HIGHER NON-ABELIAN COHOMOLOGY OF GROUPS

HVEDRI INASSARIDZE

ABSTRACT. The first non-abelian cohomology of groups introduced
by Guin is extended to any dimensions and for a substancially
wider class of coefficients called G-partially crossed P-modules.
The first and the second non-abelian cohomologies of groups are
described in terms of torsors and extensions of groups respectively.
Higher non-abelian cohomology pointed sets are described in terms
of cotriple right derived functors of the group of derivations with
respect to the first contravariant variable. For any short exact co-
efficient sequence a long exact cohomology sequence is obtained
extending the well-known exact cohomology sequences and higher
cohomology of groups with coefficients in any G-group is intro-
duced.

INTRODUCTION

Our approach to non-abelian cohomology of groups follows Guin’s
first non-abelian cohomology [5,6] which differs from the classical first
non-abelian cohomology pointed set [10] and from the setting of various
papers on non-abelian cohomology [4,2,3] extending the classical exact
non-abelian cohomology sequence from lower dimensions [10] to higher
dimensions.

Guin defined his first non-abelian cohomology group when the coef-
ficient group is a crossed G-module and obtained a six term exact co-
homology sequence for any short exact sequence of crossed G-modules.

A non-abelian cohomology of groups will be defined in any dimen-
sions > 1 extending Guin’s first non-abelian cohomology group and his
exact cohomology sequence to nine term exact cohomology sequence.
A substantially wider class of coefficients will be used consisting of par-
tially crossed modules over a group P on which acts on the left a group
G that will be called G-partially crossed modules over P. We describe
the first non-abelian cohomology in terms of torsors and the second
non-abelian cohomology in terms of extensions of groups. Moreover a
close relation of non-abelian cohomology of groups with non-abelian
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right derived functors of the group of derivations will be established
and for some particular cases of coefficients a long exact cohomology
sequence will be obtained.

All considered groups will be arbitrary (not necessarily commuta-
tive). An action of a group G on a group A means an action on the left
of G on A by automorphisms and will be denoted by Ya,g € G,a € A.
We assume that GG acts on itself by conjugation. The center of a group
G will be denoted by Z(G). If the groups G and R act on a group A
then the notation 9"a means 9("a),g € G,r € R,a € A.

1. G-PARTIALLY CROSSED P-MODULES AND THE GROUP
Der(G, (A, (1)) OF DERIVATIONS

A precrossed P-module (A, ) consists of a group P acting on a group
A and a homomorphism p : A — P such that

p(*a) = zp(a)x™, x € P, ac A.

If in addition we have
Mg = aa'a™!
for a,a’ € A, then (A, p) is a crossed P-module.

Definition 1.1. A partially crossed module yp : A — P over P is a
precrossed module over P satisfying the equality

ad'a™t =HDq/ (1.1)
for all ' € A and for all a € A such that p(a) is a commutator of P.

Note that the relation (1.1) is equivalent to the following relation:
="da, (1.2)

a’a
for all a’ € A and for all a € A such that p(a) = zyx~'y~'. In effect,
(1.1) = (1.2) : take @/ =¥* b and (1.2) = (1.1) : take o’ =" '¥"' b.
Clearly any crossed module over P is a partially P-crossed module.

Let A be a metabelian (not abelian) group. Consider the precrossed
module

AT AJA Al =P,

where 7 is the canonical surjection and P acts trivially on A. Then
A 5 P is a partially crossed module over P which is not a crossed

P-module.
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Any precrossed module B £ P induces in a natural way a partially
crossed module over P as follows:

Consider the Peiffer commutators bbb~ #®y =1 for all ' € B subject
to the relation: pu(b) is a commutator of P. Let N be the normal
subgroup of B generated by these Peiffers commutators and take the

quotient group B/N. One gets a precrossed module B/N LN P,
being induced by p. It is easy to check that in fact it is a partially
crossed P-module. Moreover any morphism from B £ P to a partially
crossed module X % C' induces in a natural way a unique morphism

B/N “ p
! |
X L C

It is obvious that if A £ P is a partially P-crossed module, then
Ker 1 is contained in the center of A .

Definition 1.2. Let G, P and A be groups. It will be said that A £ P
is a G-precrossed module over P if

(1) (A, pn) is a precrossed P-module,
(2) G acts on P and A,
(3) p: A — P is a homomorphism of G-groups,
(4) ODa=99"q for ge G, x € P, a € A (compatibility condition,).
If in addition (A, u) is a crossed P-module, then (A, ) is called G-
crossed P-module. If conditions (1)-(4) hold it will be said that the
group G acts on the precrossed P-module (A, ).

Definition 1.3. A G-precrossed P-module (A, p) will be called
G-partially crossed P-module if in addition the following condition holds:

ad'a”t =g or equivalently o¥"d' =da ,
foralld’ € A and a € A such that p(a) = zyx~'y~! for some x,y € P.

It is clear that any precrossed (crossed) G-module is in a natural way
a G-precrossed (G-crossed) G-module, G acting on itself by conjuga-
tion. A G-precrossed P-module was called in [8] as precrossed G — P-
bimodule arising confusion with the notion of crossed bimodule defined
in [9](see E.1.5.1) generalising the well-known notion of bimodule. If
f : G — G is a homomorphism of groups then any G-precrossed
P-module is a G'-precrossed P-module induced by f, G’ acting on A
and P via f.

Note that if (A, p) is a G-precrossed P-module the equality

raca:xra
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holds for any z € G, a € A, r € H°(G, P). In effect, one has

-1 z~ 1
TE, AT mca:a:( r)a: a .

Definition 1.4. Let (A, ) be a G-partially crossed P-module. Denote
by Der(G, (A, p)) the set of pairs (o, ), a is a crossed homomorphism
from G to A, i.e.

T

a(ry) = a(z) “aly), »,yed,

and r is an element of P such that

pa(z)=r*rt, ze€G.

This set will be called the set of derivations from G to (A, u).
For any (a,7) € Der(G, (A, i) one has

xr

alz) ™a =""aca(r) ,

forae A,z € G.
We introduce in Der(G, (A, u)) a product by

(,7)(8,5) = (ax B,75) ,
where (a x ()(z) ="6(z)a(z), z € G.

Proposition 1.5. Under the aforementioned product Der(G, (A, p)) is
a group which coincides with the group Derg(G, A) of Guin if (A, p) is
a crossed G-module viewed as a G-crossed G-module.

