

DISCRIMINANT AND CLIFFORD ALGEBRAS


ANNE QUÉGUINER-MATHIEU AND JEAN-PIERRE TIGNOL


Abstract. The centralizer of a square-central skew-symmetric unit in a cen-
tral simple algebra with orthogonal involution carries a unitary involution. The
discriminant algebra of this unitary involution is shown to be an orthogonal
summand in one of the components of the Clifford algebra of the orthogonal
involution. As an application, structure theorems for orthogonal involutions
on central simple algebras of degree 8 are obtained.


Throughout this paper, F denotes a field of characteristic different from 2. Let
A be a central simple F -algebra of degree n = 4m, for some integer m, endowed
with an involution σ of orthogonal type. In the first two sections, we assume that
the algebra A contains an element θ such that σ(θ) = −θ and θ2 = a ∈ F ?. We


denote by Ã the centralizer of θ in A. Since θ is skew-symmetric, σ induces an
involution σ̃ on Ã, and (Ã, σ̃) is a central simple algebra with unitary involution of
degree 2m over the étale quadratic extension F (θ) of F .


With this data, we may associate two different central simple algebras with invo-
lution, namely the Clifford algebra of (A, σ), and the discriminant algebra of (Ã, σ̃),
both endowed with their canonical involution (see [14, §8, §10]). Our aim in this
paper is to relate these two algebras with involution. Reversing the viewpoint, we
show in section 3 that every central simple algebra of even degree 2m with unitary
involution and exponent 2 over a quadratic extension of F can be embedded in a
central simple F -algebra of degree 4m with orthogonal involution as the centralizer
of some skew-symmetric, square-central element. Therefore, our results yield infor-
mation on discriminant algebras of any central simple algebra of even degree with
unitary involution and exponent 2.


The algebra with involution (A, σ) is said to be decomposable if A contains a
non trivial σ-stable central simple subalgebra A1. Indeed, if this holds, then A is
the tensor product of A1 and its centralizer A2, and σ is the tensor product of its
restrictions to A1 and A2. If A has degree 4, criteria of decomposability have been
proven for the different types of involutions. Namely, (A, σ) is always decomposable
if σ is of symplectic type; it is decomposable if and only if the discriminant of σ is
trivial (resp. the discriminant algebra of (A, σ) is split) if σ is of orthogonal type
(resp. of unitary type) (see [14, (16.16)], [12, (5.2)] and [13]). For higher degrees,
it is still true that any decomposable orthogonal involution on a 2-power degree
algebra has trivial discriminant, but this condition is not sufficient anymore (see [6],
[17] and [18] for examples of indecomposable involutions with trivial discriminant).
The main result of section 4 is Theorem 4.3, which gives a necessary and sufficient
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condition for a central simple algebra of degree 8 with orthogonal involution to be
decomposable: one of the components of the Clifford algebra must contain a square-
central symmetric unit whose centralizer is split. In particular, we recover the fact
that one of the components of the Clifford algebra of a degree 8 decomposable
algebra with orthogonal involution is of index at most 2 proven in [17, 5.17]. We also
give in Proposition 4.12 a necessary and sufficient condition for a degree 4 algebra
B with a K/F -unitary involution τ to decompose as (B, τ) = (B0, τ0) ⊗F (K, )
where (B0, τ0) is a central simple algebra with involution of the first kind and
denotes the canonical involution of the quadratic extension K/F (compare with
[14, (2.22)]).


Returning to the general situation described at the beginning, we now sketch the
relations between the Clifford algebra C(A, σ) and the discriminant algebra D(Ã, σ̃)
proven in sections 1 and 2. The discriminant of the orthogonal involution σ is easily
determined: since σ(θ) = −θ, we have


disc(σ) = NrdA(θ) = NF (θ)/F


(


NrdÃ(θ)
)


= NF (θ)/F (θ2m) = a2m ∈ F ?2.(1)


Therefore, by [14, (8.10)], the center Z(A, σ) of the Clifford algebra C(A, σ) is iso-
morphic to F × F , and C(A, σ) is a product of two central simple F -algebras of
degree 22m−1, which we denote by C1 and C2. Jacobson proved that C1 ⊗F C2 is
Brauer-equivalent to A (see [14, §9.C]), and it can be derived from Proposition 3.2.3
in Bayer-Fluckiger–Parimala [2] that one of C1, C2 is Brauer-equivalent to the dis-


criminant algebra D(Ã, σ̃). However, we aim to obtain more precise information,
taking into account the canonical involutions on the Clifford and discriminant al-
gebra.


