
SK1-LIKE FUNCTORS FOR DIVISION ALGEBRAS
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Abstract. We introduce a Dieudonne/reduced Dieudonne functor for central sim-

ple algebras A, which embraces different groups which are associated to A in dif-

ferent contexts, including the reduced Whitehead group SK1(A). We show that
a reduced Dieudonne functor has most important functorial properties of the re-

duced Whitehead group SK1(A). Specializing a Dieudonne functor to the group

G(A) = A∗/F ∗A′, where F is the center of A and A′ its commutator subgroup,
we establish a fundamental connection between this group, its residue version and

relative valued group when A is a henselian division algebra. The structure of G(A)

turns out to carry significant information about the arithmetic of A. Along these
lines, we employ G(A) to compute the group SK1(A). As an application, we obtain

theorems of reduced K-theory which requires heavy machinery, as simple examples
of our method.

AMS Classification 12E15.

1. Introduction

Let D be a division algebra with center F . The non-triviality of the important
group SK1(D) is shown by V. P. Platonov who developed a so-called Reduced

K-Theory to compute SK1(D) for certain division algebras. The group SK1(D)
enjoys some interesting properties which makes it distinguish from the K-Theory

functor K1(D). Among interesting characteristic of the torsion group SK1(D) is
its behavior under extension of the ground field. Also in the case of valued division
algebra, its stability under reduction, namely SK1(D) = SK1(D), where D is
unramified division algebra. Also the primary decomposition of a division algebra
induces a corresponding decomposition of SK1(D).

On the other hand, there have been other groups which are associated with a
division algebra D, in order to study the group and arithmetic structure of D, e.g,
D∗/Nrd(D∗)D′ in [1], or D∗/D∗2 in [8]. Also see [5]. It can be seen that these
groups are in close connection with the group SK1(D).

On this note we introduce a “Dieudonne” functor for division algebras which
embraces groups that have been already associated with division algebra in differ-
ent contexts. We then show that a “reduced” Dieudonne functor (See Definition
2.2) shares most important functorial properties of the reduced Whitehead group.
Notice that a reduced Dieudonne functor covers a wide range of groups of different
nature. In section 2 we will show that a reduced Dieudonne functor is torsion of
bounded exponent. we then obtain some SK1-like properties for this functor. we
show that a reduced Dieudonne functor may grow “pathologically” for algebraic
extension of ground field whose degree is prime to the index of D. It is then shown
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that this functor satisfies a decomposition property analog to one for SK1(D) (The-
orem 2.10).

We then specialize a Dieudonne functor to the group G(D) = D∗/F ∗D′ where
D is a division algebra over its center F and D′ is its commutator subgroup. It
turns out that there is a close connection between the group structure of G(D) and
algebraic structure of D. For example in section 3, after establishing a fundemen-
tal connection between G(D), its residue version and relative valued group when
D enjoys a henselian valuation, we show that if D is a totally ramified division
algebra, then there is a one to one correspondence between isomorphism classes of
F -subalgebra of D and the subgroups of G(D). We then use G(D) to compute
SK1(D) for certain division algebras. We show that if G(D) canonically coin-
cides with the relative valued group, then there is a explicit formula for the group
SK1(D) (Theorem 3.7). It turns out that many theorems and examples of reduced
K-theory which require heavy machinery can all be viewed as simple examples of
our case. Section 3 is devoted to the unitary version of the group G(D).

We fix some notations. Let D be a division algebra over its center F with
index i(D) = n. Then NrdD/F : D∗ −→ F ∗ is the reduced norm function and

SK1(D) = D(1)/D′ is the reduced Whitehead group where D(1) is the kernel of
NrdD/F . Put SH0(D) for the cokernel of NrdD/F . we take µn(F ) for the group of
n− th roots of unity in F , and Z(D′) for the center of the group D′. Observe that
µn(F ) = F ∗ ∩ D(1) and Z(D′) = F ∗ ∩ D′. If G is a group, by Gn we denote the
subgroup of G generated by all elements of n−th power of G. Let exp(G) stands for
the exponent of the group G. Let also det : GLn(D)/SLn(D) −→ D∗/D′ denote
the Dieudonne determinant, where GLn(D) is the general linear group and SLn(D)
is its commutator subgroup.

2. Dieudonne Functor

Let C be the class of all central simple algebras and G : C −→ Ab be a functor
from C to the category of abelian groups.

Definition 2.1. The functor G is called a Dieudonne functor if for any division
algebraD and a nonnegative integer n, there is a homomorphism d : G(Mn(D)) −→
G(D) such that for any x ∈ G(A), di(x) = xn, where i : G(D) −→ G(Mn(D))
induced by the natural embedding D −→Mn(D).

The functor K1 with the Dieudonne determinant det as d, clearly forms a
Dieudonne functor.