Proof. Clearly this product is associative. At first it will be shown
that (a * 3,7s) belongs to Der(G, (A, 1)). Put v = a* 3. We have

Y(zy) ="B(zy)a(zy) ="(B(x) “By))a(z) "aly) = "B(x) " B(y) -
~a(z) Ta(y).
On the other hand

(@) v(y) =" Blz)a(z)"("Bly)aly)) =" Blz)a(z)™ B(y) aly) -

Using equality (1.1) one gets y(zy) = v(z)*y(y) showing that - is a
crossed homomorphism. Further, we have

py(@) = p("B(x)a(x)) ="pf(x)pa(e) ="(s "s~r rt ="s"(s)r

Tl =TepTs Tl = pg T(rs) L

Therefore (o * §,rs) € Der(G, (A, u)). It is obvious that (ag, 1) is
the unit of Der(G, (A, p)) with ap(z) =1 for all z € G.
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For (a,r) € Der(G, (A, n)) take the pair (@,r ') with a(z) =
= ""a(z)"", & € G. It will be shown that (@,r ) € Der(G, (4, u)).
For this it will be proved the equality

g o) =" o) " e, 2 G, aE A

(1.3)
In effect, since pu(" a(z)™!) = r pa(z)~'r = 7717, one gets

1

M(r_la(x)fl)(xr— a) _ 7,.71 T 1 -1 —1...—1 1

r(xr’ a):r xrr~ xr a:r xa“

The required relation (1.3) follows now from the equality
“(Flo‘(x)_l)(”_la) =rtaz) ™ a " alr).
Therefore one has
aley) =""alzy) " =" (aly) tal@) ) ="Faly) T " ale) T =

1 a(y)™t =a(z) *a(y) ,

r Oz(l‘)il ar—tL

i.e. @ is a crossed homomorphism. Moreover,

pa(x) = (" ala) ™) = 1 pala) e = v Tl =0

There follows that (a,r™!) € Der(G, (A, 1)). It is easily checked that
(o, 7)(@,r ™) = (@, r Ha,r) = (1) .

We conclude that Der(G, (A, 1)) is a group which coincides with the
group Derg(G, A) of derivations defined by Guin [6] when (A, ) is a
crossed G-module. O

A homomorphism f : (A,u) — (B, \) of G-partially crossed P-
modules induces a homomorphism

f*: Der(G, (A, ) — Der(G, (B, \))

given by («,r) — (af,r).
There is an action of G on Der(G, (A, i) defined by

Nayr)=(@,9r), g€ G,repP,

with @(z) = %a(? 'z), x € G (see [6,8]). Moreover if P acts on G such
that

1

(g =r""q, U/ =19 for v/ €R, g€G, a€ A,

then there is also an action of P on Der(G, (A, u)) given by "(«, s) =
(@,”s), a(z) =" (" 'z),r€ P,z € G [8].
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It is well-known [1] that the groups G and P acting on each other
and on themselves by conjugation are said to be acting compatibly if

g =gl Cap = g g g € G, €R.
(1.4)

Definition 1.6. [t will be said that the groups G and P act on a group
A compatibly if

(g =99"q (9Dqg="9"¢ textfor ge G, r€R, a€ A.

Proposition 1.7 ([8] ). Let (A, p) be a G-partially crossed P-module
the groups G and P acting on each other and on A compatibly.
Under the aforementioned actions of G and P on Der(G, (A, n)) and
the homomorphism v : Der(G, (A, n)) — P given by (a,r) — r, the
pair (Der(G, (A, 1)), v) is a G-precrossed P-module.

2. THE FIRST NON-ABELIAN COHOMOLOGY

Let (A, 1) be a G-partially crossed P-module. Define on the group
Der(G, (A, 1)) an equivalence relation as follows:

Ja€ A: B(z) =a""a(z) “a,
(a,r) ~ (B.8) = {7, _ ,Lb(a)l('r’ )mod HO((Gza P)

Theorem 2.1. Let (A, u) be a G-partially crossed P-module satisfying
the following conditions:

1) H°(G, P) is a normal subgroup of P,

2) for any ¢ € H°(G,P) and (a,r) € Der(G, (A, ) there exists

a € A such that u(a) =1 and ‘a(x) = a ta(z) %a, v € G.

Then the group Der(G, (A, u)) induces on the quotient set
Der(G, (A, 1))/ ~ a group structure and this quotient group will be
called the first cohomology group H' (G, (A, u)) of the group G with
coefficients in the G-partially crossed P-module (A, ).

Proof. We have to show that the relation ~ is a congruence, i.e. if
(o, 7) ~ (o, 7') and (B, 5) ~ (3, 8), then (o, 7)(5,s) ~ (a/,7")(F', ¢').
For this it will be used Guin’s proof [6] which remains valid in our
generalized case.

We first prove that

(Oé, T) (57 S) ~ (a7 T’C) (ﬁa 3)
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for any c € HY(G, P). For (3, s) and ¢ € H°(G, P) there is a € A such

that u(a) =1 and a='3(z)%a, x € G. One gets

“B(x)a(z) ="(a"'Bz) "a)a(r) ="a" "B(x) Taa(z) =" "B(z) -
ca(x) Ta .

Since pu("a)™! = (rp(a)r=") 7! = 1, one has rcs = p("a) " trsc’ with

¢ € H°(G, P). Therefore, (o, 7)(f3,s) = (a, rc)(83, s).
Use the equalities
o(z) =bta(z) b, ' = ud) trz
and f'(z) =d 'B(x) “d, s = u(d) st
with 2, € HY(G, P) and put

(a,72)(8,5) = (7, rzs)
and (o/,7)(3,s) = (7/,r's)
with y(x) = "3(z)a(z) and ¥'(z) = "' (x)d/(x), z € G.
It will be shown that

(c, 72) (B, 8) ~ (/,7")(B', ') -
In effect,
7’(:70) _ r’(d—lﬁ(x) xd)b—la(l,) Tp — u(b)_lrzd—l u(b)_lrzﬁ(l,) u(b)_lrzxd_
blafz) Th=b"1 Hdt 2 B(x) (3d) afz) Tb=b"1 ' H(x) -
ca(x)**d b,

and pu(db™') = p@)trzu(d) "zt = sl el
r's’ = p("d b)"trzst with t € H°(G, P).

There follows that («,rz)(8,s) ~ (/,r")(F,s"). Therefore
(a,7)(B,s) ~ (,7")(F',s'") and the equivalence ~ is a congruence.
]

Clearly any partially crossed G-module viewed as a G-partially crossed
G-module satisfies conditions of Theorem 2.1, in this case
H°(G,G) = Z(G) and for (a,g) € Der(G, (A, u)) = Derg(G, A),
¢ € Z(G) the equality a(cx) = a(zc), x € G, implies a(c) ‘a((r) =
a(z) “alc) and plalc)) = geg~le™! = 1; we recover Guin’s first co-
homology group of a group G with coefficients in a crossed G-module
[6].
If f: (A pn) — (B,\) is a homomorphism of G-partially crossed
P-modules satisfying conditions of Theorem 2.1, then f* induces a ho-
momorphism f!: HY(G, (A, p)) — H' (G, (B,\)). The above defined
action of G on Der(G, (A, 1)) induces an action of G on HY(G, (A, 1))
given by

Mo r)] =Fla,r)], ge@.
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By our next statement it will be shown that Guin’s first non-abelian
cohomology group is closely related with torsors. A similar relationship
of the first non-abelian pointed set cohomology with principal homo-
geneous spaces is well-known [1]. To this aim the notion of a G-torsor
over a partially crossed G-module will be introduced.

