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Abstract. —
The article describes the one-to-one correspondence between central simple al-


gebras and Brauer-Severi varieties over a field. Non-abelian group cohomology is
recalled and Galois descent is worked out in detail. The classifications of central
simple algebras as well as of Brauer-Severi varieties by one and the same Galois
cohomology set are explained. A whole section is devoted to the discussion of func-
toriality. Finally, the functor of points of the Brauer-Severi variety associated with a
central simple algebra is described in terms of the central simple algebra thus giving
a link to another approach to the subject.


Introductory remarks


This article is devoted to the connection between central simple algebras and
Brauer-Severi varieties.
Central simple algebras were studied intensively by many mathematicians at the
end of the 19th and in the first half of the 20th century. We refer the reader to N.
Bourbaki [Bou, Note historique] for a detailed account on the history of the sub-
ject and mention only a few important milestones here. The structure of central
simple algebras (being finite dimensional over a field K) is fairly easy. They are
full matrix rings over division algebras the center of which is equal to K. This was
finally discovered by J. H. Maclagan-Wedderburn in 1907 [MWe08] after several
special cases had been treated before. T. Molien [Mo] had considered the case
of C-algebras already in 1893 and the case of R-algebras had been investigated
by E. Cartan [Ca]. J. H. Maclagan-Wedderburn himself had proven the structure
theorem for central simple algebras over finite fields in 1905 [MWe05, Di].
In 1929, R. Brauer ([Br], see also [De], [A/N/T]) found the group structure on the
set of similarity classes of central simple algebras over a field K using the ideas of
E. Noether about crossed products of algebras. He proved, in today’s language,
that it is isomorphic to the Galois cohomology group H2(Gal(Ksep/K), (Ksep)∗).
Further, he discusses the structure of this group in the case of a number field.
Relative versions of central simple algebras over base rings instead of fields were
introduced for the first time by G. Azumaya [Az] and M. Auslander and O.
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Goldmann [A/G]. The case of an arbitrary base scheme was considered by A.
Grothendieck in his famous Bourbaki talks “Le groupe de Brauer” [GrBrI, GrBrII,
GrBrIII]. Using the étale topology there is given a cohomological description of
the Brauer group in the case that the base is not necessarily a field.
Central simple algebras over fields should be a subject in any course on algebra.
For that reason, there is a lot of literature on them and the information necessary
to follow this article can be found in many different sources. Among them there
are the standard textbooks on algebra as S. Lang’s book [La, section XVII, Corol-
lary 3.5 and section 5] or N. Bourbaki [Bou, §5 and §10] but also more specialized
literature like I. Kersten’s book [Ke] on Brauer groups.
Brauer-Severi varieties are twisted forms of the projective space. The term “va-
rieté de Brauer” appeared for the first time in 1944 in the article [Ch44] by F.
Châtelet. Nevertheless, F. Severi had proven already in 1932 that a Brauer-Severi
variety over a field K admitting a K-valued point is necessarily isomorphic to the
projective space.
It should be mentioned that Brauer-Severi varieties are important in a number of
applications. The first one that has to be mentioned and definitely the most strik-
ing one is the proof of the theorem of Merkurjev-Suslin [M/S82b] (see also [So],
[Sr], [Ke]) on the cotorsion of K2 of fields. One has to adopt the point of view in-
troduced by S. A. Amitsur in his work on generic splitting fields of central simple
algebras [Am55] and applies the computation of the Quillen K-theory of Brauer-
Severi varieties which was done by D. Quillen himself in his ground-breaking
paper [Qu]. With that strategy one proves the so-called theorem Hilbert 90 for
K2. The remaining part of the proof is more elementary but it still requires work.
Clearly, this looks like a very indirect approach. It would definitely be desirable
to have an elementary proof for the Merkurjev-Suslin theorem, i.e. one that does
neither use Brauer-Severi varieties nor Quillen’s K-theory.
The Merkurjev-Suslin theorem has an interesting further application to a better
understanding of the (torsion part of the) Chow groups of certain algebraic va-
rieties. The reader should consult the work of J.-L. Colliot-Thélène [CT91] for
information about that.
One should notice that M. Rost [Ro98, Ro99] found a proof for the general Bloch-
Kato conjecture on the cotorsion of Kn of fields. It depends on V. Voevodsky’s
construction of motivic cohomology [V, V/S/E, S/V] as well as on his unpublished
work on homotopy theory of schemes. M. Rost does no more work with Brauer-
Severi varieties but more general norm varieties play a prominent role instead.
This work should include a new proof for the Merkurjev-Suslin theorem. Surely,
it cannot be an elementary one.
As a second kind of application, Brauer-Severi varieties appear in complex alge-
braic geometry when one deals with varieties being somehow close to rational
varieties. In particular, the famous example due to M. Artin and D. Mumford
[A/M] of a threefold which is unirational but not rational is a variety fibered over
a rational surface such that the generic fiber is a conic without rational points. For
more historical details, especially on the work of F. Châtelet, we refer the reader
to the article of J.-L. Colliot-Thélène [CT88].
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The connection between central simple algebras and Brauer-Severi varieties was
first observed by E. Witt [Wi35] and H. Hasse in the special case of quaternion al-
gebras and plane conics. To that connection in its general form there are (at least)
three approaches. Here we are going to present in detail the most elementary
one which was promoted by J.-P. Serre in his books Corps locaux [Se62, chap. X,
§§5,6] and Cohomologie Galoisienne [Se73, Remarque III.1.3.1] but was known
to F. Châtelet, already.
This approach is based on non-abelian group cohomology. The main observation
is that central simple algebras of dimension n2 over a field K as well as (n−1)-
dimensional Brauer-Severi varieties over K can both be described by classes in
one and the same cohomology set H1(Gal (Ksep/K), PGLn(Ksep)).
A second approach is closer to A. Grothendieck’s style. One can give a direct de-
scription of a functor of points PXA : {K−schemes} → {sets} in terms of data of
the central simple algebra A and prove its representability by a projective scheme
using brute force. This approach is presented explicitly in [Ke]. For a very de-
tailed account the reader can consult the Ph.D. thesis of F. Henningsen [Hen]. We
are going to prove here that these two approaches are equivalent. In fact, we will
compute the functor of points of the variety given by the first approach and show
that it is naturally isomorphic to the functor usually taken as the starting point
for the second approach.
There is a third approach which we only mention here. It works via algebraic
groups and can be used to produce twisted forms not only of the projective space
but of any homogeneous space G/P where G is a semisimple algebraic group and
P ⊂ G a parabolic subgroup. For information about that we suggest the reader to
consult the paper of I. Kersten and U. Rehmann [K/R].
The article is organized as follows. In section 1 we recall non-abelian group co-
homology. In particular, we state the exact sequence associated with a short se-
quence of G-groups. Section 2 is devoted to Galois descent which is our main
algebro-geometric tool. We decided to develop the theory in an elementary way.
We do not aim at maximal generality and ignore A. Grothendieck’s faithful flat
descent. In sections 3 and 4 we develop the description of central simple algebras
and Brauer-Severi varieties, respectively, by Galois cohomology classes. Section
5 contains an explicit procedure how to associate a Brauer-Severi variety to a cen-
tral simple algebra based on the results presented in the sections before. In sec-
tion 6 we deal with the question how to modify this procedure in order to make
it functorial. We did not find that point in the literature but a discussion with
K. Künnemann convinced the author that the material presented should be well-
known among experts. Section 7 describes the functor of points of the Brauer-
Severi variety associated with a given central simple algebra. Thus, it gives the
link to the second approach mentioned above.
It is clear that a certain background from Algebraic Geometry will be necessary
to follow the text. In order to make the subject as accessible as possible for a
reader who is not an Algebraic or Arithmetic Geometer, we present the material
in such a way that the knowledge of Algebraic Geometry needed is reduced to a
minimum. For that purpose, we even decided in several cases to include a certain
statement in detail although there is a good reference for it in the literature. For
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example, Lemma 2.12 is due to A. Grothendieck and J. Dieudonné and can be
found in [EGA]. Essentially, all the results that are used can be found in the
second chapter of R. Hartshorne’s book [Ha] except for a number of facts from
Commutative Algebra which are taken from H. Matsumura [Ma].
We note finally that we will work over a base field in the entire article. We do
not consider the relative versions of central simple algebras and Brauer-Severi
varieties over arbitrary base schemes. For information about that we refer the
reader to A. Grothendieck [GrBrI, GrBrII, GrBrIII].


Notations and conventions. We will follow the standard notations and conven-
tions from Algebra and Algebraic Geometry unless stated otherwise. More pre-
cisely,
• all rings are assumed to be associative.
• If R is a ring with unit then R∗ denotes the multiplicative group of invertible
elements in R.
• All homomorphisms between rings with unit are supposed to respect the unit
elements.
• By a field we always mean a commutative field, i.e. a commutative ring with
unit every non-zero element of which is invertible. If K is a field then Ksep will
denote a fixed separable closure of it.
• Nevertheless, a ring with unit every non-zero element of which is invertible is
called a skew field.
• If R is a commutative ring with unit then an R-algebra is always understood as
a ring homomorphism j : R→ A whose image is contained in the center of A.
• An R-algebra j : R → A is denoted simply by A when there seems to be no
danger of confusion.
• If σ : R → R is an automorphism of R then Aσ denotes the R-algebra
R σ−→ R


j−→ A. If M is an R-module then we put Mσ := M⊗R Rσ . Mσ is an
Rσ-module as well as an R-module.
• If R is a ring then Rop denotes the opposite ring, i.e. the ring that coincides with
R as an abelian group but where one has xy = z if one had yx = z in R.
• All central simple algebras are assumed to be finite dimensional over a base
field.


1. Non-abelian group cohomology (H0 and H1)


In this section we recall elementary facts about what is called non-abelian group
cohomology, i.e. cohomology with non-abelian coefficients of discrete groups. All
the results presented can be found in detail in Cohomologie Galoisienne [Se73].
Non-abelian Galois cohomology will turn out to be the central tool for the pur-
poses of this article.


Definition 1.1. — Let G denote a finite group.
i) A G-set E is a set equipped with a G-operation from the left. Following [Se73]
we will use the notation gx := g ·x for x ∈ E and g ∈ G. A morphism of G-sets, a
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G-morphism for short, is a map i : E→ F of G-sets such that the diagram


G×E · //


id×i
��


E


i
��


G×F · // F
commutes.
ii) A G-group A is a G-set carrying a group structure such that g(xy) =


gxgy for
every g ∈ G and x, y ∈ A. If A is abelian then it is called a G-module.


Definition 1.2. — Let G be a finite group.
i) If E is a G-set then one puts H0(G, E) := EG, i.e. the zeroth cohomology set of G
with coefficients in E is just the subset of G-invariants in E. If E is a G-group then
H0(G, E) is a group.
ii) If A is a G-group then a cocycle from G to A is a map G→ A, g 7→ ag such that
agh = ag·gah for each g, h ∈ G. Two cocycles a, a′ are said to be cohomologous if there
exists some b ∈ A such that a′g = b−1 ·ag ·gb for every g ∈ G. This is an equivalence
relation and the quotient set, the first cohomology set of G with coefficients in A, is
denoted by H1(G, A). This is a pointed set as the map g 7→ e defines a cocycle, the
so-called trivial cocycle.


Remarks 1.3. — i) If a is a cocycle then a′ with a′g := b−1 ·ag ·gb for each g ∈ G is a
cocycle, too.
ii) H0(G, A) and H1(G, A) are covariant functors in A. If i : A→ A′ is a morphism
of G-sets (a morphism of G-groups) then the induced map(s) will be denoted by
i∗ : H0(G, A)→ H0(G, A′) (and i∗ : H1(G, A)→ H1(G, A′)).
iii) If A is abelian then the definitions above coincide with the usual group coho-
mology as one of the possible descriptions for H·(G, A) is just the cohomology of
the complex


0 −→ A d−→Map(G, A) d−→Map(G2, A) d−→ . . .


with the differential


dϕ(g1, . . . , gn+1) := g1ϕ(g2, . . . , gn+1)


+


n


∑
j=1


(−1) j ϕ(g1, . . . , g jg j+1, . . . , gn+1)


+ (−1)n+1 ϕ(g1, . . . , gn).


Proposition 1.4. — Let G be a finite group.
a) If A ⊆ B is a G-subgroup and B/A is the set of left cosets then there is a natural exact
sequence of pointed sets


1→ H0(G, A)→ H0(G, B)→ H0(G, B/A) δ→ H1(G, A)→ H1(G, B).


b) If A⊆ B is even a normal G-subgroup then there is a natural exact sequence of pointed
sets


1→H0(G, A)→H0(G, B)→H0(G, B/A) δ→H1(G, A)→H1(G, B)→H1(G, B/A).
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c) If A ⊆ B is a G-module lying in the center of B then there is a natural exact sequence
of pointed sets


1→H0(G, A)→H0(G, B)→H0(G, B/A) δ→H1(G, A)→ . . .


. . .→H1(G, B)→H1(G, B/A) δ ′→H2(G, A).


Here the abelian group H2(G, A) is considered as a pointed set with the unit element.


We note that a sequence (A, a) i→ (B, b)
j→ (C, c) of pointed sets is said to be exact in


(B, b) if i(A) = j−1(c).
Proof. δ is defined as follows. Let x ∈ H0(G, B/A). Take a representative x ∈ B
for x and put as := x−1 · sx. That is a cocycle and its equivalence class is denoted
by δ(x). This definition is independent of the x chosen.
In the situation of c) the map δ′ is given similarly. Let x ∈ H1(G, B/A). Choose
a cocycle (xg)g∈G that represents x and lift each xg to some xg ∈ B. Put
a(g1, g2) := g1 xg2 ·x−1


g1g2
·xg1 . That is a 2-cocyle with values in A and its equivalence


class is denoted by δ′(x). This definition is independent of the choices.
Exactness has to be checked at each entry separately. This is not complicated at
all but very tedious. We omit it here. �


Remark 1.5. — The question what non-abelian H2 and H3 might mean turns out
to be substantially more difficult. The interested reader is referred to J. Giraud
[Gi].


Definition 1.6. — Let h : G′→ G be a homomorphism of finite groups. Then for
an arbitrary G-set E one has a natural pull-back map h∗ : H0(G, E)→ H0(G′, E). If E
is a G-group then the pull-back map is a group homomorphism. For an arbitrary
G-group A there is the natural pull-back map h∗ : H1(G, A)→ H1(G′, A) which is a
morphism of pointed sets.
If h is the inclusion of a subgroup then the pull-back resG′


G := h∗ is usually called
the restriction map. If h is the canonical projection on a quotient group then
infG′


G := h∗ is said to be the inflation map. The composition of resG′
G or infG′


G with
some extension of the G′-set E (the G′-group A) is usually called the restriction,
respectively inflation, as well.


Remark 1.7. — Non-abelian group cohomology can easily be extended to the
case where G is a profinite group and A is a discrete G-set (respectively G-group)
on which G operates continuously. Indeed, put for i = 0 (i = 1)


Hi(G, A) := lim−→G′ Hi(G/G′, AG′)


where the direct limit is taken over the inflation maps and G′ runs through the
normal open subgroups G′ of G such that the quotient G/G′ is finite.


2. Galois descent


Definition 2.1. — Let L be a field and K ⊂ L be a subfield such that L/K is a finite
Galois extension. Let π1 : X1 → Spec L and π2 : X2 → Spec L be two L-schemes.
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Then, by a morphism from π1 to π2 that is twisted by σ ∈ Gal(L/K) we will mean
a morphism f : X1→ X2 of schemes such that the diagram


X1
f


//


π1
��


X2


π2
��


Spec L
S(σ) // Spec L


commutes. Here S(σ) : Spec L→ Spec L denotes the morphism of affine schemes
induced by σ−1 : L→ L.