Let A be a central simple algebra and (A∗)2 be the subgroup of A∗ generated
by the squares of A∗. It is easy to see that G(A) = A∗/(A∗)2 with det as above is
a Dieudonne functor. This group is studied in [8] in connection with Witt rings of
division algebras.

Definition 2.2. A Dieudonne functor G is said to be reduced if for any field F ,
G(F ) is trivial and if x ∈ Ker(G(Mn(D)) −→ G(D)), where D is a division algebra
and n ∈ N, then xn = 1.

Example 2.3. Let A ∈ C with center F , then the functors G(A) = A∗/F ∗A′,
G(A) = (A∗)2/(F ∗)2A′, and G(A) = A∗/F ∗A′r where A′r = {x ∈ A∗|xr ∈ A′} and
r ∈ N can be all viewed as reduced Dieudonne functors.
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Example 2.4. Let A ∈ C be a central simple algebra finite over its center. In
order to consider the reduced Whitehead group SK1(A) and SH0(A) as a reduced
Dieudonne functors, we shall limit the morphisms of our category (See chapters 22
and 23 in [3]). The following commutative diagram shows that SK1 and SH0 are
Dieudonne functors.

1 // SK1(D)

��

// K1(D)
NrdD/F

//

��

F ∗

ηn

��

// SH0(D) //

��

1

1 // SK1(Mn(D))

��

// K1(Mn(D))
NrdD/F

//

det

��

F ∗

1

��

// SH0(Mn(D)) //

��

1

1 // SK1(D) // K1(D)
NrdD/F

// F ∗ // SH0(D) // 1

where ηn(x) = xn for any x ∈ F ∗ and D is a division algebra with center F . Now
it is easy to see that SK1(A) = A(1)/A′ and SH0(A) = F ∗/NrdA/F (A∗) satisfy
conditions of being reduced Dieudonne functor.

In the same way, it can be seen that G(A) = A∗/NrdA/F (A∗)A′ and G(A) =

A∗/F ∗A(1) ' Nrd(A∗)/F ∗DegA are also reduced Dieudonne functors.
Our primary aim in this section is to show that a reduced Dieudonne functor

G shares almost all important functorial properties of SK1. Note that a reduced
Dieudonne functor covers groups of different nature which are associated to a divi-
sion algebra. We will show that this functor is torsion of bounded exponent.

We begin by showing that a reduced Dieudonne functor may grow pathologically
for algebraic extension of ground field whose degree is prime to the index of division
algebra D.

Clearly the natural embedding of D in D⊗F L where L is a finite field extension
of F , induce a group homomorphism I : G(D) −→ G(D ⊗F L). The following
proposition provides us with a homomorphism in the opposite direction.

Proposition 2.5. Let G be a Dieudonne functor and D be a division ring with
center F . If L is a finite extension of F then there is a homomorphism P : G(D⊗F
L) −→ G(D) such that PI = η[L:F ], where ηm(x) = xm.

Proof. Let [L : F ] = m. Consider the regular representation L
ι
−→Mm(F ) and the

corresponding sequence when we tensor over F with D:

D −→ D ⊗F L
1⊗ι
−→ D ⊗F Mm(F ) −→Mm(D)

(2.1) a 7−→ a⊗ 1 7−→ a⊗ 1 7−→ aIm

1⊗ ` 7−→ 1⊗ ι(`) 7−→ ι(`).

Since G is a Dieudonne functor, we obtain a homomorphism P : G(D ⊗F L) −→

G(Mm(D))
d
−→ G(D). Again the sequence (2.1) shows that, thanks to definition

of a Dieudonne functor, PI(x) = xm. �

Note that in the above proposition D could be an infinite dimensional division
algebra. If D is finite dimension over its center F , then it turns out that G(D),
where G is reduced Dieudonne functor, is a torsion group.
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Corollary 2.6. Let G be a reduced Dieudonne functor. Then for any division
algebra D of index n, G(D) is a torsion group of bounded exponent n2 = [D :
Z(D)].

Proof. Thanks to Proposition 2.5, for any finite field extension L of F = Z(D), we

have the sequence of homomorphisms G(D)
I
−→ G(D ⊗F L)

P
−→ G(D), such that

PI(x) = xm, where x ∈ G(D) and [L : F ] = m. Now let L be a maximal subfield
of D. Since L is a splitting field for D, we get the sequence of homomorphisms

G(D)
I
−→ G(Mn(L))

P
−→ G(D). Since G is a reduced Dieudonne functor, it follows

that G(Mn(L)) is a torsion group of bounded exponent n (See Definition 2.2). Now
the fact that for any x ∈ G(D), PI(x) = xn, shows that G(D) is a torsion group
of bounded exponent n2 = [D : Z(D)]. �

Now it is immediate that if A is a central simple algebra, then G(A) is also
torsion.

