.
Esso e basato sulle tecniche della geometria combinatoria computazionale e partendo da un
parallelotopo contenente la regione di Voronoi, lo intaglia come un diamante fino ad otte-
nere la regione stessa. Come esempio di applicazione di questo algoritmo, si sono calcolati,
in modo esatto, 1 valori di alcune costanti di quantizzazione di reticoli che, pur essendo ri-
levanti, non presentano particolari simmetrie. La conoscenza della regione di Voronoi del
reticolo permette inoltre di valutare in modo piuttosto preciso la probabilita di errore nella
trasmissione sul canale gaussiano.

Il capitolo 5 e frutto del lavoro svolto in collaborazione con Joseph Boutros e Jean-Claude
Belfiore del Département de Communications del E.N.S.T., Parigi. Questo capitolo costitui-
sce la parte di progetto di costellazioni con buone prestazioni sia sul canale con fading sia
sul canale gaussiano. Le costellazioni sono state ottenute utilizzando la costruzione algebrica
di reticoli a partire da campi di numeri algebrici. Questi reticoli possiedono una diversita
intrinseca che li rende efficaci su canali con fading. Utilizzati su un canale gaussiano tuttavia
non offrono buone prestazioni a causa della loro bassa densita di impacchettamento. Per ot-
tenere buone prestazioni contemporaneamente sui due tipi di canale si sono seguite due vie
differenti, entrambe basate sulla costruzione algebrica. Nel primo caso si sono considerati i
reticoli ottenuti per costruzione algebrica a partire da campi di numeri algebrici complessi
per i quali la diversita e ridotta, ma la densita di impacchettamento e pin elevata. Nel
secondo caso si e considerata la costruzione algebrica, dei migliori reticoli noti per il cana-
le gaussiano (Dy, Ke, Fs, K12, A6, Aaa), a partire da particolari campi ciclotomici. T reticoli
cos1 ottenuti pur mantenendo la loro elevata densita, presentano anche una buona diversita.
I'interesse applicativo di queste costellazioni puo nascere dalla necessita di trasmettere o
ricevere I'informazione contemporaneamente su un canale terrestre, ad esempio radiomobile,
tipicamente affetto da fading e su un canale via satellite, in prima approssimazione model-
lizzabile come un canale gaussiano.



Concludiamo questa breve introduzione con alcune considerazioni e con i possibili svilup-
pi futuri di questo lavoro. 11 grande interesse per le tecniche di modulazione ad alta efficienza
spettrale e dettato attualmente dalla necessita di trasmissioni digitali a velocita sempre piu
elevate su canali radio aventi una risorsa di banda sempre piu limitata. lLe modulazioni
multidimensionali a reticolo, considerate in questa tesi, possono essere efficacemente utiliz-
zate in questo scenario. La solida base teorica sui reticoli ha fornito tecniche di progetto,
di decodifica e di valutazione delle prestazioni per alcune particolari costellazioni a reticolo
adatte alla trasmissione su canale gaussiano. Il contributo di questa tesi e stato duplice: da
una parte si sono considerati i problemi di decodifica e di analisi di costellazioni a reticolo
generiche per il canale gaussiano, dall’altra quelli relativi alle costellazioni a reticolo per il
canale con fading. Tra i possibili sviluppi futuri di questo lavoro elechiamo i seguenti:

e sviluppo hardware di un decodificatore universale per reticolo;

e valutazione delle prestazioni di costellazioni a reticolo su canale con fading utilizzando
la regione di Voronoi;

e ricerca di nuove costellazioni per canali con fading con tecniche algebriche;

e sviluppo di algoritmi sub-ottimi di decodifica per le costellazioni trovate nel capitolo 5.



Chapter 2

Lattices

This chapter collects all the basic definitions and results about lattices which will be used
throughout the thesis. Most of the material in this chapter follows the enciclopedic work on
lattices by J. H. Conway and N. J. A. Sloane: Sphere packings, lattices and groups [1].



Figure 2.1: An example of a lattice in the plane.

2.1 Preliminary definitions

The following standard notation will be used. Z is the set of rational integers. R? is the
d-dimensional Fuclidean space. v = (v1,...v4) is a vector (or a point) of R? and v; are the
real components with respect to the canonical basis e; = (1,0,...0) --- e, = (0,...0,1). If
A € R then Av denotes a vector with components Av;. ||v| is the Euclidean norm of the
vector and (v, w) the scalar product between the two vectors. The superscript T' associated
with vectors and matrices denotes transposition.

Definition 1 Let vy, vq,...,v,, be m linearly independent vectors of R? (m < d). A lattice
of R? is the set A of vectors

)\1V1+)\2V2+...+)\Tnvm‘ )\1’7)\m€Z

The set of vectors {vy,vq,...,V,,} is called a lattice basis and m the dimension or rank

of A. If m =d, we talk of a full-rank lattice (Fig. 2.1).

It is simple to prove that the vectors of a lattice form an additive group i.e., the sum
of two lattice vectors is still a lattice vector, if w € A then —w € A and the null vector 0
belongs to A. As matter of fact it is possible to define a lattice as discrete sub-group of R?
of rank m. Conversly, it is possible to prove that all discrete sub-groups of R? of finite rank
are lattices [41].

The lattice generated by the canonical basis of R?, consisting of all the vectors having
integer components, is called the integer lattice Z°.

Definition 2 A sublattice of A is a subset of A preserving the lattice structure.



Definition 3 et v; = (vi1,v50,. .., via), ¢ = 1,...,m be the lattice basis vectors. We define
the generator matrix of A as

Vi Y1 o Uig

Vo VUmi o Umd

With the above definitions can simply write
A={u=xM:xeZ"}. (2.1)

Written in this form, we can view any lattice A as a transformed version of the infeger
lattice Z7" by means of the linear transformation defined by M. We can imagine that a
full-rank lattice A is obtained by skewing the coordinate axes of the space containing Z™.
An alternative definition of the generator matrix arranges the basis vectors by columns. In
this case we write A = {u” = Mx" : x € Z™} and all the following definitions need to be
slightly modifyed. Throughout this thesis we will adopt Definition 3.

If M generates A, then any matrix of the form M’ =T M, where T is an m x m integer
orthogonal matrix (det(7) = +1), is another generator matrix of the same lattice A: in fact
T maps isomorphically Z™ into itself. T is also called an integer unimodular matriz. 1f T is
an integer but not unimodular matrix then M’ defines a generator matrix of a sublattice of
A.

Among all the generator matrices of a lattice we are sometimes interested in those rep-
resenting a so called reduced basis of the lattice. A reduced basis is a lattice basis with the
shortest possible vectors. We give here a more precise definition of this concept.

Definition 4 A basis {vq,...,v,,} of a lattice A in R? is reduced (in the sense of Minkow-

o vi € {x € A:|x| is minimal }
o vy €{x € AN:{vy,...,v;,x} can be extended to a basis and ||x|| is minimal }
forao=1,...,m—1.

Reduced bases are not unique. In Figure 2.2, {w;,wy} is a non reduced basis of A with
|lwq] = 2 and ||wyf| = \/ﬁ, while {vy, vy} with ||vq] = V2 and |va| = V2 is reduced.
According to the definition also {vy, —v,} is a reduced basis. Note also that {vq,wy} is not
a lattice basis but identifies a sublattice of A.

Definition 5 We say that Ay and Ay are equivalent lattices if they differ only by a coor-
dinate rotation or a scaling factor.
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Figure 2.2: An example of reduced basis

The relation between the two generator matrices My and M, of the two equivalent lattices
is

M] = CTMQB (22)

where B is a rotation matrix (a real orthogonal matrix with determinant +1), ¢ the scaling
factor and T the integer unimodular matrix which accounts for the possibly different bases
of the same lattice. We talk of scaled lattices, if B is the identity matrix and ¢ # 1, and we
say that cA is a scaled version of A. If ¢ = +1 we have two congruent lattices. Finally, if
¢ = +1 and T is the identity matrix we have a rotated lattice.

Definition 6 Given a vector z € R and a lattice A in R*. We define the translated
lattice as the set of points

z+A={w=xM+z:xeZ"}.

We observe that whenever z € A, z 4+ A is congruent to A, and we say that the translation
defined by the vector z is a translation symmetry of the lattice.

Definition 7 The fundamental parallelotope of A is the set of points
{0M, 8 =(6,,---.6,,) e R".0< 6, <1} .

The fundamental parallelotope of a lattice is not unique since it depends on the choice of
the lattice basis. In the case of full-rank lattices the volume of the fundamental parallelotope
is equal to |det(M)|, a number independent of the lattice basis called the determinant of A.
We equivalently indicate it with d(A) or with vol(A). For non full-rank lattices the volume
of the fundamental parallelotope is not well defined since it has zero measure in R%. We can
still define the determinant of the lattice by using the following definition.



Definition 8 The Gram matrix of A is defined as

a1 0 iy
A=MMT =

Ami ot Omm

The elements of the Gram matrix are the Euclidean scalar products of pairs of vectors
of the lattice basis, that is, a;; = (v,,v;) = Y viev;e. A is a real symmetric positive
definite matrix. Geometrically, the diagonal elements of A equal the squared norms of the
basis vectors, while the other elements account for the intervector angles. The Gram matrix
characterizes the lattice independently of the space R? in which it is located. Furthermore,
the Gram matrix is the same for rotated lattices but generally different for congruent lattices.

For m = d, we observe that det(A) = d(A)?>. We can use this to define the determinant
of A when m < d, as

d(A) = det(A)/?

For scaled versions of A we have d(¢A) = ¢™d(A).
Definition 9 Given a lattice A of R? we define its dual lattice as
A={xeR’:(x,u)€Z VYueA}.

If Aisthe Gram matrix of A then A7" is the Gram matrix of A*. In the case of a full-rank

lattice the generator matrix of A*is (M 7).

Definition 10 A lattice is said to be integral if the inner product of any two lattice vectors

is an integer, or in other words if the Gram matriz has integer entries. Fquivalently a lattice
is integral if and only if N C AN*. If A = A* we talk of a self-dual lattice.

In many cases of interest a lattice, when suitably scaled, becomes an integral lattice.

An alternative approach to lattice theory studies the quadratic forms associated with the
Gram matrix A of the lattice. The quadratic form

Q(x) = xAx! = Z Z ajrir; x=(11,...7,) €R"” (2.3)
i=1 7=1

is positive definite, with discriminant 6(Q)) =det(A). If we are only interested in the met-
ric properties of a lattice, we can equivalently work on the basis vectors or on the form ()

restricted to Z™. For example, the minimum squared FKuclidean distance between any two
points of A equals the minimum of Q(x) for x € Z™\{0}.

We have seen that the Gram matrix can be uniquely determined from the generator matrix.
The converse is not possible: given the Gram matrix A we find an infinite number of different
generator matrices which correspond to the rotated versions of the same lattice.



Given the Gram matrix A = (a;;) there exists an efficient algorithm which calculates a
lower triangular generator matrix

111 O
lor a9
[, =
lm.1 lm? ]mm
such that
A=1-1". (2.4)

The algorithm solves iteratively the m(m + 1)/2 equations, obtained from (2.4), in the
m(m + 1)/2 unknowns /;; as follows:

1.
y=an = Iy =/an

2.

lialyn = axg - lyy, = (112/111

151 + 132 = a3 lag = \/GQQ - 151 = \/(122 - (1?2/(111
3.
hilsr = a3 37 = (113/111
lorlsr + laglss = ags = lsg = (0’23*121131)/122

/ 2 2
@33 laa = azz — I3 — 13,

Ly + L5 + I3

The general equations are given by
i1 1/2
li; = (077 - ],Qk)
k=1
]

i—1
]77— ] <077Z]7k]7k) ]:7—|—],7—|—2,7Tl .
o k=1

This procedure is called Cholesky decomposition or Cholesky factorization.

Definition 11 Given a discrete set of points ¥ in R? the Voronoi region of a point's; € X
is the convexr set

V(s)={x e R":|lx —si| <|x ;| forall i#j}.

10



In the following we consider sets of points which form lattices. The Voronoi regions of all
the lattice points are congruent due to the translation symmetry of the lattice (see Definition
6). Hence, we can talk of the Voronoi cell (or region). This important property has heen
defined by Forney in [2] as the geometric uniformity a lattice.

Other names from various fields for the Voronoi cell are Dirichlet cell, Brillouin zone,
Wigner-Seitz cell, Wirkungsbereich (domain of action), Wabenzelle (honeycomb), nearest
neighbor region, decision region.

Definition 12 We define the Voronoi cell V(A) of a lattice A as the Voronoi region around
the origin
VA)={xeR*: x| <|x —ul| for all non zerou € A} .

In order to simplify the notation we will omit the specification of the lattice when referring
to its Voronoi cell. Ifu # 0 € A, then |[x|| = ||x — u]| defines a hyperplane half-way between
0 and u of equation (x,u) = ||u|?/2, and a half-space ||x|| < ||x — u||. V is an intersection
of half-spaces, so it could be a polytope (we must still check if it is bounded). The points p
of the lattice for which the hyperplane between 0 and p contains a facet of V are called the
Voronoi-relevant points and the hyperplanes, Voronoi-relevant hyperplanes. It p is Voronoi-
relevant also —p is Voronoi-relevant, so V is symmetric about the origin. We say that V is
an 0-symmetric conver body. Since V cannot contain lattice points # 0, we are under the
hypothesis of Minkowski’s fundamental theorem [9, p. 14], which implies that V is bounded.
Thus we can conclude that V is an 0-symmetric polytope i.e., a bounded region defined by
the intersection of a finite number of closed half-spaces (see Chapter 4 for further details).

Referring to [19] and [20] we also say that V is a parallelohedron, i.e., a prototile of a
lattice tiling. Like the fundamental parallelotope, the Voronoi cell is a prototile of a lattice
tiling (a covering of the entire space hy non-overlapping closed sets) and has volume vol(A).

Definition 13 The theta series of a lattice A is defined as

Or(z) = 3 gIXI = Z N, q"
m=0

XEA
where g = €771 = /—1.

The theta series is a formal power series in the indeterminate ¢, where the coefficients N,,
are the number of points of the lattice at squared Euclidean distance m from the origin.
For integral lattices m is an integer. The theta series can also be viewed as an holomorphic
function of the complex variable z in the right complex half-plane. It is interesting to note
that the theta series is uniquely determined by its lattice but the converse is not true in
general (see Chapter 4, Lattices [ss,, [s5).

The theta series of the dual lattice A* can be obtained from the theta series of A

03(=) = dm (1) on ()

z z

11



Figure 2.3: The optimal 2-dimensional lattice sphere packing

This formula can be considered as the generalization to lattices of the MacWilliams identities
for linear block codes.
For a scaled version of A we have O, (z) = Oa(c?2).
We conclude this section with a useful formula for the volume of a d-dimensional sphere
S, of radius r
24/,

For spheres of unit radius this volume is denoted by V; for each dimension d.

vol(S,) =

2.2 The sphere packing problem

A very old problem in mathematics asks to stack a large number of identical 3-dimensional
spheres in a very large box in the most efficient way, i.e., by maximizing the number of spheres
which can fit inside the box. Such arrangements of spheres are called sphere packings. The
spheres will not fill all the space in the box and whatever arrangement is chosen at least
about 25% of the space remains empty. We call packing density A the percentage of space
occupied by the spheres.

The above problem can be generalized to higher or lower dimensions but the optimal or
densest sphere packing is only known in dimensions 1 and 2 (Fig. 2.3). In all other dimensions
we only have some good candidates.

Among all possible packings of spheres we distinguish the lattice sphere packings which
are obtained by centering at each point of a full-rank lattice A, identical spheres with the
maximum radius such that they do non penetrate into each other. This particular radius
p is called packing radius of A. 1f we call d,,;, the minimum norm of any non zero lattice
point we obviously have p = d,,;,/2. We observe that the sphere of radius p is the largest
sphere inscribed in the Voronoi cell of the lattice. If we restrict the problem to lattice sphere

12



Figure 2.4: The optimal 2-dimensional lattice covering

packings we know the optimal lattice sphere packing up to dimension 8. The packing density
of a lattice packing is easily obtained remembering that the Voronoi cell forms a tiling of the
entire space

Volume of one sphere Vyp?
A = = <1. 2.6
Volume of the Voronoi cell  vol(A) (2:6)
We also define the center density
A p°
b=—= . 2.7
Vi vol(A) (2.7)

which gives the number of centers per unit volume and enables one to compare lattices in
different dimensions. The density and the center density are independent of the scaling
factor of the lattice, whereas the packing radius of ¢A is ¢ times the packing radius of A.

The number of spheres touching (kissing) one sphere in a sphere packing is called kissing
number. For an arbitrary packing the kissing number varies from one sphere to another but
for lattice packings it is the same for all the spheres. We ohserve that the kissing number 7
gives the number of points of the lattice at the minimum distance d,,;, from the origin, so
we can write

(“)/\(Z):]—I—quz"1"—|—---:]—|-7-q4p2_|_... .

The optimal lattice packings are known up to dimension 8 and are given by the lattices

7., As, As, D4, Ds, Fe, Er, Fs.

2.3 The covering problem

The covering problem asks for the most economical way to cover the entire space with
equal overlapping spheres (Fig. 2.4). Here, we will only dicuss lattice coverings for which the
centers of the spheres form a lattice. Given a full-rank lattice in R? we call covering radius
R of A the smallest radius for which the spheres still cover the entire space. R is also the

13



Figure 2.5: The one-dimensional quantizer

distance of the furthest point of R? from any lattice point. For a lattice covering we define
the thickness © of the covering as the average number of spheres that contain a point of the

space
o - Volume of one sphe.re _ VyR? 51 (2.8)
Volume of the Voronoi cell  vol(A)
We also define a normalized thickness as
C) R?
l—— — , 2.9
Vi vol(A) (2.9)

We observe that R is the radius of the smallest sphere containing the Voronoi cell and the
vertices of the Voronoi cell on such a sphere are called the deep holes of the lattice. The
thickness and the normalized thickness are independent of the scaling factor of the lattice,
whereas the covering radius of ¢A is ¢ times the covering radius of A.