Definition 2.2. A G-torsor over a partially crossed G-module (A, )
is a pair (E, f) consisting of a non-empty G-set E with an action on the
right of A on E denoted by xa (for x € E, a € A ) which is compatible
with the action of G and such that for any x,y € E there is a unique
element b € A with y = xb, and f is a map from E to G such that

1) for any x € E, s € G the following equality holds
u(a) = f(@)sf () ts™!

with *x = xa, a € A;
2) if y=xb then
fly) =p® ) f(x), vyeE beA.

Definition 2.3. [t will be said that G-torsors (E, f) and (E', f') over
a partially crossed G-module (A, ) are isomorphic if there is a bijection
¥ : E — E' compatible with the actions of G and A such that

f(x) = f'(z) mod Z(G)
forany xz € E.

Denote by E(G, A) the set of classes of isomorphic G-torsors over
the partially crossed G-module (A, ).

It is introduced a product on the set F (G, A) as follows. Let [(E1, f1)],
[(E2, f2)] € E(G,A) and let x € Ey, y € Ey. Take A with a new action
of G given by (*a)’ = f1@ch *q for any s € G, a € A with *z = zb,
%y = yc. Denote so defined G-group by E and define the action of A
on F by translation on the right. Define a map g : E — G given by

g(a) = pla™") fi(@) fa(w) -
Then the pair (F, g) is a G-torsor over the partially crossed G-module
(A, 1) and define the required product by

[(Ex, f)] o (B2, f2)] = [(E, 9)] -

Theorem 2.4. If (A, p) is a partially crossed G-module, there is a
natural isomorphism between E(G, A) and H'(G, A).

Proof. Let [(E, f)] € E(G, A) and take z € E. For any s € G one has
*z = za and an induced map «, : G — A defined by a,(s) = a that
is a cocycle. Using 1) of Definition 2.2 we see that the pair (o, f(z))

is an element of Der(G, (G, A)) = Derg(G, A).
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Define amap o : E(G,A) — HY(G, A) by a([(E, f)]) = [(aw, f(2))].
We have to show the correctness of .

If y€ Eand y = ab, b € A, then *y = *z *b = xa °b = xbb~'a *b =
yb~la *b. By 2) f(y) = u(b™1)f(z). There follows that (o, f(z)) ~
(ay, f(y)). Let (E, f) be isomorphic to (£, f'), i.e. there is a bijection
¥ : E — E' with properties given in Definition 2.2. Take 2’ € E’" and
Y(z) =2, x € E. Then J(°z) = *J(z) = 2’ and J(xa) = J(z)a = 2'a
with *z = za. Thus, a, = a,. Since f(z) = f'(') mod Z(G), one
deduces (ay, f(z)) ~ (g, f/((2')). Therefore, the map « is correctly
defined.

Let [(o,9)] € HY(G,A). Take A with a new action of G given by
(*z) = a(s) *z, © € A, s € G, and with the action of A on itself
by translation on the right. Denote so obtained G-set by P,. Define a
map f, : P, — G by fy(z) = p(z~1)g, = € P,, which verifies conditions
1) and 2) of Definition 2.2. In effect, if (*z)" = za then a(s)’zr = za.

On the other hand pa(s) = gsg~'s™!. Thus, pa(s)u(®z) = p(za),

gsg s lsp(x)s™! = p(z)p(a). Whence
pla) = p(x) " "gsg~ p(x)s " = fo(w)sfy(x)'s™
and f, verifies condition 1).
If y = zb then one has

Foly) = ply™)g = p(b™"2™")g = p(b~ pu(a™")g = n(0™") f (@) -
Thus f, satisfies condition 2) too. One gets a G-torsor (P,, f,) over the
partially crossed G-module (A, i) and define 3 : HY(G, A) — E(G, A)
by B([(a, 9)]) = [(Pa, fy)]-

If (a, g) ~ (a/, ¢') then /(s) = b~ a(s)*band ¢’ = u(b~)gmod Z(G).
It will be shown that (F,, f,) is isomorphic (P, fy).

Define 9 : P, — Py by 90(x) = b~'z, v € P,. Then 0((°z)) =
b ta(s) *z and (*(0(x))) = (*(b7'z)) = /(s) *(b~'z) = b 'a(s) b
b7t sz = b 'a(s) *z. Thus, ((°z)') = (*(d(z)))’. Tt is obvious that 9
preserves the action of A.

For x € P, one gets

fo(0(x)) = fy(b~2) = pla™'b)g" = p(a™Hu®)p(b™)g mod Z(G) =
wz™hg mod Z(G) = f,(x) mod Z(G) .

This implies that (P,, f,) is isomorphic to (P, fy). Therefore the
map (3 is correctly defined.

It is easily checked that « is a homomorphism and af =1, fa = 1.
O
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3. THE SECOND NON-ABELIAN COHOMOLOGY

Now the second cohomology H?(G, (A, 1)) of a group G with coeffi-
cients in a G-partially crossed P-module (A, ) will be defined.
Consider the diagram

l
M =F LG (3.1)

l1
with F' a free group, 7 is a surjective homomorphism, M is a group
consisting of pairs (x,y), z,y € F, such that 7(z) = 7(y) and [y, [; are
canonical projections, lo(z,y) = x, l;(z,y) = y. That means (M, ly, ;)
is the simplicial kernel of 7. Put A = {(z,z), z € F'} C M.
Then (A, ) can be viewed as a F-partially crossed P-module induced
by 7 and as a M-partially crossed P-module induced by 7ly (or by

Tly). Let Z1(M, (A, 1)) be the subset of Der(M, (A, u)) consisting of
elements of the form (a, 1) satisfying the condition a(A) = 1, implying
a(M) C Z(A). There follows that Z1(M, (A, 1)) is an abelian subgroup
of Der(M, (A, w)).

Define on Z1(M, (A, 11)) a relation by
(o, 1) ~ (o, 1) <= (B, h) € Dex(F, (A, p))
such that the following equality holds

(ala 1) = (Blo, h) (e, 1)(Bla, h)_l
in the group Der(M, (A, p)).
We see that if (a/,1) ~ (a, 1) one has
o () = Bly(x) 7 "ax)Blo(x), €M .

Proposition 3.1. The relation ~ defined on Z(M, (A, 11)) is an equi-
valence.