Theorem 2.2. — Let L/K be a finite Galois extension of fields and G := Gal (L/K) be
its Galois group. Then


a) there are the following equivalences of categories,


{K−vector spaces} −→







L−vector spaces
with a G−operation from the left
where each σ ∈ G operates σ−linearly




,


{K−algebras} −→







L−algebras
with a G−operation from the left
where each σ ∈ G operates σ−linearly




,







central simple
algebras
over K




 −→







central simple algebras over L
with a G−operation from the left
where each σ ∈ G operates σ−linearly




,


{
commutative
K−algebras


}
−→







commutative L−algebras
with a G−operation from the left
where each σ ∈ G operates σ−linearly




,







commutative
K−algebras
with unit




 −→







commutative L−algebras with unit
with a G−operation from the left
where each σ ∈ G operates σ−linearly




,


A 7→ A⊗K L,


b) there is the following equivalence of categories,


{
quasi− projective
K−schemes


}
−→







quasi− projective L−schemes
with a G−operation from the left
by morphisms of K−schemes
where each σ ∈ G operates
by a morphism twisted by σ







,


X 7→ X×SpecK Spec L.
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c) Let X be a K-scheme and r be a natural number. Then there are the following equiv-
alences of categories,


{
quasi− coherent
sheaves on X


}
−→







quasi− coherent sheaves M
on X×SpecK Spec L
together with a system (ισ)σ∈G


of isomorphisms ισ : x∗σM →M
satisfying ιτ ◦x∗τ (ισ) = ιστ


for every σ, τ ∈ G







,


{
locally free sheaves
of rank r on X


}
−→







locally free sheaves M of rank r
on X×SpecK Spec L
together with a system (ισ)σ∈G


of isomorphisms ισ : x∗σM →M
satisfying ιτ ◦x∗τ (ισ) = ιστ


for every σ, τ ∈ G







,


F 7→ M := π∗F .


Here the morphisms in the categories are the obvious ones, i.e. those respecting all
the extra structures. π : X ×SpecK Spec L −→ X is the canonical morphism and
xσ : X ×SpecK Spec L −→ X ×SpecK Spec L denotes the morphism that is induced by
S(σ) : Spec L→ Spec L.
Proof. In each case we have to prove that the functor given is fully faithful and
essentially surjective. Full faithfulness is proven in Propositions 2.7, 2.8 and 2.9,
respectively. Propositions 2.3, 2.5 and 2.6 show essential surjectivity. �


Proposition 2.3 (Galois descent-algebraic version). — Let L/K be a finite Galois
extension of fields and G := Gal (L/K) be its Galois group. Further, let


W be a vector space (an algebra, a central simple algebra, a commutative algebra, a
commutative algebra with unit, ... ) over L together with an operation
T : G×W → W of G from the left on W respecting all the extra structures such
that for each σ ∈ G the action of σ is a σ-linear map Tσ : W→W


Then there is a vector space V (an algebra, a central simple algebra, a commutative alge-
bra, a commutative algebra with unit, ... ) over K such that there is an isomorphism


V⊗K L b−→∼= W


where V⊗K L is equipped with the G-operation induced by the canonical one on L and b
respects all the algebraic structures including the operation of G.
Proof. Define V := WG. This is clearly a K-vector space (a K-algebra, a commu-
tative K-algebra, a commutative K-algebra with unit). If W is a central simple
algebra over L then V is a central simple algebra over K. This can not be seen
directly but it follows immediately from the formula WG⊗K L = W which will be
proven below. For that let {l1, . . . , ln} be a K-basis of L. We have to show the
following claim. �


Claim 2.4. — There exist an index set A and a subset {xα |α ∈ A} ⊂ WG such that
{lixα | i ∈ {1, . . . , n}, α ∈ A} is a K-basis of W.
Proof. By Zorn’s Lemma there exists a maximal subset {xα |α ∈ A} ⊂WG such
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that {lixα | i ∈ {1, . . . , n}, α ∈ A} ⊂W is a system of K-linearly independent vec-
tors. Assume that system is not a basis of W. Then 〈lixα | i ∈ {1, . . . , n}, α ∈ A〉K
is a proper G-invariant L-sub-vector space of W and one can choose an element
x∈W\〈lixα| i∈{1, . . . , n}, α ∈ A〉K. For every l ∈ L the sum


∑
σ∈G


Tσ(lx) = ∑
σ∈G


σ(l)·Tσ(x)


is G-invariant. Further, by linear independence of characters, the matrix




σ1(l1) . . . σ1(ln)


· · · . . . · · ·
σn(l1) . . . σn(ln)






is of maximal rank. In particular, there is some l ∈ L such that the image of


xβ := ∑
σ∈G


σ(l)·σ(x)


in W/〈lixα | i ∈ {1, . . . , n}, α ∈ A〉K is not equal to zero. Therefore,


{lixα | i ∈ {1, . . . , n}, α ∈ A} ∪ {lixβ | i ∈ {1, . . . , n}}
is a K-linearly independent system of vectors contradicting the maximality of
{xα |α ∈ A}. �


Proposition 2.5 (Galois descent-geometric version). — Let L/K be a finite Galois
extension of fields and G := Gal (L/K) its Galois group. Further, let


Y be a quasi-projective L-scheme together with an operation of G from the left by
twisted morphisms, i.e. such that the diagrams


Y


��


Tσ // Y


��
Spec L


S(σ) // Spec L


commute, where S(σ) : Spec L → Spec L is the morphism of schemes induced by
σ−1 : L→ L.


Then there exists a quasi-projective K-scheme X such that there is an isomorphism of
L-schemes


X×SpecK Spec L
f−→∼= Y


where X×SpecK Spec L is equipped with the G-operation induced by the one on Spec L
and f is compatible with the operation of G.
Proof. Affine Case. Let Y = Spec B be an affine scheme. The G-operation on Spec B
corresponds to a G-operation from the right on B where each σ ∈ G operates σ−1-
linearly. Define a G-operation from the left on B by σ ·b := b·σ−1. The assertion
follows immediately from Proposition 2.3.
General Case. By Lemma 2.10 there exists an affine open covering {Y1, . . . , Yn}
of Y by G-invariant schemes. Galois descent yields affine K-schemes X1, . . . , Xn


such that there are isomorphisms


Xi×SpecK Spec L
∼=−→ Yi
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and affine K-schemes Xi j, 1≤ i < j ≤ n, such that there are isomorphisms


Xi j×SpecK Spec L
∼=−→ Yi ∩ Yj.


It remains to be shown that every Xi j admits canonical, open embeddings into Xi


and X j.
In each case on the level of rings we have a homomorphism A⊗K L −→ B⊗K L
and an isomorphism B⊗K L


∼=−→ (A⊗K L) f such that their composition is the local-
ization map. Clearly, f can be assumed to be G-invariant, i.e. we may suppose
f ∈ A. Consequently, B⊗K L ∼= A f⊗K L and, by consideration of the G-invariants
on both sides, B ∼= A f .
The cocycle relations are clear. Therefore, we can glue the affine schemes
X1, . . . , Xn along the affine schemes Xi j, 1 ≤ i < j ≤ n, to obtain the scheme X
desired. Lemma 2.12.ix) below completes the proof. �


Proposition 2.6 (Galois descent for quasi-coherent sheaves)
Let L/K be a finite Galois extension of fields and G := Gal (L/K) be its Galois group. Fur-
ther, let X be a K-scheme, π : X×SpecK Spec L → X the canonical morphism
and xσ : X ×SpecK Spec L → X ×SpecK Spec L be the morphism induced by
S(σ) : Spec L→ Spec L. Let


M be a quasi-coherent sheaf over X×SpecK Spec L together with a system (ισ)σ∈G of
isomorphisms ισ : x∗σM →M that are compatible in the sense that for each σ, τ ∈ G
there is the relation ιτ ◦x∗τ (ισ) = ιστ .


Then there exists a quasi-coherent sheaf F over X such that there is an isomorphism


π∗F
∼=−→
b


M


under which the canonical isomorphism iσ : x∗σπ∗F = (πxσ)∗F = π∗F
id−→ π∗F is iden-


tified with ισ for each σ, i.e. the diagrams


x∗σπ∗F
x∗σ(b)


//


iσ
��


x∗σM


ισ
��


π∗F
b // M


commute.
Proof. Assume X ∼= Spec A to be an affine scheme first. Then M = M̃ for some
(A⊗K L)-module M. We have


x∗σM =
˜M⊗(A⊗KL)(A⊗K Lσ−1) =


˜M⊗L Lσ−1 .


Hence x∗σM = M̃σ−1 where Mσ−1 coincides with M as an A-module, but its struc-
ture of an L-vector space is given by


l ·Mσ−1 m := σ−1(l) ·M m.


Consequently, the isomorphism ισ : x∗σM →M is induced by an A-module iso-
morphism jσ : M → M being σ−1-linear. The compatibility relations required
above translate simply into the condition that the maps jσ form a G-operation
on M from the right. Define a G-operation from the left on M by σ ·m := jσ−1(m).
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By Galois descent for vector spaces the K-vector space MG of G-invariants satis-
fies MG⊗K L ∼= M. This is also an isomorphism of A-modules as the G-operation
on M is compatible with the A-operation. Putting F := M̃G we obtain a quasi-
coherent sheaf over X such that π∗F ∼= M . The commutativity of the diagram is
a consequence of Proposition 2.3.
Now let X be a general scheme. Consider an affine open covering


{Xα
∼= Spec Rα |α ∈ A}


of X where A is an arbitrary index set. For every intersection Xα1 ∩ Xα2 we again
consider an affine open covering


{Xα1,α2,β
∼= Spec Rα1,α2,β |β ∈ Bα1,α2}.


By the affine case we are given Rα-modules Mα for each α ∈ A satisfying
π∗M̃α


∼= M |Xα×SpecKSpec L and Rα1,α2,β-modules Mα1,α2,β for each triple (α1,α2,β) with
α1, α2 ∈ A and β ∈ Bα1,α2 satisfying π∗M̃α1,α2,β


∼= M |Xα1 ,α2 ,β×SpecKSpec L. The construc-
tion of these modules is compatible with restriction to affine subschemes. There-
fore, by Proposition 2.9 below, we get isomorphisms


iα1,α2,β : Mα1⊗Rα1
Rα1,α2,β


∼=−→ Mα2⊗Rα2
Rα1,α2,β .


It is clear that for every α1, α2, α3 ∈ A and every β1 ∈ Bα2,α3, β2 ∈ Bα3,α1, β3 ∈ Bα1,α2


these isomorphisms are compatible on the triple intersection
Xα1,α2,β3 ∩ Xα3,α1,β2 ∩ Xα2,α3,β1, i.e. we can glue the quasi-coherent sheaves M̃α


along the M̃α1,α2,β to obtain the quasi-coherent sheaf M desired. �


Proposition 2.7 (Galois descent for homomorphisms). — Let L/K be a finite Ga-
lois extension of fields and G := Gal (L/K) be its Galois group. Then it is equivalent


i) to give a homomorphism r : V→ V ′ of K-vector spaces (of algebras over K, of cen-
tral simple algebras over K, of commutative K-algebras, of commutative K-algebras
with unit, ... ),
ii) to give a homomorphism rL : V⊗K L→ V′⊗K L of L-vector spaces (of algebras
over L, of central simple algebras over L, of commutative L-algebras, of commutative
L-algebras with unit, ... ) which is compatible with the G-operations, i.e. such that
for each σ ∈ G the diagram


V⊗K L
rL //


σ


��


V′⊗K L


σ
��


V⊗K L
rL // V′⊗K L


commutes.
Proof. If r is given then one defines rL := r⊗K L. Clearly, if r is a ring homo-
morphism then rL is, too. Conversely, in order to construct r from rL note that
the commutativity of the diagrams above implies that rL is compatible with the
G-invariants on both sides. But we know (V⊗K L)G


= V and (V′⊗K L)G
= V′, al-


ready, so we obtain a K-linear map r : V −→ V′. If rL is a ring homomorphism
then its restriction r is, too. It is clear that the two processes described are inverse
to each other. �
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Proposition 2.8 (Galois descent for morphisms of schemes)
Let L/K be a finite Galois extension of fields and G := Gal (L/K) be its Galois group.
Then it is equivalent


i) to give a morphism of K-schemes f : X→ X ′,
ii) to give a morphism of L-schemes fL : X×SpecK Spec L→ X′×SpecK Spec L which
is compatible with the G-operations, i.e. such that for each σ ∈ G the diagram


X×SpecK Spec L
fL //


σ


��


X′×SpecK Spec L


σ
��


X×SpecK Spec L
fL // X′×SpecK Spec L


commutes.
Proof. If f is given then one defines fL := f ×SpecK Spec L. Conversely, in order to
construct f from fL, the question is local in X′ and X. So one has a homomorphism
rL : A′⊗K L −→ A⊗K L of L-algebras with unit making the diagrams


A′⊗K L
rL //


σ
��


A⊗K L


σ


��
A′⊗K L


rL // A⊗K L


commute. That is exactly the situation covered by the proposition above. It is
clear that the two processes described are inverse to each other. �


Proposition 2.9 (Galois descent for morphisms of quasi-coherent sheaves)
Let L/K be a finite Galois extension of fields and G := Gal (L/K) be its Galois group.
Further, let X be a K-scheme and π : X×SpecK Spec L→ X be the canonical morphism.
Then it is equivalent


i) to give a morphism r : F → G of coherent sheaves over X,
ii) to give a morphism rL : π∗F → π∗G of quasi-coherent sheaves over
X×SpecK Spec L which is compatible with the G-operations, i.e. such that for each
σ ∈ G the diagram


π∗F
rL //


x∗σ
��


π∗G


x∗σ
��


π∗F
rL // π∗G


commutes.
Proof. If r is given then one defines rL := π∗r. Conversely, if rL is given, the
question to construct r is local in X. So assume A is a commutative ring with unit
and M and N are A-modules. We are given a homomorphism rL : M⊗KL→N⊗KL
of A⊗K L-modules such that the diagrams


M⊗K L
rL //


σ
��


N⊗K L


σ
��


M⊗K L
rL // N⊗K L
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commute for each σ ∈ G. We get a morphism r : M → N as M and N are the
A-modules of G-invariants on the left and right hand side, respectively. The two
procedures described above are inverse to each other. �


Lemma 2.10. — Let L be a field and Y be a quasi-projective L-scheme equipped with an
operation of some finite group G acting by morphisms of schemes. Then there exists a
covering of Y by G-invariant affine open subsets.
Proof. Let y ∈ Y be an arbitrary closed point. Everything that is needed is
an affine open G-invariant subset containing y. For that we choose an embed-
ding i : Y ↪→ PN


L . By Sublemma 2.11, there exists a hypersurface Hy such that
Hy ⊃ i(Y)\i(Y) and i(σ(y)) 6∈ Hy for every σ ∈ G. Here i(Y) denotes the closure of
i(Y) in PN


L . By construction, the morphism


i|Y\i−1(Hy) : Y\i−1(Hy) −→ PN
L \Hy


is a closed embedding. As PN
L \Hy is an affine scheme, Y\i−1(Hy) must be affine,


too. Hence,
Oy :=


⋂


σ∈G


σ−1(Y\i−1(Hy)) ⊂ Y


is the intersection of finitely many affine open subsets in a quasi-projective, and
therefore separated, scheme. Thus, it is an affine open subset. By construction,
Oy is G-invariant and contains y. �


Sublemma 2.11. — Let L be a field and Z $ PN
L be a closed subvariety of some projective


space over L. Further, let p1, . . . , pn ∈ PN
L be finitely many closed points not contained


in Z. Then there exists some hypersurface H ⊂ PN
L that contains Z but does not contain


any of the points p1, . . . , pn.
Proof. We will give two proofs, an elementary one and the natural one that uses
cohomology of coherent sheaves.
1st proof. Let S := L[X0, . . . , XN] be the homogeneous coordinate ring for the
projective space PN


L . It is a graded L-algebra. For d ∈ N we will denote by Sd the
L-vector space of homogeneous elements of degree d.
We proceed by induction the case n = 0 being trivial. Assume the statement is
proven for n− 1 and consider the problem for n points p1 , . . . , pn. By induction
hypothesis there exists a homogeneous element s ∈ S, i.e. some hypersurface
H := V(s), such that H ⊇ Z and p1, . . . , pn−1 6∈ H. Let d denote the degree of s, i.e.
H is a hypersurface in PN


L of degree d. We may assume pn ∈ H as, otherwise, the
proof would be finished.
Z ∪ {p1} ∪ . . . ∪ {pn−1} is a Zariski closed subset of PN


L not containing pn. There-
fore, there exists some d′ ∈ N and some homogeneous s′ ∈ Sd′ such that
V(s′) ⊇ Z ∪ {p1} ∪ . . . ∪ {pn−1} but pn 6∈ V(s′). Any hypersurface V(a·s′d+b·sd′)
for non-zero elements a, b ∈ L contains Z but neither p1, . . . , pn−1 nor pn.
2nd proof. Tensoring the canonical exact sequence


0 −→ I{p1, ... ,pn} −→ OX −→ O{p1, ... ,pn} −→ 0


with the ideal sheaf IZ yields an exact sequence


0 −→ I{p1, ... ,pn}∪Z −→ IZ −→ O{p1, ... ,pn} −→ 0
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of sheaves on PN
L as one has I{p1, ... ,pn} ⊗OX IZ = I{p1, ... ,pn}∪Z and


T orOX
1 (O{p1, ... ,pn},IZ) = 0. For that note that locally at least one of two sheaves


occurring in the products is free. For each l ∈ Z we tensor with the invertible
sheaf O(l) and find a long cohomology exact sequence


Γ(PN
L ,IZ(l)) −→ Γ(PN


L ,O{p1, ... ,pn}(l)) −→ H1(PN
L ,I{p1, ... ,pn}(l)).