We later specialize a Dieudonne functor and show that we can reduce this bound
for certain functors. The following corollary shows that the analog result of the be-
havior of SK1(D) under extension of the ground field holds for a reduced Dieudonne
functor. Namely, we show that G(D) embeds in G(D ⊗F L) when the index of D
and [L : F ] are relatively prime.

Corollary 2.7. Let D be a division ring over its center F and L/F be a finite
field extension such that [L : F ] is relatively prime to the index of D. Then the

canonical homomorphism G(D)
I
−→ G(D ⊗F L) is injective.

Proof. Let i(D) = n and [L : F ] = m. Suppose I(x) = 1 for some x ∈ G(D). By
Proposition 2.5, PI(x) = xm = 1. But G(D) is a torsion of bounded exponent

n2. Hence xn
2

= 1. Since m and n are relatively prime, x = 1 and the proof is
complete. �

Computing a Dieudonne functor in general is a difficult task, as it covers groups
of different nature like SK1(D), or the group G(D) = D∗/F ∗D′. In the next section
we specialize a Dieudonne functor to G(D) = D∗/F ∗D′ and compute it for certain
division algebras. But before we continue with the functorial properties of G, let us
consider a class of reduced Dieudonne functors which enjoy an additional property.
Namely let τ be a natural transformation τ : K1 −→ G such that,

(1) For any object A in C, τA : K1(A) −→ G(A) is an epimorphism.

(2) For any division algebraD and a nonnegative integer n, the following diagram
commutes,

K1(Mn(D))
τ

//

det

��

G(Mn(D))

d

��

K1(D)
τ

// G(D).

For example, the functors of Example 2.3, or G(D) = NrdD/F (D∗)/F ∗i(D) and
G(A) = A∗/NrdA/F (A∗)A′ enjoy the above property.

Even in this case, it is not clear when a reduced Dieudonne functor is trivial.
The following theorem is almost the only known example where G(D) with above
property is trivial.
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Corollary 2.8. Let D be a division ring of quaternions over real-closed field. Let
G be a reduced Dieudonne functor with a natural epimorphism τ : K1 −→ G as
above. Then G(D) = 1.

Proof. For any finite field extension L of F = Z(D), the following diagram is
commutative,

K1(D ⊗F L)
P

//

τ

��

K1(D)

τ

��

G(D ⊗F L)
P

// G(D).

Now since D is algebraically closed (See [7], Section 16), thanks to Proposition 2.5

and above diagram, G(D⊗F L)
P
−→ G(D) is an epimorphism. Replace L by F , the

algebraic closure of F . Because F is a splitting field for D, G(D⊗F F ) = G(M2(F )).
We show that G(M2(F )) is a trivial group and hence the corollary follows. Since
τ : K1 −→ G is a natural epimorphism, there is a sequence of homomorphism

ψ : K1(F ) = F
∗ '
−→ K1(M2(F ))

epi.
−→ G(M2(F )).

Take x ∈ G(M2(F )). Since F is algebraically closed, there exist y ∈ K1(F ) = F
∗

such that ψ(y2) = x. But G(M2(F )) is a torsion group of bounded exponent 2,
hence x = 1. This shows that G(M2(F )) is trivial and the proof is complete. �

Back to the functorial properties of G, the next step is to replace the field L in
Proposition 2.5 by a division ring. The following proposition shows that the same
result holds here too.

Proposition 2.9. Let G be a Dieudonne functor. Let A and B be division rings
with center F such that [B : F ] is finite. Then there is a homomorphism P :
G(A⊗F B) −→ G(A) such that PI = η[B:F ].

Proof. Let [B : F ] = m. We have the following sequence of F -algebra homomor-
phisms,

A −→ A⊗F B −→ A⊗F B ⊗F B
op −→ A⊗F Mm(F ) −→Mm(A).

This implies the group homomorphism P : G(A⊗F B) −→ G(Mm(A))
d
−→ G(A).

The rest of the proof is similar to one in Proposition 2.5. �

Note that in the above proposition A could be of infinite dimension over its
center F . A same statement as Corollary 2.7 could be obtained here too. In
particular if (i(A) : i(B)) = 1 then G(A) embeds in G(A ⊗F B) and similarly for
B. Employing torsion theory of groups and sequences which are appeared in the
above propositions, we can write the primary decomposition for G(D). The proof
follows more or less the same pattern as for SK1(D).

