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Abstract

We prove that if X is a smooth projective complex surface with the invariants pg = 0
and q = 1 then the middle Murre projector π2 (see [Mu90] or [Sch94] for the definition of
π2) can be generated by two natural divisors on X whose cohomology classes form a basis for
the second cohomology group H2(X, Q). As a consequence, this provides a second, in fact,
Chow-motivic, proof of the triviality of the Albanese kernel for surfaces with pg = 0 and q = 1
(the first proof was made in [BKL76]).

1 Introduction

All varieties will be smooth projective and defined over the field of complex numbers C. If Y is

a variety then let At(Y ) be the Chow-group of codimension t cycles on Y with coefficients in the

field of rational numbers Q and let A(Y ) = ⊕tA
t(Y ) be the Chow-ring of Y .

For any smooth projective surface X by A2
0(X) denote the Q-subspace in A2(X) consisting of

zero-cycles of degree zero on X . Also let A(X) be the Albanese variety for the surface X . By

definition, the Albanese kernel T (X) is the kernel of the surjective homomorphism

A2
0(X) −→ A(X)⊗Q

induced by the Albanese mapping X → A(X). The Bloch conjecture predicts that if pg = 0, then

T (X) = 0. Here pg = dim Γ(X, Ω2
X) is the dimension of the space of global holomorphic 2-forms

on X .

In [BKL76] Bloch, Kas and Lieberman proved that if pg = 0 and q = 1, where q is the

irregularity of X , then T (X) = 0. The purpose of this paper is to prove that the middle Murre

projector π2 for a such surface X (see [Mu90] or [Sch94] for the definition of π2) is rationally

equivalent to a sum of external products of two natural divisors on X whose cohomology classes

form a basis for the cohomology group H 2(X, Q). As a consequence this provides a second, in fact,

Chow-motovic, proof of the triviality of T (X) for surfaces with pg = 0 and q = 1.

Recall the definition of the category M of Chow motives over C with coefficients in Q. Objects

in M are pairs (X, p) where X is variety and p is a projector of X , that is a class in A(X ×X),

such that p ◦ p = p in the sense of compositions of correspondences. If M = (X, p) and N = (Y, q)

are two motives then a morphism f : M → N is a class f ∈ A(X × Y ), such that q ◦ f = f ◦ p.

If ∆X is a diagonal of a variety X then ∆X is a projector of X . The motive h(X) = (X, ∆X) is
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called the motive of the variety X . At the same time ∆X can be viewed as an identity morphism

1M : M → M for any motive M = (X, p).

Let X be a smooth projective surface over C. According to the Murre’s results (see [Mu90] and

[Mu93]), we have that there exist the projectors π0, π1, π2, π3 and π4 of the surface X , such that

∆X = π0 + π1 + π2 + π3 + π4

in A2(X × X) and the cohomology class of the correspondence πj coincides with the (4 − j, j)

Künneth component of the cohomology class of the diagonal ∆X in the group H4(X ×X, Q). The

projectors πj are pairwise orthogonal, whence

h(X) = h0(X)⊕ h1(X)⊕ h2(X)⊕ h3(X)⊕ h4(X)

in the additive category M, where hj(X) = (X, πj).

This decomposition of ∆X allows us to study zero cycles on X following the first Bloch’s

lecture in [Bloch80]. Indeed, correspondences act on Chow-groups: for any two varieties X and Y ,

if ν ∈ Ad(X × Y ), where d = dim(X), and if ξ ∈ Ap(X), then one can define

ν(ξ) = pY ∗(ν · p
∗

X(ξ)) .

Here pY and pX are projections, pY ∗ and p∗X are direct and inverse images respectively. In partic-

ular we have the homomorphisms

πj : A2(X) −→ A2(X)

on zero cycles induced by the projectors πj . Murre proved (see [Mu90], [Mu93] or [J94]) that π0 and

π1 operate as zero on the whole Chow-group A2(X), the kernel ker(π4) coincides with the group

A2
0(X) and ker(π3 |A2

0
(X)) coincides with the Albanese kernel T (X). Consequently the action of

the middle Murre projector π2 on T (X) is the same as the identical action of the diagonal ∆X on

T (X). Therefore, if π2 acts as zero on T (X), then T (X) = 0.

Now let X be a smooth projective surface with pg = 0 and q = 1. Since q = 1, it follows that

the Albanese variety A(X) is an elliptic curve A over C. Let F be a general fiber of the Albanese

mapping

α : X −→ A .