The optimal lattice coverings are known up to dimension 5 and are given by the lattices

Za AQa Aéa AZ? A:

2.4 The quantization problem

Quantization consists of representing a continuous space, with the least possible error, by
using only a discrete set of points. The number of points used fixes both the quality and the
complexity of the quantizer. We illustrate these concepts by means of a simple example.

In the case of a one-dimensional space the quantization process is known as analog-to-
digital conversion. The real line can be represented using a discrete set of equally spaced
points as shown in Figure 2.5. If we assume that the samples of an input signal are uniformly
distributed over R, a measure of the distorsion is given by the average mean square error
between the input signal and the quantized point. In order to minimize this distorsion, given
a sample z € R, we ‘quantize’ it by the closest point of the quantizer. This encoding process
is equivalent to selecting the quantizer point according to the Voronoi region in which x lays.
In this case it is clear that the quality of the quantizer only depends on the number of points
per unit length, thus as a measure of quality it is convenient to normalize the average mean
square error by the size of the Voronoi region. This quantity is called the one-dimensional
normalized second moment and for the uniform quantizer in Figure 2.5 is given by

y x%dx

1
Gy = — — =0.083333... .
Y fyde 12

14



Any other quantizer with non equally spaced points results in a higher normalized second
moment, so we say that Z is the best one-dimensional quantizer.

A fundamental result in information theory states that it is possible to improve the
performance by using vector quantization, i.e., grouping a certain number d of samples of
the input signal and then applying the quantization process with a suitable set of points in
a d-dimensional space. Unfortunately this result is non-constructive. The encoding process
is performed with the minimum distance criterium, i.e., by selecting the closest quantizer
point. The vector quantization problem asks to find the optimal discrete set of points which
minimizes the distorsion for a given dimension, assuming a uniform distribution of the input
signal. In this thesis we deal with lattice quantizers only and the distorsion measure is given

by

1y llx|Pdx

This is called dimensionless second moment or quantizing constant of the lattice A.

(2.10)

For each dimension d, it is lower bounded by the quantizing constant of a d-dimensional
sphere with the same volume of V and radius r

F(%Jﬂ)m

G(A) = (d+2)x

The optimal lattice quantizer for R? is the hexagonal lattice Ay and for for R? is the
body-centered cubic lattice A3 (see Sec. 2.6). In higher dimension it is conjectured in [1]
that the optimal lattice quantizers are the dual lattices of the densest lattice sphere packings.
This problem will be further discussed in Chapter 4.

2.5 The channel coding problem

The central problem of coding theory is the following.

A source of information emits a sequence of messages (either continuous signals or discrete
sets of symbols from a finite alphabet). These messages need to be transmitted over a channel
impaired by noise in such a way that the probability of correct detection at the receiver side
is maximized.

It is well known that band-limited signals can be mapped into a multidimensional Eu-
clidean space using Shannon’s sampling theorem. While for discrete sets of signals it is
always possible to extract a convenient basis, which defines a multidimensional space where
each signal is represented by a point or vector x. In both cases the Euclidean norm of x
corresponds to the energy of the trasmitted signal.

We assume that the channel impairments are only due to additive white Gaussian noise
(AWGN). The channel bandwidth is larger than the bandwidth of the transmitted messages
so that no other type of distorsion appears. AWGN can also be represented as a random
vector in the Euclicean space n = (nq,...ny) whose components are independent, Gaussian



distributed, random variables with zero mean and variance o2. The received vector can be
written as

y=xX+n. (2.11)

Let S be a set of code points {s1,...sy} and let V(sz) be the Voronoi region of s;. If s,
is transmitted the decoder makes a correct decision if and only if the received vector y lays
inside V(sg). The probability of such event is

1 _Ix)?
—/ e 202 dx . (2.12)
(oV/27)% JV(s)

Assuming that all code points are equally likely to be used, the error probability for this
code is

1M 1 2
P(e):]——Z—/ e aer dx | (2.13)
M [ (ov/27)? Jvisi)

If all the Voronoi cells are congruent, as for lattices, we write

1 x|?
Ple)=1— ——— / e dx (2.14)
(ov2m) Jv

For practical applications we will only use a finite number M of points of the lattice
within a bounded region containing the origin. This signal constellation is called a lattice
code or lattice constellation. The error probability in (2.14) is exact only for an infinite lattice.
When we consider a finite lattice constellation the assumption that the Voronoi regions are
all congruent is no longer valid. In fact the points laying on the edge of the constellation
have unbounded Voronoi regions while the inner points have the lattice Voronoi regions.
Since the unbounded regions contain the Voronoi cell of the lattice, equation (2.14) gives an
upper bound to the error probability of a lattice code. The larger the number of points M
of the lattice code the tighter is the bound even for low SNR's, since the edge effects become
negligible.

The general channel coding problem for the Gaussian channel asks for the code S which
minimizes P(e) in (2.13) under the signal energy constraint

HskH2 < C? = const.

The lattice version of the Gaussian channel coding problem is to find, for a given value
of o, the d-dimensional lattice of determinant 1 for which (2.14) is minimized. For a lattice
with determinant d(A) we can define a signal-to-noise ratio as

[d(A)*"

a

so that the error probability as a function of SNR remains independent of the lattice scaling
factor.

16



The difficulty of the lattice coding problem lays mainly in the complexity of evaluation of
the error probability (2.14). To overcome this difficulty we resort to various approximations
which possibly cover the range of SNR of interest.

An upper bound to the error probahility P(e) of a finite constellation carved from a lattice
and used for transmission over the additive white Gaussian noise channel can be derived as
follows. We assume that all the points are transmitted with equal probability and the lattice
constellation is sufficiently large to neglect edge effects. Due to the geometric uniformity of
the lattice [21] it is enough to consider the probability of decoding a point different from 0,
when 0 is transmitted. Let x be the received vector when 0 is transmitted. The components
of x, are Gaussian distributed random variables, with zero mean and variance o

Now let p; be the Voronoi-relevant points around 0. Using the union bound with all the
Voronoi-relevant hyperplanes only, we obtain the upper bound [1, p. 70], [23]

P(e)

IA

P (Utxpd > Io1e/2))
< X Pxp) > Ipdl2) = 5 gerte (212) (2.16)

7

where

erfc(z) = —= /OC e dt . (2.17)

In general this bound is very complex to evaluate, since it is difficult to find all the Voronoi
relevant points. This problem will be considered in detail in Chapter 4.
Bound (2.16) may be compared with another upper bound given by

Ple)< Pxg ) —1-1 (42 r (¢ (2.18)
©) <Pl 5) = 2 25 2 |
where S, is a d-dimensional sphere of radius p, the packing radius of the lattice, and
r(a,ﬂi): /mtﬂ*1€7tdt
Jo

is the incomplete gamma function.
A well-known lower bound [22], is given by

P(e)> P(x ¢ S,,)=1—P (g %) /T (g) (2.19)

where S, is a d-dimensional sphere with volume equal to vol(V) and radius
rog = (7)01(V)/Vd)1/d .

In Chapter 4 we present some comparison curves of these bounds.
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L A [4(A)(dB) |

Ay 0.62
Dy 1.50
Fg 3.01
A6 4.51
Aga 6.02

Table 2.1: Asymptotic coding gains of some important lattices.

For large SNR'’s simple estimate of the error probability is given by

Ple) ~ % erfe (J—”Q) (2.20)

where 7 is the kissing number, p the packing radius. This approximation is obtained from
(2.16) by considering only the 7 largest terms of the sum.

If we assume that for each code vector ||s;fH2 < (?, we can define the signal-to-noise
ratio, for sufficiently large values of M, as

C2/d

SNR dB — ]Ologm .

(2.21)

For a lattice code we can write

P(e) =~ % erfc (v A . SNR’) (2.22)

and with this approximation we reduce the lattice coding problem to the lattice sphere
packing problem with the additional requirement of minimizing the kissing number. For
o — 0 the term 7 can be omitted and the the lattice coding problem coincides with the
lattice sphere packing problem.

As a reference lattice we take Z? and we define the fundamental or asymptotic coding
gain of a lattice over Z? as ,

dmiw d/2
N)= —F=E==4"V¢ 2.23
7(A) dm \/_ ( )
This measure is useful to assess the performance of a lattice code for high signal-to-noise
ratios.

Shannon’s fundamental result restated in terms of lattice codes establishes that by in-
creasing the dimension d it is possible to find a lattice code which attains any arbitrarily
small error probability for a given signal-to-noise ratio. This result is non-costructive, i.e., it
gives no method to find such a lattice. Table 2.1 shows the asymptotic coding gains of dif-
ferent lattices which are the best known lattices for the Gaussian channel in each dimension.
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The gains clearly increase with the dimension but the delay and the decoding complexity
also increase.
Another range of interest for the noise variance is for large o’s (low SNR), when we can

use the approximation

e 202 ] —
202

in equation (2.14). With this approximation the lattice coding problem is reduced to the

(2.24)

lattice quantization problem. For low SNR'’s the quantizing constant becomes the relevant
factor.

The solution to lattice coding problem is only known in one and two dimensions where
the lattices Z and A, are optimal for all values of o. In general the solution depends on o
but for applications we are interested in the performance for small o’s (large SNR).

2.6 Examples of important lattices

In the following subsections we define some of the most important examples of lattices
either giving the generator matrix or the Gram matrix. All the lattice parameters are
summarized in Tables 2.2 and 2.3. For those parameters depending on the scaling factor we
refer to the specific generator or Gram matrix given in the following subsections.

2.6.1 Integer lattices Z"
Formally we can write
7" = {(x1,...2,) 1 2; € L} . (2.25)

Both the generator and the Gram matrices are the identity matrix. We note also that the
quantizing constant is independent of n and equals to that the one-dimensional quantizer:

1

G(z") = .

2.6.2 Lattices A,

See [1, p. 108]. This lattice has a simple definition in the (n 4+ 1)-dimensional space as

A'ﬁ = {('7:07'7317 cee .’13,,7) € ZW-H : ZT7 = 0} . (226)
2=0
Tts Gram matrix is
( 2 —1 0 0 0
—1 2 —1 0 0
0 —1 2 0 0
A= . . - (2.27)
0 0 0 2 —1
0 0 0 —1 2




| A d(A) T p R
z" 1 2n 1/2 p/n
Ar(n>2) | Vat1 | nm+1) | 1/V2|  p(Rdi=e) )”2
Ar(n>2) | (n+ 1) D21 42 | /n/2 p(z22)'"?
Dy (n>3) 2 2n(n —1) | 1/V2 pV2 (n = 3)
p/n/2 (n > 1)
Dy (n>5) 2n! 2n 1 \/n/2 (n even)
(2n — 1)"2/2 (n odd)
Fy 1 240 1/V/2 1
Fr 16 126 1 V3
k3 /32 56 3/8 V178
Fe V3 72 1/V2 4/3
K 1/V3 54 | 1/V3 2/3
K1 27 756 1 /373
A 16 4320 1 V3
A 1 196560 1 V2

Table 2.2: Determinant, kissing number, packing radius and covering radius of some impor-

tant lattices.
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A [ s ] ; G

VA 9—n nn/ngn ]/]2
—n — [a(n+1—a ]"/2
Ap(n>2) | 2772(n 4 1)1/2 (1)) i (32 + )
* nn/? n(n+2 n/2 Jng1
AL (n > 2) 27 (ng1) (=172 vn +1 (1‘2(77.+1]) (1) 1—1/m
D, (n>3) 9 (n+2)/2 1/2 (n = 3) e (11_2 + 2(1_+1))
n’n/227(n+1] (,n > 4)
D; (n>5) 2= (=) n"/? (n even) S = 0.0756254 (n = 5)
(2n — 1)"/?/227 " (n odd) | S22 _ 0751203 (n = 6)
Fs 1/16 1 229 = 0.0716821
Fr 1/16 37/ 974 soearr = 0.0732306
F: 37/2 . 9710 77/2 . 9710 n361.307 _ ) 0731165
Fe 1/8V3 26.3°7/2 e = 0.0743467
* _r i _ g.: 1/6
e 37/ 2%. 3772 120193 — (0.0742437
K1s 1/27 218379 0.070100 + 0.000024
A 1/16 38 27 0.068299 + 0.000027
A 1 212 0.065771 + 0.000074

Table 2.3: Center density, normalized thickness and quantizing constant of some important
lattices
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Aq is self-dual and is known as the hexagonal lattice. Az is called face-centered cubic lattice
and corresponds for example to the crystal structure of common salt (NaCl). In Table 2.3
we have posed a equal to the integer part of (n 4+ 1)/2.

2.6.3 Lattices A

See [1, p. 115]. The Gram matrix is

n —1 —1 -1 -1
—1 n —1 -1 -1
-1 -1 n -1 -1
A= ] . ] ) (2.28)
-1 -1 —1 n —
\ -1 -1 -1 - —1 n

A} is called body-centered cubic lattice and corresponds for example to the crystal structure
of iron. The values of .J,, of Table 2.3 are given by

1 5 19 389 1045 78077
S =0, —, —., —, , , form=0,1,...7
12718 327375 648 " 33614

and the general recursive equation can he found in [1, p. 473].

2.6.4 Lattices D,
See [1, pp. 117-120]. Forn > 3

D, =A{(x1,...2,) € Z": Zfzy even} . (2.29)
=0

These lattices are the generalization of the checkerboard lattice Dy shown in Fig. 2.2. The
generator matrix is given by

1 -1 0 -~ 0 0
1 -1 0 0 0
0 1 —1 0 0

M = , , , (2.30)
0 0 1 -1 0
0 0 0 - 1 —1

Dy is self-dual and is equivalent to Z?, in fact it can he obtained from the integer grid by a
rotation of 7 /4 and scaling factor ¢ = V2. The lattices D3 and As are both equivalent to
the face-centered cubic lattice. Dy is also self-dual and is known as the Schlafli lattice.
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2.6.5 Lattices D}

The generator matrix is

2 0 0 00
02 0 00
00 2 00
[ . , (2.31)
000 2 0
111 - 11

The lattices D; and A% are both equivalent to the body-centered cubic (bee) lattice. The
general expression for (7 is derived in [1, p. 463-472].

2.6.6 The Gosset lattice g
See [1, p. 120]. This self-dual lattice is defined as

Fs ={(z1,...2,): all z; € Z or all x; € Z—I—]/Q,ZT/?;EO mod 2} . (2.32)

=0

The generator matrix is

( 2 0 0 0 0 0 0 0
11 0 0 0 0 0 0
o -1 1 0 0 0 0 0
o 0 -1 1 0 0 0 0

M = o 0 0 -1 1 0 0 0 (2.33)
o 0 0 0 -1 1 0 0
o 0 0 0 0 -1 1 0

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

2.6.7 Lattices E; and E;

See [1, pp. 124-125]. The generator matrix of F; and the Gram matrix of K2 are respectively

2000000 2 -1 0 0 0 0 0

0200000 1 2 -1 0 0 0 0

0020000 0 -1 2 -1 0 0 0
Mg, =1 0002000 Aps=| 0 0 =1 2 —1 0 0] (234

1110100 0O 0 0 -1 2 -1 0

01 11010 0O 0 0 0 -1 2 0

0011101 0O 1 0 0 0 0 3/2

The quantizing constant of K2 was first computed in a closed form in [27].
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2.6.8 Lattices Eg and E;

See [1, pp. 125-127]. The Gram matrices are

2 -1 0 0 0 0 2 -1 0 0 0
1 2 -1 0 0 0 12 -1 0 -1

0 -1 2 —1 0 —1 0 -1 2 —1 0

Al = 0 0 -1 2 —1 0 ARy = 0 0 -1 2 0
0 0 0 —1 2 0 0 -1 0 0 4/3

0 0 -1 0 0 2 0 0 —1 0 1

The quantizing constant of K} was first computed in a closed form in [26].

2.6.9 The Coxeter-Todd lattice K5

See [1, p. 127]. The generator matrix is

2 0 0o 0 0 0 0 0 0 0 0

0 2 0o 0 0 0 0 0 0 0 0

0 0 2.0 0 0 0 0 0 0 0

1T —=1/2 —1/2 1 0 0 0 V3/2 V32 0 0

—1/2 1T —1/2 0 1 0 32 0 V3/2 0 0

—1/2 —1/2 1T 0 0 1 32 3)2 0 0 0
M =

1 0 0 0 0 0 3 0 0 0 0

0 1 0o 0 0 0 0 V3 0 0 0

0 0 1 0 0 0 0 0 V3 0 0

/2 1/2 1/2 172 0 0 —/3/2 V3/2 V32 —/3)/2 0

/2 1/2 1/2 0 1/2 0 V32 —/3/2 /32 0 —V3/2

K /2 1/2 1/2 0 0 1/2 32 3/2 —/3)2 0 0

The value of (G has been found by Montecarlo integration [1, pp. 61].
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2.6.10 The Barnes-Wall lattice A

See [1, p. 129]. The generator matrix is

(2.37)

4 000 0O0O0C0COO0OO0OCOGCOUO0OO0OQ0

22 00 0O0O0O0O0O0O0O0O0CO0O00O0
20 2 000O0O0O0O0O0O0O0CO0O0°0O0
200 2 00O0O0O0O0O0O0O0CO0O00O0
20002 00O0O0O0O0O0O0CO0O0°0O0
200002 00000O00O0O0CO0O00O0
200000 2000000000
200 0000200000000

20 000O0O0O02C000O00000

2000 0O0O0O0O0200O0000O00

2 0000O0O0O0O0O02¢00000

10 00

0 0

1

0 0 0

The value of (¢ has been found by Montecarlo integration [1, pp. 61].