To give precise statements, we note that it is possible to use θ to discriminate
between the components C1, C2 of C(A, σ), as follows: recall from [14, §8.D] that
there is a canonical homogeneous polynomial map of degree 2m defined on the
space Skew(A, σ) of skew-symmetric elements


π : Skew(A, σ) → Z(A, σ)


such that TZ(A,σ)/F


(


π(s)
)


= 0 and π(s)2 = NrdA(s) for all s ∈ Skew(A, σ). (In the
split case, π is essentially the pfaffian map, see [14, (8.26)].) From (1), it follows
that π(θ)2 = a2m; therefore, the elements


z+ = 1
2


(


1 + a−mπ(θ)
)


and z− = 1
2


(


1− a−mπ(θ)
)


are orthogonal idempotents in Z(A, σ), and we have C(A, σ) = C+(A, σ)×C−(A, σ)
with


C+(A, σ) = C(A, σ)z+ and C−(A, σ) = C(A, σ)z−.


Note that, although this is not apparent from the notation, the determination of
which component of C(A, σ) is C+(A, σ) and which is C−(A, σ) really depends on
the choice of θ: a different choice of θ may interchange the components C+(A, σ)
and C−(A, σ), see Proposition 4.13 and Corollary 4.14.


The canonical involution σ on C(A, σ) restricts to involutions of the first kind on
C+(A, σ) and C−(A, σ), which we denote again by σ. These involutions are both
orthogonal if m is even and both symplectic if m is odd. In section 2, we consider
the case where a /∈ F ?2. We construct a quaternion F -algebra Q (whose definition
depends on θ) and canonical representations


Θ+ : C+(A, σ)
∼→ EndQE


+, Θ− : C−(A, σ)
∼→ EndA⊗QE


−
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(see Propositions 2.3 and 2.8). Moreover, we define (−1)m+1-hermitian forms h+


on E+ and h− on E− (with respect to the conjugation involution on Q and the
involution σ ⊗ on A ⊗ Q, respectively) whose adjoint involutions correspond to
the canonical involutions on C+(A, σ) and C−(A, σ) under Θ+ and Θ−.


We also construct canonical orthogonal decompositions


(E+, h+) =











(


⊕⊥


0≤r<m/2(Ê
+
r , h


+
r )


)


⊥
⊕ (E+


m/2, h
+
m/2) if m is even,


⊕⊥


0≤r≤(m−1)/2(Ê
+
r , h


+
r ) if m is odd,


(2)


(3) (E−, h−) =









⊕⊥


0≤r<m/2(Ê
−
r , h


−
r ) if m is even,


(


⊕⊥


0≤r<(m−1)/2(Ê
−
r , h


−
r )


)


⊥
⊕ (E−


(m−1)/2, h
−
(m−1)/2) if m is odd,


see Propositions 2.5 and 2.9. The relation with the discriminant algebra D(Ã, σ̃) is
the following: there is a canonical isomorphism


Ψm : D(Ã, σ̃)
∼→


{


EndQ E
+
m/2 if m is even,


EndA⊗QE
−
(m−1)/2 if m is odd,


under which the canonical involution on D(Ã, σ̃) corresponds to the adjoint involu-
tion with respect to h+


m/2 or h−(m−1)/2 respectively (see Corollary 2.13). Thus, the


algebra with involution
(


D(Ã, σ̃), σ̃
)


is an “orthogonal direct summand” (in the


sense of [4]) of
(


C+(A, σ), σ
)


if m is even, of
(


C−(A, σ), σ
)


if m is odd.
The other terms in the decompositions (2) and (3) above can also be related to


the centralizer Ã: we show in Propositions 2.5 and 2.10 that (Ê+
r , h


+
r ) for r < m/2


and (Ê−
r , h


−
r ) for r < (m − 1)/2 are in a certain sense “extended” from (−1)m-


hermitian spaces (E+
r , `


+
r ) and (E−


r , `
−
r ) over F (θ) and A⊗ F (θ) respectively, and


that there are canonical isomorphisms


Ψ2r : λ2rÃ
∼→ EndF (θ)E


+
r , Ψ2r+1 : λ2r+1Ã


∼→ EndA⊗F (θ)E
−
r


under which the involutions σ̃∧2r, σ̃∧2r+1 correspond to the adjoint involutions with
respect to `+r and `−r respectively (see Proposition 2.12).