According to the classification of surfaces (see [Sh65], chapter IV) we have that, since pg = 0 and

q = 1, it follows that X ∼= (E ×F )/G where E is a curve and G is a finite abelian group acting on

E and on F . The action of G on E × F is diagonal free. Let

η : E × F −→ X

be the corresponding quotient map. The quotient curve E/G coincides with the elliptic curve A

and the regular map X → E/G = A induced by the projection pE : E × F → E coincides with

the Albanese mapping α.

There are two different cases: either genus of the curve F is greater than one or F is a curve

of genus one. In the first case E is an elliptic curve, i.e. a curve of genus one with fixed zero-point

e ∈ E. The group G is a finite subgroup in E acting on E by translations. Therefore the quotient

map ηE : E −→ A is unramified finite covering. We take o = ηE(e) as a zero point on A. Then

ηE is in fact an isogeny of elliptic curves. We fix any point f ∈ F and take x0 = η(e × f) as a

fixed point on X . If genus of the general fiber F is one then the quotient morphism ηE can be
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ramified. In this case we choose a zero-point o ∈ A in such a way that any point e ∈ η−1
E (o) is

unramified over o. Let e be a fixed point on E lying in η−1
E (o) and let f be a fixed point on F .

Then let x0 = η(e, f) be a fixed point on the surface X . So in both cases e is unramified point of

the quotient map ηE . Also note that pg = 0 and q = 1 imply that genus of the curve F/G is zero

(see [Sh65], ch. IV, § 8), so that F/G = P1.

Since pq = 0 and q = 1, it can be shown that the second Betti number of X is 2. Let n be the

order of the group G. Consider the divisors

D1 = η∗[e× F ] and D2 =
1

n
η∗[E × f ]

on X . Its cohomology classes form a basis for the Q-vector space H 2(X, Q). The Poincaré dual

basis is formed by the cohomology classes of divisors D2 and D1 (the same divisors but in inverse

order).

Theorem 1.1 Let X be a smooth projective surface with pg = 0 and q = 1. Let D1 and D2 be the

above divisors on X. Then the middle Murre projector π2 of the surface X is rationally equivalent

(with coefficients in Q) to the correspondence D1 ×D2 + D2 ×D1.

Now one can imitate the proof of Proposition 1.11 in [Bloch80] and deduce the triviality of

T (X) in the Chow-motivic way. Namely, we know that the middle projector π2 acts on T (X)

identically. At the same time, one can move the divisors D1 and D2 from points on X and obtain

that π2 acts as zero on T (X). Hence T (X) = 0.

For any cycle Z on X of codimension t its class in At(X) will be denoted by [Z]. Let f : Y → X

be a morphism of varieties and d = dim(X). Then the graph Γf is either a closed subvariety

{(f(y), y) ∈ X × Y | y ∈ Y } or its class in Ad(X × Y ) (depending from a context). The diagonal

∆X of a variety X can be viewed as a graph of the identical map 1X : X → X . All computations

with algebraic cycles are based on the book [F84].

Acknowledgements. The author would like to thank Ivan Panin and Claudio Pedrini for

useful discussions and comments. The author gratefully acknowledge the support of TMR ERB

FMRX CT-97-0107 and the hospitality of the University of Bielefeld.

2 Linear section

Let Ỹ be a variety and let G be a finite group of order n acting on Ỹ . Let Y = Ỹ /G be the quotient

variety of Ỹ by G and let τ : Ỹ → Y be the corresponding finite covering. It is well known that

the composition τ∗τ
∗ : At(Y ) → At(Y ) coincides with the multiplication-by-n homomorphism for

any codimesion t. By

N Ỹ /G : At(Ỹ ) → At(Ỹ )

denote the norm-homomorphism

w 7→
∑

g∈G

g(w) .

Lemma 2.1 The composition τ∗τ∗ : At(Ỹ ) → At(Ỹ ) coincides with the norm homomorphism

NỸ /G : At(Ỹ ) → At(Ỹ ).

Proof. This lemma is a well known fact and it can be easily deduced, for example, from the

considerations in [B62]. Recall the proof for the convenience of the reader. Let V be a prime

cycle on Ỹ and W = τ(V ). Then τ∗(V ) = dW where d = [C(V ) : C(W )] is the degree of V over
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W . Let V1, . . . , Vs be the distinct irreducible components of τ−1(W ). If l is a number of elements

in the inertia group {g ∈ G | g(y) = y for all y ∈ V }, then τ ∗(W ) = l
∑

j Vj . Consequently,

τ∗τ∗(V ) = dl
∑

j Vj . But sdl = n, where n is the order of G, and dl = n
s is the order of the splitting

group {g ∈ G| g(V ) = V } (loc. cit.). Thus we obtain that τ ∗τ∗(V ) = n
s

∑

j Vj = NỸ /G(V ).