Proof. Clearly this relation is reflexive. If (¢/, 1) ~ (o, 1), i.e. (/,1) =
(ﬁlo, h)((l/, 1)(5l17 1)_17 (ﬁv h) S DET(R <A7 M))? then (C%}) = <ﬁl07 h)_l'
(o, 1)(Bly, k) and (Blg, )~ = (Blo, k™), (Bly, h) = (Bly, h~ 1)~ with
(B,hY) = (8,h)"* € Der(F, (A, 1)). Thus the relation ~ is symmetric.
It remains to show the transitivity.

Let (o/,1) ~ (a, 1) and (&, 1) ~ (a/,1). Then one has

(alv 1) = (ﬁl07 h)(Oé, 1)(6117 h’)il )
(@’ 1) = (Bly, V) (o, 1) (BT, )~ ?
with (8, h), (3, ') € Dex(F, (A, ).
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There follows that
(O/Ia 1) = (ﬁll(b h/) (5107 h)(Oé, 1)<ﬁl17 h)71<5lllu h/)il =
(8 * B)lo, W'h) (e, 1) (8 + B)by, 1)~
with ("% 8,h'h) = (B',h)(5, h) € Der(F, (A, u)). Therefore (o, 1) ~
(cr, 1) and the relation ~ is an equivalence. O

Proposition 3.2. The quotient set Z'(M, (A, p))/ ~ is independent
of the diagram (3.1) and is unique up to bijection.

We need the following

Lemma 3.3. Let A be a G-group and let o« : M — A be a crossed

homomorphism such that a(A) = 1. Then there exists a map q : F —
A such that

aly) = qh(y) aloly), yeM.
Proof. Note that if (z,2"), (2/,2") € M, then a(z,2") = oz(x x
-a(x,z’). In effect the equalities (x,2") = (1 2’2 Y (z,2') and (2/, x
(1, 2”2 Y (2', 2") imply a(z,2”) = a(l, 2”2 Ha(z,2') and a(z’,2") =

a(l, 2"z Ha(r',2') = a(l,2”2'~) giving the required equality.

In particular, applying this equality for (x,z), (z/,2) € M one gets
a(z,z) = alz’,z)a(r,z’). Therefore a(a’,x) = alx,2’)"! for any
(x,2") € M.

Take a section n: G — F, 7 = 1 and define amap ¢ : FF — A
by

) .

/"
/I)

4(z) = alz,yr(2)), zEF.
For (z,2") € M one has
gh (z,2") " qlo(z,2") = q(z') " q(2) = (@, nr(2') ez, nr(z)) =
a(nr(a), 2")o(z, n(z)) .
On the other hand, since a(z, ') =
gets a(nr(2'), 2') = a(1,a'nr(2')"!
But (L, 2'nr(2)~1)(L nr(2)a™")
obtain the equality
a(z,2') = a(L,a'pr(@') a1, nr(@)a) = gl (2, 2) glo(x, ') .
O
Proof of Proposition 3.2 Consider the commutative diagram
Il )
M = F LG
1y
7l 7| e ,
lo

M = e
l1

1,2'z71) for all (x,2") € M, on

a(1,
and a(l“ n7(z)) = a(l,n7(v)z™").
(1,2'x~1). Therefore, finally we

Il
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(M,lo,1ly) and (M’',1},1}) being simplicial kernels of 7 and 7’ respec-
tively, L1 = mll, 7z =", i=0,1, 7 =7y ="1".
The pair (v;,7;) induces a homomorphism
Der(M, (Av M)) - Der(Mlv (A7 :u))

given by (o, r) — (a75,7),i =1, 2.
If (/1) ~ (a, 1), ie. (o/,1) = (Blo, h)(a, 1)(Bly, h)~t with (3,h) €
Der(F, (A, p)), then
aTily) = Bl (v) ™t "ami(y)Bridely) . y € M.
Thus (o7, 1) ~ (a7, 1), i = 1,2, and one gets a natural map

g2 ZV(M, (A, )/ ~— ZH (M (A, )/ ~

induced by the pair (y;,7;) and given by [(a, 1)] — [(a7:,1)], i =1, 2.
It will be shown that €y = €. By Lemma 3.3 there isa map ¢ : F' —
A such that

a(y) = qh(y) 'dh(y), yeM.
Take the homomorphism s : F — M given by
s(@') = (m(@),2(2'), "€ F.
It is clear that (as, 1) € Der(F”, (A, p)). Further one has
((asly) ™ aqparsly) (xp, #1) = as((2') " s (wp, o)) as(zg) =
(), 72(21)) " aa(@h, 2h)a(ra(2h), 12(0)) = am(@) gna(ah) =
¢2(7h) " qra(w)gna(xo) " am (o) = q(ah) g (ag) = adi(h, 7)
for any (z(,x)) € M'. Therefore (a7;,1) ~ (avs,1) with (as,1) €
Der(F’, (A, p)) implying the required equality €; = e.
Now the proof of the uniqueness is standard. O
It is easy to check that the quotient set Z1(M, (A, 1))/ ~ is naturally
bijective to H*(G,A) when A is a G-module viewed as a crossed G-
module. That fact motivates the following
Definition 3.4. Let (A, u) be a G-partially crossed P-module. The
quotient set ZY(M, (A, u))/ ~ will be called the second cohomology of
G with coefficients in (A, u) and denoted by H*(G, (A, 1)).

A homomorphism of G-partially crossed P-modules f : (A, pu) —
(B, A) induces a map of pointed sets
f2 : HZ(Gv (A,[L)) - HZ(Gv (B7 /\))

given by f2([(a,1)]) = [(fa,1)]. Tt is easy to see that there is a
canonical surjective map 9 : H?(G,Keru) — H?(,(A, pn)) given by
(o] = (e, 1)].
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Proposition 3.5. Let (A, u) be a G-partially crossed P-module. There
is an action of G on H?*(G, (A, u)) such that Z(G) acts trivially. If P
acts on Gand satisfies the compatibility condition (1.4), then there is
also an action of P on H*(G, (A, p)).

Proof. Consider the diagram

lo
Me =F; =G
1
with F the free group generated by G, 7¢ is the canonical homomor-

phism and (Mg, lo, l;) is the simplicial kernel of 7. There is an action
of G on Mg defined as follows:

ol lgnl) =Pl Vgul” 9,91+ 90 € G,
with ¢ = £1. This action induces an action of G on Mg by
I, 2') = (9z,%"), g€ G, (x,2') € Mg .
Finally one gets an action of G on Der(Mg, (A, 1)) given by
Yo, r) = (@, )

with a(m) = %a(9 'm), g € G, m € Mg, inducing an action of G
on Der(Mg, (A, 1)) and on Z1(Mg, (A, p)) too. If (o, 1) ~ (a/,1)
it is easy to see that 9(a,1) ~ 9(a/,1), g € G, defining an action
of G on H*(G,(A,n)). Since the above defined surjective map ¥ :
H?*(G,Keru) — H*(G, (A, pn)) is a G-map and Z(G) acts trivially on
H?(G, Ker ), there follows that Z(G) acts trivially on H*(G, (A, u))
too. O

Let (A, 1) be a G-partially crossed P-module. It can be shown easily
that there is an action of H°(G, P) on H*(G,Ker u1) given by "[a] =
", r € HY(G,P) with a : Mg — Kerp a crossed homomorphism
under the action of G on A such that a(A) = 1.