Theorem 2.10. Let G be a reduced Dieudonne functor. Let A and B be division
algebras with center F such that (i(A), i(B)) = 1. Then G(A ⊗F B) = G(A) ×
G(B).
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Proof. By Corollary 2.6, G(A⊗F B) is a torsion group of bounded exponent m2n2

where m = i(A) and n = i(B). Therefore G(A⊗F B) ' G × H, where exp(G)|m2

and exp(H)|n2. By Proposition 2.9, we have the sequence:

(2.2) G(A)
φ
−→ G(A⊗F B)

ψ
−→ G(A⊗ B ⊗Bop)

θ
−→ G(A)

such that θψφ = ηn2 . Hence G(A) = ηn2ηn2(G(A)) = ηn2θψφ(G(A)) ⊆ θψηn2(G ×
H) = θψ(G) ⊆ G(A). This shows that θψ|G : G −→ G(A) is surjective. Next
we show that θψ|G is injective. Considering the regular representation Bop −→
Mn2(F ), by Proposition 2.5, we have the following sequence

G(A⊗F B)
ψ
−→ G(A⊗ B ⊗ Bop)

ψ′

−→ G(A⊗ B ⊗Mn2(F ))
θ′
−→ G(A⊗F B)

such that θ′ψ′ψ = ηn2 . Now if w ∈ G − 1, then θ′ψ′ψ(w) = ηn2(w) = wn
2

6= 1.
Therefore ψ|G is injective. Rewrite the sequence (2.2) as follows:

G(A⊗F B)
ψ
−→ G(A⊗B ⊗Bop)

iso.
−→ G(Mn2(A))

d
−→ G(A).

Suppose x ∈ G such that θψ(x) = 1. The above sequence and the definition of

reduced Dieudonne functor shows that ψ(x)
n2

= 1. Since ψ|G is injective, xn
2

= 1.

On the other hand because exp(G)|m2 then xm
2

= 1. Since m and n are relatively
prime, x = 1. This shows that θψ is an isomorphism and so G(A) ' G. In the
similar way it can be shown that G(B) ' H. Therefore the proof is complete. �

Now we specialize a Dieudonne functor to G(D) = D∗/F ∗D′ where D is a
division ring with center F . It turns out that the structure of this group carries
significant information about the arithmetic of D. Let us start with the following
definition.

Definition 2.11. Let A be a central simple algebra with center F . For each integer
s ≥ 0 define Gs(A) = A∗/F ∗sA′ and Ĝs(A) = lim

←k

Gsk(A) where k ≥ 1.

Clearly G0(A) = K1(A) and G1(A) = A∗/F ∗A′. It is easy to see that Gs(A)

and Ĝs(A) are Dieudonne functors. Also G(A) = G1(A) is a reduced Dieudonne
functor. It is immediate from Corollary 2.6 thatG1(A) is a torsion group of bounded
exponent m[D : Z(D)] where A = Mm(D). So it follows that Gs(A) are all torsions.

Note that Ĝs(A) is not torsion in general. As we mentioned above we specialize G

to the group G(A) = A∗/F ∗A′. In this case we can reduce the bound of the group
G(A) as follows.

Let D be a division algebra over its center F . If a ∈ D is algebraic over F
of degree m, then by Wedderburn’s factorization theorem, we can associate m
conjugates to a such that the sum and the product of them are in F . The first
observation is used, for instance, in [2] to compute the center of the group D∗/1 +
MD (which we will use it in this note) where MD is the maximal ideal of the
valuation ring of D (See Section 3). The fact that the product of the conjugates is
in F , shows that a[F (a):F ] is in F ∗D′. Therefore if D is an algebraic division algebra
over its center F, then G(D) = D∗/F ∗D′ is a torsion group. This is used in [10] to
investigate the role of D′ in the structure of a division ring.

Now let D be division algebra over its center F with index n. Let N be a
normal subgroup of D∗. For x ∈ N , it follows that NrdD/F (x) is the product of
n conjugates of x. This shows that Nrd|N : N −→ Z(N) is well defined, where
Z(N) = F ∗ ∩N is the center of the group N . We will use the following lemma in
Section 3 for normal subgroups of D∗ which arise from a valuation on D.
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Lemma 2.12. Let D be a division ring over its center F with index n. Let N be
a normal subgroup of D∗. Then Nn ⊆ Z(N)[D∗, N ].

Proof. Let x ∈ N . As stated above, NrdD/F (x) = d1xd1
−1 · · ·dnxdn

−1. This
implies that xn = NrdD/F (x)dx where dx ∈ [D∗, N ] and NrdD/F (x) ∈ F ∗ ∩ N .
This shows that Nn ⊆ (F ∗ ∩N)[D∗, N ]. �

If in the above lemma we take N = D∗, then for any x ∈ D, xn = NrdD/F (x)dx
where dx ∈ D′. This in effect shows that G(D) = D∗/F ∗D′ is a torsion group of
bounded exponent n.

In the next section we will show yet another SK1-like property for the group
G(D). Namely G(D) satisfy the following stability, G(D) ' G

(

D((x))
)

where

G
(

D((x))
)

is the division ring of Laurent series (Corollary 3.6). We close this
section by the following theorem, which shows that the group G(D) = D∗/F ∗D′

does not always follow the same pattern as the reduced Whitehead group SK1(D).

Theorem 2.13. (J. -P. Tignol) Let D be a division algebra over its center F
with index n. Then the following sequence where ℘ runs over the irreducible monic
polynomials of F [x] and n℘ is the index of D ⊗F F [x]/℘, is split exact.