Let X be a surface with pg = 0 and q = 1 and let X = (E × F )/G be the presentation of X

described in Introduction. Since a point on an algebraic curve is an ample divisor, it follows that

for any g ∈ G the divisor

[g(e)× F ] + [E × g(f)]

is ample on E × F . Then

η∗η∗([e× F ] + [E × f ]) = N(E×F )/G([e× F ] + [E × f ]) =
∑

g∈G

([g(e)× F ] + [E × g(f)])

is an ample divisor on E × F . Since η is a finite surjective morphism of varieties, it follows that

the divisor

η∗([e× F ] + [E × f ])

is ample on X (see [H70], p. 25). Hence there exists a positive integer m such that

mη∗([e× F ] + [E × f ])

is very ample.

Fix an embedding X ↪→ PN induced by this very ample divisor. Using Bertini theorem one

can choose a hyperplane section C of X , such that the following properties hold: (i) C is a smooth

projective curve; (ii) x0 ∈ C; (iii) the curve C has a positive genus. Let i : C ↪→ X be the

corresponding closed embedding of the curve C into X .

For any variety Y denote by P(Y ) and A(Y ) the Picard and Albanese varieties of Y respectively.

In fact we have the functors P and A on the category of connected varieties with fixed points. To

be precise let CV• be the category whose objects are pairs (Y, y0) where Y is a connected variety

and y0 ∈ Y is a fixed point on Y . Morphisms in CV• are morphisms of varieties preserving fixed

points. For short let Hom•(Y, Z) = HomCV•((Y, y0), (Z, z0)). If Y is an abelian variety, then,

automatically, y0 is a zero point on Y . Now A is a functor from CV• into the category of abelian

varieties and P is a functor from the opposite category CV
opp
• into the category of abelian varieties.

In particular, for the closed embedding i : C → X there exist the morphisms P(i) : P(X) → P(C)

and A(i) : A(C) → A(X).

The Picard variety is an object presenting the Picard functor. Hence P(X) is defined up to an

isomorphism. Since A is an elliptic curve, it follows that it isomorphic to its dual. Therefore we

can take P(X) = A = A(X). Identifying P(C) with A(C), J = P(C) = A(C), we get an isogeny

A = P(X)
P(i)
−→ J = P(C) = A(C)

A(i)
−→ A(X) = A

(see [Sch94]).

Lemma 2.2 Let n be the order of the group G and let m be the above natural number. Then the

isogeny A(i) ◦ P(i) coincides with the multiplication-by-mn homomorphism of the abelian variety

A.

Proof. Let a be a point on A and let Fa be a set-theoretic fiber of the morphism α over the point

a. Then for any point t ∈ η−1
E (a) we have that Fa = η(t × F ). Suppose that ηE : E → A is
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unramified at a ∈ A. Then the restriction of the morphism η on the subvariety t× F ↪→ E × F is

a closed embedding. Hence Fa = η(t× F ) ∼= F for any t ∈ η−1
E (a). Moreover,

α∗[a] =
1

n
nα∗[a] =

1

n
η∗η

∗α∗[a] =
1

n
η∗p

∗

Eη∗E [a] =

=
1

n
η∗





∑

t∈η−1

E
(a)

[t× F ]



 =
1

n

∑

t∈η−1

E
(a)

η∗[t× F ] =
1

n

∑

t∈η−1

E
(a)

[Fa] =

=
1

n
n[Fa] = [Fa] = η∗[t× F ] .

So we see that the fiber Fa is not multiply and α∗[a] = η∗[t× F ].

By a construction,

[C] = mη∗([E × f + e× F ]) .

Then

[C] · [Fa] = [C] · η∗[t× F ] = (mη∗[E × f ] + mη∗[e× F ]) · η∗[t× F ] =

= mη∗[E × f ] · η∗[t× F ] + mη∗[e× F ] · η∗[t× F ] = mη∗[E × f ] · η∗[t× F ] + 0 =

= mη∗(η
∗η∗[E × f ] · [t× F ]) = mη∗(NE×F/G[E × f ] · [t× F ]) =

= mη∗





∑

g∈G

[E × g(f)] · [t× F ]



 = mn .

For any connected variety Y by Pic0(Y ) denote the group of Weil divisors on Y algebraically

equivalent to zero. Consider the commutative diagram

Pic0(X)
i∗ // Pic0(C) C

}}{{
{{

{{
{{

{{
{{

{{
{{

{{
{

i // X

α

����
��

��
��

��
��

��
��

�

Pic0(A)
s
∼=

//

α∗

;;wwwwwwwwwwwwwwwwww

A

∼=

OO

P(i) // J

∼=

OO

A(i) //

∼=

OO

A

Here s is an isomorphism defined by the formula s−1(a) = [a− o] for any point a ∈ A, C → J is

the Albanese mapping for the curve C. The vertical isomorphisms are isomorphisms of functors

presentations.