If a ∈ F ?2, then substituting
√
a
−1
θ for θ we may assume θ2 = 1. The element


e = 1
2 (1 + θ) ∈ A is an idempotent such that σ(e) = 1− e, hence σ is hyperbolic by


[3]. In this case, F (θ) ' F ×F , so Ã ' Bop ×B for some central simple F -algebra
B of degree 2m and σ̃ is the exchange involution on Bop × B. The results above
then take the following simple form: there are canonical representations


Θ+ :
(


C+(A, σ), σ
) ∼→ (EndF E


+, adf+),


Θ− :
(


C−(A, σ), σ)
) ∼→ (EndAE


−, adf−)


for some canonical (−1)m-symmetric form f+ and some (−1)m-hermitian form f−


with respect to σ (see Propositions 1.1 and 1.5). Moreover, there is a canonical
decomposition


E+ =


m
⊕


r=0


E+
r
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such that f+(ξ, η) = 0 for ξ ∈ E+
r and η ∈ E+


s , unless r + s = m (see Proposi-


tion 1.1). Therefore, for r ≤ (m− 1)/2 the space Êr = E+
r ⊕E+


m−r is a hyperbolic


subspace of E+, and E+ is Witt-equivalent to E+
m/2 if m is even (and it is hy-


perbolic if m is odd, but this is clear a priori since f+ is skew-symmetric in this
case).


Similarly, there is a decomposition


E− =
m−1
⊕


r=0


E−
r


such that f−(ξ, η) = 0 for ξ ∈ E−
r and η ∈ E−


s , unless r + s = m − 1 (see


Proposition 1.5). Therefore, the space Ê−
r = E−


r ⊕E−
m−1−r is hyperbolic, and E−


is hyperbolic if m is even, and Witt-equivalent to E−
(m−1)/2 if m is odd.


The relation with the centralizer Ã = Bop ×B is as follows: there are canonical
isomorphisms


Ψ2r : λ2rB
∼→ EndF E


+
r for r = 0, . . . , m,


Ψ2r+1 : λ2r+1B
∼→ EndAE


−
r for r = 0, . . . , m− 1,


which induce an isomorphism of algebras with involution


Ψm :
(


D(Ã, σ̃), σ̃
)


= (λmB, γ)
∼→











(EndF E
+
m/2, adf+


m/2
) if m is even,


(EndAE
−
(m−1)/2, adf−


(m−1)/2
) if m is odd,


where γ is the canonical involution on λmB ([14, §10.B]), see Propositions 1.9 and
1.11.


We thus recover (by substantially different methods) the results obtained by
Garibaldi on the Clifford algebras of hyperbolic involutions [7], which provided the
main source of inspiration for our investigations. We first discuss this particular
case, to which the general case is reduced by scalar extension to F (


√
a).


1. The hyperbolic case


In this section, we consider the case where a ∈ F ?2. After scaling, we may
assume a = 1. The elements


e = 1
2 (1 + θ) and e′ = 1


2 (1 − θ)


are idempotents and σ(e) = e′ = 1 − e, hence σ is hyperbolic by [3].


1.1. Representation of the Clifford algebra. Let c : A → C(A, σ) be the
canonical map (see [14, (8.13)]). Consider


ρ(e) = c(eAe′)m ⊂ C(A, σ)


and


E+ = C(A, σ)ρ(e) ⊂ C(A, σ).


It is known (see [9, §4] or [14, (8.29)]) that ρ(e) is a 1-dimensional subspace of
C(A, σ) and dimE+ = 22m−1 = deg C±(A, σ). Moreover, Lemma 4.2 of [9] shows
that π(θ)u = u for all u ∈ ρ(e), hence z+ξ = ξ and z−ξ = 0 for all ξ ∈ E+.
Therefore, left multiplication induces an F -algebra homomorphism


Θ+ : C+(A, σ) → EndF E
+.
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This homomorphism is injective since C+(A, σ) is simple, hence it is surjective by
dimension count.


Consider the map f+ : C(A, σ) × C(A, σ) → C(A, σ) defined by


f+(ξ, η) = σ(ξ)η for ξ, η ∈ C(A, σ),(4)


where σ is the canonical involution on C(A, σ).