1 −→ G(D) −→ G(D(x)) −→
⊕

℘

Z
n/n℘Z

−→ 1.

Proof. By Proposition 7 in [8], the sequence

1 −→ K1(D) −→ K1(D(x)) −→
⊕

℘

n℘/nZ −→ 1

which is obtained from the localization exact sequence of algebraic K-theory is split
exact. Now since the group G(D) is the cokernel of the natural map K1(F ) −→
K1(D), applying the snake lemma to the commutative diagram,

1 // K1(F ) //

��

K1(F (x)) //

��

⊕

℘ Z //

��

1

1 // K1(D) // K1(D(x)) //
⊕

℘ n℘/nZ // 1

the result follows. �

3. On The Group G(D) Over Henselian Division Algebra

In this section we assume that D is a finite dimensional division algebra over a
henselian field F = Z(D). Recall that a valuation v on F is Henselian if and only
if v has a unique extension to each field algebraic over F . Therefore v has a unique
extension to D (see [6] and [15]). Denote by VD, VF the valuation rings, MD,MF

their maximal ideals, andD,F the residue division algebra and the residue field ofD
and F respectively. We also take ΓD,ΓF for the value groups, UD, UF for the groups
of units of VD, VF respectively. Furthermore, we assume that D is a tame division
algebra, i.e., Z(D) is separable over F and CharF does not divide i(D). The
quotient group ΓD/ΓF is called the relative valued group of the valuation. In this
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setting it turns out that D is defectless, namely we have [D : F ][ΓD : ΓF ] = [D : F ].
D is said to be unramified over F if [ΓD : ΓF ] = 1. At the other extreme D is said
to be totally ramified if [D : F ] = [ΓD : ΓF ]. D is called semiramified if D is a field
and [D : F ] = [ΓD : ΓF ] = i(D). For a recent account of the theory of henselian
valued division algebras see [6].

We start with the following theorem which describes a fundemental connection
between the group G(D) and its residue version.

Theorem 3.1. Let D be a tame division algebra over a henselian field F = Z(D)
with index n. Let L/F be a subfield of D. Then the following sequence is exact.

(3.1) 1 −→ D
∗
/L
∗
D′ −→ D∗/L∗D′ −→ ΓD/ΓL −→ 1.

Proof. Consider the normal subgroup 1 +MD of D∗. Thanks to Lemma 2.12, we
have (1+MD)n ⊆ ((1+MD)∩F ∗)[D∗, 1+MD]. But applying the Hensel lemma to
the elements of the group 1 +MD, shows that, this group is n-divisible. Therefore
1 +MD = (1 +MD)n. Hence 1 +MD ⊆ (1 +MF )D′. Now consider the reduction

map UD −→ D
∗
. We have the following sequence:

D
∗ '
−→ UD/1 +MD

nat.
−→ UD/(1 +MF )D′

nat.
−→ UD/(1 +ML)D′

nat.
−→

nat.
−→ UD/ULD

′ '−→ L∗UD/L
∗D′.

Therefore ψ : D
∗
/(L
∗
)D′ −→ L∗UD/L

∗D′ is an isomorphism. Considering the fact
that D∗/L∗UD ' ΓD/ΓL, the theorem follows. �

Now we are ready to compute G(D) for some certain cases. The statements
i. and ii. of the following theorem were first appeared in [5] using results from
reduced K-theory.

Theorem 3.2. Let D be a henselian division algebra tame over its center F with
index n. Then

i. If D is unramified over F then G(D) ' G(D).
ii. If D is totally ramified over F then G(D) = ΓD/ΓF .
iii. If D is semiramified and D is cyclic over F then the following sequence where

ND/F is the norm function, is exact.

1 −→ ND/F (D)/F
n
−→ G(D) −→ ΓD/ΓF −→ 1.

iv. If D is unramified and s is an integer relatively prime to Char(F ), then the

sequence 1 −→ Ĝs(D) −→ Ĝs(D) −→ Γ̂D(s)
is exact.

Proof. i. Writing (3.1) for L = F , we have:

1 −→ D
∗
/F
∗
D′ −→ G(D) −→ ΓD/ΓF −→ 1.

Now if (D, v) is unramified, namely [ΓD : ΓF ] = 1, then D
∗
/F
∗
D′ ' D∗/F ∗D′. On

the other hand Z(D) = F and D∗ = F ∗UD. Therefore, for a, b ∈ D∗, the element
c = aba−1b−1 may be written in the form c = αβα−1β−1, where α and β ∈ UD.