Let a be a point on A such that ηE is unramified at a. The fibre Fa is a prime cycle on X and

[Fa] · [Fa] = 0. Hence, by Nakai-Moishezon criterion, we have that C is not a fiber of α because

[C]·[C] = 2nm2 > 0. It follows that the restriction α|C : C → A is a surjective map. Let t ∈ η−1
E (a).

Note that e and t are unramified over o and a respectively. Therefore the multiplicity of fibers Fa

and Fo are equal to 1. Then

i∗(α∗(s−1(a))) = i∗α∗([a− o]) = i∗(α∗[a])− i∗(α∗[o]) =

= i∗[Fa]− i∗[Fo] = [C] · [Fa]− [C] · [Fo] .

The first summand is

[C] · [Fa] = [C · η∗(t× F )] = d1v1 + . . . + dzvz ,
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where v1, . . . , vz are the points of intersection of C with Fa = η(t × F ) and dj is the multiplicity

of this intersection at the point vj . The second summand is

[C] · [Fo] = [C · η∗(e× F )] = t1w1 + . . . + thwh ,

where w1, . . . , wh are the points of intersection of C with Fo = η(e × F ) and tl is its multiplicity

at the point wl. Then we have

(A(i) ◦ P(i))(a) =

z
∑

j=1

dj(α ◦ i)(vj) +

h
∑

l=1

tl(α ◦ i)(wl) .

Since any point i(wl) lies in the fiber Fo, the point α(i(wl)) is equal to zero. Therefore,

(A(i) ◦ P(i))(a) =

z
∑

j=1

dj(α ◦ i)(vj) .

Since i(vj) ∈ Fa, it follows that α(i(vj)) = a for any j. Then

(A(i) ◦ P(i))(q) =

z
∑

j=1

dja .

But the number
∑z

j=1 dj coincides with the intersection number [C] · [Fa] = mn. Consequently we

obtain that

(A(i) ◦ P(i))(a) = mna .

3 The Picard and Albanese projectors

Recall (see [Mu90]) that for any smooth projective surface Y the projector π1 is closely connected

with the Picard variety P(Y ) and so it is called the Picard projector of the surface Y . By definition,

π3 is a transpose of π1. The projector π3 is connected with the Albanese variety A(Y ) and it is

called the Albanese projector of Y . In this section we compute π1 and π3 for our surface X in

terms of quotient structure on X .

Lemma 2.2 shows that the identical morphism 1A : A → A can be viewed as an inverse isogeny

for the isogeny A
P(i)
−→ J

A(i)
−→ A. Then, according to the general method of constructing of π1 (see

[Mu90], [Sch94], [G99]), we can get the Picard projector in the form

π1 =
1

mn
[C ×X ] · ε ,

where ε is a divisor on X ×X that corresponds to the identical isogeny 1A : A → A. Observe that

since [C] = mη∗([E × f + e× F ]), we have that

1

mn
[C ×X ] =

1

mn
[C]× [X ] =

1

n
(η∗[E × f ] + η∗[e× F ])× [X ] .

Hence one can write

π1 =
1

n
(η∗[E × f ]× [X ] + η∗[e× F ]× [X ]) · ε . (1)

So to compute π1 in terms of quotient structure on the surface X we have to compute ε.
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For any variety Y with fixed point y0 ∈ Y let PY be the Poincaré divisor on Y × P(Y ). Also

let αY : Y −→ A(Y ) be the Albanese map for Y sending y0 into the zero point on A(Y ). Then

PY = (αY × 1P(Y ))
∗P t

P(Y ) ,

where P t
P(Y ) is a transpose of PP(Y ) (see [G99], Section 4.2, p. 20). In particular,

PX = (α× 1A)∗P t
A .

Hence, the transpose P t
X of PX is

P t
X = (1A × α)∗PA .

At the same time ε = (α × 1X)∗(P t
X). To show this we need some more notation. For any

connected variety Y ∈ Ob(CV•) one can consider two following functors, both from CV
opp
• into the

category of Q-vector spaces. The first one is a functor Z 7→ Hom•(Z, P(Y ))⊗Q. The second functor

sends any object Z = (Z, z0) ∈ Ob(CV•) into the Q-space {c ∈ A1(Z × Y )| c ◦ z0∗ = 0 = y∗0 ◦ c}.