Proposition 1.1. For all ξ and η ∈ E+, we have f+(ξ, η) ∈ ρ(e). The map f+ is
a regular bilinear form on E+. It is symmetric if m is even and skew-symmetric if
m is odd. Letting E+


r = c(e′Ae)rρ(e) for r = 0, . . . , m, we have dimE+
r =


(


2m
2r


)


and


E+ =
m


⊕


r=0


E+
r .


Moreover, for ξ ∈ E+
r and η ∈ E+


s we have f+(ξ, η) = 0 unless r + s = m.
The left multiplication isomorphism Θ+ induces an isomorphism of algebras with


involution


Θ+ : (C+(A, σ), σ)
∼→ (EndF E


+, adf+)


where adf+ is the involution adjoint to f+.


Proof. It suffices to check the assertions over a scalar extension of F . Extend-
ing scalars to a splitting field of A, we are reduced to the case where A is split.
Assume thus A = EndF V and σ = adq , for some 4m-dimensional hyperbolic
quadratic space (V, q) over F . The subspaces U = im e and W = ker e are supple-
mentary totally isotropic subspaces of V . Let (u1, . . . , u2m) be a basis of U , and
(w1, . . . , w2m) a basis of W such that q(ui +wj) = δij . Under the canonical identi-
fication C(A, σ) ' C0(V, q) ([14, (8.8)]), the vector space c(eAe′) (resp. c(e′Ae)) is
the span of the products uiuj (resp. wiwj). Therefore, ρ(e) = u1 . . . u2mF and E+


r


is the span of the products wi1 . . . wi2ru1 . . . u2m. It is canonically isomorphic to
∧2r


W under the map which carries x1∧· · ·∧x2r to x1 . . . x2ru1 . . . u2m, for x1, . . . ,
x2r ∈W , hence dimE+


r =
(


2m
2r


)


. The equality E+ =
⊕m


r=0E
+
r is easily verified.


If ξ = wi1 . . . wi2ru1 . . . u2m and η = wj1 . . . wj2su1 . . . u2m, computation shows
that f+(ξ, η) 6= 0 if and only if each wi, 1 ≤ i ≤ 2m appears exactly once among wi1 ,
. . . , wi2r , wj1 , . . . , wj2s . If this condition holds, then r + s = m and f+(ξ, η) =
±u1 . . . u2m. This shows that f+ is regular and that f+(ξ, η) ∈ ρ(e) for all ξ,
η ∈ E+.


For ξ, η, ζ ∈ C(A, σ), we have


f+(ξη, ζ) = σ(η)σ(ξ)ζ = f+
(


η, σ(ξ)ζ
)


,


hence σ corresponds under Θ+ to the adjoint involution with respect to f+.


Remark. The idea to consider the spaces E+
r is inspired by Garibaldi [7, §4].


Corollary 1.2. Let Ê+
r = E+


r ⊕ E+
m−r for r < m/2. The restriction of f+ to Ê+


r


is a hyperbolic form. If m is even, the restriction f+
m/2 of f+ to E+


m/2 is a regular


symmetric bilinear form, and (E+, f+) is Witt-equivalent to (E+
m/2, f


+
m/2).


Proof. The corollary readily follows from Proposition 1.1.
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In order to obtain a representation of C−(A, σ) similar to the representation Θ+


of C+(A, σ), we use the Clifford bimodule B(A, σ) defined in [14, §9]. Recall from
[14, (9.7)] that B(A, σ) is a left A-module as well as a C(A, σ)-bimodule, and that
for A = EndF V , σ = adq, we have a canonical isomorphism


B(A, σ) = V ⊗ C1(V, q)


where A acts on V and C(A, σ) = C0(V, q) acts by multiplication. For a ∈ EndF V ,
c0 ∈ C0(V, q), v ∈ V and c1 ∈ C1(V, q) we thus set


a · (v ⊗ c1) = a(v) ⊗ c1, c0 ∗ (v ⊗ c1) = v ⊗ (c0c1), (v ⊗ c1) · c0 = v ⊗ (c1c0).


There is a canonical A-module homomorphism b : A → B(A, σ) which is given in
the case where A = EndF V by the canonical map


EndF V
∼→ V ⊗ V ↪→ V ⊗ C1(V, q).


Using the right action of C(A, σ) on B(A, σ), define


E− = B(A, σ) · ρ(e) ⊂ B(A, σ).