This shows D′ = D
′
, so G(D) ' G(D).
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ii. If D is totally ramified over F then D = F . Writing (3.1) for L = F , since

the group D
∗
/F
∗
D′ is trivial then G(D) = ΓD/ΓF .

iii. Let D be semiramified and D be cyclic over F . Consider the norm function

ND/F : D
∗
−→ F

∗
. Moreover for any x ∈ UD we have NrdD/F (x) = ND/F (x) (See

[4]). This shows that D′ ⊆ KerND/F . But if x ∈ KerND/F then by Hilbert theo-

rem 90, there is a a such that x = aσ(a)
−1

, where σ is the generator of Gal(D/F ).
It is well known that the fundemental homomorphism D∗ −→ Gal(Z(D)/F ) is sur-

jective. Therefore σ : D −→ D is of the form σ(a) = cac−1, for some c ∈ D∗.
This shows that x ∈ D′. Therefore KerND/F = D′. Now it is easy to see

that D
∗
/F
∗
D′ ' ND/F (D

∗
)/F

∗n
. So thanks to (3.1), 1 −→ ND/F (D

∗
)/F

∗n
−→

G(D) −→ ΓD/ΓF −→ 1 is exact.

iv. We can write the similar statement as Theorem 3.1 for L = F s, where s is
an integer relatively prime to CharF . In this case we only have to change ΓL to
sΓF . Hence we obtain the exact sequence:

1 −→ D
∗
/(F

∗
)sD′ −→ D∗/F ∗sD′ −→ ΓD/sΓF −→ 1.

Now because inverse limit is a left exact functor, we obtain the following exact
sequence:

1 −→ lim
←k

D
∗
/(F

∗
)s

k

D′ −→ Ĝs(D) −→ lim
←k

ΓD/s
kΓF .

If D is unramified, thanks to i. F = Z(D) and D′ = D
′
. therefore the result

follows. �

Remark 3.3. If D is a cyclic field extension of F , a modification of the proof of

iii. above shows that ND/F (D
∗
)/F

∗f
−→ D

∗
/F
∗
D′, where [D : F ] = f , is always

surjective. Therefore if ND/F (D
∗
)/F

∗f
= 1 then G(D) = ΓD/ΓF .

Example 3.4. Let C be a field of complex numbers. Let 1 6= σ ∈ Gal(C/R) where
R is real numbers. Then by Hilbert construction, D = C((x, σ)) is a division ring
with center F = R((x2)). We show that G(D) = Z2. D has a natural valuation
such that ΓD/ΓF = Z/2Z = Z2. Clearly D = C and F = R. Since NC/R(C) = R2

by Theorem 3.2 iii., G(D) = ΓD/ΓF = Z2.

There have been significant results on the structure of relative valued group in
the case of totally ramified algebra. Using Theorem 3.2 we can write interesting
statements relate group structure of G(D) to algebraic structure of D. Recall that
the group G(D) is torsion of bounded exponent n.

Theorem 3.5. Let D be a valued division algebra tame and totally ramified over
henselian field F = Z(D) of index n. Then,

i. There is a one to one correspondence between isomorphism classes of F -
subalgebra of D and the subgroups of G(D).

ii. exp(G(D)) divides the exponent of D, i.e., the order of [D] in Br(F ), the
Brauer group of F .

iii. D is cyclic division algebra if and only if exp(G(D)) = n.
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Proof. The theorem follows by comparing Theorem 3.2 ii., with the results on
relative valued group in the case of totally ramified valuation (See for example
[15]). �

Corollary 3.6. Let D be a finite dimensional division algebra over its center F
such that CharF - i(D)s. Then there is a monomorphism Ĝs(D) −→ Ĝs(D((x))).
In particular if CharF - i(D) then G(D) w G(D((x))). �

Now we are in a position to use the group G(D) to compute SK1(D). The
following theorem enables us to compute SK1(D) when, roughly speaking, G(D)
is trivial. Note that we do not use any results from reduced K-theory.

Theorem 3.7. Let D be a tame division algebra over henselian field F = Z(D)
of index n.

i. If D
∗
/F
∗
D′ = 1 then SK1(D) = µn(F )/Z(D′).

ii. If D is a cyclic division algebra with a maximal cyclic extension L/F such

that D
∗
/L
∗
D′ = 1 then SK1(D) = 1.

Proof. i. As the proof of Theorem 3.1 shows, we have a natural isomorphism,

ψ : D
∗
/(F

∗
)D′ −→ UD/UFD

′.

Now if D
∗
/F
∗
D′ = 1 then UD = UFD

′. But D(1) ⊆ UD. This shows that D(1) =
µn(F )D′. Using the fact that µn(F ) ∩D′ = Z(D′) the theorem follows.

ii. The same proof as i. shows that if D
∗
/L
∗
D′ = 1 then UD = ULD

′. Therefore
D(1) ⊆ ULD

′. Let x ∈ D(1). Then x = ld where l ∈ L and d ∈ D′. SoNrdD/F (x) =
NL/F (l) = 1. Hilbert theorem 90 for the cyclic extension L/F guarantee that

l = aσ(a)
−1

, where σ is a generator of Gal(L/F ). Now Skolem-Noether theorem
implies that σ(a) = cac−1 where c ∈ D∗. Therefore l = aca−1c−1. This shows that
D(1) = D′. �

The part i. of the above theorem shows that if D is totally ramified, then
SK1(D) = µn(F )/Z(D′).