By Serre’s vanishing theorem [Ha, Theorem III.5.2], H1(PN
L ,I{p1, ... ,pn}(l)) = 0 for


l� 0. Hence, there is a surjection


Γ(PN
L ,IZ(l)) −→ Γ(PN


L ,O{p1, ... ,pn}(l)) ∼= κ(p1)⊕ . . . ⊕ κ(pn).


That means that there exists a global section s of IZ(l) that does not vanish in any
of the points p1, . . . , pn. s defines a hypersurface of degree l in PN


L that contains
Z and does not contain any of the points p1, . . . , pn. �


Lemma 2.12 (A. Grothendieck and J. Dieudonné). — Let L/K be a finite field exten-
sion and X be a K-scheme such that X×SpecK Spec L is
i) reduced,
ii) irreducible,
iii) quasi-compact,
iv) locally of finite type,
v) of finite type,
vi) locally Noetherian,
vii) Noetherian,
viii) proper,
ix) quasi-projective,
x) projective,
xi) affine,
or
xii) regular.
Then X admits the same property.
Proof. Let π : X ×SpecK Spec L → X denote the canonical morphism. For iii)
through xi) we may assume L/K to be Galois. Put G := Gal (L/K).
i) If s ∈ Γ(U,OX) would be a nilpotent non-zero section of the structure sheaf OX


over some open subset U ⊆ X then π](s) ∈ Γ(U×SpecK Spec L,OX×SpecKSpec L) would
be a nilpotent non-zero local section of the structure sheaf of X×SpecK Spec L.
ii) If X = X1 ∪ X2 would be a non-trivial decomposition into two closed sub-
schemes then X×SpecK Spec L = X1×SpecK Spec L ∪ X2×SpecK Spec L would be the
same for X×SpecK Spec L.
iii) Let {Uα |α ∈ A} be an arbitrary affine open covering of X. Then
{Uα ×SpecK Spec L |α ∈ A} is an affine open covering of X×SpecK Spec L. Quasi-
compactness guarantees the existence of a finite sub-covering
{Uα×SpecK Spec L |α ∈ A0}. But then {Uα |α ∈ A0} is a finite affine open covering
for X.
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iv) We can assume X = Spec A to be affine. So A⊗K L is a finitely generated L-
algebra. Let {b1, . . . , bn} be a system of generators for A⊗K L. As one could
decompose into elementary tensors, if necessary, we may assume without restric-
tion that all bi = ai⊗ li are elementary tensors. Consider the homomorphism of
K-algebras


K[X1, . . . , Xn]→ A, Xi 7→ ai.


It induces a surjection after tensoring with L and, therefore, is surjective itself as
⊗KL is a faithful functor.
v) This is just the combination of iii) and iv).
vi) Let Xα


∼= Spec Aα be an affine open subscheme of X. We have to show that Aα


is Noetherian under the hypothesis that Aα⊗K L is. So assume I1 ⊂ I2 ⊂ I3 ⊂ . . . is
an ascending chain of ideals in Aα that does not stabilize. It induces an ascending
chain I1⊗K L ⊂ I2⊗K L ⊂ I3⊗K L ⊂ . . . of ideals in Aα⊗K L that does not stabilize,
either. This is a contradiction to our hypothesis.
vii) This is the combination of iii) and vi).
viii) That is v) together with a direct application of the valuation criterion for
properness [Ha, Theorem 4.7]. So consider a commutative diagram


U


i
��


// X


��


T // Spec K


where T = Spec R is the spectrum of a valuation ring, U = Spec F is the spectrum
of its quotient field and i is the canonical morphism. Taking the base change of
the whole diagram to Spec L we find


U×SpecK Spec L


i
��


// X×SpecK Spec L


��
T×SpecK Spec L //


ι
44iiiiiiiiiiiiiiiii


Spec L


where the diagonal morphism ι is the unique one making the diagram commute.
Note that U×SpecK Spec L = Spec (F⊗K L) is no more the spectrum of a field but the
union of finitely many spectra of fields. Similarly, T×SpecK Spec L = Spec (R⊗K L)
is a finite union of spectra of valuation rings. Nevertheless, the valuation criterion
implies existence and uniqueness of the diagonal arrow. Further, there is a canon-
ical G-operation on the whole diagram without ι. As ι is uniquely determined by
the condition that it makes the diagrams above commute, the diagrams


T×SpecK Spec L ι //


σ
��


X×SpecK Spec L


σ
��


T×SpecK Spec L ι // X×SpecK Spec L


must be commutative for each σ ∈ G. ι is the base change of a morphism T→ X
by Proposition 2.8.
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ix) and x) Taking v) and viii) into account everything left to be shown is the exis-
tence an ample invertible sheaf on X. By assumption there is an ample invertible
sheaf M on X×SpecK Spec L. For σ ∈ G let xσ : X×SpecK Spec L→ X×SpecK Spec L
be the morphism of schemes induced by S(σ) : Spec L→ Spec L, i.e. by σ−1 on
coordinate rings. The invertible sheaves x∗σM are ample, as well, and, therefore,
M :=


⊗
υ∈G


x∗υM is an ample invertible sheaf. For each σ ∈ G there are canonical
identifications


ισ : x∗σM =


⊗


υ∈G


x∗σx∗υM =


⊗


υ∈G


x∗υσM
id−→
⊗


υ∈G


x∗υM = M


and it is trivial that they are compatible in the sense that for each σ, τ ∈ G there
is the relation ιτ ◦x∗τ (ισ) = ιστ . By Galois descent for locally free sheaves there is
an invertible sheaf L ∈ Pic (X) such that π∗L ∼= M . By Lemma 2.13 below L is
ample.


xi) If X×SpecK Spec L
∼=−→ Spec B is affine the isomorphism defines a G-operation


from the right on the L-algebra B where each σ ∈ G operates σ−1-linearly. Define
a G-operation from the left on B by σ ·b := b ·σ−1. By the algebraic version of
descent, Proposition 2.3, we find a K-algebra A such that there is an isomorphism


X×SpecK Spec L
∼=−→ Spec B = Spec (A⊗K L)


∼=−→ Spec A×SpecK Spec L


being compatible with the G-operations. Proposition 2.5 implies X∼= Spec A.
xii) Let (A,m) be the local ring at a point p ∈ X. By vi) we may assume (A,m)
is Noetherian. We have to show it is regular. Let us give two proofs for that,
the standard one using Serre’s homological characterization of regularity and an
elementary one.
1st proof. Assume (A,m) would not be regular. By [Ma, Theorem 19.2] one would
have gl.dim A =∞. Then, [Ma, §19, Lemma 1] implies proj.dimA A/m =∞ and


sup{i |TorA
i (A/m, A/m) 6= 0}=∞.


On the other hand, we have


TorA
i (A/m, A/m)⊗K L = TorA


i (A/m, A/m)⊗A(A⊗K L)


= TorA
i (A/m, (A⊗K L/m⊗K L))


= TorA⊗K L
i ((A⊗K L/m⊗K L), (A⊗K L/m⊗K L))


= 0


for i > dim A⊗K L by [Ma, Theorem 19.2] as A⊗K L is regular. This is a contradic-
tion. Note that everything we needed was that π is faithfully flat.
2nd proof. Put d := dim A. The ring A⊗K L is not local in general. But the quotient
(A⊗K L)/(m⊗K L) ∼= A/m⊗K L is a direct product of finitely many fields since L/K
is a finite, separable field extension. The quotients (A⊗K L)/(mn⊗K L) are Artin
rings as they are flat of relative dimension zero over A/m


n. Consequently, they
are direct products of Artin local rings,


(A⊗K L)/(mn⊗K L)
∼=−→ A(n)


1 × . . . × A(n)
l .


Under this isomorphism (m⊗K L)/(mn⊗K L) is mapped to the product of the max-
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imal ideals m
(n)
1 × . . . ×m


(n)
l as it is a nilpotent ideal and the quotient has to be a


direct product of fields. For each i ∈ {1, . . . , l} let fi ∈ A⊗K L be chosen such that
its image has a non-zero component in A(n)


i , only, and that be the unit element.
Then


A(n)
i
∼= ((A⊗K L)/(mn⊗K L)) fi


∼= (A⊗K L) fi/m
n(A⊗K L) fi .


By our assumptions (A⊗K L) fi is a regular local ring and m(A⊗K L) fi is its maximal
ideal. (A⊗K L) fi is of dimension d since it is flat of relative dimension zero over
A. By the standard computation of the Hilbert-Samuel function of a regular local
ring we have


length
(


A(n)
i


)
= length ((A⊗K L) fi


/m
n(A⊗K L) fi


)


= length ((A⊗K L) fi/(m(A⊗K L) fi)
n)


=


(
n+d−1


d


)
.


Consequently, for the function HA with HA(n) := dimK (A/m
n) one gets


HA(n) = dimL (A⊗K L/m
n⊗K L) = dimL


(
A(n)


1 × . . . ×A(n)
l


)


=


l


∑
i=1


dimL


(
A(n)


i


)


=


l


∑
i=1


[(
A(n)


i /m
(n)
i


)
: L
]


length
(


A(n)
i


)
,


so HA has to be some multiple of n 7→
(n+d−1


d


)
by a constant. Therefore, the Hilbert-


Samuel function of A is exactly that of a regular local ring of dimension d. Note
its value HA(1) is necessarily equal to 1, so there is no ambiguity about constant
factors. A is regular. �


Lemma 2.13. — Let L/K be an arbitrary field extension, X a K-scheme of finite type,
π : X×SpecK Spec L→ X the canonical morphism and L ∈ Pic (X) be an invertible sheaf.
If the pull-back π∗L ∈ Pic (X×SpecK Spec L) is ample then L is ample.
Proof. We have to prove that for every coherent sheaf F on X and each closed
point x ∈ X for n � 0 the canonical map pn


x : Γ(X,F ⊗L ⊗n) → Fx⊗L ⊗n
x


is surjective. For that it is obviously sufficient to prove surjectivity for
pn


x⊗K L : Γ(X,F⊗L ⊗n)⊗K L→ (Fx⊗L ⊗n
x )⊗K L. But it is easy to see that


Γ(X,F⊗L ⊗n)⊗K L = Γ(X×SpecK Spec L, π∗F⊗π∗L ⊗n)


while (Fx⊗L n
x )⊗K L = Γ(π−1(x), π∗F⊗π∗L ⊗n). Here π−1(x) denotes the fiber of


π above x. Note it may be a non-reduced scheme in the case that L/K is not
separable. For n� 0 the map pn


x⊗K L is surjective as π∗L is ample. �


Lemma 2.14. — Let R be a ring, F a free R-module of finite rank and M an arbitrary
R-module. If M⊗R F is a locally free R-module of finite rank then M is locally free of
finite rank, as well.
Proof. M is a direct summand of the locally free R-module M⊗R F being of fi-
nite rank. Therefore, there is some affine open covering {Spec R f1 , . . . , Spec R fn}
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of Spec R such that each (M⊗R F)⊗R R fi = (M⊗R R fi)⊗R F is a free R fi-module.
M⊗R R fi


= M fi
is a direct summand and, therefore, a projective R fi


-module. There
exists a surjection (M⊗R F)⊗R R fi � M fi whose kernel K has to be a direct sum-
mand of (M⊗R F)⊗R R fi , as well. In particular, K is a finitely generated R fi-
module. Thus, M fi is finitely presented and, therefore, locally free by [Ma, Theo-
rem 7.12 and Theorem 4.10]. �


Remark 2.15. — Galois descent is the central technique in André Weil’s founda-
tion of Algebraic Geometry. The Grothendieck school gave a far-reaching gen-
eralization of it, the so-called faithful flat descent. It turns out that we will not
need faithful flat descent in its full generality later on here. For that reason we
decided to present the more elementary Galois descent in detail. The reader who
is interested in faithful flat descent can find detailed information in [K/O].


3. Central simple algebras and non-abelian H1


We are going to make use of the following well-known facts about central simple
algebras.


Lemma 3.1 (J. H. Maclagan-Wedderburn, R. Brauer). — Let K be a field.
a) Let A be a central simple algebra over K. Then there exist a skew field D with center
K and a natural number n such that A ∼= Mn(D) is isomorphic to the full algebra of
n×n-matrices with entries in D.
b) Let L be a field extension of K and A be a central simple algebra over K. Then A⊗K L
is a central simple algebra over L.
c) Assume K to be separably closed. Let D be a skew field being finite dimensional over K
whose center is equal to K. Then D = K.
Proof. See the standard literature, for example S. Lang [La] or N. Bourbaki [Bou],
or the book of I. Kersten [Ke]. �


Remarks 3.2. — a) Let A be a central simple algebra over a field K.
i) The proof of Lemma 3.1.a) shows that in the presentation A∼= Mn(D) the skew
field D is unique up to isomorphism of K-algebras and the natural number n is
unique.
ii) A⊗K Ksep is isomorphic to a full matrix algebra over Ksep. In particular, dimK A
is a perfect square. The natural number ind(A) :=


√
dimK(D) is called the index


of A.
b) Let A1, A2 be central simple algebras over a field K. Then A1⊗K A2 can be
shown to be a central simple algebra over K. Further, if A is a central simple
algebra over a field K then A⊗K Aop ∼= AutK−Vect(A), i.e. it is isomorphic to a
matrix algebra.
c) Two central simple algebras A1


∼= Mn1(D1), A2
∼= Mn2(D2) over a field K are


said to be similar if the corresponding skew fields D1 and D2 are isomorphic as
K-algebras. This is an equivalence relation on the set of all isomorphy classes of
central simple algebras over K. The tensor product induces a group structure on
the set of similarity classes of central simple algebras over K, this is the so-called
Brauer group Br(K) of the field K.
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Definition 3.3. — Let K be a field and A be a central simple algebra over K. A
field extension L of K admitting the property that A⊗K L isomorphic to a full
matrix algebra is said to be a splitting field for A. In this case one says A splits over
L.


Lemma 3.4 (Theorem of Skolem-Noether). — Let R be a commutative ring with unit.
Then GLn(R) operates on Mn(R) by conjugation,


(g, m) 7→ gmg−1.