Let

1— (A4,1) 5 (B, ) L (0,0 — 1 (3.2)

be a short exact sequence of G-partially crossed P-modules. If the
action of H°(G, P) on H?*(G, A) is trivial then there is an action of
HY (G, (A, ) on H*(G, A) given by

@I =[] .
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We have to show that "v is a crossed homomorphism and this action
is correctly defined. Consider the diagram

lo
-
Mg = Fr 5

51
Lo - (3.3)
A %5 B X ¢

There is a crossed homomorphism 3 : Fz — B such that ¢ = arg.
Take the product

(ﬁlo, T‘)(g@’y, 1)(ﬂl07 T)_l = (5@ 1)

in the group Der(Mg, (B, 11)). Theny(x) = )~ "py(z)B(x) = "py(2),
x € Mg. Therefore "y : Mg — A is a crossed homomorphism such that
"y(A) = 1. If (o,7") € (a,7)] € HY(G, (C,N)), i.e. (a,r) ~ (o,1),
then o/(z) = ¢ 'a(x)®c and ' = A\(c¢)"'rt with ¢ € C, t € H°(G, P).
There follows that

o(" () =" py(x) = MO o (x) = PO T o (2) = b7 pry(2)b =

"oy(@) = p("y(x) . @€ Mg, with ¥(b) =c.

Hence ["'y] = ['4] = ['7] proving the correctness of the action.
Using diagram (3.3) for the short exact sequence (3.2) one defines as

follows a connecting map
5t HYG, (CN) — H*(G, A)

which is a crossed homomorphism when (G, (C, \)) verifies conditions
of Theorem 2.1.

For [(a,7)] € HY(G, (C, \)) take a crossed homomorphism 3 : Fg —
B such that ¥3 = arg. Thus there is a crossed homomorphism
v Mg — A such that oy = Bl;)7'8ly. Tt is clear that v(A) = 1.
Define

' ([(a,m)]) = 1] -

We must show the correctness of §'. For another 5’ : Fg — B with
YB3 = arg, one has ¥ = 1 and there is a crossed homomorphism
o : Fg — A such that ' = $1o. Then one gets

ey = (B'L) '8l = (Bpo)ly(Beo)ly = ol Bl Blopaly =
Bl Blopol;  ooly = p(yolitoly) .
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If (a,7) ~ (&, 7") then

o(y)=clta(y)c, ceC, ye Mg,

=Ne)'rt, te€ HY(G,P).

Take ' : Fg — B such that f'(x) = b7'3(x) b with ¢(b) = ¢
and ¢ = arg. Then (B B'l)(y) = B'(z2) '3 (11), y = (21,22) €
M. Hence oy/(3) = (315 F)(y) = (b-1B(as) *b) 161 3(ar) b —
22h71B(x2)  B(a1) b = Blaz) 'B(1) = 9y(y). Whence o/ = 7.
Therefore the connecting map ' is correctly defined.

For the short exact sequence 3.2 a connecting map 6% : H*(G, (C, \))
— H3(G, A) will be also defined. To this end consider the canonical
free simplicial resolution of the group G in the category of groups acting
on the abelian group A:

lg ll lO

TRM R M —F My, —F,
8 5 "
where Fy = Fg, F; = Fy,_,, © > 1, 7; is the canonical homomorphism
and (M;, 15, - -+ ,1¢,) is the simplicial kernel of (I 'z, ,l;"'7;),i >0
(see [7]). It will be used the equivalence of functors H (- A) ~
L, Der(—,A), n > 1, when A is a Z[G]-module. There is an action of

Der(Fy, (C,\)) on H3(G, A) defined as follows:
=11,

where f: Fy — A is a crossed homomorphism with [T?_,(fi?73)% = 1,
g; = (—1)!, and (a,r) € Der(Fy, (C,\)). The correctness of this action
is proved similarly to the case of a short exact sequence of crossed
G-modules (see [8]).

For any G-partially crossed P-module (A, 1) denote by IDer(G, (A, i)
a subgroup of Der(G, (A, 1)) consisting of elements of the form («,r),
r e H(G, P).

If either the aforementioned action of Der(Fy, (C, \)) on H3(G, A) is
trivial or Der(Fy, (C, X)) = IDer(Fy, (C,\)) and H°(G, P) acts trivially
on H?(G,Ker \), then there is a connecting map 6% : H*(G, (C, \)) —
H3(G, A) given by

P((ar)) =Nl (a1) € 2 (Mg, (C.N))
where ¢y = 31, with § = H% pIhE g, = (=), and Y3 = ar;. The

correctness of 42 is proved similarly to the case of a short exact sequence
of crossed G-modules (see [8]).
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Theorem 3.6. Let (3.2) be a short exact sequence of G-partially crossed
P-modules satisfying conditions of Theorem 2.1. Then there is an exact
cohomology sequence

1 - H(G,A) 255G, B) X% HO(G o) & HY(G, A) £
oYG, (B, p) 2 Hl(G, (O, N\) 2 H2(@G, A) <, H*(G, (B, p))
Y HA(G,(C,N),

where %, Y0, 6°, o' and ' are homomorphisms. If in addition
H°(G, P) acts trivially on H?*(G, A), then 8" is a crossed homomor-
phism under the action of HY(G,(C,\)) on H*(G,A) induced by the
action of P on A. Moreover, if either the action of Der(Fy, (C, X))
on H3(G,A) is trivial (in particular if P acts trivially on A) or
Der(Fy, (C,\)) = IDer(Fy, (C,)\)) and H°(G,P) acts trivially on
H?(G,Ker \), then the sequence

HA(G, (B, p)) 5 HY(G, (C,\) 2 HYG, A)
15 also exact.

Proof. The exactness of the sequence
0 ¢° 770 ¥ 10 T gl
11— H(G,A) — H°(G,B) — H"(G,C) — H (G, A)

is well known [10].

If c € HY(G,C) then 6°(c) = [a] with a(z) = ¢ (b7 “b), z € G
and ¥ (b) = ¢. There follows that (ap,1) ~ (¢a,1) where ag is a
trivial map, since pa(z) = b~ lay *b, € G, and u(b) € H°(G, P)
because u(b) = A)(b) and “A(c) = A\ *¢) = ( ), © € G. Therefore
Im 6° C Ker !

Let [a] € H'(G, A) such that (ag,1) ~ (pa,1). Then pa(r) =
b=1 %b, x € G and u(b) € H°(G, P). One has ¥(b~'%b) = Ypa(z) =
1. Thus ¥(b) = ¥(°b) = “(b), whence ¥ (b) € H°(G,C). Clearly
6°(¢(b)) = [a]. Therefore Ker o' C ITm§°. Obviously the composite
lol is the trivial map.