The left actions of A and C(A, σ) on B(A, σ) endow E− with a structure of left A-
and C(A, σ)-module. For r = 0, . . . , m− 1, define


E−
r = (Ae)b · E+


r ⊂ E−


(where (Ae)b is the image of Ae under b). This is an A-submodule of E−.


Lemma 1.3. The dimensions of the F -vector spaces defined above are


dimE− = 4m22m−1 = degA deg C±(A, σ), dimE−
r = 4m


(


2m


2r + 1


)


,


and


E− =


m−1
⊕


r=0


E−
r .


Moreover, z+ ∗ ξ = 0 and z− ∗ ξ = ξ for all ξ ∈ E−.


Proof. As in Proposition 1.1, it suffices to consider the case where A is split. Using
the same notation as in the proof of that proposition, we have


E− = V ⊗ C1(V, q)u1 . . . u2m


and E−
r is spanned by the products v ⊗ (wi1 . . . wi2r+1u1 . . . u2m). Therefore, there


is a canonical isomorphism of F -vector spaces E−
r = V ⊗ ∧2r+1


W which maps
v⊗(x1∧· · ·∧x2r+1) to v⊗(x1 . . . x2r+1u1 . . . u2m) for v ∈ V and x1, . . . , x2r+1 ∈W ,


and we have E− =
⊕m−1


r=0 E−
r . The dimensions of E− and E−


r are then easily
computed.


Since π(θ) is a trace zero element in the center of C0(V, q), it anticommutes with
every element in C1(V, q), hence


π(θ) ∗ (v ⊗ cu1 . . . u2m) = −v ⊗ cπ(θ)u1 . . . u2m = −v ⊗ cu1 . . . u2m


for v ∈ V and c ∈ C1(V, q). Therefore, z+ ∗ ξ = 0 and z− ∗ ξ = ξ for all ξ ∈ E−.
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From the lemma, it follows that the left action of C(A, σ) on B(A, σ) induces an
F -algebra homomorphism


Θ− : C−(A, σ) → EndAE
−.


This homomorphism is injective since C−(A, σ) is simple, hence it is surjective by
dimension count.


To describe a hermitian form on E− whose adjoint involution corresponds to σ
under Θ−, we use the following result:


Lemma 1.4. There exists a C(A, σ)-bimodule isomorphism


µ : B(A, σ) ⊗C(A,σ) B(A, σ) → A⊗F C(A, σ)


which, in the case where A = EndF V and σ = adq, is given by


µ
(


(v1 ⊗ c1) ⊗ (v2 ⊗ c2)
)


= (v1 ⊗ v2) ⊗ c1c2


under the canonical isomorphisms B(A, σ) = V ⊗ C1(V, q), C(A, σ) = C0(V, q) and
A = V ⊗ V . This map satisfies


µ
(


(aξ) ⊗ η
)


= a⊗ 1 · µ(ξ ⊗ η) and µ
(


ξ ⊗ (aη)
)


= µ(ξ ⊗ η) · σ(a) ⊗ 1


for a ∈ A and ξ, η ∈ B(A, σ).


Proof. Let T (A) be the tensor algebra on the underlying vector space A of A, and
let T+(A) be the sum of the components of strictly positive degree in T (A). Recall
from [14, (9.4)] the canonical representation ρr : S2r → GL(A⊗r) of the symmetric
group S2r which for A = V ⊗ V is given by


ρr(p)(v1 ⊗ · · · ⊗ v2r) = vp−1(1) ⊗ · · · ⊗ vp−1(2r).


For all r ≥ 1, let γr be the image of the cycle (1, 2, . . . , 2r)−1 ∈ S2r under ρr. We
define a map µ̃ : T+(A) × T+(A) → A⊗ T (A) by


µ̃(u, v) = ρi+j


(


(1, 2)
)


◦ γ−1
i+j


(


u⊗ γj(v)
)


for u ∈ A⊗i and v ∈ A⊗j .


Straightforward verifications in the split case show that the map µ̃ induces an
isomorphism µ with the required properties under the canonical epimorphisms
T (A) → C(A, σ) and T+(A) → B(A, σ).


Remark. This lemma is Exercise 6 (a) in [14, Chapter II].


Recall from [14, (9.10)] the linear involution ω : B(A, σ) → B(A, σ) which in the
split case is given by


(


x⊗ (v1 . . . v2r+1)
)ω


= x⊗ (v2r+1 . . . v1) for x, v1, . . . , v2r+1 ∈ V .