The Leech lattice Ay,

2.6.11

See [1, p. 131]. The generator matrix is

(2.38)

§ 0o o o000 0o 00000000006 O0O0O0OGGCO0OO0TDO0

4 4 0000O0O0CO0O0O0O0OO0DO0DO0O0OO0DO0O0CO0OO0OQOGGCO0OO0O00Q0

404 00O0O0O0CO0OO0O0OO0O0DO0O0O0OO0OO0OCO0CO0OO0OQOGGCO0OO0O00Q0

4 00400O0O0CO0O0O0O0OO0O0DO0O0O0OO0O0OO0CO0CO0OO0OQGGCGO0O0O00Q0

4000 40O0O0O0O0O0O0O0DO0O0O0OO0OCO0DOCO0OO0OQOGGCO0OO0OO00Q0

4 000O0400O0O0O0O0O0O0O0OO0CO0OGCO0OO0OQOG0GCO0OO0OO00Q0

4 000O0O040O00O0O0O0O0O0OO0CO0O0CO0OO0OOG0CO0TO0O00Q0

2222 2 222 0000000000 00000°0

4 000O0O0O0O0O0C40O0O0O0O0OO0OCO0CO0OCO0OO0OCOOG0CO0OTO0OTO00Q0

4 000O0O0O0O0CO04O0O0O0O0OO0ODO0CO0CO0OO0OQOG0GCO0OTO0OO00Q0

4 000O0O0O0O0CO0O0O0O04O0O0O0OO0O0O0CO0OO0OO0CO0OTO0OTO00Q0

2222 0000222 2000000000000

4 000O0O0O0O0O0C0O0O0OO0OO0O40O0O0O0CO0OO0OQOGGCO0OTO0OTO0O0QO0

22002 2002200220000 00000°0
20 2020202020202 ¢00000000°0
20022002 20022002400000000°0

4 000O0O0OO0O0C0O0O0OO0OO0OO0OOSOOO0S4TO0O0O0CO0OO0OTQO00Q0

20202002 2 2000000220000 0°0
2002 2 2002020000020 220000°0
22002 02020020000220024000°0
60222 200020002000 22000220°0°0

6o ooo0ooo0o0o0=22¢0022002220027220°0

6o ooo0oo0oo0o0o0=2=02¢02¢020220220220220




The value of (¢ has been found by Montecarlo integration [1, pp. 61].

2.7 Costruction A

This is one of the simplest methods of constructing a lattice using a ¢g-ary linear block code.
The properties of such a lattice can be related to the code parameters, which yields a powerful
tool for designing lattice codes.

Definition 14 Given a g-ary linear block code C with lenght n, dimension k and minimum
Hamming distance d, we construct a lattice in the following way: x is a lattice point if the
n-tuple (z1,...2,) is congruent modulo q to a codeword of C. We write

A=qZ" +C . (2.39)

This construction results in a lattice thanks to the linear stucture of the code. The fact that
the sum of two codewords is still a codeword implies that the sum of two vectors of A is still

in A.

If G =[I|P]is generator matrix of the code in the systematic form the lattice generator

V= ( (’] q’;) (2.40)

In the case of binary (¢ = 2) linear codes we have the following results. The packing

matrix is

radius of A is

p= %min{?, Vd} (2.41)

and the center density

6=2kpr2m (2.42)
While the kissing number is
QdAd ifd<4
T=< 2n+16A; ifd=14 (2.43)
2n iftd >4

where A, is the number of codewords of C having Hamming weight d. 1t is also possible to
relate the lattice theta series to the weight enumerator function of the code C [1, Chap. 7].
We have the covering radius of A as

R = max{1/2y/n, Ry} (2.44)

where Ry is the Hamming covering radius of the code. This can be seen noting that the deep
holes around the origin can be (a) the vectors with all the components equal to +1/2 (b)
all permutations of the vectors of the type ((£1)%#0" %#) (the exponents are the number
of times the component is repeated).
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Figure 2.6: Construction A of D,

Figure 2.6 shows an example of the construction A applied to the hinary code C = {c, =
(00),c; = (11)}. We can imagine that the lattice is obtained by translating all over the
plane the square in dashed lines of edge two. The two points (0,0) and (1,1) appear once in
every translated square and form the checkerboard lattice. Its basis vectors are vy = (1,1)

and vy = (0,2).
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Chapter 3

A universal lattice decoding
algorithm

Decoding a d-dimensional lattice consists of finding the lattice point closest to any given
vector z in the Fuclidean space R*. Decoding algorithms find applications in vector quan-
tization and in demodulation of multidimensional signal constellations. Here we describe
an algorithm that solves the decoding problem for any lattice, irrespective of its particular
algebraic structure. This algorithm is also modified to enable maximum-likelihood decoding
of lattice codes when used for transmission over a fading channel. Part of this Chapter was
presented in [15].
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3.1 Introduction

A lattice code is a finite subset of points of a lattice (or, more generally, of a lattice translate)
within a bounded region containing the origin, so that the energy of each signal is bounded.
[Lattice codes are used in vector quantization, where they provide highly structured code-
books with efficient encoding algorithms [11, p. 470 ff.], and in digital communications,
where they generate signal constellations for high-rate transmission (see, e.g., [7] and the
references therein). For sufficiently large signal-to-noise ratios, good constellations are usu-
ally carved from dense lattices, a selection prompted by De Buda’s result that lattice codes
asymptotically achieve Shannon’s capacity bound [4].

A crucial procedure for both applications of lattice codes is their decoding. Given a
d dimensional lattice A and a point z in the d-dimensional Euclidean space R? in which
A is embedded, decoding the lattice amounts to finding the point of A closest to z. The
problem here is to find this point without incurring the complexity of an exhaustive search.
Practical algorithms which efficiently decode some well-known lattices that are attractive
for applications (A,(n > 1), D,(n > 2), Fe, Fr, Es, and their duals) are listed in [3], [1, pp.
443 ff.]. Several Leech lattice decoders have heen proposed with ever improving efficiency; a
recent review of the subject can he found in [5].

The above algorithms are strictly dependent on the special structure of the lattice being
decoded (e.g., its being a binary lattice [6]). Other algorithms [11, pp. 479-481] for general
nearest neighbor encoding in vector quantization are valid for any unstructured codebook.
They do not take full advantage of the lattice structure which is useful for large bit rates. The
algorithm described in section 3 was first created as building block of a general Minkowski’s
basis reduction [17, 14]. We have adapted it to allow the decoding of any general lattice.

We may also observe here that, since any linear block code C over Z, (the ring of integers
modulo ¢) is in a sense equivalent to a sublattice of Z" (see ‘Construction A’in [1, Chapter 5])
any general decoding algorithm will also provide a quasi-Maximum Likelihood soft-decoding
algorithm for C.

As a preliminary to the decoding problem, we first describe an algorithm for computing
the shortest nonzero vector of a lattice. The basic idea in both cases is to restrict the search
to a finite number of lattice points which lie within a bounded region. We generally start with
a large region and, whenever a shorter vector is found, the region is consequently restricted.

3.2 Shortest nonzero vector in a lattice

The task of determining nonzero vectors of A with shortest length was first considered by
Gauss and later by Minkowski in his ‘Geometry of Numbers’. Minkowski’s Fundamental
Theorem provides an upper bound to the length of such vector [9]. The first application
which tackled the computational aspect of the problem can be found in the study of the
lattice structure of pseudo-random numbers generated by the linear congruential method
[13].

One of the first algorithms proposed is described in [8]. Here, the search region is defined
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Figure 3.1: The two-dimensional hexagonal lattice.

based on the dual of A. A preliminary base reduction can restrict the size of the starting
region, but the search becomes prohibitively complex when the lattice dimensionality grows
above a certain threshold (around 10).

A substantial improvement was introduced by Pohst in [14] and further analyzed in
[17]. We briefly illustrate this algorithm here, and provide some further insight through
its geometrical interpretation. Consider a vector u € R?, and let ||u| = vuu” denote its
Fuclidean norm. A ball of radius V/C is defined by the inequality

Jul|* < C. (3.1)

If u is a lattice point, then it can be written in the form u = xM for some integer vector
x € Z7, and lies inside the ball if

d d
XMMTXT == XAXT == Z Z ;1T S C (32)
i=1 7=1

If we let the vector x take on real values, then (3.2) is the equation of an ellipsoid (Figs. 3.1
and 3.2), the lengths of whose semi-axes are directly related to eigenvalues A; of the matrix
A.

Cholesky’s factorization vields A = RT R, where R is an upper triangular matrix with
elements r;; =0for2<:<j3<d—-1andr; = Vi. Then

xAxT = xRTRx" = ||RXT||2

2
d d

Z (T77T7+ Z r,;_y-q:j) < C. (3.3)
=1

j=it
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Figure 3.2: The integer lattice with the transformed region.

Figure 3.3: The integer lattice in the new coordinate system. The points inside the ellipse
are numbered according to the order in which they are tested by the algorithm.



Substituting ¢; = r2 for i =1,...,d and ¢;; = ri;/ri; fori=1,...,d, j=i+1,...,d, we
can write

2

d d

Q(x) =" g (7‘7 + > (17:_7'-’17,7‘) <C. (3.4)
=1 7=1+1

The canonical form of this ellipsoid

d
Y guX}<C (3.5)
=1

is obtained by using the coordinate tranformation

X, 1 g - Grd 74

: 1 : :

- _ |0 - | (3.6)
Xa-1 : T g4 Td—1

Xy 0 --- 0 1 T4

In the new coordinate system {Xy,..., Xy_1, X3}, based on the axes of the ellipsoid, the
value of each component of a point inside the ellipsoid, can be bounded as follows. Starting
from the last component, we have

Y
J

| Xa| < (3.7)

Gdd

which simply means that the d-th component is bounded by the length of the d-th semi-axis
(Figure 3.3). Next, when X, is chosen in the above range, we have

Cy — (dd )(3

Gd—1,d—1

[ X <, (3.8)

and in general, once the components X;,1,..., X are fixed, we have

’ 1
| Xif < (C > (MXZQ) — (3.9)

I=i+1 Gii

Substituting equations (3.6) in (3.7), (3.8) and (3.9) we find the bounds for the integer

components of x. Starting from x4 and working backwards we find

C C
< xy < (3.10)
Gdd Gdd
- 041,47?(1] < 241 < (3.11)




where [z] is the smallest integer greater or equal to z and |z ] is the greatest integer less or
equal to . For the i-th integer component we have

d d 2 d
1
- 110 X m ('TZJF > fnm) — = > gyri| <2<

I=it1 j=l+1 I

(3.12)

d d 2 d
1
<o X2 (-Ter > qz,ﬂj) — = D i

=141 j=Il41 Gii G=i1

The search algorithm proceeds very much like a mixed radix counter, with the addition
that the bounds change whenever there is a carry operation from one digit to the next.
(Figure 3.3 shows how the algorithm works. Tt scans exactly all the points of Z? inside
the ellipse in the order indicated by the numbers). In practice, the bounds are updated
recursively by using the following equations:

d
Ui =Ui(zig1,...,2q) = Z G (3.13)
=741
d d 2
Ti=Tywigr, . ma) = C— 3 qa|la+ Y qyz;
=141 =141
= Tipr — Givrimr (Tigr + Ui’ (3.14)

If a vector u = xM for some x € Z?, such that ||ul|*> < C, is found, then we are able to
reduce the radius of the ball. We substitute ||uH2 for C', we update all the bounds, and we
keep on searching in the smaller ball without restarting from the beginning.

The great advantage of this method over [8] lies in the fact that we never test vectors
with a norm greater than the given radius. Every vector tested requires the computation
of its norm, which entails d multiplications and d — 1 additions. The increase in number of
operations needed to update the bounds (3.12) is largely compensated for by the enormous
reduction in the number of vectors tested.

As a byproduct of this algorithm we may obtain the kissing number of A, that is, the
number of lattice points at the minimum distance from the origin.

3.3 Closest lattice point decoder for the Gaussian
channel

Here we want to solve the problem

minflz —uf = min |jw] . (3.15)



We write u = xM with x € Z% z = ( M with ¢ = ((,...,(3), and w = & M with
& = (&,...,¢&), where ¢ and & are real vectors. Then we have

d
w=> &v;
i=1

where

With the above substitutions we now have to find the shortest nonzero vector of the
translated lattice z — A. As before, we construct a ball of radius v/C centered at z and we
test all the lattice points that are inside.

Some additional comments on the choice of v/C are appropriate here. In Chapter 2 we
have seen that the furthest point of R? from a point of A is called a deep hole of the lattice
and that the covering radius R of A is the smallest distance of a lattice point from a deep
hole. If the covering radius of the lattice is known, then we take it as the starting value for

C: otherwise we may use Roger’s upper bound to the covering radius [18, p. 241]

d(A) 1/d
R < ( v (dlogﬁd—l-d]ogﬁlogﬁd—l—iid)) (3.17)
d

where Vj is the volume of the d-dimensional unit sphere.

In a practical application the radius could be adaptively adjusted according to the noise
level in the following way. If no lattice point is detected inside the ball, the radius must
be increased and an erasure can be indicated to the higher levels. On the contrary, when
the distance ||w|| of the received point to the lattice point is small, then the radius can be
decreased.

3.4 Soft-decoding of the ternary (12,6,6) Golay code

As an example of application of the algorithm described before, we study its complexity
when used to soft-decode the ternary (12,6,6) Golay code. The generator matrix of the
corresponding lattice, obtained by construction A, is

(3.18)

OO OO oo oo oo o —
OO OO OO o oo oo = O
OO OO OO oD oo = OO
OO DO OO OO0 = O oo
O OO OO OO =00 oo
OO ODOD OO =, oo o
O OO OO WNNNNND
OO0 0O WO =NN =D =
O OO WO ONN =D — -
OO WO O ON =D =N =
O WO OO D =D = NN =
WOODODODODODODO—= NN — —

%)
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which corresponds to periodically repeating in each direction the code vectors contained

in a 12-dimensional cube of edge 3. The covering radius of this lattice is not known and
the upper bound (3.17) gives R < 2.48 (we conjecture R = 2, a value that has never heen
exceeded in our computations). The simulation was performed by generating a sequence of
vectors z in the form x 4+ n, where n is a zero-mean Gaussian vector with independent, iden-
tically distributed components. According to simulation, the average numbers of additions,
multiplications and square roots per codeword are about 4900, 3800 and 350. For a complete
search through code book we would need 16767 additions and 8748 multiplications, as well
as the complete storage of all the 729 ternary codewords. Although square roots are usually
considered as lengthy operations, in our case they can be performed with a reduced precision,
since they are followed by a floor or ceiling function. Finally we observe that the decoding
algorithm is not exactly maximum-likelihood since it can decode a lattice point which is not
a code vector. In general this difference is only noticeable for very low signal-to-noise ratios
and for small values of ¢g. To better approximate the MI. decoding various strategies can be
adopted, viz.,

1. Reduce modulo 3 the lattice point coordinates produced by the decoder.

2. During the search in the sphere, discard the points which are not code vectors; if no
code vector is found declare an erasure or use strategy 3.

3. Take a hard decision on the information part of the received vector.

Note that when any of the above strategies is adopted, the uniform error property is no
longer valid since the decoder is performing some non-linear operation.

3.5 Decoder for the fading channel

Lattices codes, when used over the Gaussian channel can be decoded using the above algo-
rithm. We show how to adapt this lattice decoding algorithm to the fading channel case.
This channel model will be described in Chapter 5, section 5.2. For the pourpose of this
section we only recall that for maximume-likelihood decoding with perfect side information,
the problem is to minimize the metric

n

m(ulz,a) = > |z — o’ (3.19)

i=1

I.et M be the generator matrix of the lattice A and let us consider the lattice A. with
generator matrix

M. = Mdiag(aq,...a,)

We can imagine this new lattice A, in a space where each component has been compressed or
enlarged by a factor ;. A point of A, can be written as w = (wq,...w,) = (aquq,. .. auu,).



The metric to minimize is then
.
m(x|r,a) =Y |z — w;|?
=1

this means that we can simply apply the lattice decoding algorithm to the lattice A, when
the received point is z. The decoded point w € A, has the same components of t € A. The
additional complexity required by this algorithm comes from the fact that for each received
point we have a different compressed lattice A,. So we need to compute a new Cholesky
factorization of the Gram matrix of each A.. We also need M_ ' = diag(1/on,...1/an,)M ™!
to find the components of the received vector but this only requires a vector-matrix multi-
plication since M~ can he precomputed.

As discussed in the previous section, this decoding algorithm is M. only for an infinite
lattice. When dealing with a finite constellation, with a given spectral efficiency, some care
should be taken. In fact, the decoder may output a lattice point which is not part of the
signal set.

The lattice constellations may be constituted by the points of the first shells of the lattice
in order to obtain the minimal average energy per point. Since the decoding complexity
increses with the search radius of the sphere, this is adaptively selected according to the
fading coefficients so that we can always find at least one point of A inside the sphere. To
optimize the decoder whenever the received point lays outside the outermost shell of the
costellation we take its projection on this shell.

3.6 Conclusions

The algorithm we have presented shows the advantages offered by the continuous structure
of the space in which lattices are embedded. This algorithm was also tested as a lLeech
lattice decoder and the total number of operations was found to be about 885,000, where
additions, multiplications, and square roots were in the same proportions as in the previous
example. This result may look discouraging when compared with 8000 operations required
by the fastest Leech decoding algorithm known [5]. However, it should be kept in mind that
the generality of our procedure enables one to decode lattices for which no ad hoc algorithm
is known. Finally a the lattice decoding algorithm useful for the Gaussian channel has also
been adapted to the fading channel case.

3.7 Appendix

Here we give the procedure for computing directly all the coefficients ¢; ; arranged in a matrix
() in equation (3.4).