We conclude both theorems of [9] which are obtained by using a heavy machinery
of reduced K- theory, as natural examples of the above theorem.

Example 3.8. For any division algebra D with center F = R((x1, · · · , xm)) where

R is the real numbers, SK1(D) is trivial.

Proof. From number theory, it is well known that [D : F ] = 2s where s ≤ m. Since
the complete field F = R((x1, · · · , xm)) has a natural valuation, then D enjoys a
valuation which is obviously tame. It is clear that F = R. Because the only division
algebras over real numbers are either the quaternion HR or the field C of complex
numbers, thereforeD = HR orD = C. Now Corollary 2.6 and Remark 3.3 show that

in either case D
∗
/F
∗
D′ = 1. Now by Theorem 3.7, SK1(D) ' µi(D)(F )/Z(D′).

But clearly µi(D)(F ) = {1,−1} and because the index of D is even, −1 ∈ D′. This
implies that SK1(D) = 1.

Example 3.9. For any division algebra with center F = C((x1, · · · , xm)) where C
is an algebraically closed field, SK1(D) is cyclic.
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Example 3.10. Hilbert classical construction of division algebras. Let L be a field
and σ ∈ Aut(L) such that o(σ) = n. Let F = Fix(σ) be the fixed field of σ. Hence
Gal(L/F ) is a cyclic group with the generator σ. Let D = L((x, σ)) be the division
ring of formal Laurent series. It follows that Z(D) = F ((xn)) and i(D) = n. D has
a natural valuation, and it is easy to see that with this valuation D is semiramified
and L((xn)) is a maximal subfield ofD. Now by Theorem 2.7 ii., SK1(D) is trivial.

Example 3.11. From Theorem 3.7 ii., it is immediate that reduced Whitehead
group of division algebra over a local field is trivial.

Because most of the interesting valued division algebras arise from the iterated
formal power series fields, we may consider r-iterated Henselian division algebras.
Following Platonov in [13], we define inductively an r-iterated henselian field F if
its residue field F is an (r − 1)-iterated henselian field.1 Let (Di, vi), 0 ≤ i ≤ r − 1
be an r iterated henselian division algebra (Di = Di+1). Let Φi : UDi−1

−→ Di be
the i-th natural reduction map. Then Φi(Φi−1(· · · (Φ1(a)) · · · )) is called i-iterated
reduction, if it is defined. Denote the r iterated henselian division algebra by D,
(D = D0, Z(D) = F = F0). We also need the following notations in order to state
the following lemma. By [UD]i and [UF ]i we denote the set of all elements of D
and F respectively, such that i iterated reduction defines. Also by [1 +MD]i and
[1 +MF ]i, we denote the subsets of [UD]i and [UF ]i such that i iterated reduction
equals one. Clearly [1 + MF ]1 = 1 + MF . we can write the main lemma of [5] in
this setting.

Lemma 3.12. Let D be a i iterated tame division algebra of finite dimension over
a henselian field F = Z(D) with index n.

i. For each a ∈ [1 +MD]i there is b ∈ [1 +MF ]i such that ab ∈ D′.
ii. [1 +MD]i $ [1 +MF ]iD

′.

Proof. i. Let a ∈ [1+MD]i. Then a is contained in a maximal subfield of D, say L.
Therefore a ∈ [1+ML]i. By lemma 3 [13], we have NL/F ([1+ML]i) = [1+MF ]i. So
NrdD/F (a) = NL/F (a) ∈ [1+MF ]i. Let t = NrdD/F (a). Using inductive argument
for Hensel lemma, we will show that there exist c ∈ [1+MF ]i such that cn = t. Let
s ∈ 1+MF = [1+MF ]1. Applying Hensel lemma for f(x) = xn−s gives c ∈ 1+MF

such that cn = s. Now it is not hard to see that Φ1([1 + MF ]i) = [1 + MF ]i−1.
Therefore [1 + MF ]i/[1 + MF ]1 ' [1 + MF ]i−1. Now by induction, we conclude
that [1 + MF ]i is n-divisible. Therefore exist c ∈ [1 + MF ]i such that cn = t.
Now NrdD/F (a) = cn. So NrdD/F (ac−1) = 1. Hence ac−1 ∈ D(1) ∩ [1 + MD]i.
Applying the Platonov’s generalized congruence theorem (cf. [13] and [4]) , we
obtain ac−1 ∈ D′. Take b = c−1 and the proof is complete.

ii. Applying the first part of the lemma for i = 1, in each step of reduction we
have, 1 + MDi