Let [(a,r) € HYG,(B,u)) such that (ag,1) ~ (z/;a 1). Then
Ya(r) = ¢t %, c € C, and r = ANc)™'t, t € H°(G,P). Let
P(b) = M) and r = u(b)~. Take a(x) = ba(zr) *b~', z € G. Since
Ya(z) =1, x € G, one has ¢ 'a: G — A and (a,r) ~ (a,1). There-

fore ¢'([¢™'a]) = [(a, 7).

Let [(a,r) € HYG, (B, u)). Then ¥!([(a,7)]) = [(va, r)]. Consider
the diagram ? and take the crossed homomorphism arg : Fg — B.
Then ¢y = (atcl) tately and 6'' ([(a, 7)]) = [7]. But v = ap is the
trivial map, since atgly = atgl. Therefore Im ! C Ker §t.
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Let [(a, )] € HY(G, (C, )\)) such that 6'([(a,7)]) =1. If 8: Fg — B
is a crossed homomorphism such that ¥3 = arg, then ' ([(a, r)]) = [7]
with oy = (B11)7Bly. Thus there is a crossed homomorphism 7 :
Fg — A such that v = (nl;)~'nly. Hence one gets

(BL) " Blo = (pnly) enlo (0™ ' Blo = (en 'B)l
implying a crossed homomorphism @ : G — B such that (pn)~13 =
arg. One has pB(r) = MB(z) = darg = r¢@r~1 whence (8,7) €
Der(Fg, (B, ) and (a,7) € Der(G, (B, ). Evidently, v} ([(@,7)]) =
(o, )]

The rest of the proof repeats with minor modifications the proof of
the exactness of the cohomology sequence for a coefficient short exact
sequence of crossed G-modules [8]. O

Clearly for a short exact sequence of crossed G-modules we recover
the known exact cohomology sequence [6, 8]. Note also that Theorem
3.6 remains true for arbitrary G-partially crossed P-modules but in
this case ¢!, 1! and §' are maps of pointed sets.

Now for any partially crossed G-module (A, i) the second cohomol-
ogy H?(G, A) will be described in terms of extensions of groups.
Definition 3.7. An extension of G by a partially crossed G-module
(A,p)isapirE=(1—ASX LG —1,7), wherel — A %

X % G —1is a short ezact sequence of groups, v is a section of Y,
that is 1Yy = 1¢g, one has the equality

Ya=a"'(v(g)a(a)y(g)™")
fora e A, g € G, and the following additional condition holds:
Ker v C Z(A),
Y being the restriction of 1 on the subgroup of X generated by v(G).

Example 3.8. Let A <1 G be the semidirect product of A and G. Then
one has an exact sequence of groups

1A% A9 G —1,

where oo(a) = (a,1), Yo(a,g) = g. Take the canonical section o of 1y
given vo(g) = (1,g). It is easy to see that the pair (1 — A % A <

G L G, o) is an extension of G by (A, u) called trivial.

Definition 3.9. It will be said that E = (1 - A 5 X % G — 1,7)
is equivalent to E' = (1 — A LX LG 1), ~") if there exist



18 HVEDRI INASSARIDZE

a homomorphism ¥ : X — X' and an element g € G such that the
diagram

1—)ALX£>G—>1
L9 L I
1 — A 4 x U g — 1

1s commutative, g : A — A is the automorphism induced by the action
of g on A, and for any element x € G one has the equality

p(y (@) (x)7") = geg~la™t
Clearly this relation ~ is reflexive and symmetric. So for the relation
~ to be an equivalence it remains to show the transitivity. Let £ ~ E’
and E' ~ E”. Then the diagram

E=1 — A &% X % ¢ — 1
Lo Lo |

F=1 — A % X % ¢ — 1
Ln s |

E’/:1—>A0—N>X”w:”>G—>1

is commutative and one has the equalities
Y (@)) = grg et
p(ry (2)y"(2)7") = hah™'a™"
We shall show that u(kdy(z) v"'(z)™') = hgrg 'h~'z~'. In effect,

since £0y(x)y" ()7 (k' (2)y"(2)™1) 7 = mdy(2)ry' (@)~ = K(Dy(z) -
/' (z)~1, one gets

p(Ed (@) (2)71) = pr(9y(2)y ()~ sy () 7" (2) ) =

= h(gzg 'z YA thah a7 = hgrg 'h et
Therefore the relation ~ is an equivalence. Denote by E'(G,A) the
set of equivalence classes of extensions of G by the partially crossed
G-module (A, ).

Theorem 3.10. There is a natural bijection

n: H* (G, A) = EYG, A) .
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Proof. The map 7 is defined as follows. For [(a,1)] € H*(G, A)
consider the diagram

[
My = Fy L G
1
la '
A

take the semidirect product A < Fy, Fg acting on A via G and intro-
duce an equivalence relation:

(a,2) ~ (', 2") <= 7(x) = 7(z') and a = @' - a(z,2'). In fact the
equivalence p is a congruence, since if (a,z) ~ (d,2') and (b,y) ~
(t',1y'), one has

a’b=da(x,2) “V aly,y) =d "Va(zy,2'y) .

Denote C' = A < F/p. One gets an exact sequence of groups

l—ASC%G—1,
where o(a) = [(a,1)], ¥([(a, z)]) = 7(z) and the following diagram

!
Mo = Fy & G
51
la s I
A % ¢ %a
is commutative, d(x) = [(1,2)], ca = 81151,

Take a section v : G — C given by v(g9) = [(1,]9]), g € G. Tt is
casy to see that y(G) = Imd. Therefore Ker(¢ [7rz5) = 0(Ker7). The
equality oa(l,z) = 6(x), x € Ker 7, implies Ker(@/) |—G) Z(A) and
there follows that so constructed pair

E:(1—>AL>C£>G—>1, v)

is an extension of G by (A4, ).
Define n(([(a, 1)]) = [E]. We have to show the correctness of 7. Let
(a, 1) ~ (¢, 1), that means

o (2) = Bly(x) Ma(z)ply(z), =€ Mg,
for some (ﬁ h) € Der(Fg, (A, 1)) (see diagram 3.3) and let £’ = (1 —

AL oY — 1, 7) be the extension of G by (A, i) corresponding
to (o, 1).
B(x), ).
v(a b,z

Define a map v : A < Fg — A < G given by v(a,x) = ("a
y)) = v(a’h,xy)
= (*a "0)5(zy),zy) and via, )p(by) = ("af(2),2)("bA(y),y) =