Q:=4;
for i:=1 to d-1 do



begin
for j:=i+41 to 4 do
begin
Qlj,il:=Qli,j]1;
Qli,31:=Ql1,31/Ql1,i];
end ;
for k:=i+1 to d do
for 1:=k to d do
Qlk,17:=Q[k,11-Q[k,11*Q[1,1];
end ;
for i1:=2 to d do
for j:=1 to i-1 do Q[i,j]:=0;



Chapter 4

Computing the Voronoi cell: the
Diamond Cutting Algorithm

Numerical evaluation of some typical lattice parameters such as density, thickness, dimen-
sionless second moment (quantizing constant) ete., is considered. Computational complexity
grows exponentially with the dimension of the lattices and all known results rely on the very
reqular structure of some of these. In this chapter we present a general algorithm which en-
ables computation of all the common parameters for any given lattice by means of a complete
description of its Voronoi cell. Using this algorithm, we have computed previously unknown
values of the quantizing constants of some particularly interesting lattices. These results can
be used to evaluate the performance of lattice quantizers and lattice signal constellations for
the Gaussian channel. As an application we evaluate a tight upper bound for the error prob-
ability of a lattice constellation used for transmission over the additive white Gaussian noise

channel [30].



4.1 Introduction

The complete geometric structure of a lattice can be found from the description of its Voronoi
cell. The knowledge of the Voronoi cell solves at once the problem of the computation of
relevant lattice parameters such as packing radius, covering radius, kissing number, center
density, thickness, normalized second moment (quantizing constant). The error probability of
a lattice constellation, used for transmission over the additive white (Gaussian noise channel,
can also be effectively evaluated by using some of the above parameters.

The Voronoi cell of certain highly symmetric lattices can be determined analytically.
According to [1] the Voronoi cell is completely known for the following lattices: A,, A*, D,,
DX (n > 2) Fe, F}, Fr, 3, By = E3, Craig’s lattice Agf) and the 24-dimensional Teech
lattice'. No result is available for an arbitrary lattice.

In this chapter we propose an algorithm which computes the Voronoi cell of a full-rank
arbitrary lattice. The exact knowledge of the Voronoi cell (i.e., knowledge of the coordinates
of its vertices, edges, etc.) enables one to compute all the lattice parameters within any
degree of accuracy. Theoretically, this algorithm evaluates a closed-form solution to all the
above lattice problems. In practice, due to finite-precision arithmetics, round-off errors limit
the accuracy of the calculations, but comparison with known (closed-form) results shows
that they do not propagate. Hence, the accuracy of the results can be set a priori within
the range of the computer floating point precision.

Using this algorithm we have computed some previously unknown values (Table 4.6) of
the quantizing constants for some particularly interesting lattices. As these lattices do not
improve upon the best known lattice quantizers, the conjecture about the optimal lattice
quantizers being the duals of the densest lattices still holds.

Section 4.2 reviews the basic geometric definitions needed to describe the diamond-cutting
algorithm (Section 4.3). The name of this algorithm comes from its resemblance to the
procedure for cutting a raw diamond into a brilliant. In Section 4.4 we show how to compute
all the lattice parameters from the Voronoi cell. Finally, Section 4.5 summarizes all the results
obtained with the diamond-cutting algorithm. Of special interest is Table 4.6, where we find
the previously unknown quantizing constants for the two locally optimal lattice coverings in
R* found by Dickson [28] and for a 5-dimensional extreme lattice covering, which belongs
to the class introduced by Barnes and Trenerry in [29].

4.2 Polytopes

Definition 15 For 0 < k < d, a k-flat in R? is the affine hull (i.e., the set of linear
combinations with non-negative coefficients adding up to one) of k+ 1 linearly independent
points.

'"The normalized second moment is computed by Montecarlo integration using some efficient decoding
algorithm of the Leech lattice.
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Figure 4.1: Example of two dimensional arrangement of four lines

A 0-flat is a point, a 1-flat is called a line, a 2-flat is called plane and (d—1)-flat, d > 3, is
called hyperplane. There is only one d-flat which corresponds to R? and for convenience we
define the empty set as the (—1)-flat. Equivalently, a k-flat can be defined as the intersection
of d — k hyperplanes whose normal vectors are linearly independent.

Definition 16 Given a finite set H of hyperplanes in R? we call arrangement A(H) of H
the dissection of R? in connected pieces of various dimensions.

The two-dimensional arrangement of Fig. 4.1 has 6 intersection points, 8 segments, 8
half-lines, 3 bounded regions and 8 unbounded regions.

Definition 17 A (convez) polytope P is the bounded region defined by the intersection of
a finite number of closed half-spaces. More specifically, we call P a k-polytope if it has
dimension k, that is, if k is the smallest integer number such that P is contained in a k-flat.

In other words we can say that a polytope is a bounded region delimited by a finite
number of hyperplanes. The minimum number of hyperplanes needed to define a k-polytope
is k+ 1, since this must be bounded. Any bounded region of an arrangement is a polytope,
thus it is possible to adapt to polytopes the algorithms designed for arrangements.

Definition 18 For 0 < k < d, a k-face of P is the set of points of P contained in k-flat.

We generally speak of faces of P when k is not specified. The 0-faces are called vertices
of P, the 1-faces, edges of P and the (d — 1)-faces, facets of P. For convenience we identify
P with the d-face and the empty set with the (—1)-face.

To give a complete description of a polytope we must know all the relations among its
faces. For —1 < k <d— 1 a k-face f and a (k + 1)-face ¢ are incident upon each other if
f belongs to the boundary of ¢; in this case, f is called a subface of ¢ and ¢ a superface of
f. The d-face represents the whole polytope and is the only superface of all the facets. The
(—1)-face has no subfaces and is the only subface of all the vertices.
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Figure 4.2: Example of the incidence graph of the triangle P.

The incidence graph I(P) of P is an undirected graph defined as follows: for each k-face
(k=-1,0,1,...d) of P, I(P) has anode v(f); if f and ¢ are incident upon each other then
v(f) and v(g) are connected by an arc. The incidence graph of a polytope is completed by a
node representing the whole Fuclidean space R? which is connected to the d-face (Fig. 4.2).

In the implementation of the diamond-cutting algorithm, each node v(f) of an incidence
graph is a record that contains some auxiliary information about the face and two lists con-
taining pointers to the subfaces and the superfaces of f (Fig. 4.3). The auxiliary information
stored in a node consists of the coordinates of a point p(f) in f, a component capable of
reflecting one of seven colours, the volume of f, the second order moment of f, the square

distance of f from the origin and a node number. So p(f) = f if f is a vertex and if
fis fay. .y fm arve subfaces of f (m > 2), then the point

p(F) = — > p(f) (4.1)

is the centroid of f and it lays always inside f since f is convex. It is important to remark
that in general this point does not coincide with the center of gravity (or barycenter) of the
face.

We have seen in the discussion following Definition 12 that the Voronoi regions of all the
lattice points are congruent polytopes. The Voronoi cell V is a space-filling parallelohedron
with the additional property of being face-to-face, meaning that the intersection of any two
distinct tiles is either empty or it is a common k-face for some k£ = 0,1,...d — 1. Minkowski
proved that the maximum number of facets of a d-parallelohedron is 2(2¢ — 1) [18, pp. 88-
96 and pp. 164-169]. This gives us already an idea of the exponential complexity of the
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Figure 4.3: Data structure of a node. Each node contains the auxiliary information and the
pointers to the heads of the superface and subface lists. EKach element of the list contains a
pointer to a node and a pointer to the next element in the list.

problem.

Finding the Voronoi region of a lattice is equivalent to determining the Voronoi-relevant
points and constructing the polytope bounded by the Voronoi relevant hyperplanes. The
Voronoi-relevant points can be found by searching among all the points of the lattice which
lie within a sufficently large bounded region around the origin.

4.3 The diamond-cutting algorithm

This algorithm computes the incidence graph of the Voronoi region V of a lattice. From the
incidence graph it is possible to extract all the desired lattice parameters as we shall see in
the following section. lLet us consider a lattice A defined by an arbitrary basis {vy,...,v,}.
Given a point p we will denote with h(p) the hyperplane passing through the point p and
normal to the vector p. The distance of h(p) from the origin is equal to ||p||. We can now
come to the formal description of the algorithm.

Preparation Given the lattice basis {vy,..., vy} construct the parallelotope Q defined by
the hyperplanes h(i%vi) for 2 = 1,...,d. Q contains the Voronoi cell. The corre-
sponding incidence graph 7(Q) has 3% nodes. Finally, set V := Q.

Cutting Consider all hyperplanes h(%—w + %ng + - %‘ivd), with A; integers, which cut V
and update 7(V) by introducing the nodes corresponding to the new faces and erasing
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the ones corresponding to the faces which are left out. For this operation we have
adapted Edelsbrunner’s algorithm for the incrementation of arrangements [16].

Finish Compute vol(V), the volume of V. If vol(V) > det(A)'/2 go on cutting, else end the
algorithm and output the incidence graph Z(V).

We now describe each step of this algorithm in greater detail.

4.3.1 Preparation

We first construct the incidence graph of a hypercube with edge length 2 centered at the
origin. The p(f) vectors of all the k-faces (k = 0,1,...d) of this hypercube have components
in theset {—1,0,+1}. In particular vertices only have —1 or +1 components, edges have one
component equal to 0 and the remaining equal to —1 or +1, and k-faces have k£ components
equal to 0 and d — k equal to —1 or 4+1. It is now simple to see that a d-dimensional

hypercube has 27%( Z ) kfaces (k=0,1,...d) for a total of 3" faces.

In order to identify the subfaces of a given k-face f it is enough to replace each of the 0
components, in turn, with —1 and +1. In this way we find 2k subfaces. For the superfaces of
f we replace each of the non-zero components, in turn, with a 0, so that we find exactly d— &
superfaces. For convenience, these component vectors are considered as base three (digits
0,1,2) numbers and then converted to decimal representation. The number is then used as
the node number which uniquely identifies a k-face of Q. An example of this is shown in
Figures 4.4 and 4.5.

The parallelotope Q, which is only a slanted and stretched hypercube, has the same inci-
dence graph, except for the p(f) vectors. We only need to calculate the vertices coordinates
of the parallelotope then, using (4.1), we recursively obtain all the p(f) vectors of all the
faces. The vertices x(™) m = 1,...27 of Q are found at the intersection of d hyperplanes

(i, x) = 5 v |
(m) A(Qm) 2
<V27X . > = T4 HVQH (42)
<Vd7X(m)> _ A(d:) l[va|?
where )\gm), 2 =1,...d take on the values —1 and 41 of the corresponding components of the

m-th vertex in the hypercube. The solution of all these linear systems is found by inverting
once for all the generator matrix of the lattice and multiplying it by the vector of the known
terms.

4.3.2 Cutting

The raw diamond is now ready to be cut. Given a hyperplane h(p) cutting V (i.e., such that
h(p)NV # ) we construct the incidence graph of the two parts of the dissected polytope:
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Figure 4.4: Incidence graph of a square (‘—I—’ stands for +1 and ‘-’ for —]).
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Figure 4.5: Node numbers of a cube.

the main body and the chip. The main body will always contain the origin since the cutting
plane does not include the origin. This operation is performed by using the colour conventions
and the procedures 7.3 5 described in [16, Ch.7]. Next, the incidence graph is purged from
all the nodes representing the chip to obtain the new Z(V).

A key operation in this procedure is to determine whether a given point x lays on, above,
or below the cutting hyperplane. In particular we have:

(p,x) < |p|” x is on the side of the main body
(p.x) = [lp|*  x€h(p)
(p,x) > |p|’ x is on the side of the chip. (4.3)

This operation uses a fixed tolerance value (e.g., 10°7), given as an input, to resolve the
three cases.

Another critical procedure is the search for the coordinates of the new vertices. These
are given by the intersections hetween h(p) and the edges of V. A bisection method is used.
Starting from a vertex above and a vertex below h(p) we compute the midpoint until such
a point is found to lie on A(p). In this case the tolerance should be further reduced in order
to overcome some ill-conditioned cases which may be encountered.



4.3.3 Finish

Fach cut reduces the volume of the polytope. When this is equal to det(A)"/2, the volume
of the fundamental parallelotope, we have obtained the Voronoi region of the lattice. The
way to select all the possible cutting hyperplanes is to consider all the lattice points within
a given radius C from the origin by using the algorithm proposed in [17]. A safe choice for
such radius would be twice the distance from the origin of the furthest vertex of the initial
parallelotope Q. In general a less conservative choice will work especially when the lattice
basis is not reduced [18, 19]. If the covering radius is already known, then this is also a safe
value for C. Whenever ( is too small the volume of V will not reach the value det(A)'/2,
meaning that €' should be increased.

4.4 Calculating the lattice parameters

We now see how to evaluate all the lattice parameters once the incidence graph Z(V) of the
Voronoi cell is found.

4.4.1 Packing

To calculate the packing radius p we must find the facet closest to the origin. For this it is
sufficient to scan the auxiliary information of the nodes pointed by the subface list of the
node v(V). At the same time the kissing number 7 is found (i.e., the number of facets at the
packing radius distance from the origin).

The packing density A is the ratio between the greatest sphere centered at the origin
and contained in ¥V and the volume of V. This sphere has its radius equal to the packing
radius. The center density 6 is equal to the packing density divided by the volume of the
unit sphere.

4.4.2 Covering

To calculate the covering radius R we must find the vertex of ¥V with maximum distance
from the origin. So it is sufficient to scan the nodes pointed by the superface list of the node

v(—1).

The thickness © of a covering of A is the ratio between the smallest sphere centered at
the origin and contaning V and the volume of V. This sphere has its radius equal to the
covering radius. The normalized thickness 8 is equal to the thickness divided by the volume
of the unit sphere.

4.4.3 Quantization parameters

The volume of V is also given hy

vol(V) = /» dx (4.4)
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and is equal to the volume of the fundamental parallelotope of A. The second order moment

of V about 0 is defined by
UV) = / 1| 2dx . (4.5)
JY
In [1, Ch. 21] vol(V) and U(V) are given in terms of the volume V,_4(7) and of the second-

order moment of the facets U,_¢(7) about the foot of the perpendicular from 0, where 7 runs
over the set of facets of V. Let hq(;dq) be the distance of the facets of V from the origin. Then

h(_dq)
vol(V) = 3 Vi (i)
,h(_dJ) 2
V) = 3 Va i) + Ui ()]

i
These equations cannot be used in our algorithm. In fact, the recursive generalization of

these equations, which yield the volume and the second-order moment of a k-face in terms
of volume and second-order moment of its subfaces, requires an additional hypothesis which

is not satisfied in general for arbitrary lattices. Let Cf-k) be the orthogonal projection of the

origin 0 on the 2-th k-face for £k = 2,...,d — 1. We have R = |e;(4=1)||, where i runs

7

over the set of the facets (subfaces) of V. If we consider the m-th k-face, then we define

hﬁ’“’”(m) = ||e®) — cﬁ’“’””, where 7 runs over the set of all the subfaces of the m-th k-face.
Due to the orthogonality conditions we simply have hf;kq)(m)2 = |le®)? — ||C7(:k71)|‘2.
The general recursions for £ =1,...d, are
h(-kq) m ,
wm = Yy )
A* D (m _ 2 . .
Gilm) = 3 P O ) Vi 6+ 0 ) (4.6)

%

with the initial conditions Vg(vertices) = 1 and Ug(vertices) = 0.

For the validity of these equations it is crucial to assume that the projections ¢l¥) of the
origin on all the faces falls within them. This is certainly true only for the facets (k=d —1)
of V which belong to the Voronoi-relevant hyperplanes and are cut by the normal vector
connecting 0 to the corresponding Voronoi-relevant point. But in general it is not true for
an arbitrary lattice.

Equations that may be used to calculate recursively vol(V) and U(V) for an arbitrary
lattice are derived in the following.

Theorem 1 With the above notations, let g, be the m-th k-face with barycenter ¢(g. ),
fi one of its subfaces with barycenter ¢(f;). Setting Vy(wvertices) = 1 and Ug(vertices) = 0,
for k= 2,...d we have:

Vigm) = S Ay )
rm (] L—1l2

7

A7



"D (m k1 2 ) .
Ur(m) = Z”(]T(Q)[bf;‘ W(m) Vit (i) + Uk 1 (4)] (4.7)

7

where agk_1)(‘7n) is the distance of ¢(g,, ) from the i-th (k—1)-face f;, bf;’“‘”(m) is the distance
between ¢(g.,) and q(f;), Ur(m) is the second order moment of the g,, about its barycenter
q(gm), and Ug_1(7) is the second order moment of f; about its barycenter ¢(f;).

Proof In this case we always have ¢(¢,,) € g and the face ¢,, can be decomposed into
generalized pyramids of vertex ¢(g¢,,) and basis f;. The proof then follows from elementary

calculus by slicing each generalized pyramid into slabs parallel to f;.

For the use of equation (4.7) in the DCA we need to relate the centroid p(f) to the
barycenter ¢(f) of a face f. This is accomplished recursively using the following equation

1
Vi(m)

ZdQ('ﬁgif('qm)‘/IC(Pi) k=2 .d

q(gm) =

7

where Vi(P;) is the volume of the generalized pyramid of vertex p(g¢,,) and base f;.

The dimensionless second moment or quantizing constant of a lattice A, defined in Chapter
2, represents the mean-squared quantization errors per point assuming a uniform input
distribution to a lattice quantizer

1 UW)

(4.8)

This value is independent of the scale and the dimension of the space and depends only on
the shape of V.

4.4.4 Error probability

In Caopter 2 we have seen that the exact value of P(e) can be formally written as
1 L
Pley=P(xgV :]——/e 202 dx
@ = Poxgv) =1 b |

Using the union bound with all the Voronoi-relevant hyperplanes only, we obtained

1 Ipill /2
P(e) < Z §erfc (W) , (4.9)

3

a looser upper bound was given hy

d p?

P(e)<P(X§ZSp)—]T(— )/r(

d
2’ 202 2

) (4.10)

and the equal volume sphere lower bound was

Tq

Ple)> P(x & S,) =1 P(g%) /T (g) . (4.11)
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4.5 Results

In this section we show some of the results obtained with the Diamond Cutting Algorithm.
The algorithm was implemented in standard C and was run on different computers: PC 486,
VAX 6000-530 and different UNIX workstations. The best performance in terms of speed
was obtained on the workstations.