Here z0∗ = [z0 × z0] and y∗0 = [y0 × y0] are correspondences induced by the fixed points and

compositions are compositions of correspondences. There exists an isomorphism of functors

ωY
Z : Hom•(Z, P(Y ))⊗Q

∼=
−→ {c ∈ A1(Z × Y )| c ◦ z0∗ = 0 = y∗0 ◦ c}

(see [Sch94] or [G99], Section 3.2). For any Z ∈ Ob(CV•), if αZ : Z → A(Z) is the Albanese

mapping for Z, then let ΩY
Z be the composition ωY

Z ◦ (Hom•(αZ , P(X))⊗Q). In fact

ΩY
Z : Hom•(A(Z), P(Y )) ⊗Q

∼=
−→ {c ∈ A1(Z × Y )| c ◦ z0∗ = 0 = y∗0 ◦ c}

is an usual one-to-one correspondence between isogenies and divisors normalised by fixed points.

Now applying the general method of a construction of the divisor ε in our case we have that

ε = ΩX
X(1A)

(loc. cit.). Then the commutative diagram

Hom•(A, A)⊗Q
ΩX

X //

Hom•(α,A)⊗Q

��

{c ∈ A1(X ×X)| c ◦ x0∗ = 0 = x∗0 ◦ c}

Hom•(X, A)⊗Q

ωX

X

55lllllllllllllllllllllllllllllll

{c ∈ A1(A×X)| c ◦ 0∗ = 0 = x∗0 ◦ c}

(α×1X)∗

OO

Hom•(A, A)⊗Q

ωX

A

55kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Hom•(α,A)⊗Q

OO

1A
� //

_

��

ε

α
0

88pppppppppppppp
P t

X

_

OO

1A

_

OO

0

88ppppppppppppp
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shows that

ε = (α× 1X)∗(P t
X) .

Therefore, we can write

ε = (α× 1X)∗(1A × α)∗(PA) = (α× α)∗(PA) .

But it is very well known that the Poincaré divisor for the curve A is

PA = ∆A − o×A−A× o .

Hence,

ε = (α× α)∗(PA) = (α× α)∗(∆A)− η∗[o× F ]× [X ]− [X ]× η∗[o× F ] .

Now we will calculate the divisor (α× α)∗(PA). Let

l : E × E × F × F → E × F ×E × F

(e1, e2, f1, f2) 7→ (e1, f1, e2, f2)

be the isomorphism transposing points in the second and third factors. Also for any g ∈ G let Γg

be the graph of the morphism E → E, q 7→ g(q). Consider the commutative square

E × F ×E × F
η×η //

l−1

��

X ×X

α×α

��
E ×E × F × F

pE×E

��

A×A

E ×E
ηE×ηE // E/G×E/G

Since

(η × η)∗(η × η)∗(α× α)∗(∆A) = n2(α× α)∗(∆A) ,

one can write

(α × α)∗(∆A) =
1

n2
(η × η)∗(η × η)∗(α× α)∗(∆A) =

1

n2
(η × η)∗(l

−1)∗p∗E×E(ηE × ηE)∗(∆A) =

=
1

n2
(η × η)∗(l

−1)∗p∗E×E





∑

g∈G

Γg



 =
1

n2
(η × η)∗l∗

∑

g∈G

[Γg × F × F ] .

But for any g ∈ G we have that

(η × η)∗l∗[Γg × F × F ] = (η × η)∗l∗[∆E × F × F ] .

Therefore,

(α× α)∗(∆A) =
1

n2
(η × η)∗l∗

∑

g∈G

[Γg × F × F ] =
1

n
(η × η)∗l∗[∆E × F × F ] .

So we have that

ε =
1

n
(η × η)∗l∗[∆E × F × F ]− η∗[e× F ]× [X ]− [X ]× η∗[e× F ] .

8



Now one can substitute this formula for ε into the formula (1) and obtain that the projector

π1 is the intersection of the correspondences

1

n
(η∗[E × f ]× [X ] + η∗[e× F ]× [X ])

and
1

n
(η × η)∗l∗(∆E × [F × F ])− η∗[e× F ]× [X ]− [X ]× η∗[e× F ] .

Intersecting summands we have:

π1 = 1
n (η∗[E × f ]× [X ]) · 1

n (η × η)∗l∗[∆E × F × F ]

− 1
n (η∗[E × f ]× [X ]) · (η∗[e× F ]× [X ])

− 1
n (η∗[E × f ]× [X ]) · ([X ]× η∗[e× F ])

+ 1
n (η∗[e× F ]× [X ]) · 1

n (η × η)∗l∗[∆E × F × F ]

− 1
n (η∗[e× F ]× [X ]) · (η∗[e× F ]× [X ])

− 1
n (η∗[e× F ]× [X ]) · ([X ]× η∗[e× F ]) =

= 1
n2 (η × η)∗[E × f ×E × F ]) · 1

n (η × η)∗l∗[∆E × F × F ]