So defined v provides a homomorphism, since V((a x)( y)?1
("aB(x) “("bB(y)), xy) = ("a "*bB(x) *B(y), zy) = ("(a "b)B(xy), zy).
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The homomorphism v induces a homomorphism v/ : A < Fg/p —
A < Fg/p' given by v/([(a, )] = [v(a,z)]. In effect, let (a,z) £ (a’,2'),
that means a = d'a(z,2’) and 7(x) = 7(2’). We have to show that

hap(z) £ 'B(x"), where o/ (x,2') = B(a') Y a(z, 2')B(x).
One has

haB(x) ="a "oz, 2)B(x) = "d B2 (x, 1) .
Thus ¢/ is a correctly defined homomorphism and the diagram

A<dFg — A< Fg/p=C

ll/ lyl
A< Fg — A<QFg/p=C

is commutative.
Now consider the following diagram

1—)ALC£>G—>1
Ln L v |
1 — A 4 o Y g — 1

with sections v : G — C, v : G — (' defined as above. Clearly o’h =

Vo and V(@) = (1 ) () = (Bl D[ o) =

[(B]z]),1)]. But pB(|x]) = hah~tz~!. There follows that [E] = [F'].
Conversely, define a map 1 : E'(G, A) — H*(G, A) as follows. Let

[E] € EN(G,A) and E=(1— A5 C % G — 1, v). Then one gets a
commutative diagram

Me =2 Fo 5 G
51

Ja 1o I

A % o 4 ¢

with & induced by v and oca = 61,61, *. Clearly « is a crossed homomor-
phism such that a(A) =1 and Ima C Z(A). Define 7/'([E]) = [(«, 1)].

We have to show the correctness again. If ¢’ is another homomor-
phism such that 8§’ = 7, then §(y) ¢'(y) ' € Z(A), y € Fg. Thus §6'*
induces a crossed homomorphism 3 : F; — Z(A) and it is obvious that
(a/,1) = (Blo, 1)(a, 1)(BI1, 1)~ with (3,1) € Der(Fg, A).

Assume now that E is equivalent to E' = (1 — A LYo RNy 1,
7') by the pair (h : A — A, ¥ : C — C") implying the equality
p(9y(x)y (x)™') = hah 2! z € G.

By using the equalities ¢0 = ¢/’ = 7, oo = 010l L, o'l = 6'1,6'1,
o'h = Jo, one gets V0 = o' 30, Volg = o’ Blyd'ly, 961, = o' (5116'l;, where
B3 : Fg — Ais a crossed homomorphism induced by 960"~
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Clearly (3, h) is an element of Der(Fy, A). Further, cadly = dl, so
one has Joaddly = 9dl; and the following equalities

ﬁO'OéO'Iﬁlo(sllo = O'Iﬁllé/ll s

190'0(0'1510 = O'/ﬁllé/lld/lal s

o'had'Bly = o' Blio’a’ .
Finally o/ = Bl *hal.

Therefore (o/,1) is equivalent to (a, 1). It is easily checked that nr/
and n'n are identity maps. O

4. HIGHER NON-ABELIAN COHOMOLOGY

Let (A, p) be a G-partially crossed P-module. Take the free cotriple
resolution F,(G) of the group G:

n+1 n 2
80 30 a0 31
- F, . F : By —F —>0 K —G
LA n41 SN 1) . 42 1 ol 0
ot ap o2 1 (4.1)

with F,, = F""(A), n > 0, Fy = F(A) is the free group generated
by A and F""1(A) = F(F"(A)), OF = FirF"™", s = F'6F"" where
§: F(A) — F?(A) is induced by the canonical inclusion A — F(A).
Clearly (A, p) can be viewed as a F,-partially crossed P-module in-
duced by 79502 - - 9y. Therefore the group Der(F,, (A, 1)), n > 0, is
defined. Denote by Z1(F,, (A, 1)) the subset of Der(F,,, (A, pt)) consist-
ing of all elements of the form (a, 1) for n odd and of the form (a,r)

for n even satisfying the condition

n+1

H(a@?“)ei =1, g=(-1)y.
=0
Since pa(x) = 1 for any x € F, and for n odd, in this case we have
a(F,) C Z(A), n > 1. In the set Z1(F,, (A, p)), n > 1, a relation ~ is
introduced as follows:
(o/,1) ~ (a, 1) for n odd and (o/,7") ~ (a,r) for n even if there is
an element (3, h) € Der(F,_1, (A, 1)) such that

n

o (@) ="a(@)[[(B0] (x)), ei=(-1)", z€F,,

=0

and 7’ = r for n even.
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The homomorphism 70} 97 - 929" does not depend of the se-
quence (iy,4g, " ,in_1,1,) implying

B0 (x) (B0} (x)) ™" = (B ()~ (80} (z) € Kerpu, x € Fy

for 0 < j, I < n. There follows that the product []} (59! (z)),
g; = (—1), does not depend on the order of the factors. Obviously the
aforedefined relation is an equivalence.

Definition 4.1. The higher non-abelian cohomology of a group G with
coefficients in a G-partially crossed P-module (A, i) is given by

H™ (G, (A, p)) = 2 (Fp (Ap))/ ~, n= 1.

It is easily checked that for n = 1 we recover the second cohomology
set of G with coefficients in (A, u).

The map H™ (G, Ker i) — H™ (G, (A, ) given by [f] — [(f,1)
is surjective and is bijective if u: A — P is the trivial homomorphism
(in this case A is abelian).

In order to express in terms of derived functors of the group of deriva-
tions with respect to the contravariant variable cohomotopy pointed
sets of some cosimplicial groups will be introduced.

Let

—  — - —> —
Gi.: Go=Gh1—Ga ' -+ Gy Gy e
— T - = ——

be a cosimplicial group. Clearly 9;9;"" = "8] 1, 1<].

Assume that G, satisfies the following condition:

(a) Denote by L, the subgroup of G, generated by U"H@"(G ).
Then for any element x € Gy, n > 0, the product 97 (z) 07 (x)~", 0 < 4,
J < n, commutes with every element of L, .

In particular it follows that one has the equality J}(z) 0 (x)~' =
I (x)~" 0 (x),0<4, 5 <n,n>0.

Under this condition the cosimplicial group G, induces a group chain
complex

1— G &G G, 2., %G o1
with d,(z) = [y 00 (x)%, ;i = (—1)%, n > 0. It is easily checked that
the maps d,, n > 0, are homomorphisms and d,d,,_; =0, n > 1.

Definition 4.2. The right quotient sets Kerd, /Imd,,_, will be called
cohomotopy sets m,(G), n >0, of the cosimplicial group G..

It is obvious that for abelian cosimplicial groups we recover the well
known homology groups.
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Proposition 4.3. Let
1 —G — G, — G —1

be a short exact sequence of cosimplicial groups satisfying condition (a).
Then there is a long exact sequence of pointed cohomotopy sets

1 — 7m(G) — mo(Gy) — m(GY) — m(GL) — -+ —

Proof. Straightforward. O

This definition of cohomotopy pointed sets defined for cosimplicial
groups satisfying the aforementioned condition allows us to define cotriple
right derived functors of some group valued contravariant functors.