The major difficulties arise when dimension increases. In fact the amount of memory
required may become very high. Using double-precision arithmetics it was estimated that
the system needs to allocate, on average, 170 bytes for each node of the incidence graph.
The total memory needed to store the final Voronoi cell can be estimated by looking at the
total number of nodes (last column of tahles). We specify “final” hecause during the cutting
step the incidence graph of the chip as well as that of the main body must be created. For
example in the case of F; the total memory occupied by the Voronoi cell was about 9MB,
while during the cutting operation the peak size of the allocated memory was about 17TMB.

The program receives as input the space dimension, the full-rank lattice generator matrix
and the tolerance parameter which is used to resolve the position of a point with respect
to a hyperplane. This last parameter must be consistent with the accuracy to which the
generator matrix is given and approximately determines the final accuracy of the computed
parameters. In all cases where the lattices are defined by their Gram matrix A, Cholesky
decomposition was applied to A, giving lower triangular generator matrix I (see Chapter
2). The matrix L can then be used as a generator matrix of the lattice. If the lattices are
defined by a non-full-rank generator matrix, the Gram matrix is calculated first.

Each lattice appears in two tables. The first one shows all the lattice parameters which
are independent of the particular scaling factor, as well as the number N, of k-faces of
the Voronoi cell. The second one gives the parameters which depend on the scaling factor
but are still independent of the lattice basis. The column with vol(V) can be compared
with the determinant of the generator matrix of the lattice to check the accuracy of the
computations. The facets profile gives the number of facets for each square distance. Here
we find the squared packing radius and the kissing number (in boldface). The vertices profile
gives the number of vertices for each square distance and here we find the square covering
radius (in boldface).

Figures 4.6-4.8 show the bounds (4.9), (4.10) and (4.11) for different six-dimensional

lattices. Curves of P(e) are plotted as a function of the signal-to-noise ratio defined in

Chapter 2 as
“R/vol(V
SNR(”; = ]O]ogA .

402

G/(A) decreases from Z% to Ag, to Fs, and to F, which indicates that the shape of the
Voronoi cell becomes more and more spherical. This is reflected in a smaller gap between
the upper bound (4.10) and the lower bound (4.11). The improved union bound (4.9) comes
also very close to the lower bound.

We now list the generator or Gram matrices of some of the lattices which were tested
with the diamond-cutting algorithm, others can be found in Chapter 2. The row vectors
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of the generator matrices form the lattice basis. Sometimes a scaled version of the lattices
was considered. For the lattices A,, A%, D, DZ, Aif), Fe, B}, F7, E2 ? the Voronoi region is
known, so the values of the parameters were used to test the accuracy of the program.

4.5.1 New values

The following lattices were considered because they exhibit some interesting feature.

Lattice 3 (Gram matrix). This lattice was recently proven to be the densest three-
dimensional lattice which is geometrically similar to its dual. It is also the thinnest geomet-
rically self-dual covering lattice [1, p. xix]

142 1 1
ng( 1 142 1ﬁ)
1 1-v2 142

Lattice Dy, and Diy (Gram matrices). These two lattices, found by Dickson,
together with A% are the three locally optimal lattice coverings in R* [28]. The values of
G(A), reported in Table 4.6, answer the question posed in [1, p. 62].

2 o —1 —1 3—7 v -1 —1

. o 2 —1 —1 . v 3—7 -1 —1

Dl 1 3 9 1., PDlav | 0 9498 3
1 1 1-a 2 1 1 -8 2423

where o = (5 — /13)/2 and 3 &~ 0.544, v ~ 0.499 are roots of certain polynomials.
Lattices BT, (Gram matrices) This family of extreme lattice coverings was given by
Barnes and Trenerry in [29]. These lattices exhibit a normalized thickness which is slightly
larger than the one of the family of best known lattice coverings AY. This property prompted
the question in [1, p. 62] and for n = 5 we find that we do not improve over the best known
lattice quantizer.
For n > 5 the Gram matrix is given by

0 0 0 0 0
0 n—1 -1 —1 -1 ”2 n—?2 ’g ’g
0 —1 -1 —1 1 T I
BTn: | 0 —1 1 -1 -1 5 , 5 Al
0 —1 -1 -1 n-1 - B n-2
: -9

where [,,_5 is the (n — 2)-dimensional identity matrix and 3, is the positive root of

3(n —3)2> + (0> —8n —6)z —4n(n +1) =10

2) .
QAE)

is the self-dual lattice is obtained by using Craig’s construction [1, p. 223]. Tts normalized second
moment was computed exactly by Coulson in [24].



Lattices /s5, and /s5, (Gram matrices) This is a pair of five-dimensional iso-spectral
lattices (i.e. inequivalent lattices with the same theta series). See [1, p. xxi].

2 0 0 2 2 21 0 2 2
02 0 2 0 1 2 0 2 2
Isga : 00 2 0 2 Tssy, - 00 6 4 4
2 2 0 8 4 2 2 4 8 4
2 0 2 4 8 2 2 4 4 8

4.6 Conclusions

In this chapter we have presented an algorithm which computes the Voronoi cell of an
arbitrary lattice. The knowledge of the Voronoi cell enables one to exactly compute all
the relevant lattice parameters. Using the diamond-cutting algorithm we have found some
previously unknown values of the quantizing constants of some important lattices.

Most of the computational problems related to lattices are either known or conjectured
to be N P-hard [1, p. 40]. The principal limitation in the application of the DCA is the
exponentially increasing memory requirement. It is enough to recall that the number of
nodes required to describe the fundamental parallelotope is 3%. The final number of nodes
for the Voronoi cell greatly varies hetween different lattices in the same dimension. With
32MB RAM we have reached dimensions hetween 6 and 8 according to the lattice type. The
possibility of reducing the memory requirements appears remote especially if we want to
preserve the generality of the algorithm.



& 0 G(V) N(] N1 N2 N3 N4 Nr; Nﬁ N7 Total
Aq | 0.288676 | 0.384900 | 0.080188 6 6 12
Az | 0.176777 | 0.500000 | 0.078745 | 14 24 12 50
Ag | 0.111803 | 0.643990 | 0.078020 | 30 70 60 20 180
Ag | 0.072170 | 1.125016 | 0.077648 | 62 180 | 210 | 120 30 602
Ag | 0.047246 | 1.904147 | 0.077466 | 126 | 434 | 630 | 490 | 210 42 1932
Az | 0.031250 | 4.000000 | 0.077396 | 254 | 1008 | 1736 | 1680 | 980 | 336 | 56 6050
Ag | 0.020833 | 8.128842 | 0.077391 | 510 | 2286 | 4536 | 5208 | 3780 | 1764 | 504 | 72 | 18660

vol(V) | Facet profile (p?, 7) | Vertices profile (R?)

Aq | 1.732043 | 0.499999 6 | 0.666664 6

Az | 1.999991 | 0.499999 12 0.749997 8

0.999999 6

Agq | 2.236056 | 0.499999 20 0.799997 10

1.199999 20

Ag | 2.449449 | 0.499999 30 0.833330 12

1.333325 30

1.499999 20

Ag | 2.645751 | 0.500000 42 0.857143 14

1.428571 42

1.714286 70

Az | 2.828427 | 0.500000 56 0.875000 16

1.500000 56

1.875000 112

2.000000 70

Ag | 3.000000 | 0.500000 72 (0.888889 18

1.555556 72

2.000000 168

2.222222 252

Table 4.1: Lattices A,




é 7 G(V) N(] N] Ng Nq N4 N5 Total
A% | 0.288676 | 0.384900 | 0.080188 6 6 12
A% 1 0.162380 | 0.349385 | 0.078543 24 36 14 74
A% 1 0.089444 | 0.357770 | 0.077559 | 120 240 150 30 540
At | 0.048526 | 0.403566 | 0.076922 | 720 | 1800 | 1560 | 540 62 4682
A% | 0.026033 | 0.493668 | 0.076490 | 5040 | 15120 | 16800 | 8400 | 1806 | 126 | 47292
vol(V) | Facet profile (p?, 7) | Vertices profile (R?)
Ay | 1.732043 | 0.499999 6 | 0.666664 6
A% 1 3.999995 | 0.750000 8 1.249997 24
0.999991 6
A3 | 11.18038 | 1.000012 10 | 2.000000 120
1.499994 20
At | 36.00000 | 1.250000 12 | 2.916667 720
2.000000 30
2.250000 20
A% | 129.6418 | 1.500000 14 | 4.000000 5040
2.500000 42
3.000000 70
Table 4.2: Dual lattices A%
é 0 G(V) N(] N1 Ng N3 N4 N5 Nﬁ N7 Total
Dy | 0.250000 | 0.500000 | 0.083333 4 4 8
Ds | 0176777 | 0.500000 | 0.078745 | 14 24 12 50
D4 | 0.125000 | 0.500000 | 0.076603 | 24 96 96 24 240
Ds | 0.088388 | 0.873464 | 0.075786 | 42 | 240 | 400 240 40 2002
De | 0.062500 | 1.687501 | 0.075591 76 | 576 | 1200 [ 1120 480 60 3512
Dz | 0.044194 | 3.544893 | 0.075686 | 142 | 1344 | 3360 | 3920 | 2520 [ 840 84 12210
Dg | 0.031250 | 8.000000 | 0.075914 | 272 | 3072 | 8960 | 12544 | 10080 | 4928 | 1344 | 112 | 41312
vol(V) | Facet profile (p?, 7) | Vertices profile (R?)
D5 | 8.000000 | 2.000000 4 | 4.000000 4
D3 | 16.00000 | 2.000000 12 3.000000 8
4.000000 6
Dy | 32.00001 | 2.000000 24 | 4.000000 24
Dy | 64.00000 | 2.000000 40 4.000000 10
5.000000 32
Dg | 127.9999 | 2.000000 60 4.000000 12
6.000000 64
D~ | 256.0000 | 2.000000 84 4.000000 14
7.000000 128
Dg | 512.0000 | 2.000000 112 4.000000 16
8.000000 256

Table 4.3: Lattices D,




é f G(V) N(] N] Ng N3 N4 N5 NG Total
D3 | 0.250000 | 0.500000 | 0.083333 4 4 8
D3| 0.162377 | 0.349384 | 0.078543 24 36 14 76
D3 | 0.125000 | 0.500000 | 0.076603 24 96 96 24 240
D¢ | 0.062500 | 0.474610 | 0.075625 240 720 720 280 42 2002
D% | 0.031250 | 0.843750 | 0.075120 160 1440 2880 2160 636 76 7352
D% 1 0.015625 | 0.966967 | 0.074859 | 2240 | 10080 | 17920 | 15120 | 6328 | 1428 | 142 | 53258
vol(V) | Facet profile (p?, 7) | Vertices profile (R?)
D3 | 2.000000 | 0.500000 4 | 1.000000 4
D3 | 4.000006 | 0.749992 8 | 1.249997 24
0.999998 6
D | 8.000000 | 1.000000 24 | 2.000000 24
Dz | 16.00000 | 1.000000 10 | 2.250001 240
1.249999 32
Dz | 32.00000 | 1.000000 12 | 3.000000 160
1.500000 64
D% | 63.99999 | 1.000000 14 | 3.250000 2240
1.750000 128
Table 4.4: Dual lattices D}
(S 9 G(V) Nn N1 Ng Nq N4 N5 NG Tota]
/4(62) 0.053995 | 0.644791 [ 0.075057 | 798 4368 6944 4452 1176 98 17836
Fe | 0.072169 | 1.368545 | 0.074347 54 702 2160 2160 720 72 5868
Eg | 0.064150 | 0.513201 | 0.074244 | 720 6480 | 10800 6480 1566 126 26172
FE7z | 0.062500 | 2.922836 | 0.073231 | 632 4788 | 16128 | 20160 | 10080 | 2016 | 126 53930
Ez | 0.045669 | 0.886223 | 0.073116 | 576 | 10080 | 40320 | 50400 | 23688 | 4284 | 182 | 129530
vol(V) | Facet profile (p?, 7) | Vertices profile (R?)
AL | 18.520261 | 0.999999 42 | 2.000001 336
1.500000 h6 | 2.285715 462
Fg 1.732037 | 0.499998 72 | 1.333333 54
3 0.577350 | 0.333333 54 | 0.666667 720
0.500000 72
Fiz 16.00000 | 1.000000 126 1.750000 576
3.000000 56
3 0.707107 | 0.375000 56 0.875000 576
0.500000 126

Table 4.5: Other lattices




& f G(V) N(] N] Ng N3 N4 Nri Total
Cs | 0.165779 | 0.386206 | 0.078670 | 24 36 14 74
Dige | 0.113027 | 0.390822 | 0.076993 | 120 | 240 | 150 | 30 540
Diap | 0.076078 | 0.381728 | 0.077465 | 120 | 240 | 150 | 30 540
BTy | 0.035124 | 0.423672 | 0.076278 | 720 | 1800 | 1560 | 540 | 62 4682
Iss, | 0.018042 | 1.379132 | 0.084734 48 120 116 54 | 12 350
Tsxp | 0.018042 | 0.848806 | 0.082839 | 114 | 468 | 600 | 288 | 44 1514
vol(V) | Facet profile (p?, 7) | Vertices profile (R?)
Cz | 2.828427 | 0.603553 8 | 0.957107
0.707107 4 | 1.060660 16
1.000000 2
Digg | 2.211152 | 0.499998 18 | 0.904520 90
0.651365 6 | 0.929606 30
0.848671 6
Digy | 5.138604 | 0.625246 4 1.375344 60
0.771980 6 | 1.400553 60
0.897196 12
1.000956 2
1.271960 6
BTy | 170.8081 | 2.047607 2 1.375344 60
2.638084 10 | 5.543897 720
3.047608 10
3.547607 20
4.776172 20
Is5, | 9.797850 | 0.499997 6 | 2.833313 48
0.999999 6
Isgp | 9.797875 | 0.499998 6 1.999988 48
0.999999 18 | 2.333330 66
1.499996 20

Table 4.6: Some new values




Chapter 5

Design of lattice constellations for
both Rayleigh fading and Gaussian
channel

Recent work on lattices matched to the Rayleigh fading channel has shown the way to con-
struct good signal constellations with high spectral efficiency. In this chapter we present a new
family of lattice constellations, based on complex algebraic number fields, which have good
performance on Rayleigh fading channels. Some of these lattices also exhibit a reasonable
packing density and thus may be used at the same time over a Gaussian channel. Conversely,
we show that particular versions of the best lattice packings (Da, Fg, Fs, K12, A6, Aaa), con-
structed from totally complex algebraic cyclotomic fields, exhibit better performance over the
Rayleigh fading channel. The practical interest in such signal contellations rises from the
need to transmit information at high rates over both terrestrial and satellite links [50].



5.1 Introduction

The interest in TCM for fading channels dates back to 1988, when Divsalar and Simon [31]
fixed design rules and performance evaluation criteria. Following the ideas in [31], Schlegel
and Costello [32] found new 8-PSK trellis codes for the Rayleigh channel. These codes exhibit
higher diversity than Ungerboeck’s 8-PSK codes, only when the trellis exceeds 64 states.

An alternative method to gain diversity is the use of multidimensional 8-PSK trellis codes
proposed by Pietrobon et al. [33]. Although these schemes were designed for the Gaussian
channel they show reasonable diversity when the number of states exceeds 16.

All the above TCM schemes have a spectral efficiency of two bits per symbol. The spectral
efficiency can be increased by using Ungerboeck’s [34] multidimensional QAM trellis codes,
but their inherent diversity is very bad due to uncoded bits, which induce parallel transitions
in the trellis [31].

Signal constellations having lattice structure are commonly accepted as good means for
transmission with high spectral efficiency. The problem of finding good signal constellations
for the Gaussian channel can be restated in terms of lattice sphere packings. Good lattice
constellations for the Gaussian channel can be carved from lattices with high sphere packing
density [1]. The linear and highly symmetrical structure of lattices usually simplifies the
decoding task.

For the Rayleigh fading channel the basic ideas remain the same. The problem is to
construct signal constellations with minimum average energy for a desired error rate, given
their spectral efficiency. A very interesting approach has been recently proposed [36, 37],
which makes use of some results of algebraic number theory. Using totally real algebraic
number fields, some good lattice constellations matched to the Rayleigh fading channel, up
to dimension eight, are found. The effectiveness of these constellations lies in their high
degree of diversity, which is actually the maximum possible. By diversity we intend the
number of different values in the components of any two distinct points of the constellation.

The signal constellations for the Gaussian channel are usually very bad when used over the
Rayleigh fading channel since they have small diversity. Viceversa, the signal constellations
in [37] matched to the Rayleigh fading channel are usually very bad when used over the
Gaussian channel since the sphere packing density of these lattices is low. In this chapter we
search for lattice constellations which have good performance on both Gaussian and Rayleigh
fading channel. The same constellations may be used for the Ricean channel which stands
in between the Gaussian and the Rayleigh channel.

The practical interest in such signal contellations rises from the need to transmit infor-
mation over hoth terrestrial and satellite links.

The chapter outline is the following. In Section 5.2 we show the system model and give the
basic definitions. In Section 5.3 we analyze the error probability bounds to find an effective
approach to the search of good constellations. The final target of this work is to find good
constellations for the Gaussian and the Rayleigh fading channel; we will present two different
approaches. The first (Sections 5.4 and 5.5), considers some constellations constructed for
the fading channel and trades some of their diversity for a higher asymptotic gain over the
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Figure 5.1: The transmission system

Gaussian channel. These constellations are obtained using some results in algebraic number
theory, which will be presented in the various subsections. The second approach (Section 5.6)
goes in the opposite direction. Starting from good constellations for the Gaussian channel
we try modifying them to increase their diversity. In this section we will need some further
results in algebraic number theory related to ideals and their factorization. Section 5.7 will
illustrate the decoding algorithm used with these lattice constellations together with practical
results. Finally, in the conclusions we discuss the two different approaches to establish which
one is the most effective.