If R = L is a field then this defines an isomorphism


PGLn(L) := GLn(L)/L∗
∼=−→ AutL(Mn(L)).


Proof. One has L = Zent(Mn(L)). Therefore, the mapping is well-defined and
injective.
Surjectivity. Let j : Mn(L)→Mn(L) be an automorphism. We consider the algebra
M := Mn(L)⊗L Mn(L)op (∼= Mn2(L)). Mn(L) gets equipped with the structure of a
left M-module in two ways.


(A⊗B) •1 C := A·C·B
(A⊗B) •2 C := j(A)·C·B


Two Mn2(L)-modules of the same L-dimension are isomorphic, as the n2-dimen-
sional standard L-vector space equipped with the canonical operation of Mn2(L) is
the only simple left Mn2(L)-module and there are no non-trivial extensions. Thus,
there is an isomorphism h : (Mn(L),•1)→ (Mn(L),•2). Let us put I := h(E) to be
the image of the identity matrix. For every M ∈Mn(L) we have


h(M) = h((E⊗M)•1 E) = (E⊗M)•2h(E) = h(E)·M = I ·M.


In particular, I ∈ GLn(L). Therefore,


I ·M = h(M) = h((M⊗E)•1 E) = (M⊗E)•2h(E) = j(M)· I
for each M ∈Mn(L) and j(M) = IMI−1. �


Definition 3.5. — Let n be a natural number.


i) If K is a field then we will denote by AzK
n the set of all isomorphy classes of


central simple algebras A of dimension n2 over K.


ii) Let L/K be a field extension. Then AzL/K
n will denote the set of all isomorphy


classes of central simple algebras A which are of dimension n2 over K and split
over L. Obviously, AzK


n :=
⋃


L/K
AzL/K


n .


Theorem 3.6 (cf. J.-P. Serre: Corps locaux [Se62, chap. X, §5])
Let L/K be a finite Galois extension of fields, G := Gal (L/K) its Galois group and n be
a natural number. Then there is a natural bijection of pointed sets


a = aL/K
n : AzL/K


n
∼=−→ H1(G, PGLn(L)),


A 7→ aA.
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Proof. Let A be a central simple algebra over K that splits over L,


A⊗K L
∼=−→
f


Mn(L).


The diagrams


A⊗K L
f


// Mn(L)


A⊗K L
f


//


σ


OO


Mn(L)


σ


OO


for σ ∈ G do not commute in general. Put ( f ◦σ) = aσ◦(σ◦ f ) where aσ ∈ PGLn(L)
for each σ. It turns out that


f ◦στ = ( f ◦σ)◦τ
= aσ◦(σ◦ f )◦τ
= aσ◦σ◦( f ◦τ )
= aσ◦σ◦(aτ ◦(τ ◦ f ))
= aσ◦σaτ ◦(στ ◦ f ),


i.e. aστ = aσ ·σaτ and (aσ)σ∈G is a cocycle.
If one starts with another isomorphism f ′ : A⊗K L −→ Mn(L) then there exists
some b ∈ PGLn(L) such that f = b◦ f ′. The equality ( f ◦σ) = aσ◦(σ◦ f ) implies


f ′◦σ = b−1◦ f ◦σ = b−1·aσ ◦ (σ◦(b◦ f ′)) = b−1·aσ·σb ◦ (σ◦ f ′).


Thus, the isomorphism f ′ yields a cocycle being cohomologous to (aσ)σ∈G. The
mapping a is well-defined.


Injectivity. Assume A and A′ are chosen such that the construction above yields
the same cohomology class aA = aA′ ∈ H1(G, PGLn(L)). After the choice of
suitable isomorphisms f and f ′ one has the formulas ( f ◦σ) = aσ ◦ (σ ◦ f ) and
( f ′◦σ) = aσ◦(σ◦ f ′) in the diagram


A⊗K L
f


// Mn(L) A′⊗K L
f ′


oo


A⊗K L
f


//


σ


OO


Mn(L)


σ


OO


A′⊗K L.
f ′


oo


σ


OO


Consequently, f ◦σ◦ f−1◦σ−1
= f ′◦σ◦ f ′−1◦σ−1 and, therefore,


f ◦σ◦ f−1◦ f ′◦σ−1◦ f ′−1
= id.


The outer part of the diagram commutes. Taking the G-invariants on both sides
gives A ∼= A′.


Surjectivity. Let a cocycle (aσ)σ∈G for H1(G, PGLn(L)) be given. We define a new
G-operation on Mn(L) by letting σ ∈ G operate as


aσ◦σ : Mn(L) σ−→Mn(L) aσ−→Mn(L).


Note that this is a σ-linear mapping. Further, one has


(aσ◦σ)◦(aτ ◦τ ) = aσ◦σaτ ◦στ = aστ ◦στ ,
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i.e. we constructed a group operation from the left. Galois descent yields the
desired algebra. �


Lemma 3.7. — Let L/K be a finite Galois extension of fields and n be a natural number.


a) Let L′ be a field extension of L such that L′/K is Galois again. Then the following
diagram of morphisms of pointed sets commutes,


AzL/K
n


aL/K
n //


nat. incl.


��


H1(Gal (L/K), PGLn(L))


infGal (L′/K)
Gal (L/K)


��


AzL′/K
n


aL′/K
n // H1(Gal (L′/K), PGLn(L′)).


b) Let K′ be an intermediate field of the extension L/K. Then the following diagram of
morphisms of pointed sets commutes,


AzL/K
n


aL/K
n //


⊗KK′


��


H1(Gal (L/K), PGLn(L))


resGal (L/K′ )
Gal (L/K)


��


AzL/K′
n


aL/K′
n // H1(Gal (L/K′), PGLn(L)).


Proof. These are direct consequences of the construction of the bijections a·n. �


Corollary 3.8. — Let K be a field and n be a natural number. Then there is a unique
natural bijection


a = aK
n : AzK


n −→ H1(Gal (Ksep/K), PGLn(Ksep))


such that aK
n |AzL/K


n
= aL/K


n for each finite Galois extension L/K in Ksep.
Proof. In order to get connected with the definition of cohomology of profinite
groups the only technical point to prove is the formula


PGLn(Ksep)Gal (Ksep/K′)
= PGLn(K′)


for every intermediate field K ⊆ K′ ⊆ Ksep. For that the exact sequence


1 −→ (Ksep)∗ −→ GLn(Ksep) −→ PGLn(Ksep) −→ 1


induces the cohomology exact sequence


1→ (K′)∗→ GLn(K′)→ PGLn(Ksep)Gal (Ksep/K′)→ H1(Gal (Ksep/K′), (Ksep)∗)


whose right entry vanishes by Hilbert’s Theorem 90 (cp. Lemma 4.10 below). �
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Proposition 3.9. — Let K be a field and m and n be natural numbers. Then the diagram


AzK
n


aK
n //


A 7→Mm(A)


��


H1(Gal (Ksep/K), PGLn(Ksep))


(inmn)∗


��


AzK
mn


aK
mn // H1(Gal (Ksep/K), PGLmn(Ksep))


commutes where (in
mn)∗ is the map induced by the block-diagonal embedding


in
mn : PGLn(Ksep) −→ PGLmn(Ksep)


E 7→






E 0 · · · 0
0 E · · · 0


· · · · · · . . . · · ·
0 0 · · · E



.


Proof. Let A ∈ AzK
n . By the construction above, a cycle representing the


cohomology class aK
n (A) is given as follows. Choose an isomorphism


f : A⊗K Ksep →Mn(Ksep) and put aσ := ( f ◦σ)◦(σ◦ f )−1 ∈ Aut(Mn(Ksep)) for each
σ ∈ Gal(Ksep/K). On the other hand, for Mm(A) ∈ AzK


mn one may choose the iso-
morphism


Mm( f ) : Mm(A)⊗K Ksep
= Mm(A⊗K Ksep) −→Mm(Mn(Ksep)) ∼= Mmn(Ksep).


For each σ ∈Gal(Ksep/K) this yields the automorphism ãσ of Mm(Mn(Ksep)) which
operates as aσ on each block. If aσ is given by conjugation with a matrix Aσ then
ãσ is given by conjugation with






Aσ 0 · · · 0
0 Aσ · · · 0


· · · · · · . . . · · ·
0 0 · · · Aσ



 .


This is exactly what was to be proven. �


Remark 3.10. — The proposition above shows


Br(K)∼= lim−→n H1(Gal (Ksep/K), PGLn(Ksep)).


Further, for each m and n there is a commutative diagram of exact sequences as
follows,


1 // (Ksep)∗ // GLn(Ksep)


��


// PGLn(Ksep)


jnmn
��


// 1


1 // (Ksep)∗ // GLmn(Ksep) // PGLmn(Ksep) // 1.


We note that (Ksep)∗ is mapped into the centers of GLn(Ksep) and GLmn(Ksep), re-
spectively. Therefore, there are boundary maps to the second group cohomology
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group and they all fit together to give a map


lim−→n H1(Gal (Ksep/K), PGLn(Ksep)) −→ H2(Gal (Ksep/K), (Ksep)∗).


It is not complicated to show that this map is injective and surjective [SGA41
2 ,


Arcata, III.1], [Se62, chap. X, §5], [Bou, §10, Prop. 7].


4. Brauer-Severi varieties and non-abelian H1


Definition 4.1. — Let K be a field. A scheme X over K is called a Brauer-Severi
variety if there exists a finite, separable field extension L/K such that X ×SpecK


Spec L is isomorphic to a projective space PN
L . A field extension L of K admitting


the property that X×SpecK Spec L ∼= PN
L for some n ∈ N is said to be a splitting field


for X. In this case one says X splits over L.


Proposition 4.2. — Let X be a Brauer-Severi variety over a field K. Then


i) X is a variety, i.e. a reduced and irreducible scheme.


ii) X is projective and regular.


iii) X is geometrically integral.


iv) One has Γ(X,OX) = K.


v) K is algebraically closed in the function field X(K).


Proof. We will denote the dimension of X by N.
i) and ii) are direct consequences of Lemma 2.12.i),ii), x) and xii).
iii) is clear from the definition.
iv) We have


Γ(X,OX)⊗K Ksep
= Γ(X×SpecK Spec Ksep,OX×SpecKSpec Ksep) = Γ(PN


Ksep ,OPN
Ksep


) = Ksep.


Consequently, Γ(X,OX) = K.
v) Assume g ∈ K(X) is some rational function being algebraic over K. We choose
an algebraic closure K of K. The pull-back gK is a rational function on PN


K be-
ing algebraic over K. Thus, gK is a constant function. Consequently, g itself has
definitely no poles, i.e. g is a regular function on X. By iv) we have g ∈ K. �


Lemma 4.3. — Let R be a commutative ring with unit.


a) Then GLn(R) operates on Pn−1
R by morphisms of R-schemes as follows: A ∈ GLn(R)


gives rise to the morphism given by the graded automorphism


R[X0, . . . , Xn−1] −→ R[X0, . . . , Xn−1]
f (X0, . . . , Xn−1) 7→ f ((X0, X1, . . . , Xn−1)·At)


of the coordinate ring.


b) If R = L is a field then this induces an isomorphism


PGLn(L)
∼=−→ AutL−schemes (Pn−1


L ).
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Proof. Note that in projective coordinates the definition above yields the naive
operation






a11 . . . a1n


· · · . . . · · ·
an1 . . . ann






↓>
(x0 : . . . : xn−1) 7→ (


(a11x0 + . . . + a1nxn−1) : . . . : (an1x0 : . . . : annxn−1)
)


of GLn(S) on the set Pn−1
R (S) of S-valued points on Pn−1


R for every commutative
R-algebra S with unit.
a) is clear. For b) see [Ha, Example II.7.1.1]. The proof given there works equally
well without the assumption on L to be algebraically closed. �


Definition 4.4. — Let r be natural number.


i) If K is a field then we will denote by BSK
r the set of all isomorphy classes of


Brauer-Severi varieties X of dimension r over K.


ii) Let L/K be a field extension. Then BSL/K
r will denote the set of all isomorphy


classes of Brauer-Severi varieties X over K which are of dimension r and split
over L. Obviously, BSK


r :=
⋃


L/K
BSL/K


r .


Theorem 4.5 (cf. J.-P. Serre: Corps locaux [Se62, chap. X, §6])
Let L/K be a finite Galois extension, G := Gal (L/K) its Galois group and n be a natural
number. Then there exists a natural bijection of pointed sets


α = αL/K
n−1 : BSL/K


n−1


∼=−→ H1(G, PGLn(L)),
X 7→ αX.


Proof. Let X be a Brauer-Severi variety over K that splits over L,


X×SpecK Spec L
∼=−→
f


Pn−1
L .


On X ×SpecK Spec L, as well as on Pn−1
L , there are operations of G from


the left by morphisms of K-schemes. The action of σ ∈ G is induced by
S(σ) : Spec L→ Spec L in both cases. Unfortunately, the diagrams


X×SpecK Spec L
f


// Pn−1
L


X×SpecK Spec L
f


//


σ


OO


Pn−1
L


σ


OO
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with σ ∈ G do not commute in general. We put ( f ◦σ) = ασ ◦ (σ ◦ f ) with
ασ ∈ PGLn(L). (ασ)σ∈G is a cocycle by the same calculation as above:


f ◦στ = ( f ◦σ)◦τ
= ασ◦(σ◦ f )◦τ
= ασ◦σ◦( f ◦τ )
= ασ◦σ◦(ατ ◦(τ ◦ f ))
= ασ◦σατ ◦(στ ◦ f ).


If one starts with another isomorphism f ′ : X ×SpecK Spec L −→ Pn−1
L then there


exists some b ∈ PGLn(L) such that f = b◦ f ′. The equality ( f ◦σ) = ασ ◦ (σ◦ f )
implies


f ′◦σ = b−1◦ f ◦σ = b−1·ασ ◦ (σ◦(b◦ f ′)) = b−1·ασ·σb ◦ (σ◦ f ′).


Thus, the isomorphism f ′ yields a cocycle being cohomologous to (ασ)σ∈G. Con-
sequently, the mapping α is well-defined.


Injectivity. Assume X and X ′ are chosen such that the same cohomology class
αX = αX′ ∈ H1(G, PGLn(L)) arises. After the choice of suitable isomorphisms f
and f ′ one has the formulas ( f ◦σ) = ασ ◦(σ◦ f ) and ( f ′◦σ) = ασ◦(σ◦ f ′) in the
diagram


X×SpecK Spec L
f


// Pn−1
L X′×SpecK Spec L


f ′
oo


X×SpecK Spec L
f


//


σ


OO


Pn−1
L


σ


OO


X′×SpecK Spec L.
f ′


oo


σ


OO


Therefore, f ◦σ◦ f−1◦σ−1
= f ′◦σ◦ f ′−1◦σ−1 and, consequently,


f ◦σ◦ f−1◦ f ′◦σ−1◦ f ′−1
= id.


The outer part of the diagram commutes. Galois descent yields X∼= X′.


Surjectivity. Let a cocycle (ασ)σ∈G for H1(G, PGLn(L)) be given. We define a new
G-operation on Pn−1


L by letting σ ∈ G operate as


ασ◦σ : Pn−1
L


σ−→ Pn−1
L


ασ−→ Pn−1
L .


This is a group operation as (ασ)σ∈G is a cocycle. The geometric version of Galois
descent yields the desired variety. �


Lemma 4.6. — Let L/K be a finite Galois extension of fields and n be a natural number.


a) Let L′ be a field extension of L such that L′/K is Galois again. Then the following
diagram of morphisms of pointed sets commutes.
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BSL/K
n−1


α
L/K
n−1 //


nat. incl.


��


H1(Gal (L/K), PGLn(L))


infGal (L′/K)
Gal (L/K)


��


BSL′/K
n−1


α
L′/K
n−1 // H1(Gal (L′/K), PGLn(L′))


b) Let K′ be an intermediate field of the extension L/K. Then the following diagram of
morphisms of pointed sets commutes.