− 1
n2 (η × η)∗[E × f ×E × F ]) · 1

n (η × η)∗[e× F ×E × F ])

− 1
n2 (η × η)∗[E × f ×E × F ]) · 1

n (η × η)∗[E × F × e× F ])

+ 1
n2 (η × η)∗[e× F ×E × F ]) · 1

n (η × η)∗l∗[∆E × F × F ]

− 1
n2 (η × η)∗[e× F ×E × F ]) · 1

n (η × η)∗[e× F ×E × F ])

− 1
n2 (η × η)∗[e× F ×E × F ]) · 1

n (η × η)∗[E × F × e× F ]) =

= 1
n3 (η × η)∗( N(E×F×E×F )/(G×G)[E × f ×E × F ] · l∗[∆E × F × F ]

−N(E×F×E×F )/(G×G)[E × f ×E × F ] · [e× F ×E × F ]

−N(E×F×E×F )/(G×G)[E × f ×E × F ] · [E × F × e× F ]

+ N(E×F×E×F )/(G×G)[e× F ×E × F ] · l∗[∆E × F × F ]

−N(E×F×E×F )/(G×G)[e× F ×E × F ] · [e× F ×E × F ]

−N(E×F×E×F )/(G×G)[e× F ×E × F ] · [E × F × e× F ] ) =

=
1

n3
(η×η)∗



n
∑

g∈G

[E × g(f)×E × F ] · l∗[∆E × F × F ]− n
∑

g∈G

[E × g(f)×E × F ] · [e× F ×E × F ]−

−n
∑

g∈G

[E × g(f)×E × F ] · [E × F × e× F ] + n
∑

g∈G

[g(e)× F ×E × F ] · l∗[∆E × F × F ]−
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−n
∑

g∈G

[g(e)× F ×E × F ] · [e× F ×E × F ]− n
∑

g∈G

[g(e)× F ×E × F ] · [E × F × e× F ]



 =

=
1

n2
(η×η)∗l∗





∑

g∈G

[E ×E × g(f)× F ] · [∆E × F × F ]−
∑

g∈G

[E ×E × g(f)× F ] · [e×E × F × F ]−

−
∑

g∈G

[E ×E × g(f)× F ] · [E × e× F × F ] +
∑

g∈G

[g(e)×E × F × F ] · [∆E × F × F ]−

−
∑

g∈G

[g(e)×E × F × F ] · [e×E × F × F ]−
∑

g∈G

[g(e)×E × F × F ] · [E × e× F × F ]



 .

Now one can simplify every summand in the obtained expression for the correspondence π1. For

any g ∈ G we have that

(η × η)∗l∗[E ×E × g(f)× F ] = (η × η)∗l∗[E ×E × f × F ] ,

whence

(η×η)∗l∗





∑

g∈G

[E ×E × g(f)× F ] · [∆E × F × F ]



 = n(η×η)∗l∗([E×E×f×F ] · [∆E×F×F ]) .

The other summands can be simplified similarly. Therefore we proceed the computation of the

correspondence π1:

π1 =
1

n
(η × η)∗l∗([E ×E × f × F ] · [∆E × F × F ]− [E ×E × f × F ] · [e×E × F × F ]−

−[E ×E × f × F ] · [E × e× F × F ] + [e×E × F × F ] · [∆E × F × F ]−

−[e×E × F × F ] · [e×E × F × F ]− [e×E × F × F ] · [E × e× F × F ]) =

=
1

n
(η × η)∗l∗([∆E × f × F ]− [e×E × f × F ]− [E × e× f × F ]+

+[e× e× F × F ]− 0− [e× e× F × F ]) =

=
1

n
(η × η)∗l∗([∆E × f × F ]− [e×E × f × F ]− [E × e× f × F ]) .

So we have that the Picard projector of the surface X can be expressed as

π1 =
1

n
(η × η)∗l∗([∆E × f × F ]− [e×E × f × F ]− [E × e× f × F ]) . (2)

Then

π3 = πt
1 =

1

n
(η × η)∗l∗([∆E × F × f ]− [E × e× F × f ]− [e×E × F × f ]) (3)

is the Albanese projector of X . Also let

π0 = [x0 ×X ] and π4 = [X × x0] .

As had shown in [Sch94], in the general situation the relations πi ◦ πj = δij · πi hold for any

i, j ∈ {0, 1, 3, 4} except for, maybe, the relation π1 ◦π3 = 0. This is the reason for the replacement

π1 by π1 −
1
2π1 ◦ π3 in loc. cit. But in our case the last relation holds as well:

Lemma 3.1 π1 ◦ π3 = 0
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Proof. Let Ỹ be a variety, let G be a finite abelian group acting on Ỹ and let τ : Ỹ → Y = Ỹ /G

be the quotient map. If S is a set then by St denote the product St = S × . . .× S with t factors.