5.2 System model and terminology

The baseband transmission system is shown in Figure 5.1. The mapper associates an
m-uple of input bits with a signal point x = (21, 24,...7,) in the n-dimensional Euclidean
space R". L.et M = 2™ be the total number of signal points in the constellation. An inter-
leaver precedes the channel in the system model. It interleaves the real components of the
sequence of mapped points. The constellation points are transmitted either over an additive
white Gaussian noise (AWGN) channel, giving r = x + n, or over an independent Rayleigh
fading channel (RFC) giving r = a®@x+n, where r is the received point. n = (ny,n9,...n,)
is a noise vector, whose real components n; are zero mean, Ny-variance Gaussian distributed
independent random variables. @ = (a1, a3,...a,) are the random fading coefficients with
unit variance and ® represents the componentwise product. Signal demodulation is assumed
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to be coherent, so that the fading coefficients can be modeled after phase elimination, as
real random variables with a Rayleigh distribution. The independence of the fading sam-
ples represents the situation where the components of the transmitted points are perfectly
interleaved.

The M transmitted signals x are chosen from a finite constellation S which is carved from
a lattice A. In particular the points of the constellation are chosen among the first shells
of the lattice, so that the signal set approaches the optimal spherical shape. Fach point is
labeled with an m-bit binary label. The spectral efficiency will be measured in number of

bits per two dimensions
2m

§ = —

n
and the signal-to-noise ratio per bit is given by

o
No

SNR =

where [, is the average energy per bit and Ny/2 is the noise power spectral density. Let
FE = EI||x||?] be the average baseband energy per point of the constellation. The equality
Fp = 0.5% F/m = E/(n * s) is very useful to relate the SNR to the constellation’s second
moment.

After de-interleaving the components of the received points, the maximum likelihood
detection criterion imposes the minimization of the following metric

n
m(x|r) = Z |r; — ’I‘7‘2
=1

for AWGN channel and

.

m(x|r,a) =Y [r; — oga;] (5.2)

=1
for Rayleigh fading channel with perfect side information. Using this criterion we obtain the
decoded point x from which the decoded bits are extracted.

5.3 Searching for optimal lattice constellations

To address the search for good constellations we need an estimate of the error probability of
the above system.

Since a lattice is geometrically uniform we may simply write P.(A) = P.(A]x) for any
transmitted point x € A. For convenience, x is usually taken to be the all-zero vector 0. We
now apply the union bound which gives an upper bound to the point error probability

P(S) S P(A) <Y Plx—y) (5.3)
Y#X

where P(x — y) is the pairwise error probability, the probability that the received point is
‘closer’ to y than to x according to the metric defined in (5.1) or (5.2), when x is transmitted.
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The first inequality takes into account the edge effects of the finite constellation S compared
to the infinite lattice A.
For the AWGN channel equation (5.3) simply becomes [1, Chap. 3]

d min 2
P.N) & Zerfe (FQ—\/T{]) (5.4)

where 7 is the kissing number and dg,,;, 1s the minimum Fuclidean distance of the lattice.
The error probability per point of a cubic constellation can be easily approximated, for large
Fy/ No, with a function of the signal-to-noise ratio, (see appendix A), given by

T 3s K
P.(S) ~ Eerfc ( oot Vofy(/\)) (5.5)
where
d%, . 6
/\ — Lman A,
’7( ) 7)01(/\)2/77 () j)

is the fundamental gain of A defined in Chapter 2. We recall that 4(Z") = 1, so that v(A)
is the asymptotic gain of A over Z". For spherical constellations the total gain should also
take into account the shape gain.

For the Rayleigh fading channel, the standard Chernoff bound technique [31] or the
direct computation using the Gaussian tail function approximation (see appendix B), give
an estimate of the pairwise error probability

1L 1
Px—y) <5 — (5.7)
2 1]1 1+ 5=5r
and for large signal-to-noise ratios
1 1 1 1
Px—=y)<- 1] o=+ =3 l (5.8)
2 i LS_NvOL 2 <§%) d;”(x,y)Q

l . . . .
where d;)(x,y) is the (normalized) [-product distance of x from y when these two points
differ in [ components

0 2 _ i Yi .
d)(x,y)" = (F ) . (5.9)

Asymptotically, (5.3) is dominated by the term 1/(F,/Ny)" where L is the minimum

number of different components of any two distinct constellation points. I is the so called
diversity of the signal constellation.

In general rearranging equation (5.3) we obtain

zw: [([

]
=7, (£ Ee
SN(]
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A

where K; = —2
1 Zd(pl) (d(,,”)2

with [ different components, I, < < n. The series in K; can be interpreted as a theta series

Ad(,f) is the number of points y at [-product distance dg) from x and

of the lattice [1], when the product distance is considered instead of the Euclidean distance.
In equation (5.10) we find all the ingredients to obtain a low error probability at a given
signal-to-noise ratio F,/Ng. In order of relevance we have to :

1. Maximize the diversity . = min(/).

2. Minimize the average energy per constellation point F.

3. Minimize K; and especially take care of d, ., = min(d;")(x,y)) and 7, = A (1) the

dg)ﬁ
kissing number for the L-product distance.
The terms in (5.10) clearly become less important when [ increases, but the values of A ()
P
and dg)(x,y) should be taken into account for non asymptotic considerations.
In fact, the asymptotic coding gain of a system-2 over a reference system-1, having the
same spectral efficiency and the same diversity 1. will be given by

[‘7’7‘(]) 1/]; _
asympt. — <]]
’7 sympt ([(L(Q)) () )

with the definitions given above. In general, the asymptotic coding gain may not be defined
for systems with different diversities 1y and L,; in such cases it is still interesting to have
an estimate of the coding gain at a given bit error probability Py(e). Letting Fy 2/ Ny be the
signal-to-noise ratio of the system (2) corresponding to P, 2(e) we have

Tog—Iq
[({, (]) e S E},Q 1
Fop o/ Ng) = - —— 5.12
(i) = (25 (552) (5.12)

In the sequel of this chapter, we limit our search for optimal constellations, with high
diversity and low energy, to the class of lattices constructed from algebraic number fields.

5.4 Lattices from algebraic number fields

In the following, we will assume that the reader is familiar with the basic definitions on
lattices (see [1]) and we show how to construct lattices from algebraic number fields. We will
present only the strictly relevant definitions and results in algebraic number theory, which
lead to the lattice construction. The exposition is self-contained and is based on simple
examples, but the interested reader may refer to any book on algebraic number theory to

quench his thirst for rigour (e.g. [41, 42, 43]).
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5.4.1 Algebraic number fields

Let Z be the ring of rational integers and let K be a field containing Q, the field of rational
numbers. Algebraic number theory studies the properties of such fields in relation to the
solution of algebraic equations.

Definition 19  Let a be an element of K, we say that a is an algebraic number if it is
a root of a monic polynomial with coefficients in Q. Such polynomial with lowest degree is
called the minimal polynomial of o and denoted p,(z). If all the elements of K are algebraic
we say that K is an algebraic extension of Q.

Fzample 1 - Let us consider the field K = {a + bv/2 with a,b € Q}. Tt is simple
to see that K is a field containing Q and that any a@ € K is a root of the polynomial
pa(z) = 2% — 2az + a® — 2b* with rational coefficients. We conclude that K is an algebraic
extension of Q.

Definition 20 We say that o € K is an algebraic integer if it is a root of a monic
polynomial with coefficients in Z. The set of algebraic integers of K is a ring called the ring
of integers of K and is indicated with Of .

Fzample 1 (cont.) - In our example, all the algebraic integers will take the form a + /2
with a,b € Z. Care should be taken in generalizing this result (see Example 3). Ok is a ring
contained in K since it is closed under all operations except for the inversion. For example

(2 + 2\/5)*1 =(2 -~ \/5)/6 does not belong to Ok.

Definition 21 We define the degree [K : Q] of an algebraic extension K of Q as the
dimension of K when considered as a vector space over Q. An algebraic number field is
an algebraic extension of Q of finite degree.

Fzample 1 (cont.) - K is a vector space over Q of dimension 2 so it is an algebraic number
field of degree 2 (a quadratic field). This is one way of seeing algebraic number fields: as
finite dimensional vector spaces over Q.

Result 1 Let K be an algebraic number field. There exists an element 6 € K, called
primitive element, such that the Q wvector space K is generated by the powers of 6. If
K has degree n then (1,0,0%...0" ") is a basis of K and deg(ug(x)) = n. We will write

K = Q(f).

Frample 1 (cont.) - Tn the above example we have K = Q(v/2). # = /2 is a primitive
element since (1,v/2) form a basis. The minimal polynomial is pg(z) = 2? — 2.

FExample 2 - et us consider a slightly more complex example with K = Q(\/§, \/§) all
its elements may be written as a+bv/2+cv/3+dV6 with a, b, ¢,d € Q so that (1,/2,v/3,/6)
is a basis of K. If we consider the element § = /2 + \/g, we have

1 0 5 0
(1.6,6%,67) = (1,v/2,V/3,V6) 8 } 8 ]g]
00 2 0
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The transition ma‘rﬂx is invertible in Q proving that we can write K = Q(#). The minimal
polynomial of # is 2 — 1022 +1 and its roots are = \/_—I—\/_ V2 \/_ V2 \/_ V243
In this particular case they are all primitive elements.

The problem of finding the primitive element given a basis is in general very complex.
Usually we start from a field defined by its primitive element.

Result 2 There exists a primitive element 6 which is an algebraic integer of K. In other
words, the minimal polynomial pg(z) has coefficients in Z.

In the above examples # is not only a primitive element but also an algebraic integer.

5.4.2 Integral basis and canonical embedding

In the special case K = Q(\/§), we have seen that the ring of integers O was the set of all
elements a 4+ bv/2 with a, b integers. O = Z(\/§) is a ‘vector space’ over Z with (],\/5) as

a basis. O is called a Z-module, since Z is a ring and not a field.

Result 3  The ring of integers O of K forms a Z-module of rank n (a linear vector space
of dimension n over Z).

Definition 22 Lef (wy,wa,...w,) be a basis of K. We say that (w;) is an integral basis
of K if Ox = Z(wy,wa,...w,), that is, if (w;) is a generating set of the Z-module Ok . So
that we can write any element of Ox as Y.!_, a;w; with a; € Z.

Frample 3 - Take K = Q(+/5); we know that any algebraic integer 5 in K has the
form a 4+ b5 with a.b € Q such that the polynomial ps(z) = 2* — 2ax + a*> — 5b* has
integer coefficients. By simple arguments it can be shown that all the elements of O take
the form 8 = (u + 7)\/5)/2 with both u,v integers with the same parity. So we can write
B =h+k(1 —I—\/g)/Q with h, k € Z. This shows that (1, (1 —I—\/g)/Q) is an integral basis. The
basis (],\/g) is not integral since a + by/5 with a,b € Z is only a subset of Of. Incidently,
(1+ \/g)/Q is also a primitive element of K with minimal polynomial 22 — z — 1.

There exist efficient algorithms to find an integral basis of a given algebraic number field
in polynomial time [39, 40].

Definition 23 et K and K' be two number fields containing Q, we call ¢ : K — K’ a
Q-homomorphism if ¢(a) = a for ecach a € Q. If K' = C, the field of complex numbers,
a Q-homomorphism ¢ : K — C is called an embedding of K into C.

Result 4 et 6 be a primitive element of K and pg(z) its minimal polynomial with roots
(0 =6,,05,...0,). There are exactly n embeddings of K into C. Fach embedding o, : K —
C, 0:(0) = 0;, is completely identified by a root 0; € C of pg(z).



Notice that o1(f) = 6; = 6 and thus oy is the identity mapping, o1(K) = K. When
we apply the embedding o; to an arbitrary element o of K using the properties of Q-
homomorphisms we have

n

7o) = (S at') = D oila)eh) = 3 audl € C

k=1

and we see that the image of any o under o, is uniquely identified by #6;.

Definition 24  The elements o1(a), 09(@),...0,(a) are called the conjugates of a and

N(a) = H oi(a)
is the algebraic norm of o.

Result 5 For any a € K, we have N(a) € Q. If a € Og we have N(a) € Z.

Fzample 1 (cont.) - The roots of the minimal polynomial 2% — 2 are 6; = V2 and
f, = —+/2 then

o1(0) = V2 01(a—|—b\/§):a—|—b\/§
o9(f) = 5 0'2((],+b\/§) —a— /2

The algebraic norm of a is N(a) = o1(a)oa(a) = a®> — 26 and we can verify the above
result.

Definition 25 et (w1, wy,...w,) be an integral basis of K. The absolute discriminant

of K is defined as dx = det[o;(w;)]*.
Result 6  The absolute discriminant belongs to 7.

Fzample 3 (cont.) - Applying the 2 Q-homomorphisms to the integral basis wy,wy, we

obtain 5 )
dr = det ( oi(1) o2(1) ) = det ( ] ] ) =5
K PAY] _ (3 .
0_1(14—2\/5) 0_2(14—2\/3) 1+2\/g 1 2\/g

Definition 26  Let (01,09,...0,) be the n Q-homomorphisms of K into C. Let ry be the
number of Q-homomorphisms with image in R, the field of real numbers, and 2ry the number
of Q-homomorphisms with image in C so that

ri+2rg —=n .

The pair (rq,r3) is called the signature of K. [fry = 0 we have a totally real algebraic
number field. If ri = 0 we have a totally complex algebraic number field. In all other
cases we will speak about complex algebraic number field.
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Example 4 - All the previous examples were totally real algebraic number fields with
r1 = n. Let us now consider K = Q(v/—3). The minimal polynomial of \/—3 is 2% 4 3
and has 2 complex roots so the signature of K is (0, 1). For later use we ohserve that
(1,/=3) is not an integral basis. If we take § = e5 = (14iy/3)/2, where i = /=1, we have
K = Q(#) = Q(v/—3) and an integral basis is (1, (1 4 7v/3)/2). The minimal polynomial of
§is 22 — 2 4+ 1. The ring of integers of this field is also known as the Fisenstein integer ring.
This is the most simple example of cyclotomic field i.e., a field generated by an m-th root of
unity.

Definition 27  Let us order the o;’s so that o;(a) € R for 1 <1 < ry and 0,4,,(a) is
the complex conjugate of o;(a) for ri +1 < j < ry +ry. We call canonical embedding
o: K — R"™ x C™ the isomorphism defined by

o(a) = (o1(a)...00 (@), 00 41(@), ... 00 4r () € R x C™
If we identify R™ x C™ with R™. The canonical embedding can be rewritten as o : K — R”,
o(a) = (o1(a),...00(a),Rop1(@), o 41(@), ... Row 40y (@), S0, 40y () €R”

where RN is the real part and ¥ is the imaginary part.

This definition establishes a one-to-one correspondence between the elements of an alge-
braic number field of degree n and the vectors of the n-dimensional Euclidean space. The
final step for this algebraic construction of a lattice is given by the following result.

Result 7 Let (wy,wy,...w,) be an integral basis of K and let di be the absolute discrim-
inant of K. The n vectors v; = o(w;) € R" are linearly independent, so they define a full
rank lattice A = o(Ox) with generator matriz

oi(wi) o o (wi) Roppi(wi) Sonpi(wi) o Rop g (@) S04, (W)
Ti(wa) . op (W) Ropgi(we) Sopga(we) o0 Ry, (W) S 4, (wo)

G = , , (5.13)
J1 (Lu'n) ot Tr, (w”‘) %07"14'1 (w”‘) %0-7"14'] (L".n) st %0—7‘1-{-1"2 (Lu'n) S\"rﬁ-l-f'z ((.u'n)

The vectors v, are the rows of G. The volume of the fundamental paralletotope of A is given

by [41]
vol(A) = |det(G)| =27 x y/|dk] (5.14)

5.4.3 Totally real and totally complex number fields

Result 8 The lattices obtained from the generator matriz (5.13) exhibit a diversity . =

IA —I—Tg.
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Proof. Let z # 0 be an arbitrary point of A
z=(21,29,...2,) = Z)\ivi
=1

with A; € Z and v, = (v;;) the rows of the lattice generator matrix G,

n n n 1 n r14+79 n 1479 n
R (z A.ywj) S e (z A.fwj) T o (z Ajw]-)
=1 i=1|7=1 =1 7=1 i=r14+1 7=1 i=r14+1 7=1

(5.15)
The minimum number of non-zero factors is ry 4+ ry since the real and imaginary parts of
any one of the complex embeddings may not be simultaneously zero. We then conclude that
for such lattices we have a diversity . > ry + ry. Now, let us take the special element o = 1
in Ok. The canonical embedding applied to 1 gives exactly ry + r non zero terms in the
above product. Hence, we can confirm that I, = ry 4+ ry, as conjectured in [38]. Q.E.D.

In the case of totally real algebraic number fields (ry = 0), presented in [37], we have

or(wr) og(wr) ... on(wr)
o o1(wa) o9(wr) ... 0n(w2)
or(wn) oa(wn) ... on(w,)

The lattice A constructed in this case attains the maximum degree of diversity . = n.

The n-product distance of z from 0 is

d;”)(07z) = H‘Z}‘:H

=1 =1

o; ( Aj%‘) ‘ =N (Z Ajwj) (5.16)
= =

Since >°7_; Ajw; € O and it is different from zero, according to Result 5, we have

ZW: Ajoi(w;)

J=1

> Ao =11

7=1 =1

n

= 1I

=1

d(0,2) > 1 Yz # 0

The minimum product distance d, i = 1 1s given by the elements of K with algebraic norm

1, the so called units of K. The fundamental parallelotope has volume
vol(A) = +/|dk]| .

The totally real algebraic number fields with minimum absolute discriminant are known up
to dimension 8 (first column of Table 5.1) and appear to be the best asymptotically good
lattices for the Rayleigh fading channel. In fact, for a fixed number of points M, the energy of
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n ro =0 re = 1 rg =2 | rq =3 ro —4
2 5 -3

3 49 —23

4 725 —275 117

5 14641 —4511 1609

6 300125 —92779* | 28037 | —9747

71 20134393 ? ? ?

8 | 282300416 ? ? ? 1257728*

Table 5.1: Minimal absolute discriminants. Values with a * are the best known values.

constellations carved from these lattices is is proportional to vol(A) and vol(A) is minimized
by selecting the fields with minimum absolute discriminants.