Let A be an arbitrary category and F = (F, 7,0) be a cotriple in the
category A. For any object A € ob A take its cotriple resolution:

Fl(A) DA,

similarly to the case of groups considered above.

Let T : A — Gr be a contravariant functor to the category of groups
satisfying the following condition:

(b) the product TO}* ! (x) TO} (x)™, 0 <4, j <n+1,n >0,
commutes with every element of the subgroup of T'F,;1(A) generated
by U Im oM n > 0.

Definition 4.4. The right derived functors of the contravariant func-
tor T" with respect to the cotriple F are the pointed sets

RgT(A) =m,(TF.(A)), n>0, A€obA.

If f: A— A is a morphism of the category A, then one gets a
morphism TF,(f) : TF,(A") — TF,(A) inducing maps of pointed sets
RET(f) :==m,TF.(f): RET(A") — RET(A), n > 0.

Remark 4.5. Similarly are defined the right derived functors R{T
with respect to a triple L in the category A for group valued covariant
functors T satisfying the same condition.

As noted above the main application of these derived functors will
be their close relationship with non-abelian cohomology of groups.

Let (A, 1) be a G-partially crossed P-module and consider the free
cotriple resolution F.(G) of the group G (see (4.1)). In general the
cosimplicial group Der F,(G) does not verify condition (a), in other
words the contravariant functor Der(—, (A, 1)) from the category of
groups acting on (A, ) to the category of groups Gr does not verify
condition (b). Below it will be shown that for a wide class of coefficients
(A, 1) condition (b) holds for the functor Der(—, (A, u)).
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One gets a sequence of groups and maps

1 — Dex(Fo, (A, 1)) 2 Der(Fy, (A, p)) 2 -+ —
— Der(Fy, (A, 1) 5 Der(Fon, (A, 1) 5 oo (49)

with d,((o,7))(z) = (7,s), where v = [[Z) (ad! )%, & = (—1)7,
(a,7) € Der(F,, (A, 1)), x € Fhiq, s =1 for n even and s = r for n
odd.

Introduce in Kerd,, n > 0, an equivalence by (¢/,7') ~ (a,r) <=
3 (B8,h) € Der(F,_1,(A,p)) such that o/(z) = "a(x) [1,80"(x)%,
g; = (=1)", 7 = r. Clearly the quotient sets coincide with H" (G, (A, p)),
n > 1. It is easily checked that one has Ker dy ~ Der(G, (A, p)). More-
over, the composite d,d,_1, n > 1, is the trivial map and the maps d,,
are homomorphisms for n odd.

Proposition 4.6. Let (A, ) be a G-partially crossed P-module such
that P acts trivially on Ker pn. Then the maps d,, of the sequence (4.2)
are homomorphisms for alln > 0. Moreover, in this case Im d,, belongs
to the center of Der(F, 11, (A, 1)) for n even and Kerd, belongs to the
center of Der(F,, (A, 1)) for n odd.

Proof. Easily to check using the equalities ad*'(z) ad! ™ (z)™! =
adi  (2)™h adft (2), 0 <4, j < n+1, for (a,r) € Der(F,, (A, p)) and
the fact that in this case any element of the form («, 1) € Der(F,, (A, u))
belongs to the center. O

Theorem 4.7. Let (A, pn) be a G-partially crossed P-module with P
acting trivially on Ker o and let F be the free cotriple in the category
of groups acting on (A, p).

(i) One has isomorphisms

Ry Der(G, (A, 1)) = Der(G, (A, 1))
Ry Dex(G, (A, p) = H™ (G, (A,w), n>1,

and H" ™ (G, (A, p)) is an abelian group for n odd.
(ii) Any short exact sequence of G-partially crossed P-modules

1 — (A ) & (A, ) 5 (A ") — 1
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with P acting trivially on Ker i/, Ker p and Kerp”, induces a long
exact cohomology sequence

1 — Der(G, (A", 1)) — Der(G, (A, 1)) — Der(G, (A", ")) —
— H(G, (A, 1)) — H*(G, (A, p) — H*(G, (A", ")) —
— HXG, (A ) — - — H" (G, (A" 1)) —

— H"(G, (A W) — H™(G, (A, 1)) — H™(G, (A", 1")) —
— H"N G (A ) — -

Proof. Since the functor Der(—, (A, 1)) satisfies condition (b) with re-
spect to the free cotriple F, the right derived functors of Der(—, (A, u))
are well defined, the sequence (4.2) became a complex of non-abelian
groups and the statement of (i) follows from Proposition 4.6.

The short exact coefficient sequence of (ii) induces a short exact
sequence of cosimplicial groups

1 — Der(F.(G), (A", 1)) — Der(F.(G), (A, pn)) —
Der(F.(G), (A", 1)) — 1

satisfying condition (a). It remains to apply Proposition 4.3 to get the
required long exact cohomology sequence. O

The definition of non-abelian cohomology with coefficients in G-
partially crossed P-modules allows as to introduce the definition of
higher non-abelian cohomology of a group G with coefficients in any
G-group. It can be done as follows.

Let A be an arbitrary G-group, that means the group G acts on the
left on the group A. Take the quotient group P = A/Z(A). Define an
action of P on A and an action of G on P as follows:

g=9q, [d]eP, a, dcA.
Ial=[%a], geG, acA.
Let uqg : A — P be the canonical homomorphism. It is easily

checked that the pair (A, ps) is a G-crossed P-module under the afore-
defined actions.

Definition 4.8. The n-th cohomology H"(G,A), n > 0, of the group
G with coefficients in a G-group A is given by

H"(G,A)=H"(G,(A,pa)), n>0.
For n = 1 this cohomology differs from the first pointed set coho-

mology defined in [10].
Let

1—AZSBY 01
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be a central extension of G-groups. Then v induces an isomorphism
of G-groups ¥ : B/Z(B) = C/(Z(B)) and one gets a short exact
sequence of G-crossed P-modules with P = B/Z(B)

1 — (4,1) & (B, pup) & (Cig) — 1,

where i, is the composite of the canonical map C' — C/¢(Z(B)) and
the isomorphism 971

Corollary 4.9. Any central extension of G-groups
1—ASBLC—1

induces a long exact cohomology sequence
1 — HY(G, A) 25 BY(G, B) 2 HYG,0) 2 HY(G, A) £
HYG, B) 5 HY(G, (C,1i0) & HA(G, A) 25 H2(G, B) 25
H* (G, (C, ) 25 HY(G (G, A) £ - — H" (G, (C.Tie)) 2
H"(G, A) £ H'(G, B) “= H'(G, (C,Tic)) = H"(G, A) — - --

Proof. Clearly in the induced short exact sequence of G-crossed P-
modules the group P acts trivially on Ker up and Kerfi. So we can
apply Theorem 4.7 giving together with Theorem 3.6 the required long
exact cohomology sequence. O
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