Let µ and ν be correspondences on Ỹ × Ỹ . It is easy to show that

(τ×τ)∗(µ)◦(τ×τ)∗(ν) = (τ×τ)∗q13∗(NỸ 3/G3 q∗23(µ) ·q∗12(ν)) = (τ×τ)∗q13∗(q
∗

23(µ) ·NỸ 3/G3 q∗12(ν))

where q12, q23 and q13 are the projections

Ỹ × Ỹ

Ỹ × Ỹ × Ỹ
q12

xxrrrrrrrrrr

q13

OO

q23

&&LLLLLLLLLL

Ỹ × Ỹ Ỹ × Ỹ

In particular, we can write

π1 ◦ π3 =
1

n
(η × η)∗l∗[∆E × f × F − e×E × f × F −E × e× f × F ] ◦

◦
1

n
(η × η)∗l∗[∆E × F × f − E × e× F × f − e×E × F × f ] =

=
1

n2
(η × η)∗q13∗(N(E×F )3/G3 q∗23l∗[∆E × f × F − e×E × f × F −E × e× f × F ] ·

· q∗12l∗[∆E × F × f −E × e× F × f − e×E × F × f ]) =

=
1

n2
(η × η)∗q13∗



n[E × F ]× l∗





∑

g∈G

Γg ×
∑

g∈G

(g(f)× F )− n
∑

g∈G

(g(e)×E × g(f)× F )−

−
∑

g∈G

(E × g(e))×
∑

g∈G

(g(f)× F )



 · l∗[∆E × F × f −E × e× F × f − e×E × F × f ]× [E × F ]



 =

=
1

n2
(η × η)∗q13∗



n[E × F ]× l∗





∑

g∈G

Γg ×
∑

g∈G

g(f)× F − n
∑

g∈G

(g(e)×E × g(f)× F )−

−E ×
∑

g∈G

g(e)×
∑

g∈G

g(f)× F



 · l∗[∆E × F × f −E × e× F × f − e×E × F × f ]× [E × F ]



 =

=
1

n2
(η × η)∗q13∗

∑

g∈G

∑

g∈G

(n[E × F ]× l∗[Γg × g(f)× F − g(e)×E × g(f)× F−

−E × g(e)× g(f)× F ] · l∗[∆E × F × f −E × e× F × f − e×E × F × f ]× [E × F ]) .

Now observe that we can move the divisor [f ] ∈ A1(F ) from the finite number of points {g(f)| g ∈

G}. In other words, there exist points {f1, . . . , fs} on the curve F , such that

[f ] =





s
∑

j=1

rjfj



 ,

where rj are multiplicities, and fj 6∈ {g(f) | g ∈ G} for any j. Then the intersection of any

summand in

[E × F ]× l∗[Γg × g(f)× F ]− [E × F ]× [g(e)× g(f)×E × F ]− [E × F ]× [E × g(f)× g(e)× F ]
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with any summand in

l∗[∆E × F × f ]× [E × F ]− [E × F × e× f ]× [E × F ]− [e× F ×E × f ]× [E × F ]

is zero. Hence π1 ◦ π3 = 0.

So we see that π0, π1, π3 and π4 are pairwise orthogonal idempotences in the ring of correspon-

dences A2(X ×X).

4 The middle projector

By definition,

π2 = ∆X − π0 − π1 − π3 − π4

(see [Mu90]). Hence, tautologically, we have the decomposition ∆X = π0 + π1 + π2 + π3 + π4. For

any variety Y let

cltY : At(Y ) −→ H2t(Y, Q)

be the cycle map for codimension t cycles. As it was mentioned in Introduction,

cl2X×X(πj) = ∆(4− j, j)

is the (4− j, j) Künneth component of the cohomology class of the diagonal ∆X . Since the classes

cl1X([D1]), cl1X([D2]) form a basis for H2(X, Q) and cl1X([D2]), cl1X([D1]) form a Poincaré dual basis

(see Introduction), it follows that

∆(2, 2) = cl2X×X([D1 ×D2] + [D2 ×D1]) .

Therefore the correspondences π2 and [D1 ×D2] + [D2 ×D1] are the same modulo cohomological

equivalence. Theorem 1.1 asserts, that, in fact, these correspondences are the same modulo rational

equivalence. Hence to prove Theorem 1.1 we have to prove that the difference of correspondences

Ξ = [D1 ×D2] + [D2 ×D1]− π2

is equal to zero in A2(X ×X).