Still two drawbacks are hidden behind the maximal diversity and the minimal absolute
disecriminant. The fundamental volume can be further reduced if we choose a signature where
rq # 0, i.e. if the number field is complex. Equation (14) shows that vol(A) can be divided
by 22. We can even maximize ry by working in a totally complex field, ry = n/2. Lattices
derived from totally real number fields have bad performance over a Gaussian channel (a
negative fundamental gain as shown in Section 5.7) mainly because of their high values of
vol(A) (Table 5.1). The second drawback appears over the fading channel and is related to
the product kissing number 7,. We find that the product kissing number is much higher for
real fields lattices than for complex fields lattices.

Lattices built from complex algebraic number fields have been first proposed in [38]. The
totally complex fields are possible only for even degrees since ry = n/2. The generator matrix

18
Roy(wr) Sor(wr) Rop,(wi)  Sop,(wr)
Roy(we) Sor(wa) ... Rop,(ws) Sor,(wa)
G = ) ) (5.17)
Koy ‘(wn) Sy (wn) Ror, (wn) i‘mr;(wn)

Nothing can be said about the value of the minimum product distance d, ,;, for complex
fields lattices, since it is not related to the algebraic norm as in the totally real case.

LLooking at Table 5.1 we immediatly notice that the absolute discriminants of the complex
fields are comparatively smaller than the ones for the totally real fields. This fact, combined
with the fact that vol(A) is reduced by a factor 277>, results in lower average energy of the
constellation S, for complex fields. Of course the price to pay is the reduced diversity unless
we use number fields with higher degrees such as 12, 16 or 24. This lead us to search for good
lattices (L1 or L24) adapted to Rayleigh channel and the logical continuation is section 6. In
the next section, we study in detail some of the lattices constructed by canonical embedding

applied to fields in Tables 5.1 and 5.2.

69



pa(x) vol(A, 1)
Agy | 2?2 — 2 +1 0.8660
Agg | 2?2 — 2 —1 2.2361
Azg | 2% — 2 —1 2.3979
Azz | 2®+22— 22— 1 7
Agg |2 — 2 — a2 + 2+ 1 2.7042
Aga |2 — 2 +22 -1 8.2916
Agala? =232 +a2+1 26.9258
Asa 2’ —a+a22+2—1 10.0281
Asa | 27 —22% + 22 — 1 33.5820
Ass | 27+ 2% — 42 — 322 + 32 + 1 121
Aga | 2% — 327 +42* — 42° + 427 — 22 + 1 12.3409
Aga | 2% — 227 + 327 — 22 — 1 41.8606
Ags | 2%+ 27 —22* — 327 — 22 + 22 + 1 152.2982
Aeg | 2% —2° — Ta* + 227 + 722 — 22 — 1 H47.8367
A7z 27+ 2% —62° — 5zt + 823 4+ ha? — 22 — 1 4487.1364
Aga | 2% — 227 + 425 — 424 4+ 322 — 22 + 1 70.0928
Agg | 2% + 227 — 728 — 82° + 152 + 82 — 922 — 22 + 1 | 16801.7980

Table 5.2: Reduced minimal polynomials and fundamental volumes of the corresponding
lattices.

5.5 Lattices from minimal absolute discriminant fields

In Table 5.1 we have all the known minimal absolute discriminant fields up to dimension
8. These fields (especially in dimensions above 4) have been a subject of study of a branch
of mathematics known as computational algebraic number theory. Computational algebraic
number theory has developed powerfull algorithmic tools which enable to extend many re-
sults, with the aid of computers, to fields of higher degree [39, 40]. Part of this table, up
to n = 6, can be found in [43] and the references therein. All the totally real fields are
listed in [37]. For degree 5 and 6 complex fields see references [44] and [45] respectively.
The degree 8, totally complex field of minimal absolute discriminant can bhe found in [46]
together with other 25 totally complex fields of ahsolute discriminant smaller than 1954287.
Table 5.2 gives the reduced minimal polynomials of the fields of Table 5.1 along with the
fundamental volume of the corresponding lattice obtained from the canonical embedding. A
minimal polynomial is called reduced if the powers of one of its roots (the primitive element)
is an integral basis of the number field. These lattices will be indicated with A, ;.

The main steps for the construction of a lattice from an algebraic number field K = Q(#)
can be summarized as follows:

e Find an integral basis of K, which identifies Ox.
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e Find the n roots of ug(z), which identify the n embeddigs o1, 04, ... 0,.
e Construct the generator matrix applying the canonical embedding.

We show the application of this procedure to some of the lattices of Table 5.2.

A2_1 K = Q(iv3). From Example 4 we have the integral basis (],%) The 2
embeddings are 01(i\/§) =13, Ug(i\/g) = —14/3 and the lattice generator matrix is:

o~ (wmit o278 () 5)

2

We may recognize in the above matrix the hexagonal lattice Ay. The fundamental volume

is vol(Agq) = | det(G)| = v/3/2 and the minimum squared Fuclidean distance is d%_. = 1.
ri = 0,79 = 1 and the diversity is . = 1 since the vector (1,0) belongs to the lattice.
AQ_Q K = Q(v5). From Example 3 we have the integral basis (],H?\/g). The 2

embeddings are 01(\/5) = \/g, 02(\/3) — —/5 and the lattice generator matrix is:

T ]) T9 ]) 1 1
G = 1+\/3) 02(1+\/3) B W B RV B4}

0'1( 3

The fundamental volume is vol(A,5) = |det(G)| = V5 and the minimum squared FKuclidean

distance is d? =2. 11 =2,ry = 0 and the diversity is [, = 2.

Fmin

A K = #). where f is a primitive element with minimal polynomial 2% — 2 — 1
3.2 ; p poly ;

3
0= U4V = (L +V)i7£(U—V)

-1 3/943v63 1 z/Q—‘%
) = A/—
3 2

The primitive element 6 coincides with #, and an mtegra.] basis is 1,0,0%. The three em-

whose roots are

where

beddings are o1(f) = 61 (real), 02(f) = 03 and 03(0) = 03, where o5 and o3 are conjugates
(r1 = 1,7, = 1). We obtain the lattice generator matrix:

1 1 0 1.000  1.000  0.000
G = (U +V) N U+ V) B4+ V) —| 1325 —0.662 0.562
(U+V)?—4 LU+ V2-4UV) é U —-v?) 1755 0123 —0.745

The fundamental volumeis vol(A35) = | det(G)| = 2.39 and the minimum squared Euclidean
distance is d%, .. = 1.895. The diversity is given by . = rqy +ry = 2 since the vector (1, 1,0)
belongs to the lattice and d;g)((ﬂ,(], 0),(1,1,0)) = 1.

71



A3_3 K = Q(cos(27/7)). An integral basis is (2cos(27/7),2cos(4x /T),2cos(67/7)).
With the following three embeddings o1(cos(27 /7)) = cos(2x/T), o3(cos(27 /7)) = cos(4x/T),

o3(cos(27 /7)) = cos(67/7) we obtain the lattice generator matrix:

2cos(27/T) 2cos(4x/T) 2cos(67/7)
G=| 2cos(4x/T) 2cos(6x/T) 2cos(2x/T)
2cos(67/7) 2cos(27/T) 2cos(4x/T)

)

The fundamental volume is vol(Az3) = |det(G)| = 7 and the minimum squared Euclidean

= 3. The diversity is . = 3.

2
distance is dy,,;, =

A4_2 K = Q(f) where 6 is a primitive element with minimal polynomial z* + 22? + 13

and roots
/ ‘3 — ] /\/ 1
91’2’3’4 = Zt(B + 7] ( + )

Taking the following signs for the roots 6y : (++), 0 = (—+), 03 : (+—), 04 : (——) we have
the primitive element § = 6; and the four embeddmgq o1(0) = 91, 09(0) = 05, 03(0) = b5,
04(0) = 64. The canonical embedding is given by o = (Roy, Soq, Roy, Soq), but (1,6,67%,6%)

is not an integral basis, because x4+ 22?2 4+ 13 is not reduced. An integral basis is

1+ 6)@+6)

<1 ;(wa) 13+67). <

We obtain the lattice generator matrix:

1.000 0.000 1.000 0.000
1.070 —-0.758 —0.070 —0.758
0.500 —0.866 0.500 0.866
—0.121 —-1.306 0.621 —0.440

G =

The fundamental volumeis vol(A45) = | det(G)| = 2.70 and the minimum squared Euclidean
distance is d%,, . = 2. The diversity is given by I. = ry = 2 since the vector (1,0,1,0) belongs
to the lattice and d;f)(((],(], 0,0),(1,0,1,0)) = 1.

A4_3 K =Q(Uy-3+ Q\/g) The roots of the minimal polynomial 2* — 62% — 11 are

0, = \/34+2V5, 0, = —/34+2V5, 0; = iy/—3+2V5, and 6, = —iy/—3 4+ 2v/5. With

6 = 65, the four embeddings are o1(0) = 61, 09(0) = 03, 03(0) = 05 and 04(0) = 64 and the
integral basis has the same form of the one of Ayy. The canonical embedding is given hy
o = (01,09, Ros, So3). We obtain the lattice generator matrix:

1.000 1.000 1.000  0.000
—0.866 1.866 0.500 —0.606
2.618 2.618 0.381 0.000
—2.269 4.887 0.190 —0.231
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n|ryg=01]r9o=1 1 rqg=2|r9=3|ry=4
2 | —0.485 | 0.625

3| —0.863 | 0.242

41 —-1.130 | 0.178 0.850

5 —1.341 | —0.084 | 0.597

6 | —1.347 | —0.286 | 0.380 | 1.133

71 —1.983 ? ? ?

8 | —1.532 ? ? ? 1.406

Table 5.3: Asymptotic gains for the Gaussian channel

As an example we show the calculation of the element (4,2) of the above matrix

1 1
Ug(g(] +60)(3 +6%) = Ug(g)gg(] + 0)oy(3 +0%) =
1 1
— a(D)(oa(1) + a0 (7a3) + 72(6) = (14 02)(3+ ) = 2269
The fundamental volumeis vol(A43) = | det(G)| = 8.29 and the minimum squared Euclidean
distance is d,,.. = 2. The diversity is given by I = 7y + ry = 3 since the vector (1,1,1,0)

belongs to the lattice and d%‘q)(((],(], 0,0),(1,1,1,0)) = 1.

A4_4 K = Q(\/7+2V5). The roots of the minimal polynomial 2* — 1422 + 29 are

0 =T+ 2V5, s = —/T+2V5, 5 = /T — 25, and 6, = —/7 — 2/5. With 8 = 6;, the

four embeddings are o1(0) = 601, 02(0) = 05, 03(0) = 03, 04(0) = 64 and an integral hasis has

the same form as in Ay5. We obtain the lattice generator matrix:

1.000  1.000 1.000 1.000
—1.193 —0.294 1.294 2.193
3.618  1.381 1.381 3.618
—4.318 —0.407 1.789 7.936

G:

The fundamental volume is vol(As4) = |det(G)| = 26.92 and the minimum squared Eu-

clidean distance is d%,, . = 4. According to Section 5.4.3, the diversity is 4 and d, ;.. = 1.

5.6 Lattices for the Gaussian channel adapted to the
fading channel

The idea of rotating a QAM costellation in order to increase its diversity was first presented
in [36]. The advantage of such a technique lays in the fact that the rotated constellation holds
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Q(0) N Ideals

Dy 6 + 1 8 (2,0 +1)

Fes 6% —6° + 1 9 (3,(0+1)?)

Fs.a 6% — 0%+ 6% —6° + 1 20 (5,0 —2)

Kia6 012 — 9" 4+ 6° — 934 21 (7,0 4+ 3)

+05 — 0+ 07 — 0+ 1

Aieg 016 — 912 9% — 0 + 1 40 | (2,07 +6°+ 6>+ 6 +1)
(5,0% +2)

/\24,12 EEPE _|_921 7Py _|_918 97 —I—@m — 4 39 (3793 _|_02 — ])

+0"2— 00 467 — 07+ 65 — 0+ 67— 0+ 1 (3,0°+60>+6+1)

(13,6 — 3)

Table 5.4: Some known lattices from cyclotomic fields

its properties over the Gaussian channel. The method proposed was straightforward: find
the rotation angle which gives a diversity of 2 and maximizes the minimum product distance.
It was found that for a 16 QAM the rotation angle of 7/8 was optimum. Unfortunately, in
dimensions greater than 2 this method becomes impractical.

We have at our disposal the work of Craig [47, 48], who showed how to construct the
lattices Fg, Fs, Ayq (Leech lattice) from the totally complex cyclotomic fields K = Q(e™2™/N)
for N =9,20,39. Applying his procedure we found Dy (Schlafli lattice), K9 (Coxeter-Todd’s
lattice) and Ayq (Barnes-Wall’s lattice) from the 8th,21st and the 40th root of unity. These
lattices are obtained by applying the canonical embedding to particular integral ideals of
the above cyclotomic fields. The ideals are given in Table 5.4. The lattices we obtain are
actually sublattices of o(Ox). This means that they have the same diversity . = n/2 of
0(Ox), but a much higher fundamental gain compared to the lattices presented in section 5.

To illustrate the contruction of the most famous lattice sphere packings, we need a few
more results from algebraic number theory.

5.6.1 Ideals in the ring of integers

In the sequel, all given definitions and properties for ideals are true only in number fields
and are not necessarily valid in an arbitrary field. For more theoretical details, the reader is

invited to refer to [41], [39] and [40].
Definition 28 et K be a number field of degree n and Ok its ring of integers. An ideal

I of Ok is a sub-Z-module of O such that for every a € Ox and b € I we have ab € 1,
breefly al C 1.
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The sum and the product of two ideals I and J of Ok, are also ideals of Ox and are

defined by

I+.J = {z+y,wherex € landy € J}
1] = {Z x;y;, wherez,; € landy, € J} .

Similarly, the intersection of two ideals is an ideal and we have the inclusions
IJjcinJclcil+J.

Definition 29  An ideal I of Ok is called prime (or maximal) if the quotient ring Ok /1
is a field. I is called principal if I = aOk for some algebraic integer o, in this case we also
denote | = (o).

Result 9  Let I be a non-zero ideal of Or. Then I is a module of maximal rank. The
quotient ring Ox /1 is finite and its cardinality is called the norm of the ideal I and denoted
N(I), N(I') = Card(Ok/T) =[O : I].

If wy,wq, ... ,w, is an integral basis of Ok, we can write Og = wZ 4+ wZ+ ... +w,Z. 1t
simply means that the integral basis is a Z-basis and that Og is a module of maximal rank
n. Let z be a non-zero element of 1. The following relation xOx C I C Ok shows that [
is included in a module of rank n and that [ contains a module of rank n. Hence, [ itself
has the maximal rank n. It can be expressed as | = wZ + wZ + ... + v,Z, where v; are
elements of Ok. The proposition below follows :

Result 10 Any non-zero ideal I of O can be written as [ = w2 + vwZ + ...+ ~,7Z. The
set {~;,i =1...n} is called a Z-basis of I.

After applying the canonical embedding o to the ideal [ included in the ring Ok, we
obtain the lattice A; = o(7) of rank n included in A = o(Ok). As a consequence of the two
above results, the generator matrix GGy of Ay is given by

ai(m) . o (m) Roppi(n) Sonp(n) 0 Rowge, () SO g (1)
ai(v2) oo or(v2) Rorgi(r2) Sor(r2) 0 Rowge,(72) S04, (72)

Gr = | , , (5.18)
a1 (7”‘) cee Opy (7”) 5}%0-7'14'1 (7”) S\Y(J',.1+1 (7”) s %0—7‘1 +ra (7”) S\YUTH-H“Q (7”)

Logically, we ask for the relation between the two matrices (G and ;. This can be found
by comparing Ox and [ as Z-modules. let T be the n x n matrix associated with the
transition from the first basis to the second basis, i.e.

T W

72 W2
] =T x
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Indeed, the ~;’s are algebraic integers and can be written as linear combinations of the
wi's. v = Yp_; tiswr where t; € Z. We deduce that T' = [t;;] is an integer matrix. T'is
also known as the integral matrix representation of /. Furthermore, we can state the
following result:

Result 11 The generator matriz Gy of the lattice A; can be obtained from the generator
matriz G of the lattice A by applying the transition T' between the 7-bases of I and Ok,
breefly Gy = T'G.

This is derived directly from the formula v, = >>7_; t;xwi, which is also valid after taking
the real part and the imaginary part of both sides, o,(~;) = >1_, 0;(tiwe) = Y1 tinoj(wk ).
The equality G; = T'G allows us to write det G; = det T'x det G which means that vol(A;) =
| det T'| x vol(A). The last equation can be used to compute the fundamental volume of Aj.

Result 12
vol(Ar) = N(I) x 27" x \/|dk| (5.19)

Proof. By definition N(7) is equal to the cardinality of Ok /I. But Ok /I is isomorphic
to the quotient A/A; due to the canonical embedding o. Thus, they have the same car-
dinality (or same index as quotient groups). So we have N(/) = |A/A;|. But the group
partitioning [35], A = A; 4+ [A/Aj], shows that a fundamental region of the sub-lattice A;
can be constructed as the disjoint union of |A/A;| copies of a fundamental region of A,
ie. vol(Ar) = |A/A1] x vol(A) = N(I) x vol(A). Finally, equation (5.19) is obtained by
combining vol(A;) = N(I) x vol(A) and equation (5.19). Q.E.D.

Combining Result 10 with equation (5.19) we have N(I) = det T..

Result 13 Let I = aOgk be a principal ideal. The norm of I is equal to the absolute value
of the algebraic norm of its generating element, N(I) = N(a).