BSL/K
n−1


α
L/K
n−1 //


×SpecKSpec K′


��


H1(Gal (L/K), PGLn(L))


resGal (L/K′)
Gal (L/K)


��


BSL/K′


n−1


α
L/K′
n−1 // H1(Gal (L/K′), PGLn(L))


Proof. These are direct consequences of the construction of the mappings α·n−1.�


Corollary 4.7. — Let K be a field and n be a natural number. Then there is a natural
bijection


α = αK
n−1 : BSK


n−1 −→ H1(Gal (Ksep/K), PGLn(Ksep))


such that αK
n−1 |BSL/K


n−1
= αL/K


n−1 for each finite Galois extension L/K in Ksep.
Proof. The proof follows the same line as the proof of Corollary 3.8. �


Proposition 4.8 (F. Severi, cf. J.-P. Serre: Corps locaux [Se62, chap. X, §6, Exc. 1])
Let r be a natural number. If X is a Brauer-Severi variety of dimension r over a field K
and X(K) 6= ∅ then, necessarily, X ∼= Pr


K.
Proof. Let L/K be a finite Galois extension being a splitting field for X. Denote its
Galois group by G. Choose an isomorphism X×SpecK Spec L


∼=−→ Pr
L. One may as-


sume without restriction that the L-valued point xL ∈ X×SpecK Spec L (L) induced
by the K-valued point x ∈ X(K) is mapped to (1 : 0 : . . . : 0) ∈ Pr


L(L). Therefore,
the cohomology class αX ∈ H1


(
G, PGLr+1(L)


)
is given by a cocycle (ασ)σ∈G where


every ασ admits (1 :0 : . . . :0) as a fixed point.
Consequently, αX belongs to the image of H1


(
G, F/L∗


)
under the natural homo-


morphism where


F :=











a11 . . . a1,r+1
... . . . ...


ar+1,1 . . . ar+1,r+1



∈ GLr+1(L)


∣∣∣∣∣∣
a21 = a31 = . . . = ar+1,1 = 0




.
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But it is obvious that


F/L∗ ∼= F′ :=











1 a12 . . . a1,r+1
0 . . . . . . . . .
... . . . . . . . . .
0 ar+1,2 . . . ar+1,r+1









⊆ GLr+1(L)


and the natural homomorphism H1(G,F′) → H1(G, PGLr+1(L)) factors via
H1(G, GLr+1(L)). The assertion follows from Lemma 4.10 below. �


Remark 4.9. — One can easily show that even H1(G, F′) = 0. Indeed,


F1 := {(ai j)1≤i, j≤r+1 | ai j = 0 for i ≥ 2, i 6= j; a11 = a22 = . . . = ar+1,r+1 = 1}
is a normal G-subgroup of F′. So F′ admits a filtration by G-subgroups, each
one being normal in the next one, such that all the subquotients occurring are
isomorphic either to GLr(L) or to (L,+).


Lemma 4.10. — Let L/K be a finite Galois extension of fields, G := Gal (L/K) its Ga-
lois group and n ∈ N. Then H1(G, GLn(L)) = 0.
Proof. Let (aσ)σ∈G be a cocycle with values in GLn(L). We define a G-operation
from the left on Ln by the declaration that σ ∈ G acts as


aσ◦σ : Ln σ−→ Ln aσ−→ Ln.


Clearly, aσ◦σ is a σ-linear map. Galois descent yields a K-vector space V such
that one has an isomorphism


V⊗K L
∼=−→
b


Ln


making the diagrams


V⊗K L b // Ln


V⊗K L b //


σ


OO


Ln


aσ◦σ
OO


commute. In particular, one has dimK V = n. The choice of an isomorphism


V
∼=−→ Kn


yields b ∈ GLn(L) such that b◦σ = aσ◦σ◦b, i.e. aσ = b◦σ◦b−1◦σ−1
= b◦σ(b−1) for


all σ ∈ G. (aσ)σ∈G is cohomologous to the trivial cocycle. �


Definition 4.11. — Let K be a field, r a natural number and X be a Brauer-Severi
variety of dimension r. Then a linear subspace of X is a closed subvariety Y ⊂ X
such that Y×SpecK Spec Ksep ⊂ X×SpecK Spec Ksep ∼= Pr


Ksep is a linear subspace of the
projective space. This property is independent of the isomorphism chosen.


Remark 4.12. — A K-valued point would be a zero-dimensional linear subspace
but except for the trivial case X∼= Pr


K there are none of them. Nevertheless, it may
happen that there exist linear subspaces Y $ X of higher dimension. They can be
investigated by cohomological methods generalizing the argument given above.
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Proposition 4.13 (F. Châtelet, M. Artin). — Let K be a field, r and d be natural num-
bers, X be a Brauer-Severi variety of dimension r and Y a linear subspace of
dimension d. Then the natural boundary maps send the cohomology classes
αK


r (X)∈H1(Gal(Ksep/K), PGLr+1(Ksep)) and αK
d (Y) ∈ H1(Gal(Ksep/K), PGLd+1(Ksep))


to one the same class in the cohomological Brauer group H2(Gal(Ksep/K), (Ksep)∗).
Proof. Let L/K be a finite Galois extension being a common splitting field for
X and Y. Denote its Galois group by G. Choose an isomorphism
X×SpecK Spec L


∼=−→ Pr
L. One may assume without restriction that the linear


subspace Y ×SpecK Spec L ⊂ X ×SpecK Spec L ∼= Pr
L is given by the homo-


geneous equations Xd+1 = . . . = Xr = 0. Therefore, the cohomology class
αL/K


r (X) ∈ H1
(
G, PGLr+1(L)


)
is given by a cocycle (ασ)σ∈G where every ασ fixes


that linear subspace.
Consequently, αL/K


r (X) belongs to the image of H1
(
G, F/L∗


)
under the natural


homomorphism where


F :=
{(


E1 H
0 E2


)
∈ GLr+1(L)


∣∣∣∣ E1 ∈ GLd+1(L), E2 ∈ GLr−d(L), H ∈M(d+1)×(r−d)(L)
}
.


F comes equipped with the homomorphism of G-groups


p : F −→ GLd+1(L),(
E1 H
0 E2


)
7→ E1.


Thus, we obtain a commutative diagram that connects the three central inclusions


L∗ // GLd+1(L)


L∗ // F


i
��


p
OO


L∗ // GLr+1(L),


and, therefore, the following commutative diagram that unites the boundary
maps,


H1(G, PGLd+1(L)) // H2(G, L∗)


H1(G, F/L∗) //


i∗
��


p∗


OO


H2(G, L∗)


H1(G, PGLr+1(L)) // H2(G, L∗).


But we know there exists α ∈ H1(G, F/L∗) such that i∗(α) = αL/K
r (X) and


p∗(α) = αL/K
d (Y). �







THE BRAUER-SEVERI VARIETY ASSOCIATED WITH A CENTRAL SIMPLE ALGEBRA: A SURVEY 29


5. Central simple algebras and Brauer-Severi varieties


Theorem 5.1. — Let n be a natural number, K a field and A a central simple algebra
over K of dimension n2.
a) Then there exists a Brauer-Severi variety XA of dimension n− 1 over K satisfying
condition (+) below. (+) determines XA uniquely up to isomorphism of K-schemes.
(+) If L/K is a finite Galois extension being a splitting field for A then is a splitting field


for XA, too, and there is one and the same cohomology class


aA = αXA ∈ H1(Gal (L/K), PGLn(L))


associated with A and XA.
b) The assignment X : A 7→ XA admits the following properties.
i) It is compatible with extensions K′/K of the base field, i.e.


XA⊗K K′
∼= XA×SpecK Spec K′.


ii) L/K is a splitting field for A if and only if L/K is a splitting field for XA.
Proof. a) Uniqueness is clear from the results of the preceding sections.
Existence. Choose a finite Galois extension L/K being a splitting field for A and
take condition (+) as a definition for XA. This is independent of the choice of L by
Lemmas 3.7.a) and 4.6.a).
b) i) Let K′/K be an arbitrary field extension. We have the obvious diagram of
field extensions


LK′


K′


=={{{{{{{{
L


aaBBBBBBBB


K


aaDDDDDDDD


==||||||||


and the canonical inclusion Gal (LK′/K′) ⊆ Gal (L/K). Under the constructions
given above one assigns to the central simple algebra A⊗K K′ and the Brauer-
Severi variety X×SpecK Spec K′ the restrictions of the cohomology classes assigned
to A, respectively X,


a(A⊗K K′) = resGal (LK′/K′)
Gal (L/K) (aA),


α(X×SpecKSpec K′) = resGal (LK′/K′)
Gal (L/K) (αX).


ii) The two statements above are equivalent to


resGal (LK′/K′)
Gal (L/K) (aA) ∈ H1(Gal (LK′/K′), PGLn(LK′)


)
= 0


and
resGal (LK′/K′)


Gal (L/K) (αXA ) ∈ H1(Gal (LK′/K′), PGLn(LK′)
)


= 0,


respectively. As we have aA = αXA , the assertion follows. �


Corollary 5.2. — Let K be a field and A a central simple algebra over K. Then K′ is a
splitting field for A if and only if XA(K′) 6= ∅.
Proof. “=⇒” is trivial and “⇐=” is an easy consequence of Proposition 4.8. �
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Corollary 5.3. — i) Let K be a field and n a natural number. Then X induces a bijection


XK
n : AzK


n → BSK
n−1.


ii) Let L/K be a field extension. Then X induces a bijection


XL/K
n : AzL/K


n → BSL/K
n−1.


iii) These mappings are compatible with extensions of the base field, i.e. the diagram


AzK
n


XK
n //


⊗K K′


��


BSK
n−1


×SpecKSpec K′


��


AzK′
n


XK′
n // BSK′


n−1


commutes for every field extension K ′/K.
Proof. i) follows immediately from Theorem 5.1.a). ii) is a consequence of Theo-
rem 5.1.a) together with Theorem 5.1.b.ii). iii) is simply a reformulation of Theo-
rem 5.1.b.i). �


Remark 5.4. — It may happen that two Brauer-Severi varieties X1, X2 over some
field K are birationally equivalent but not isomorphic. S. A. Amitsur [Am55]
proved that in this case the corresponding central simple algebras A1 and A2
generate the same subgroup of the Brauer group Br(K). It is still an open ques-
tion whether the converse is true although interesting partial results have been
obtained by P. Roquette [Roq64] and S. L. Tregub [Tr].


Proposition 5.5. — Let K be a field, n be a natural number and A a central simple
algebra of dimension n2 over K. Then there is an isomorphism


xA : AutK(A)
∼=−→ AutK−schemes(XA).


Proof. Let L/K be a finite Galois extension such that L is a splitting field for A
and put G := Gal (L/K). Choose an isomorphism A⊗K L


f−→Mn(L). Then there
are commutative diagrams


A⊗K L
f


//


σ


��


Mn(L)


aσ◦σ
��


A⊗K L
f


// Mn(L)


for each σ ∈ G where (aσ)σ∈G is a cocycle for aA ∈ H1(G, PGLn(L)). By Galois
descent, it is equivalent to give an element of AutK(A) or to give an element of
PGLn(L) being invariant under aσ◦σ for every σ ∈ G.
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As αXA = aA we find an isomorphism X×SpecK Spec L
f ′−→ Pn−1


L such that the dia-
grams


X×SpecK Spec L
f ′


//


σ


��


Pn−1
L


aσ◦σ
��


X×SpecK Spec L
f ′


// Pn−1
L


commute. Therefore, by Galois descent for morphisms of schemes, it is equiva-
lent to give an element of AutK−schemes(XA) or to give an element of PGLn(L) being
invariant under aσ◦σ for every σ ∈ G. �


Proposition 5.6 (F. Châtelet, M. Artin). — Let K be a field, n and d be natural num-
bers, and A be a central simple algebra of dimension n2 over K. Then the Brauer-Severi
variety XA associated with A admits a linear subspace of dimension d if and only if
d ≤ n− 1 and


d ≡ −1 (mod ind(A)).


Proof. We write A = Mm(D) with a skew field D and put e := ind(A). Clearly,
n = me.
“=⇒” Let H ⊂ XA be a linear subspace of dimension d. By Proposition 4.13
we know H ∼= XA′ for some central simple algebra A′ which is similar to A, i.e.
A′ ∼= Mk(D) for a certain k ∈ N. It follows that dim A′ = k2 ·dim D = k2 ·e2 and
dim H = dim XA′ = k ·e− 1. This implies the congruence desired. Further, we
have dim XA = n− 1. Consequently, d = dim H ≤ dim XA = n− 1.
“⇐=” Let L/K be a finite Galois extension such that L is a splitting field for A
and denote its Galois group by G. Further, let k be the natural number such that
d = k·e− 1. By assumption, k·e− 1 = d ≤ n− 1 = m·e− 1, hence k ≤ m.
We consider the cohomology class aD ∈ H1(G, PGLe(L)) associated with D. By
Proposition 3.9, aA = (ie


me)∗(aD) where ie
me : PGLe(L) → PGLme(L) is the block-


diagonal embedding. Let (aσ)σ∈G be a cocycle representing the cohomology class
aD. Then (ie


me(aσ))σ∈G is a cocycle that represents aA.
We define a G-operation on Pme−1


L by letting σ ∈ G operate as


ie
me(aσ)◦σ : Pme−1


L
σ // Pme−1


L


ieme(aσ )
// Pme−1


L .


This is a group operation as (ie
me(aσ))σ∈G is a cocycle. The geometric version


of Galois descent yields the Brauer-Severi variety XA. Further, the G-
operation fixes the linear subspace defined by the homogeneous equations
Xke = Xke+1 = . . . = Xme−1 = 0. So Galois descent can be applied to this sub-
space, as well. It gives a variety Y of dimension ke− 1 = d. Galois descent for
morphisms of schemes, applied to the canonical embedding, yields a morphism
Y −→ XA. This is a closed immersion as that property descends under faithful
flat base change. Consequently, Y is a linear subvariety of XA of the dimension
desired. �
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6. Functoriality


Remark 6.1. — The preceding results suggest that X : A 7→ XA should somehow
be a functor. This is indeed the case but for that the construction of the Brauer-
Severi variety associated with a central simple algebra given above is not suffi-
cient. The problem is that XA is determined by its associated class in group coho-
mology only up to isomorphism and not up to canonical isomorphism. Thus, in
order to make X into a functor, it would still be necessary to make choices. For
that reason we aim at a more natural description of XA.


Lemma 6.2 (A. Grothendieck). — Let n be a natural number and R a commutative
ring with unit. Then there is a bijection


κR : Pn−1
R (R) −→ G(R) :=


{
submodules M in Rn such that Rn/M
is a locally free R−module of rank n− 1


}


subject to the conditions given below.
i) κR is natural in R, i.e. for every ring homomorphism i : R→ R′ the diagram


Pn−1
R (R)


κR //


Pn−1(i)
��


G(R)


G(i): M 7→M⊗RR′


��
Pn−1


R′ (R′)
κR′ // G(R′)


commutes.
ii) For every a ∈ PGLn(R) the canonical actions of a on Pn−1


R (R) and G(R) are compatible
with κR. That means that the diagrams


Pn−1
R (R)


κR //


a
��


G(R)


a
��


Pn−1
R (R)


κR // G(R)


commute where a ∈ PGLn(R) acts on a submodule M ⊂ Rn by matrix multiplication
from the left, i.e. by M 7→ a·M. Here a ∈ GLn(R) is a representative of a.
Proof. A submodule M ⊆ Rn such that the quotient Rn/M is locally free of rank
n− 1 defines an R-valued point in Pn−1


R . To see this, let first m⊆ R be an arbitrary
maximal ideal. Then Rn


m
/Mm is a free Rm-module of rank n−1. In particular, it


is projective. Hence, Mm is a direct summand of Rn
m


and, therefore, projective
and of finite presentation. Consequently, by [Ma, Theorem 7.12], Mm is a free
Rm-module of rank one. As Rn/M is R-flat, there is an exact sequence


0 −→ M⊗R(R/m) −→ Rn/mRn −→ Rn/(M+mRn) −→ 0.