Let us compute the cycle Ξ. Observe that

π0 = [x0 ×X ] = [x0]× [X ] = η∗[e× f ]×
1

n
η∗[E × F ]

=
1

n
(η × η)∗[e× f ×E × F ] =

1

n
(η × η)∗l∗[e×E × f × F ] .

Respectively,

π4 =
1

n
(η × η)∗l∗[E × e× F × f ] .

Then it is easy to compute:

Ξ = [D1 ×D2] + [D2 ×D1] + π0 + π1 + π3 + π4 −∆X =

=
1

n
(η × η)∗l∗([e×E × F × f ] + [E × e× f × F ] + [e×E × f × F ] + [∆E × f × F ]−

−[e×E × f × F ]− [E × e× f × F ] + [∆E × F × f ]− [E × e× F × f ]−

−[e×E × F × f ] + [E × e× F × f ]− [∆E ×∆F ]) =
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=
1

n
(η × η)∗l∗([∆E × f × F ] + [∆E × F × f ]− [∆E ]× [∆F ]) .

So we obtain that

Ξ =
1

n
(η × η)∗l∗([∆E × f × F ] + [∆E × F × f ]− [∆E ]× [∆F ]) .

Now, again, let Y = Ỹ /G be the quotient variety of a variety Ỹ by a finite abelian group G. Let

τ : Ỹ → Y be the corresponding quotient map. Let θ ∈ At(Ỹ ) be any cycle of codimension t on Ỹ .

Then τ∗(θ) is zero if and only if NỸ /G(θ) is zero. Indeed, if τ∗(θ) = 0 then NỸ /G(θ) = τ∗τ∗(θ) = 0.

Conversely, if NỸ /G(θ) = 0 then τ∗ NỸ /G(θ) = τ∗τ
∗τ∗(θ) = nτ∗(θ) = 0 where n is order of the

group G. Dividing by n we obtain that τ∗(θ) = 0.

In particular Ξ = 0 if and only if the cycle

Υ = N(E×F×E×F )/(G×G)(l∗([∆E × f × F ] + [∆E × F × f ]− [∆E ]× [∆F ]))

is zero. We omit 1
n here because we can multiply and divide by n. For any g ∈ G let Θg be the

graph of the regular map F → F , q 7→ g(q). Then we compute:

Υ = l∗NE×E×F×F/G×G[∆E × f × F + ∆E × F × f −∆E ×∆F ] =

= l∗





∑

g1,g2∈G

Γg1g−1

2

× g1(f)× F +
∑

g1,g2∈G

Γg1g−1

2

× F × g2(f)−
∑

g1,g2∈G

Γg1g−1

2

×Θg1g−1

2



 =

= l∗





∑

g∈G

Γg ×
∑

g∈G

g(f)× F +
∑

g∈G

Γg × F ×
∑

g∈G

g(f)− n
∑

g∈G

Γg ×Θg



 =

= l∗





∑

g∈G

[Γg]×
∑

g∈G

[g(f)× F + F × g(f)]− n
∑

g∈G

[Γg ×Θg]



 .

Let

λ = (ηE , ηE , ηF , ηF ) : E ×E × F × F −→ A×A× P1 × P1

where ηF : F → P1 is a quotient map. Then we have that

λ∗λ∗l
∗Υ = N(E×E×F×F )/(G×G×G×G) l∗Υ =

= N(E×E×F×F )/(G×G×G×G)





∑

g∈G

[Γg]×
∑

g∈G

[g(f)× F + F × g(f)]− n
∑

g∈G

[Γg ×Θg]



 =

=
∑

g1,g2∈G

∑

g∈G

[Γg]×
∑

g3,g4∈G

∑

g∈G

[g(f)× F + F × g(f)]− n
∑

g1,g2,g3,g4∈G

∑

g∈G

[Γg ×Θg] =

= n2
∑

g∈G

[Γg]× n2
∑

g∈G

[g(f)× F + F × g(f)]− n5
∑

g∈G

[Γg ×Θg] =

= n4l∗Υ .

Hence, if the cycle λ∗l
∗Υ is trivial, then the cycle l∗Υ is trivial too. We have that

λ∗l
∗Υ = n4([∆A]× [pt× P1 + P1 × pt]− [∆A]× [∆P1 ]) =

= n4[∆A]× [pt× P1 + P1 × pt−∆P1 ] =

= n4[∆A]× 0 = 0 .

So we obtain that

λ∗l
∗Υ = 0 ⇒ λ∗λ∗l

∗Υ = 0 ⇒ l∗Υ = 0 ⇒ Υ = 0 ⇒ Ξ = 0 .

Theorem 1.1 is proved.
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