Proof. The Z-basis of the principal ideal | = aOp is the set {ow;,7 = 1...n}. The
transition equation becomes

(03] 03}
W2 W9

a X . = R(a) % (5.20)
Wn W,

Recall that T' = R(a) and N(I) = |detT'|. If we take all the conjugates of the above
identity,

or(a)(or(wr), or(ws), ... ok(w,)) = R(a)(or(wr), or(ws), . .. ox(w,))

for k =1,2,...n, where the prime indicates the transposition of the vector. We can write
in a concise form

Q diag(o1(a),09(a),...0.(a)) = R(a)Q
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where Q = [0;(w;)] for 2,7 = 1,...n. Taking the determinant we obtain det R(a) = N(a)
and finally N(7) = |det R(a)| = |N(a)|. Q.E.D.

Frample 5 - Let K = Q(v/5) and let 6 be a primitive element with minimal polynomial

2> — 2 — 1. Given a = 0 — 3 € Ok, we want to compute the integer transition matrix

T = R(a) = < Z Z > Using (5.20) with w; = 6" and the identity 62 = 0 + 1, derived

from the minimal polynomial, we obtain

(3)-m(3) = (%) (k)

which gives R(a) = ( 7]2 jg ) We now have N(0 — 3) = N(%ﬁ) = 5 which is equal to
det R(6 — 3). The generator matrix (G; of Aj, where I = aOp, is computed by

—54+V5 55
G;—TG—R(HS)G—( )

2 2
V5 5

and equation (5.19) can be easily verified.

We have seen the Z-basis representation of an ideal 1. This representation was very
practical to get properties for the associated lattice A; = o(7). Equation (5.19) is very
important and will guide us in the construction of A;. We note also that the norm of the
product of two ideals in Ok is equal to the product of the norms, N(1.J) = N(I)N(J).
This result is closely related to equation (5.19). Sometimes when searching for an ideal of
a given norm N(7) to build A;, we start from an ideal H such that N(H) = ¢N(I) where
¢ is an integer constant. Clearly, we are tempted to search for an ideal H = I.J, ¢ = N(J).
Hence, we face the problem of factoring an ideal in the ring of integers. The factorization
method for principal ideals is given in Result 16. Unfortunately, the factorization is a litte
bit difficult if we use the Z-basis representation of the ideal. The following result shows a
new representation of an ideal based on two elements of Op.

Result 14 Let I be an ideal of O . For any non-zero element o € I there exists an element
B €1 such that I = aOg + fOk. o and 3 are called Or-generators of I. The ideal is
denoted I = (a, 3).

The above result says that any ideal I in Ok can be expressed as the sum of two principal
ideals. What about the Z-basis of I = aOg + fOg 7 This can be found if we notice that
I = auwnZ+ ...+ ow,Z 4 BuinZ + ... 4+ pw,Z. We obtain 2n Z-generators of . But the
transition matrix 7" is defined only by n Z-generators. So the difficulty is to determine a
Z-basis with n elements given a Z-basis with 2n elements. This can be done by searching
for the n x n integer matrix 7" whose rows span the same subgroup of Z" generated by the

rows of R(a) and R(f3).
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Result 15 Fvery ideal I of O can be written in a unique way as
[=T[
g

the product being over a finite set of prime ideals J. The exponents e; are positive integers.

Result 16 Let K = Q(60) be a number field, where 6 is an algebraic integer, whose minimal
polynomial is denoted u(z). Let f =[Ok : Z[0]]. Then for any prime p not dividing f one
can obtains the factorization of the principal ideal I = pOy as follows. Let

p(z) = [T wi(2) (mod p)

be the decomposition of u(x) into irreducible monic factors y;(z) in the ring polynomials over

GF(p), the Galois field of order p. Then

9
I - pOK’ - H e];7

=1
where J; = pOg + p;(0)Ok .

Furthermore, the index f; = [Ox/J; : GF(p)] is equal to the degree of p;(x). We have
deg(K) =n =Y7_, e, fi and the norm of the prime ideal J; is given by N(.J;) = p'.

Let us check the norm of I = pOk in the factorization theorem. All the conjugates o;(p)
of p are equal to p because p is an integer. The algebraic norm of pis N(p) =1, 0:(p) = p" =
N(TI). From the decomposition formula we see that N(/) = [T, N(J) = [T, p“f = p". 1t
is clear that the factorization of an ideal requires the factorization of a polynomial in a finite
field (modulo p). The above algorithm will be used in the next sub-section to decompose
prime ideals while building the lattices of Table 5.4. Note that the ideals in Table 5.4 are
defined by two Og-generators. The last two ideals (for Ajg and Aqy) are given as the product
of two and three prime ideals respectively.

5.6.2 Lattices from cyclotomic fields ideals

2in [N

In this section we assume that K is the cyclotomic field K = Q(f) where § = ¢ denotes

a primitive N-th root of unity. Some well known properties of cyclotomic fields are
1. The degree of K is n = ¢(N), where ¢ is the Euler function.
2. The conjugates of f are the #" with ged(i,n) = 1.

3. The ring of integers is Ox = Z[f] (the index f is 1).
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4. The minimal polynomial of 6 is

p(z) = [[(a" — 1)/¥

d|n
of degree n = ¢(N). u(z) is the Mobius function of the integer 7.

5. The absolute discriminant of K is

dic = (12N T /0D

p|N

Equation (5.19) is used to compute N([) given the lattice fundamental volume. vol(A)
is replaced by p" /8, where p is the packing radius and ¢ is the lattice center density [1].
The search for the rotated lattices of Table 5.4 having dimension n and diversity n/2 goes
through the following steps:

1. Calculate the minimal polynomial of ¢2"/N which has degree ¢(N).

2. Find all ideals T of O with integer norm

QW/Q n
N(T) = « 2
dg| ¢

3. Using the transition matrix 7' of I compute the generator matrix (G; = T'GG and evaluate
the lattice parameters such as the center density and the kissing number. If they are
equal to the parameters of Dy, Fg, Fs, A1g, A1g or Agy, then we have obtained a rotated
version of these lattices. In fact, these lattices are unique with such parameters.

This procedure was applied succesfully to obtain a generator matrix for each one of the
lattices in Table 5.4. The key operation is the factorization of prime ideals presented in
Result 16.

We show as an example the new constructions of D49, K196 and Aqgs.

D4_2 We first note that ¢(8) = 4 and that the other values of N giving ¢(/N) =4 do not

result in the rotated version of D4, whose center density is 1/8. The minimal polynomial
of § = ¢?7/% is given in Table 5.4 and the ahsolute discriminant of the field K = Q(#) is
dr = 28, The signature of K is (0,2). Using (5.19) we can write

2472 p' 3 4
N(]):ﬁ.ng - p

and for N(7) = 2 we may take p = 1/3/2. The ideals I with norm 2 can be obtained from

the factorization of the prime ideal (2), which has norm 2*

(2)=(2,64+1)"'=1".
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Now [ has the desired norm 2. The generator matrix of our lattice is then GGy = T'G;, where
T is the integral matrix representation of [/

2 0 00
1 1 0 0
T= 1 0 1 0
10 0 1

and (& is the generator matrix of o(Ok). The lattice generated by (; has center density
0.125 = 1/8 and kissing number 24 exactly like D4. Since Dy is the unique lattice with these
parameters, we have constructed a rotated version of it with diversity equal to 2.

K12_6 We first note that ¢(21) = 12 and that the other values of N giving ¢(N) = 21

do mot result in the rotated version of Ky, whose center density is 1/27. The minimal
polynomial of § = €27/1? is given in Table 5.4 and the absolute discriminant of the field

K = Q(#) is dg = 3% 7', The signature of K is (0,6). Using (5.19) we can write

212/2 y p12 _ 96 . p12
N T G
and for N(I) =T we may take p = \/7/\/5 The ideals I with such a norm can be obtained

from the factorization of the ideal (7), having norm 7'2.

N(T) =

(7) = (7.6 +3)%(7,6 — 2)° = 171§

In fact N(Iy) = N(I3) = 7 so we may select I = [, which has the desired norm. The
generator matrix of our lattice is then Gy = T'GG, where T'is the integral matrix representation

of 1

TTLLW O UL W Oy UL w O Ot W ~1
OO O oo o oo oo —= O
OO OO o oo oo o —= OO
OO OO OO oo = O oo
OO OO OO OO —=,0O o oo
DO OO OO =D D oD
DO OO 0O = OO0 DD DD
OO OO = OO DD DD
OO0 = OO0 DD oD
OO = OO O OO oo oo
O =) OO O OO oo oo
—_ O OO0 O OO0 oD oo

and (& is the generator matrix of o(Ok). The lattice generated by (; has center density
1/27 and kissing number 756 exactly like Kq5. Since Ky, is the unique lattice with these
parameters, we have constructed a rotated version of it with diversity equal to 6.

A16_8 We first note that ¢(40) = 16 and that the other values of N giving ¢(N) = 16

did not result in the rotated version of A, whose center density is 1/16. The minimal
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polynomial of § = €27/40 is given in Table 5.4 and the absolute discriminant of the field

K = Q(#)is dg = 2% - 5'2. The signature of K is (0,8). Using (5.19) we can write

916/2 p'6 B '
6

N(T) = 932 . 512 X]/]6*5 94

and for N(7) = 2%-5% we may take p = v/2-5. So we need to find the ideals I with such a

norm. These can be obtained from the factorization of the ideals (2) and (5), having norms
216 and 5'6 respectively.

[N)

2) = .0+ +62+0+1) =1}

) = (5,07 + 25,0 - 2) =113

—~
Ot

In fact N(I;) = 2%, N(I3) = 5% N(I3) = 5 so we may select [ = I, which has the desired
norm N(I) = N(71 I;) = N(I)N(Iy) = 2* - 52, The generator matrix of our lattice is
then GG; = TG, where T is the integral matrix representation of [ and G is the generator
matrix of 0(Ok). The lattice generated by (7 has center density 0.0625 and kissing number
4320 exactly like Ayg. Since Aqq is the unique lattice with these parameters, what we have
constructed is simply a rotated version of it with diversity equal to 8.

5.7 Results

We briefly present some simulation results to illustrate and support some of the state-
ments made throughout the chapter. Due to the complexity of the decoding algorithm we
have made simulations up to dimension eight while for higher dimensions we have plotted
the upper bounds derived in the appendices. All curves give the bit error probability as a
function of K,/Ny for s = 4. For convenience we will identify the lattice and the lattice
constellation carved from it, with the same symbol.

Figure 5.2 shows the performance of different lattice constellations over the Gaussian
channel. Taking Z® as a reference we can make the following observations.

e Ky only gains 2dB at 107" although its asymptotic coding gain is 3dB [1]. This draws
the attention to the limitations of the asymptotic coding gain when used as parameter
for practical values of the error probability.

e Agg, from the totally real field with minimal discriminant, loses (curve on the right
of Z®) 0.9dB at 107" and asymptotically 1.5dB (Table 5.3), showing the weakness of

these lattices over the Gaussian channel.

e Ag4, from the totally complex field with minimal discriminant, gains 1.4dB at 10°°
and is only 0.6dB at 1077 from Fs, the asymptotically optimal lattice code for the
Gaussian channel.
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Figure 5.2: Lattice constellations over the Gaussian channel (s = 4)
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Figure 5.3: Rotated famous lattice constellations over the Rayleigh fading channel (s = 4)
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For comparison we have plotted the upper bound (5.5) for the Leach lattice Ayq which gains
3.7dB at 1077, although its asymptotic coding gain is 6dB [1].

Figure 5.3 shows the performance over the Rayleigh fading channel of the rotated versions
of the lattices Dy, K¢, Fs, K12, A1g (the last two are upper hounds). As discussed in section
5.3, the slopes of the curves asympotically correspond to the diversity. For these lattices we
can see that this is already true for low bit error probabilities.

Figure 5.4 shows the performance over the Rayleigh fading of the lattice constellations
from totally real algebraic number fields. These lattices give the best performance over the
fading channel but have negative asymptotic gains over the Gaussian channel. Although
the diversities are comparatively higher the actual slopes of the curves do not reach the
asymptotic value in the range of interest. An explanation of this fact comes from the high
value of the product kissing number for these constellations.

Figure 5.5 shows the performance over the Rayleigh fading of the lattice constellations
from totally complex algebraic number fields. The curves achieve quite rapidly the slope
corresponding to the diversity and their performance over the fading channel is very close
to the one of the corresponding lattices in Figure 5.4.

5.8 Conclusions

Two different approaches (Sections 5.4, 5.5 versus Section 5.6) have been used to study two
families of lattices in order to achieve good performance over both Gaussian and Rayleigh
channels, with high spectral efficiency.

The first family is generated by canonical embedding over the ring of integers of a number
field. Among the lattices of this family, we especially gave importance to the classes of totally
complex and totally real fields lattices. We found that totally real fields lattices (A,.q;) exhibit
very good performance on Rayleigh channels with a maximal diversity of n. But they have
a negative gain on Gaussian channels caused by their weak packing density. The totally
complex fields lattices (A.,.) are a compromise between diversity and packing density. They
showed a positive gain on Gaussian channels and good performance on Rayleigh channels
with a diversity of n/2.

The second family of lattices is generated by canonical embedding over special ideals
in totally complex cyclotomic fields. This family includes versions of the famous lattice
packings D4, Fg, Fs, K12, Aig and Ags. These lattices act in a similar way as the n/2
diversity A, lattices over the Rayleigh channel and thus can achieve a diversity from 2
through 12. Furthermore, these are the best lattices for the Gaussian channel.

The first important point in this conclusion, is the fact that number fields with relatively
small (or minimal) absolute discriminants are known only for degrees less or equal to 8. So
the diversity of A,.,; cannot exceed 8, unless mathematicians find optimal fields with higher
degree. On the contrary, the lattices of the second family are less limited in diversity; Agq 19
achieves a diversity of 12. Of course we can think about building A3y 16 and Ags 39 to attain
16 and 32 respective diversities. But we are limited by the ratio of the system’s complexity



over the practical gain. We cannot forget also that the study of the first family makes it
possible for us to construct and understand the second family.

A second non negligible point to be mentioned concerns the practical aspects of lattice
encoding/decoding. There exist no efficient algorithms for encoding and decoding the lat-
tices presented in this chapter, especially those of the first family. The universal decoding
algorithm presented in the last section has a high complexity in terms of number of arith-
metical operations. In fact, we are very pessimistic about finding a fast and a cheap decoding
algorithm for the lattices of the first family. It is too difficult to find a simple lattice (such
as Z") containing these lattices and to make a group partitioning from which a simple en-
coding/decoding algorithm can be derived. On the contrary, we are very optimistic when
it comes to elaborate efficient encoding/decoding algorithms for the n/2 diversity lattices
viewed as rotated binary lattices.

5.9 Appendix A — Upper bound on the AWGN chan-
nel

In this appendix we modify inequality (4) to express it as a function of Fy/Ny. We assume
that the constellation S has a cubic shape centered at the origin and has volume (2A4)". The
components z; of any point x in S satisfy the inequality |z;| < A. The total number of
points in S can be approximated by

(24)"

M =~
vol(A)

for sufficiently large M. We want to compute the average energy per point £ = F]

x|%]
without specifying the particular lattice. Using a continuous approximation for the con-
stellation points, we compute the second order moment of the hyper-cube containing the
constellation

dx A A dri---dr
E%/ 2 :/ / P2 L2y
Joae Py = L L A ) e

The above integral is easily computed and gives £ = nA?/3.
Since,
2 _ M myol(A)?m _ 22vol(A)?/"
4 4

A

the average energy per bit is
E A 22 vol(A)?/"

B, — -
nxs 3s 12s

and

V2N, 8N, st1 Ngwvol(A)2/m
This yields the upper bound (5) to the error probability for the AWGN channel.

dem.v'm/Q o d%}min o \Jﬁ 33 Eb (]QFJWH’I
\ 2
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5.10 Appendix B — Upper bound on the Rayleigh
channel

We here derive an upper bound for the pairwise point error probability P(x — y) on the
Rayleigh fading channel. The channel power gain is assumed normalized, F[a?] = 1. As
described in section 2, the components r; of the received vector are given by r; = a;z; + n;.
The received point r is closer to y than to x, if m(y[r,a) < m(x|r,a). The conditional
pairwise error probability is given by

P(x - yla) = P(Z 7 — aiys)® < Z 7 — oia]? | x transmitted)

=1 =1

= P(Z\ai(fm*yiwrm\? SZ\M?)
Za —% —I—QZm T; 77 <U)

Now, let x = -7 a;(2; — yi)ni. x is a linear combination of Gaussian random variables (the
n;'s). Consequently, x is Gaussian with zero mean and variance

.

O’i =N, Z (y?(qy — y7;)2
=1
let A = %Z?ﬂ a;(z; — y;) be a constant. We can write the conditional pairwise error
probability in terms of y and A,

P(x = yla) = P(x =2 A) = Q(A/ay)

where Q(z) = (2r) ' [2° exp(—1?/2)dt is the Gaussian tail function. The Gaussian tail
function can be upper bounded [49] by an exponential Q(x) < I exp(—2/2). This bound is
very tight already for # > 3. The conditional pairwise error probability becomes

1 A? 1 1 &

5P gm) < gl g Yl ul)

P <
(x = yla) < 5 SNy 2

The pairwise error probability P(x — y) is computed by averaging P(x — y|a) over the
fading coefficients a
LS a2(ni g )pla)da
8N(] % 4 I

=1

P(x —-y)= / P(x — yla)p(a)da < ]5/ exp(—

02

The differential probability is p(a)da = p(ai) - p(ay)daq - - da,, where p(a;) = 2a;e”™
is the normalized Rayleigh distribution. Replacing in the last inequality we obtain

P(x —y) < ﬁ
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where
n

I, = / GXP(* Z”?(Ta - yi)Q)P(m)dm = / 2005 GXD(*BM?)d%
Jo 8No 7 Jo '

and B; =1+ (#; — y:)?/(8 Ny). By simple calculations we obtain ; = 1/B; and

PX—>y ]H

7:1 7

1

which is equation (7) in section 3. This differs from the classical Chernoff bound by a factor
1/2 and results in a tighter bound (for small diversities) due to the small slopes of the error
probability curves.
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