So the canonical map M/mM → Rn/mRn is injective, i.e. mM = mRn ∩ M. In
particular, M can not be contained in mRn and the free rank-1 Rm-module Mm is
not contained in mRn


m
. Consequently, if Mm = 〈(r0, . . . , rn−1)〉 then there is some


α ∈ {0, . . . , n−1} such that rα ∈ Rm is a unit. This is equivalent to


Rn
m
/(Mm + e0 ·Rm + . . . + eα−1 ·Rm + eα+1 ·Rm + . . . + en−1 ·Rm) = 0
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where e0, . . . , en−1 ∈ Rn
m


denote the standard elements with an index shift by −1.
The latter is an open condition on m by [Ma, Theorem 4.10]. Therefore, there
exists some f ∈ R\m such that


Rn
f = M f + e1 ·R f + . . . + eα−1 ·R f + eα+1 ·R f + . . . + en ·R f ,


i.e. such that the (α+1)-th projection Mf → R f is surjective. As there are lo-
cally free modules of rank 1 on both sides, that must be an isomorphism. Conse-
quently, M f is free and there is a generator of type (r0, . . . , rα−1, 1, rα+1, . . . , rn−1).
Taking the entries as homogeneous coordinates we get a morphism
Spec R f → Pn−1


R . It is easy to see that all these can be glued together to give a
morphism of R-schemes Spec R→ Pn−1


R .
Conversely, an R-valued point Spec R→ Pn−1


R defines a quotient module of Rn of
rank n− 1 as follows. Cover Spec R by affine, open subsets


Spec R =


n−1⋃


α=0


Spec Rα


such that for each α the image i(Spec Rα) is contained in the standard affine set
“Xα 6= 0”. Then i|Spec Rα0


can be given in the form


(r0 :r1 : . . . :rα−1 : 1 :rα+1 : . . . : rn−1).


But Rn
α/(r0, r1, . . . , rα−1, 1, rα+1, . . . , rn−1) is a free Rα-module of rank n − 1 for


trivial reasons.
The compatibility stated as i) follows directly from the construction given above.
ii) is clear. �


Definition 6.3. — Let R be a commutative ring with unit.
i) Let X be a R-scheme. Then by


PX : {R− schemes}op→ {sets}
we will denote the functor defined by


T 7→MorR-schemes(T, X)


on objects and by composition on morphisms. The various functors PX depend
on X in a natural manner, i.e. if p : X→ X′ is a morphism of R-schemes then there
is a morphism of functors i∗ : PX → PX′ given by composition with i. Therefore,
there is a covariant functor


P : {R−schemes} −→ Fun ({R−schemes}op,{sets})
described by X 7→ PX on objects.
The functor PX induced by a R-scheme X is exactly what in category theory is
usually called the Hom-functor. Nevertheless, we will follow the standards in
Algebraic Geometry and refer to it as the functor of points. Note that PX(T) is the
set of T-valued points in X.
ii) Let F : {R− schemes}op→{sets} be any functor. If for some R-scheme X there
is an isomorphism F


∼=−→ PX then we will say F is represented by X. Having fixed
the isomorphism of functors, then, by Yoneda’s Lemma, the K-scheme represent-
ing a functor is determined up to unique isomorphism.
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Corollary 6.4 (A. Grothendieck). — Let n be a natural number and R a commutative
ring with unit. Then the functor


Pn−1
R : {R−schemes} −→ {sets}


T 7→ Pn−1
R (T) :=







subsheaves M in On
T such that


On
T/M is a locally free


OT−module of rank n− 1







is represented by the R-scheme Pn−1
R .


Proof. It is clear that both functors satisfy the sheaf axiom for Zariski coverings.
Therefore it is sufficient to construct the isomorphism on the full subcategory of
affine R-schemes. This is exactly what is done in Lemma 6.2. �


Corollary-Definition 6.5. — Let L be a field, n a natural number and F an L-
vector space of dimension n. Put F := F̃ to be the coherent sheaf being associated
with F on Spec L. Then the functor


P(F) : {L−schemes} −→ {sets}


(π : T→ Spec L) 7→ P(F)(π) :=







subsheaves M in π∗F such that
π∗F/M is a locally free
OT−module of rank n− 1







is representable by an L-scheme being isomorphic to Pn−1
L . We will denote that


scheme by P(F) and call it the projective space of lines in F.


Remark 6.6. — If L′ is a field containing L then P(F⊗L L′) is naturally isomorphic
to the functor P(F)|L′−schemes. Therefore, there is a canonical isomorphism


P(F⊗L L′)
∼=−→ P(F)×SpecL Spec L′


between the representing objects such that for each L′-scheme U the diagram of
natural mappings


MorL′−schemes(U, P(F)) //


∼=
��


{M ⊂ π∗UF}


MorL′−schemes(U, P(F⊗L L′)) // {M ⊂ π∗UF}
commutes. Consequently, for each L-scheme T there is a commutative diagram


MorL−schemes(T, P(F)) //


comp. with projection
��


{M ′ ⊂ π∗TF}


pull−back


��


MorL′−schemes(T×SpecL Spec L′, P(F))


∼=
��


MorL′−schemes(T×SpecL Spec L′, P(F⊗L L′)) // {M ⊂ π∗T×SpecLSpec L′F}.


We note explicitly that in the column on the left, there is, up to the canonical iso-
morphism obtained above, exactly the base extension map from Spec L to Spec L′.
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Definition 6.7. — Let L be a field and K ⊂ L be a subfield such that L/K is a finite
Galois extension. Denote its Galois group by G.


i) By L−VectK we will denote the category of all finite dimensional L-vector
spaces where as morphisms there are allowed all injections being σ-linear for
a certain σ ∈ G.


ii) L−VectK
0 is the subcategory of L−VectK that consists of the same class of objects


but allows only bijections as morphisms.


Definition 6.8. — i) Let H be a group. Then, by H we will denote the category
consisting of exactly one object ∗with Mor(∗,∗) = H.


ii) Let L be a field and K ⊂ L be a subfield such that L/K is a finite Galois exten-
sion. Denote its Galois group by G. By SchL/K we will denote the category of all
L-schemes with morphisms twisted by any element of G. We note that SchL/K has
a canonical structure of a fibered category over G. The pull-back under σ ∈ G is
given by X 7→ X×SpecL Spec Lσ−1 .


Lemma 6.9. — Let L be a field and K ⊂ L a subfield such that the extension L/K is
finite and Galois. Denote the Galois group Gal(L/K) by G.


i) Then P is a covariant functor from L−VectK to SchL/K. Here a σ-linear monomorphism
i : F→ F′ with σ ∈ G induces a morphism


i∗ = P(i) : P(F) −→ P(F′)


of schemes that is twisted by σ.


ii) Let F be an L-vector space and i : F→ F be the multiplication map with an element of
L. Then i∗ : P(F)→ P(F) is equal to the identity morphism.
Proof. i) Let i : F→ F′ be a σ-linear monomorphism. We have to consider the
diagram


P(F)


��


P(F′)


��
Spec L


S(σ) // Spec L.


By Yoneda’s Lemma, there has to be constructed a natural transformation


i+ : P(F)→ P(F′)(S(σ)◦ · ),
i.e. for each L-scheme π : T→ Spec L there is a mapping


i+(π) : P(F)(π)→ P(F′)(S(σ)◦π)


to be given such that for each morphism p : π1→ π2 of L-schemes the diagram


P(F)(π2)
i+(π2) //


P(F)(p)
��


P(F′)(S(σ)◦π2)


P(F′)(p)
��


P(F)(π1)
i+(π1)


// P(F′)(S(σ)◦π1)
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commutes. We construct i+(π) as follows: There is the description


P(F)(π) = {M ⊂ π∗F |π∗F/M is locally free of rank dim F− 1}


=


{
M ⊂ (S(σ)◦π)∗S(σ−1)∗F |


(S(σ)◦π)∗S(σ−1)∗F/M is locally free of rank dim F− 1


}


where S(σ−1)∗F = F̃σ . Here Fσ is nothing but F equipped with the ordinary struc-
ture of an abelian group and the multiplication by a scalar given by
l · f := σ(l) f . Therefore, i gives rise to an L-linear monomorphism i : Fσ → F′ and
to a morphism ĩ : S(σ−1)∗F →F ′ of sheaves over Spec L. If M is a subsheaf of
(S(σ)◦π)∗S(σ−1)∗F such that (S(σ)◦π)∗S(σ−1)∗F/M is locally free of rank dim F−1
then


(
(S(σ)◦π)∗(̃i)


)
(M ) is a subsheaf of (S(σ)◦π)∗F ′ such that the quotient


is locally free of rank dim F′ − 1. This gives rise to a morphism of
functors i+ : P(F)−→ P(F′)(S(σ)◦ · ) as desired. Consequently, there is a morphism
i∗ : P(F)−→ P(F′) of schemes that makes commute the diagram considered above.
ii) This is clear from the construction. �


Corollary 6.10. — Let L be a field and K ⊂ L a subfield such that the extension L/K is
finite and Galois. Denote the Galois group Gal(L/K) by G.


i) Then P can as well be made into a contravariant functor from L−VectK
0 to SchL/K.


Here a σ-linear isomorphism i : F→ F′ with σ ∈ G induces a morphism


i∗ : P(F′)→ P(F)


of L-schemes being twisted by σ−1.
ii) Let F be an L-vector space and i : F→ F be the multiplication with an element of L.
Then i∗ : P(F)→ P(F) is equal the identity morphism.
Proof. For an isomorphism i : F→ F′ put i∗ := i−1


∗ . �


Remark 6.11. — The morphisms i∗ can also be constructed directly, in a manner
being completely analogous to the construction of i∗ given above. Indeed, the
task is to give a natural transformation i+ : P(F′)→ P(F)(S(σ−1)◦ · ). There are the
descriptions


P(F′)(π) = {M ⊂ π∗F ′ |π∗F ′/M is locally free of rank dim F′ − 1}
and


P(F)(S(σ−1)◦π) =


{
M ⊂ π∗S(σ−1)∗F |


π∗S(σ−1)∗F/M is locally free of rank dim F− 1


}
.


If M is a subsheaf of π∗F ′ such that π∗F ′/M is locally free of rank
dim F′− 1 = dim F− 1 then π∗(̃i)−1(M ) is a subsheaf of π∗S(σ−1)∗F such that the
quotient is locally free of rank dim F− 1. This gives rise to a morphism of func-
tors i+ : P(F′) −→ P(F)(S(σ−1)◦ · ) as desired. Consequently, there is a morphism
i∗ : P(F′)→ P(F) of schemes making commute the diagram above.


Remark 6.12. — Let us mention the following observation explicitly. If L is a
field and A is a central simple algebra of dimension n2 over L then all the non-
zero, simple, left A-modules are isomorphic to each other. Further, if l is a non-
zero, simple, left A-module then each automorphism of l is given by multiplica-
tion with an element from the center of A. Hence it induces the identity morphism
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on P(l). Therefore, two arbitrary isomorphisms i1, i2 : l→ l
′ between non-zero,


simple, left A-modules induce one and the same isomorphism i∗1 = i∗2 : P(l′)→ P(l).
Consequently, A determines P(l) not only up to isomorphism, but up to unique
isomorphism. We will formulate this in a more sophisticated manner below.


Definition 6.13. — Let L/K be a finite Galois extension of fields and r be a natural
number. Denote the Galois group Gal(L/K) by G.


i) By MatL/K
r we will denote the category of all split central simple algebras of


dimension r2 over L, i.e. of all algebras being isomorphic to Mr(L), where as
morphisms we take all homomorphisms of K-algebras which are σ-linear for a
certain σ ∈ G and preserve the unit element. Note that in MatK


r every morphism
is an isomorphism and every two objects are isomorphic.


ii) PL/K
r will denote the subcategory of SchL/K which consists of all L-schemes


isomorphic to the projective space Pr
L and which allows all isomorphisms as mor-


phisms.


Proposition 6.14. — Let L/K be a finite Galois extension of fields and n be a natural
number. Denote the Galois group Gal(L/K) by G.


i) There is an equivalence of categories ΞL/K
n : MatL/K


n → PL/K
n−1. On objects it is given by


A 7→ P(l) where l ⊂ A is a non-zero, simple, left A-module. If i : A → A ′ is a mor-
phism in MatL/K


n then ΞL/K
n (i) is the morphism of schemes being induced by the canonical


homomorphism l→ A′⊗A l.
ii) If the morphism i : A→ A′ is σ-linear for σ ∈ G then ΞL/K


n (i) is a morphism twisted
by σ.
Proof. If l is a non-zero, simple, left A-module then A′⊗A l is a non-zero, simple,
left A′-module. Both are n-dimensional L-vector spaces. Up to isomorphism,
these modules are known to be unique. Therefore, the morphism of schemes


il∗ := ΞL/K
n (i) : ΞL/K


n (A) = P(l) −→ P(A′⊗A l) = ΞL/K
n (A′)


induced by the homomorphism


il : l→ A′⊗A l, x 7→ 1⊗x


is well-defined. If i : A→ A′ is a σ-linear homomorphism then l→ A′⊗A l is a
σ-linear homomorphism of vector spaces. By Lemma 6.9 above, the morphism
ΞL/K


n (i) is twisted by σ. As i is automatically invertible, ΞL/K
n (i) must be an iso-


morphism of schemes. Consequently, ΞL/K
n is a functor between the categories


described.
To prove ΞL/K


n is an equivalence of categories we have to show it is full, faithful
and essentially surjective. As in PL/K


n−1 every two objects are isomorphic to each
other, essential surjectivity is clear. For full faithfulness it will suffice to prove
that


ΞL/K
n |Aut(A) : Aut(A) −→ Aut(XA)


is an isomorphism of groups in the case A = Mn(L). Then Aut(A) = PGLn(L) o G
and Aut(ΞL/K


n (A)) = AutK−schemes(Pn−1
L ) = PGLn(L)oG. Thus, the functor ΞL/K


n in-
duces on Aut(A) a group homomorphism


Ξ : PGLn(L) o G→ PGLn(L) o G.
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By Lemma 6.2.ii), the restriction of Ξ to PGLn(L) is the identity. By statement ii)
proven above, the quotient map G→ G is the identity, as well. Consequently,
ΞL/K


n |Aut(A) is an isomorphism. �


Corollary 6.15. — The categories MatL/K
n and PL/K


n−1 are also anti-equivalent, i.e. there
is an equivalence of categories Ξ̌L/K


n : MatL/K
n → (PL/K


n−1)op given on objects by A 7→ P(l)
where l⊂ A is a non-zero, simple, left A-module. If the morphism i : A→ A ′ is σ-linear
for σ ∈ G then Ξ̌L/K


n (i) is twisted by σ−1.
Proof. Put simply Ξ̌L/K


n (i) := (ΞL/K
n (i))−1. �


Proposition 6.16. — Let n be a natural number, K be a field and A be a central simple
algebra of dimension n2 over K. Then the Brauer-Severi variety XA being associated with
A can be described as follows:


Let L/K be a finite Galois extension such that L is a splitting field for A. Denote the
Galois group Gal(L/K) by G. By covariant functoriality, the canonical G-operation
on A⊗K L induces an operation of G on the projective space ΞL/K


n (A⊗K L) where the
morphism induced by σ ∈ G is a morphism of L-schemes twisted by σ. The geometric
version of Galois descent yields the K-scheme XA.