⊆ (1 + MKi
)Di
′ where Ki = Z(Di). First we show that in each

step of reduction, Di
′ * 1 + MDi

. Consider the groups ∆ = Di
∗/1 + MDi

and
P (Di) = (1 + MKi

)Di
′/(1 + MDi

). One can easily observe that P (Di) = ∆′ and
as Theorem 2.11 of [2] shows, the center of ∆ is Ki

∗(1 + MDi
)/(1 + MDi

). We
claim that ∆ is not an abelian group, for otherwise UDi

= UKi
(1 + MDi

) which

implies that Di is totally ramified. Thus Di
′ = µe(Ki), where e = exp(ΓDi

/ΓKi
),

1See Ershov’s comment in [3] on iterated valued field. Among other things, Considering iterated
valued field, enables us to have more insight in each step of reduction.
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(cf. the proof of Theorem 3.1 of [15]) which leads us to a contradiction. Therefore
Di
′ is not in 1 +MDi

and ∆ is not abelian. But Φ−1(1 +MDi
) = [1 +MD]i+1. If

D′ ⊆ [1 +MD]i+1 then Φ(D′) ⊆ Φ([1 +MD]i+1) = 1 +MDi
. But Di

′ ⊆ Φ(D′) so
Di
′ ⊆ 1 +MDi

a contradiction. �

Remark 3.13. In the proof of i. above, we could use Lemma 2.12 and avoid the
Platonov congruence theorem.

Theorem 3.14. Let D be a tame division algebra of r iterated over henselian
field F of index n. If there is an 0 ≤ ` ≤ r − 1 such that D`/F `D′` = 1 then
SK1(D) ' µn(F )/Z(D′).

Proof. For any 0 ≤ k ≤ r − 1, consider the k + 1− th reduction map

[UD]k+1
Φk+1Φk···Φ1

−→ Dk
∗
.

Thanks to Lemma 3.12 i., we have:

Dk
∗ '
→ [UD]k+1/[1 +MD]k+1

nat.
→ [UD]k+1/[1 +MF ]k+1D

′ nat.→ [UD]k+1/[UF ]k+1D
′.

Therefore,

Dk
∗
/Fk

∗
D′k

'
−→ [UD]k+1/[UF ]k+1D

′.

Hence if there is a ` such that D`
∗
/F`
∗
D′`
∗

= 1 then [UF ]`+1D
′ = [UD]`+1. By

lemma 1 in [13] D(1) ⊆ [UD]`+1 so D(1) = µn(F )D′. Using the fact that µn(F ) ∩
D′ = Z(D′) the theorem follows. �

Considering the fact that each henselian division algebra is 1 iterated division
algebra, we recover Theorem 3.7 from the above theorem.

4. On The Unitary Setting

In this section we introduce the unitary version of the group G(D) and obtain the
similar results in the unitary setting. Let D be a division ring with an involution
τ over its center F with index n. Let Sτ (D) = {a ∈ D|aτ = a} be the subspace of
symmetric elements and Στ (D) the subgroup ofD∗ generated by nonzero symmetric
elements. Here we concentrate on the involution of the first kind, i.e. Στ (D)∩F ∗ =
F ∗.

Definition 4.1. Let D be a division ring with an involution τ . Then the group
KU1(D) = D∗/Στ (D)D′ is called unitary Whitehead group and the GU(D) =
Στ (D)D′/F ∗D′ the unitary version of G(D).

We will prove that there is a stability theorem for GU(D) similar to one in
Corollary 3.6. The first part of the following theorem was first proved by Platonov
and Yanchevskii [14].

Theorem 4.2. Let D be a finite dimensional tame and unramified division algebra
with an involution of the first kind over a henselian field Z(D)=F. Then KU1(D) w

KU1(D) and GU(D) w GU(D) .
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Proof. Consider the following sequence:

D
∗
−→ UD/1 +MD −→ F ∗UD/F

∗(1 +MD) −→ D∗/Στ (D)D′.

Because the valuation is unramified, we have Στ (D) = Στ (D) ∩ UD (See [14]),

and D
′
= D′ (See Theorem 3.2 i.). Therefore we have the following isomorphism:

D
∗
/Στ (D)D

′ w

−→ D∗/Στ(D)D′.
For the second part, consider the following commutative diagram with exact

rows:

1 // GU(D) //

��

G(D)

iso.

��

// KU1(D)

iso.

��

// 1

1 // GU(D) // G(D) // KU1(D) // 1.

The two of the vertical arrows are isomorphisms, thanks to the first part of this
theorem and Theorem 3.2 i.. Therefore the third one is also isomorphism which
completes the proof. �

If D has an involution of the first kind, then D((x)) enjoys a natural involution
which is induced by the one from D. Therefore if CharF - i(D) then thanks to the
above theorem, we have GU(D) w GU(D((x))) which is a stability for GU(D).

Acknowledgments. I thank Oleg Izhboldin for some helpful conversations. I am also
grateful to J. -P. Tignol for his attention to my work.
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