Proof. Let f : A⊗K L→Mn(L) be an isomorphism. Then there is a cocycle (aσ)σ∈G


from G to PGLn(L) such that for each σ ∈ G the diagram


A⊗K L


f
��


σ // A⊗K L


f
��


Mn(L)
aσ◦σ // Mn(L)


commutes. Applying the functor ΞL/K
n to the whole situation we obtain commu-


tative diagrams


ΞL/K
n (A⊗K L)


ΞL/K
n ( f )


��


σ // ΞL/K
n (A⊗K L)


ΞL/K
n ( f )


��


Pn−1
L


aσ◦σ // Pn−1
L


where the vertical arrows are isomorphisms. Galois descent on the lower half of
the diagram is the description of XA given in the last section. Galois descent on
the upper half of the diagram is the description claimed. �


Corollary 6.17. — Let L/K be a field extension and A be a central simple algebra over
K.


i) Then there is a canonical isomorphism of L-schemes


ξL/K
A : XA⊗K L −→ XA×SpecK Spec L.


ii) If L/K and L′/L are field extensions then the isomorphisms ξ L′/K
A , ξL′/L


A and ξL/K
A are
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compatible, i.e. the diagram


XA⊗K L′


ξ
L′/K
A


++VVVVVVVVVVVVVVVVVVVVVV


ξ
L′/L
A


��


XA×SpecK Spec L′


XA⊗K L×SpecL Spec L′
ξ


L/K
A ×SpecLSpec L′


33hhhhhhhhhhhhhhhhhhh


commutes.
Proof. Let n2 be the dimension of A. We choose a splitting field L′′


for A which contains L′. Then XA, XA⊗K L and XA⊗K L′ are constructed from
ΞL′′/K


n (A⊗K L′′) = ΞL′′/L
n (A⊗K L′′) = ΞL′′/L′


n (A⊗K L′′) by Galois descent using com-
patible descent data. �


Definition 6.18. — Let K be a field and r a natural number.
i) By AzK


r we will denote the category of all central simple algebras of dimension
r2 over K where as morphisms we take all homomorphisms of K-algebras that
preserve the unit element. Note that in AzK


r every morphism is an isomorphism.


ii) Az/K
r will denote the category of all central simple algebras of dimension r2


over any field extension of K where as morphisms we take all K-algebra homo-
morphisms that preserve the unit element.
iii) By BSK


r we will denote the category of all Brauer-Severi varieties of dimension
r over K where the isomorphisms of K-schemes are taken as morphisms.


iv) BS/K
r will denote the category of all Brauer-Severi varieties of dimension r over


any field extension of K. As morphisms one takes all compositions of an isomor-
phism of K-schemes with a morphism of type id×Spec a : X×SpecL Spec L′→ X
where a : L→ L′ is a homomorphism of fields containing K.


Theorem 6.19. — Let K be a field and n be a natural number.
i) There is an equivalence of categories


X/K
n : Az/K


n −→ (BS/K
n−1)op,


that induces for each field extension L/K the bijection XL
n : AzL


n → BSL
n−1 on isomorphy


classes found in Corollary 5.3.i).


ii) In particular, for each field extension L/K the functor X/K
n induces an equivalence of


categories XL
n : AzL


n −→ (BSL
n−1)op.


Proof. 1st step. Construction of the functor.
For A ∈Ob(Az/K


n ) put X/K
n (A) := XA. Let us remark at this place that we are going


to make use of the intrinsic description of XA given in Proposition 6.16.
If i : A→ A′ is a morphism in Az/K


n then, by restriction to the centers, i induces a
homomorphism of fields i|Z(A) : Z(A)→ Z(A′) containing K. Therefore, there is a
unique factorization


A
cZ(A′ )


A // A⊗Z(A) Z(A′)
j


// A′
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of i via the canonical inclusion cZ(A′)
A . By Corollary 6.17, one has the canonical


isomorphism


ξZ(A′)/Z(A)
A : XA⊗Z(A) Z(A′) −→ XA×SpecZ(A) Spec Z(A′).


Put X/K
n (cZ(A′)


A ) to be the morphism of schemes being induced from ξZ(A′)/Z(A)
A by


projection to the first factor.
In order to construct X/K


n (i) as a functor on the category Az/K
n it remains to de-


scribe it as a functor on the full subcategories AzK1
n where K1/K is any field ex-


tension. That means we are left with the case that Z(A) = Z(A′) and i|Z(A) is the
identity. In order to make sure the functoriality of X/K


n on the category Az/K
n , that


construction has to be done in a way compatible with field extensions, i.e. such
that the diagram


XA′⊗K1
K2


X/K
n (i⊗K1


K2)
//


X/K
n (c


K2
A′ )


��


XA⊗K1
K2


X/K
n (cK2


A )
��


XA′
X/K


n (i) // XA


commutes for every field K1 containing K, every morphism i : A → A′ in AzK1
n


and every extension K2/K1 of fields containing K.
For that choose a finite Galois extension L/K1 such that L is a splitting field for A.
As i is automatically an isomorphism, L is a splitting field for A′, too. Thus, we
obtain a Galois invariant homomorphism i⊗K1 L : A⊗K1 L→ A′⊗K1 L. Applying
the functor ΞL/K1


n one gets a Galois invariant morphism of schemes


ΞL/K1
n (i⊗L M) : XA′×SpecK1 Spec L = ΞL/K1


n (A′⊗K1 L)


−→ ΞL/K1
n (A⊗K1 L) = XA×SpecK1 Spec L.


Galois descent for morphisms of schemes yields the morphism
X/K


n (i) : XA′ → XA desired. This is even an isomorphism of schemes as i is an
isomorphism. Consequently, X/K


n is a functor between the categories stated.
By construction, X/K


n is essentially surjective. It remains to show it is full and
faithful.
We note explicitly that X/K


n induces a functor XK′
n : AzK′


n −→ (BSK′
n−1)op for each field


extension K′/K. XK′
n is automatically an equivalence of categories as soon as X/K


n
is. By its definition on objects the functor XK′


n induces the bijection on isomorphy
classes found above.
2nd step. Full faithfulness on automorphisms.
Let us first deal with the following statement which is a special case of full faith-
fulness of X/K


n .
(*) Let K′ be a field containing K and A be a central simple algebra of dimen-


sion n2 over K′. Then the functor XK′
n induces an isomorphism of groups


xA := XK′
n |AutK′ (A) : AutK′ (A) −→ AutK′−schemes (XA).


This was proven in the case A = Mn(K′) in Proposition 6.14. Let A be a general
central simple algebra of dimension n2 over K′. Let L/K′ be a finite Galois exten-
sion of fields such that L is a splitting field for A.
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Assume a 6= a′ ∈ AutK′ (A) induce one and the same morphism


a∗ = a′∗ ∈ AutK′−schemes (XA).


By the universal property of the tensor product there are uniquely determined
homomorphisms aL, a′L : A⊗K L→ A⊗K L of central simple algebras over L mak-
ing the diagrams


A⊗K L
aL // A⊗K L A⊗K L


a′L // A⊗K L


A
a //


cL
A


OO


A,


cL
A


OO


A


cL
A


OO


a′ // A


cL
A


OO


commute. As cL
A is an injection, aL 6= a′L. When one applies the functor XK′


n to the
whole situation one obtains the commutative diagrams below:


XA⊗K L


(cL
A)∗


��


XA⊗K L


(cL
A)∗


��


a∗Loo XA⊗K L


(cL
A)∗


��


XA⊗K L


(cL
A)∗


��


a′L
∗


oo


XA XA,
a∗=a′∗oo XA XA.


a∗=a′∗oo


As A⊗K L ∼= Mn(L), we have a∗L 6= a′L
∗. On the other hand, (cL


A)∗ is, up to isomor-
phism, the canonical morphism XA×SpecK Spec L→ XA from the fiber product to
the first factor. Therefore, the morphism a∗◦(cL


A)∗ = a′∗◦(cL
A)∗ admits a unique fac-


torization as a morphism of L-schemes composed with (cL
A)∗. This implies a∗L = a′L


∗


being a contradiction. Consequently, the homomorphism xA is injective.
Let p : XA → XA be an automorphism of K′-schemes. As (cL


A)∗ is, up to isomor-
phism, the canonical morphism XA ×SpecK Spec L → XA from the fiber product
to the first factor, the composition p◦(cL


A)∗ factors uniquely via (cL
A)∗, i.e. there


exists a unique morphism pL : XA⊗K L → XA⊗K L of L-schemes such that there is a
commutative diagram


XA⊗K L


(cL
A)∗


��


XA⊗K L


(cL
A)∗


��


pLoo


XA XA.
p


oo


As A⊗K L ∼= Mn(L), by Proposition 6.14, there exists some b ∈ Aut (A⊗K L) such
that pL = b∗. For σ ∈ Gal(L/K′) let id×σ : A⊗K L→ A⊗K L the corresponding
automorphism of A⊗K L. Clearly, (id×σ)◦cL


A = cL
A. Therefore, the diagram


XA⊗K L


(id×σ)∗


��


XA⊗K L


(id×σ)∗


��


b∗=pLoo


XA⊗K L


(cL
A)∗


��


XA⊗K L


(cL
A)∗


��
XA XA.


p
oo
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commutes, as well. Hence, b∗ = (id×σ)∗ ◦ b∗ ◦ (id×σ−1)∗ = ((id×σ−1) ◦ b ◦ (id×σ))∗.
Using the injectivity of the homomorphism (*) one gets b = (id×σ−1) ◦ b ◦ (id×σ),
i.e. b is invariant with respect to the operation of Gal(L/K′). By Galois descent
for homomorphisms, there exists a homomorphism a : A→ A of central simple
algebras such that the diagram


A⊗K L b // A⊗K L


A
a //


cL
A


OO


A


cL
A


OO


commutes. Consequently, there is a commutative diagram on the level of Brauer-
Severi varieties as follows:


XA⊗K L


(cL
A)∗


��


XA⊗K L


(cL
A)∗


��


b∗=pLoo


XA XA.
a∗oo


A direct comparison with the original definition of pL shows p◦(cL
A)∗ = a∗◦(cL


A)∗


as both these compositions are equal to (cL
A)∗ ◦ pL. Since (cL


A)∗ is dominant this
implies that p = a∗. The homomorphism xA is surjective, too.
3rd step. Isomorphisms.
We note the following consequence of the results of the last step.
(**) Let K′ be a field containing K and A and A′ be central simple algebras of


dimension n2 over K′ being isomorphic to each other. Then XK′
n induces a


bijection IsoK′ (A, A′) −→ IsoK′−schemes (XA′ , XA).


4th step. On faithfulness.
Assume the homomorphisms i1, i2 : A→ A′ induce one and the same morphism
of schemes i∗1 = i∗2 : XA′ → XA. Our first observation is that, necessarily, i1 and i2
give rise to the same homomorphism i1|Z(A) = i2|Z(A) : Z(A)→ Z(A′) on the centers.
Indeed, XA and XA′ are Brauer-Severi varieties over Z(A) and Z(A′), respectively.
Further, by Proposition 4.2.iv), Γ(XA,OXA) = Z(A) and Γ(XA′ ,OXA′ ) = Z(A′), i.e.
one can recover the centers of A and A′ from the Brauer-Severi varieties being
associated with them. By the construction of X/K


n on morphisms, the pull-back on
the level of global sections


(i∗1)] = (i∗2)] : Z(A) = Γ(XA,OXA) −→ Γ(XA′ ,OXA′ ) = Z(A′)


is equal to the homomorphism Z(A)→ Z(A′) given by i1, respectively i2, by re-
striction to the centers.
Consequently, i1 and i2 can both be factorized via the canonical homomorphism
cZ(A′)


A : A→ A⊗Z(A) Z(A′). Let j1, j2 : A⊗Z(A) Z(A′)→ A′ be homomorphisms of
central simple algebras over Z(A′) such that j1◦cZ(A′)


A = i1 and j2◦cZ(A′)
A = i2. We


note that j1 and j2 are both isomorphisms as they are homomorphisms of central
simple algebras over the same base field. Furthermore, j1 6= j2. On the other
hand, the morphisms


j∗1, j∗2 : XA′ −→ XA⊗Z(A) Z(A′) = XA×SpecZ(A) Spec Z(A′)
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coincide as their projections to Spec Z(A′) do, both being the structural morphism,
and their projections to XA, being equal to i∗1 = i∗2, coincide by assumption. This
is a contradiction.
5th step. On fullness.
Let A, A′ ∈ Ob (Az/K


n ) and f : XA′ → XA be a morphism in the category BS/K
n−1.


Considering the associated map of global sections we obtain a homomorphism
Z(A)→ Z(A′) of fields. The canonical inclusion cZ(A′)


A : A→ A⊗Z(A) Z(A′) induces
the canonical morphism


(cZ(A′)
A )∗ : XA⊗Z(A) Z(A′) = XA×Spec Z(A) Spec Z(A′) −→ XA.


Remembering the definition of what is a morphism in the category BS/K
n−1 we see


that f gives rise to an isomorphism


f : XA′ −→ XA×Spec Z(A) Spec Z(A′) = XA⊗Z(A) Z(A′)


such that f = (cZ(A′)
A )∗◦ f . As we adjusted the structural morphism in the right way


f is even an isomorphism of Z(A′)-schemes. By Corollary 5.3 the central simple
algebras A′ and A⊗Z(A) Z(A′) over Z(A′) are isomorphic. Therefore, by the result
of the 3rd step, there is some homomorphism


a : A⊗Z(A) Z(A′) −→ A′


such that f = a∗. Consequently, f = (cZ(A′)
A )∗◦a∗ = (a◦cZ(A′)


A )∗ is in the image of X/K
n


on morphisms. X/K
n is full. �


Corollary 6.20. — Let K be a field and n be a natural number. Then AzK
n and BSK


n−1
are also equivalent to each other, i.e. there is an equivalence of categories


X̌K
n : AzK


n −→ BSK
n−1.


Proof. Compose XK
n with the equivalence of categories ι : BSK


n−1→ (BSK
n−1)op given


by the identity on objects and by ι(g) := g−1 on morphisms. �


7. The functor of points


Remark 7.1. — This section deals with the contravariant functor on the category
of all K-schemes defined by the Brauer-Severi variety XA associated with a central
simple algebra A. It turns out that, as for projective spaces, Graßmannians and
flag varieties, this functor can be described completely explicitly. Thus, it is clear
that there is a different method to introduce XA. One can start with the functor
and has to prove its representability by a scheme. It seems, that method is closer
to A. Grothendieck’s style in Algebraic Geometry than the approach presented
here. But, as one might expect, a direct proof of representability, avoiding all
descent arguments, is not trivial at all. It is presented in detail in [Hen] or [Ke].


Definition 7.2. — Let K be a field, n be a natural number and A ∈Ob (AzK
n ). Then


by
IA : {K− schemes}op→ {sets}
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we will denote the functor given on objects by


T 7→
{


sheaves of right ideals J in π∗TA such that
π∗TA/J is a locally free OT−module of rank n2− n


}


and on morphisms by the pull-back. Here A := Ã denotes the sheaf of OK-
algebras associated with A on Spec K and π = πT : T → Spec K is the structural
morphism. The various functors IA depend on A in a natural manner, i.e. if
i : A→ A′ is a morphism in AzK


n then there is a morphism of functors i∗ : IA′→ IA
given by the inverse image J 7→ π∗T (̃i)−1(J ). Thus, there exists a contravariant
functor


I : AzK
n −→ Fun ({K−schemes}op,{sets})


given on objects by A 7→ IA.


Theorem 7.3. — Let K be a field and n be a natural number. Then there is an isomor-
phism


ι : I −→ P ◦ XK
n


between the contravariant functors


I, P ◦ XK
n : AzK


n −→ Fun ({K−schemes}op,{sets}).


Remark 7.4. — For a fixed central simple algebra A of dimension n2 over K the
statement of Theorem 7.3 says that there is an isomorphism


ιA : IA −→ PXA


between the functors IA, PXA : {K − schemes}op → {sets} described above. This
means that the T-valued points in XA are in a natural bijection with the sheaves
of right ideals J ⊂ π∗TA such that π∗TA /J is a locally free OT-module of rank
n2 − n. Further, if i : A → A′ is a morphism of n2-dimensional central simple
algebras over K then the diagram


IA′
ιA′ //


i∗


��


PXA′


[XK
n (i)]∗


��
IA


ιA // PXA


commutes.


Remark 7.5. — We note that IA is canonically a subfunctor of the Graßmann
functor Grassn2


n2−n parametrizing (n2 − n)-dimensional quotients of an n2-dimen-
sional vector space. Thus, there is an embedding XA ↪→ Grassn2


n2−n into the Graß-
mann scheme. We note that this is the key observation for a direct proof of repre-
sentability for IA.


Definition 7.6. — Let G be any group. By SetsG we will denote the category of
all mappings M→ G where M is any set. As morphisms between f1 : M1 → G
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and f2 : M2→ G we allow all mappings which make the diagram


M1


f1
��


// M2


f2
��


G
· g


// G


commutative for a certain g ∈ G where · g : G→ G denotes the multiplication by
g from the right.


Definition 7.7. — Let L/K be a finite Galois extension of fields and denote its
Galois group Gal(L/K) by G.


i) By SchL/K
+


we will denote the full subcategory of SchL/K consisting of all L-
schemes being non-empty.


ii) Let X ∈ Ob (SchL/K). Then the contravariant Hom-functor


HomSchL/K ( · , X) : SchL/K
+ −→ {sets}


factors canonically via the category SetsG. Indeed, for each morphism T→ X in
SchL/K


+
the σ ∈ G being associated with it is uniquely determined. Note for that


we need the assumption T 6= ∅ while X = ∅may be allowed as in that case there
are no morphisms. The functor just constructed will be denoted by


PL/K
X : SchL/K


+
−→ SetsG


and called the functor of points of X. There is a covariant functor


PL/K : SchL/K→ Fun ((SchL/K
+


)op, SetsG)


given on objects by X 7→ PL/K
X .


Remark 7.8. — The Hom-functor Hom
SchL/K


+


( · , X) remembers all information X
as an object of the category SchL/K


+ . The functor of points


PL/K
X : SchL/K


+
−→ SetsG


carries the additional information coming from the structure of SchL/K
+


as a fibered
category.


Lemma 7.9. — Let L/K be a finite Galois extension of fields and n be a natural number.
Denote the Galois group Gal(L/K) by G.


i) Then there is an isomorphism of functors jL/K
n : PL/K


n −→ IL/K
n between the composition


PL/K
n : MatL/K


n


ΞL/K
n // PL/K


n−1


embedding
// SchL/K


+


PL/K
// Fun ((SchL/K


+
)op, SetsG)


and the functor IL/K
n given by


A 7→
(


T 7→
⊔


σ∈G


{
sheaves of right ideals J in (S(σ)◦πT)∗A such that
(S(σ)◦πT)∗A/J is a locally free OT−module of rank n2− n


})
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on objects and by the pull-back on morphisms. Here A := Ã denotes the sheaf of
OL-algebras associated with A on Spec L and πT : T → Spec L is the structural mor-
phism. The set given on the right hand side is equipped with a map to G in the obvious
way.


ii) Let L′ be a finite field extension such that L′/K is Galois again. Then the isomorphism
jL/K
n is compatible with the base extension from L to L′, i.e. for every A ∈ Ob (MatL/K


n )
and every T ∈ Ob (SchL/K


+ ) the diagram


PL/K
n (A)(T)


MorSchL/K (T, ΞL/K
n (A))


jL/K
n (A)(T)


//


×SpecLSpec L′


��


IL/K
n (A)(T)


pull−back
��


MorSchL′/K (T×SpecLSpec L′, ΞL′/K
n (A⊗L L′))


j
// IL′/K


n (A⊗L L′)(T×SpecLSpec L′)


PL′/L
n (A⊗L L′)(T×SpecLSpec L′)


commutes. Here j is used as an abbreviation for jL′/K
n (A⊗L L′)(T×SpecL Spec L′).


Remark 7.10. — The lemma states in particular that the ordinary functor of
points of the L-scheme ΞL/K


n (A) for A ∈ Ob (MatL/K
n ) is isomorphic to


T 7→
{


sheaves of right ideals J in π∗TA such that
π∗TA/J is a locally free OT−module of rank n2− n


}
,


i.e. for every L-algebra R the set ΞL/K
n (A)(R) of R-valued points in ΞL/K


n (A) is
naturally isomorphic to the set of all right ideals I in A⊗L R such that A⊗L R/I is
a locally free R-module of rank n2− n.


7.11 (Proof of the lemma). — i) For each A ∈ Ob (MatL/K
n ) both of the two func-


tors under consideration satisfy the sheaf axiom for Zariski coverings. Therefore,
it will suffice to work with affine schemes as test objects.
Let R be a commutative L-algebra with unit. By construction we have
ΞL/K


n (A) = P(l) where l is a non-zero, simple, left A-module. By Corollary-
Definition 6.5 the set of R-valued points in P(l) is in a natural bijection with the
set of all submodules M ⊂ l⊗L R such that the quotient l⊗L R/M is a locally free
R-module of rank n−1.
As an R-module A⊗LR is isomorphic to the direct sum of n copies of l⊗LR. Under
this isomorphism an R-submodule M⊆ l⊗LR determines a right ideal M⊆ A⊗LR
by the definition


M :=
n⊕


i=1


M.







THE BRAUER-SEVERI VARIETY ASSOCIATED WITH A CENTRAL SIMPLE ALGEBRA: A SURVEY 47


This gives a natural bijection between the set of all right ideals in A⊗L R and the
set of all R-submodules M ⊆ l. Obviously,


A⊗L R/M ∼= (l⊗L R/M)n ∼= (l⊗L R/M)⊗R Rn


as R-modules. So, if l⊗L R/M is locally free of rank n−1 then A⊗L R/M is locally
free of rank n2− n. Conversely, if A⊗L R/M is locally free of rank n2− n then, by
Lemma 2.14, l⊗L R/M is necessarily locally free. Clearly, it is of rank n−1.
We obtained the description of the ordinary functor of points of ΞL/K


n (A) given
in the remark above. Giving a morphism of L-schemes f : T → ΞL/K


n (A) that is
twisted by some σ ∈ G is equivalent to giving a commutative diagram


T


πT


��


id // T


S(σ)◦πT


��


f
// ΞL/K


n (A)
π


ΞL/K
n (A)


��
Spec L


S(σ) // Spec L id // Spec L.


Therefore, f becomes a morphism of L-schemes in the ordinary sense if one sim-
ply changes the structural morphism of T from πT into S(σ)◦πT. Consequently,
the functor of points PL/K


ΞL/K
R (A)


is isomorphic to functor given in the claim.
The construction just made is compatible with K-linear ring homomorphisms
i : A→ A′ by the description of ΞL/K


n as a covariant functor given above.
ii) Again we need the concrete description of Ξ./K


n . We have ΞL/K
n (A) = P(l) where


l is a non-zero, simple, left A-module and ΞL′/K
n (A⊗L L′) = P(l⊗L L′). The claim is


a direct consequence of Remark 6.6 together with the connection of submodules
in l⊗L R and l⊗L R⊗L L′ with right ideals in A⊗K R and A⊗L R⊗L L′, respectively,
that was established in the proof of part i). �


7.12 (Proof of Theorem 7.3). — We have to construct an isomorphism
ιA : IA → PXA of functors for every A ∈ Ob (AzK


n ) in a way being natural in A.
We will proceed in three steps.


1st step. The case A ∼= Mn(K).
We have A⊗KR∼= Mn(R) and XA = P(l) by the intrinsic description of XA given in
Proposition 6.16 above. Here l denotes a non-zero, simple, left A-module. The
assertion is a special case of Lemma 7.9 above. We note explicitly that
P(l) = ΞK/K′


n (A) for every subfield K′ ⊂ K such that K/K′ is a finite Galois exten-
sion. In particular, the isomorphism ιA : IA → PXA is compatible with the action
of automorphisms of A which are only K′-linear.


2nd step. Reduction to T-valued points for affine schemes T.
Let again A be an arbitrary central simple algebra over K of dimension n2. Then,
the functors IA and PXA satisfy the sheaf axioms for Zariski coverings of T. Hence,
it is sufficient to consider the affine case: There is a natural isomorphism
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ιA : IA → PXA of functors on the full subcategory of affine schemes to be con-
structed, i.e. an isomorphism


IA(R) :=
{


right ideals J in A⊗K R such that A⊗K R/J
is a locally free R−module of rank n2 − n


}


↓ιA(R)


PXA (R) := MorK-schemes(Spec R, XA)


for each commutative ring R with unit such that for homomorphisms r : R→ R′


of K-algebras the corresponding diagram


IA(R)
IA(r) //


ιA(R)
��


IA(R′)


ιA(R′)
��


PXA (R)
PXA


(r)
// PXA (R′)


commutes.


3rd step. Galois descent.
Let L/K be some finite Galois extension such that L is a splitting field for A. Put
G := Gal (L/K). By Theorem 2.2 in the version for schemes, there is a bijection


PXA (R) =


{
p : Spec R→ XA |
p morphism of K−schemes


}


∼=







p : Spec R⊗K L→ XA⊗K L |
p morphism of L−schemes,
p compatible with the G−operations on both sides







being natural in the ring R. As A⊗K L is isomorphic to the matrix algebra, we
have


XA⊗K L = ΞL/K
n (A⊗K L) = P(l)


where l is a non-zero, simple, right A⊗K L-module. Hence, there is a second
natural bijection







p : Spec R⊗K L→ XA⊗K L |
p morphism of L−schemes,
p compatible with the G−operations on both sides







∼=







I ⊂ (A⊗K L)⊗L (R⊗K L) |
I right ideal,
(A⊗K L)⊗L (R⊗K L)/I locally free R⊗K L−module,
rkR⊗KL (A⊗K L)⊗L (R⊗K L)/I = n2− n,
I invariant with respect to the G−operation







.
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Indeed, this is exactly the result of the first step when we note that the isomor-
phism of functors PXA⊗K L ←− IA⊗KL is compatible with K-linear ring automor-
phisms of A⊗K L. Finally, there is a natural bijection







I ⊂ (A⊗K L)⊗L(R⊗K L) |
I right ideal,
(A⊗K L)⊗L (R⊗K L)/I locally free R⊗K L−module,
rkR⊗K L (A⊗K L)⊗L(R⊗K L)/I = n2− n,
I invariant with respect to the G−operation







∼=







I ⊂ A⊗K R |
I right ideal,
(A⊗K R)/I locally free R−module,
rkR (A⊗K R)/I = n2− n







by Galois descent for right ideals, i.e. by Lemma 7.14. Indeed, everything would
be clear if there would be no assumption on the ranks of the quotients. But if
A⊗K R/I is a locally free R-module of rank n2−n then


(A⊗K L)⊗L (R⊗K L)/I ∼= (A⊗K R/I)⊗R(R⊗K L)


is a locally free R⊗K L-module of the same rank. On the other hand, if
(A⊗K L)⊗L (R⊗K L)/I ∼= (A⊗K R/I)⊗R (R⊗K L) is a locally free (R⊗K L)-module
of rank n2−n then it is a locally free R-module, as well. By Lemma 2.14 A⊗K R/I
is a locally free R-module, too. Clearly, it is of rank n2−n.
We note finally that the construction of ιA given above can easily be extended
to morphisms and gives a functor in A. For that we first choose a splitting field
LA ⊃ K for each A ∈ Ob (AzK


n ) in such a way that LA depends only on the iso-
morphy class of A in AzK


n . If i : A → A′ is a morphism in AzK
n then A and A′


are automatically isomorphic and we execute the construction of ιA and ιA′ via
the splitting field chosen. The first and the third natural bijection constructed
above are applications of descent and, therefore, compatible with the morphisms
induced by i. For the second one that was proven in Lemma 7.9.i) above. The
proof is complete. �


Remark 7.13. — The isomorphism of functors ιA is independent of the choice of
the splitting field made in the proof. Indeed, let L′A ⊃ LA be splitting fields for A.
Going through the proof given above, one sees that the two constructions for ιA


yield the same result. The main ingredient for that is Lemma 7.9.ii).


Lemma 7.14 (Galois descent for right ideals). — Let L/K be a finite Galois exten-
sion of fields and G := Gal(L/K) be its Galois group. Further, let A be a K-algebra and
I ⊂ A⊗K L a right ideal being invariant under the canonical operation of G on A⊗K L.
Then there is a unique right ideal I ⊂ A such that I = I⊗K L.
Proof. I inherits from A a structure of an L-algebra and an operation of the group
G by homomorphisms of K-algebras where σ ∈ G acts σ-linearly. By the alge-
braic version of Galois descent, there exists some K-algebra I such that I = I⊗K L.
Clearly, the canonical homomorphism of L-algebras I = I⊗K L ↪→ A⊗K L is com-
patible with the G-operations on both sides. Therefore, by Galois descent for
homomorphisms, we get a homomorphism of K-algebras I→ A that induces the
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ideal I. As the functor ⊗KL is exact and faithful, that morphism is necessarily
injective. Consider I ⊂ A as a subring. The multiplication ·a : I → I with some
element a ∈ A from the right is compatible with the operation of G. Hence, it de-
scends to a homomorphism I → I. That homomorphism is compatible with the
multiplication by a from the right on A. Consequently, I is a right ideal. Unique-
ness is clear. �
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S. 61(1944)249-300
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de Géométrie Algébrique du Bois Marie 1962-64 (SGA3), Springer,
Lecture Notes Math. 151, 152, 153, Berlin, Heidelberg, New York
1970


[De] Deuring, M.: Algebren, Springer, Ergebnisse der Math. und ihrer
Grenzgebiete, Berlin 1935


[Di] Dickson, L. E.: On finite algebras, Nachrichten von der Königlichen
Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys. Klasse, 1905,
358-393


[Dr] Draxl, P. K.: Skew fields, London Math. Soc. Lecture Notes Series
81, Cambridge University Press, Cambridge 1983


[Du] Ducros, A.: Fibrations en variétés de Severi-Brauer au-dessus de la
droite projective sur le corps des fonctions d’une courbe réelle, C.
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SSSR Ser. Mat. 49(1985)828-846,
English translation: Merkurjev, A. S.: Structure of the Brauer group
of fields, Math. USSR-Izv. 27(1986)141-157


[Me86a] Merkurjev, A. S.: K2 of fields and the Brauer group, in: Applications
of Algebraic K-Theory to Algebraic Geometry and Number Theory
(Boulder 1983), Contemporary Math. 55, Part II, Amer. Math. Soc.,
Providence, R.I. 1986, 529-546


[Me86b] Merkur’ev, A. S.: O kruchenii v K-gruppakh poleı̆ po Milnoru,
Matem. Sbornik 131(173)(1986)94-112
English translation: Torsion in the Milnor K-groups of fields, Math.
USSR-Sbornik 59(1988)95-112


[Me87] Merkurjev, A. S.: Milnor K-theory and Galois cohomology, Proceed-
ings of the International Congress of Mathematicians (Berkeley, CA
1986), Amer. Math. Soc., Providence, R.I. 1987, 389-393


[Me88a] Merkur’ev, A. S.: Gruppa SK2 dlya algebr kvaternionov, Izv. Akad.
Nauk SSSR Ser. Mat. 52(1988)310-335,
English translation: Merkurjev, A. S.: The group SK2 for quaternion
algebras, Math. USSR-Izv. 32(1989)313-337







THE BRAUER-SEVERI VARIETY ASSOCIATED WITH A CENTRAL SIMPLE ALGEBRA: A SURVEY 55


[Me88b] Merkur’ev, A. S.: Kruchenie v gruppe K2 dlya poleı̆, Vestnik
Leningrad. Univ. Mat. Mekh. Astronom. 1988-vyp.1(1988)17-20
English translation: Merkurjev, A. S.: Torsion in the group K2 for
fields, Vestnik Leningrad Univ. Math. 21-1(1988)21-24


[Me90] Merkur’ev, A. S.: Obrazuyushchie i sootnosheniya gruppy Brauèra
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