For ξ, η ∈ B(A, σ) we set


f−(ξ, η) = µ(ξω ⊗ η) ∈ A⊗ C(A, σ).


Proposition 1.5. For all ξ, η ∈ E− we have f−(ξ, η) ∈ A ⊗ ρ(e). The map f−


is a regular (−1)m-hermitian form on the left A-module E− with respect to σ, and
f−(ξ, η) = 0 for ξ ∈ E−


r and η ∈ E−
s , unless r + s = m− 1.


The homomorphism Θ− is an isomorphism of algebras with involution


Θ− :
(


C−(A, σ), σ
) ∼→ (EndAE


−, adf−).
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Proof. As in Proposition 1.1, it suffices to consider the split case. Using the
same notation as in the proof of that proposition, we let A = EndF V and σ =
adq . Let v1, v2 ∈ V . For ξ = v1 ⊗ (wi1 . . . wi2r+1u1 . . . u2m) and η = v2 ⊗
(wj1 . . . wj2s+1u1 . . . u2m), we have


f−(ξ, η) = (v1 ⊗ v2) ⊗ u2m . . . u1wi2r+1 . . . wi1wj1 . . . wj2s+1u1 . . . u2m.


Computation shows that f−(ξ, η) 6= 0 if and only if each wi for i = 1, . . . , 2m
appears exactly once among wi1 , . . . , wi2r+1 , wj1 , . . . , wj2s+1 . If this condition
holds, then r + s = m− 1 and


f−(ξ, η) = ±(v1 ⊗ v2) ⊗ u1 . . . u2m.


It follows that f− is regular. The following equations follow from straightforward
computations: for ξ, η ∈ E− and a ∈ A,


f−(η, ξ) = (−1)mσ ⊗ Id
(


f−(ξ, η)
)


,


f−(aξ, η) = af−(ξ, η) and f−(ξ, aη) = f−(ξ, η)σ(a).


Therefore, f− is a (−1)m-hermitian form on the left A-module E−.
Finally, for ξ, η ∈ B(A, σ) and c ∈ C(A, σ) we have


(c ∗ ξ)ω ⊗ η =
(


ξωσ(c)
)


⊗ η = ξω ⊗
(


σ(c) ∗ η
)


,


hence f−(c∗ξ, η) = f−
(


ξ, σ(c)∗η
)


. Therefore, σ corresponds to adf− under Θ−.


Corollary 1.6. Let Ê−
r = E−


r ⊕ E−
m−1−r for r < (m − 1)/2. The restriction of


f− to Ê−
r is a hyperbolic form. If m is even, the hermitian space (E−, f−) is


hyperbolic. If m is odd, (E−, f−) is Witt-equivalent to (E−
(m−1)/2, f


−
(m−1)/2), where


f−
(m−1)/2 is the restriction of f− to E−


(m−1)/2.


Remark. This result was first proved by Garibaldi [7, Proposition 4.8].


1.2. Representation of the discriminant algebra of the centralizer. Our
next goal is to relate the constructions of the preceding section to the discriminant
algebra D(Ã, σ̃). We shall establish isomorphisms D(Ã, σ̃) ' EndF E


+
m/2 if m is


even, D(Ã, σ̃) ' EndAE
−
(m−1)/2 if m is odd, and show that the canonical involution


on the discriminant algebra corresponds to the restriction of the adjoint involutions
adf+ and adf− respectively.


Lemma 1.7. Ã = eAe⊕ e′Ae′.


Proof. Since e+ e′ = 1, every element x ∈ A decomposes as


x = exe+ exe′ + e′xe+ e′xe′.


We have eθ = θe = e and e′θ = θe′ = −e′, hence x commutes with θ if and only if
exe′ + e′xe = 0. Therefore,


x = exe+ e′xe′ ∈ eAe⊕ e′Ae′.


This proves Ã ⊂ eAe⊕ e′Ae′, and the reverse inclusion is clear.


Let B = e′Ae′, a central simple F -algebra of degree 2m which is Brauer-
equivalent to A. For x ∈ B we have σ(x) ∈ eAe, hence the map (xop


1 , x2) 7→
σ(x1) + x2 defines an F -algebra isomorphism


Bop ×B
∼→ eAe⊕ e′Ae′ = Ã.
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Under this isomorphism, σ̃ corresponds to the exchange involution ε on Bop × B.
Therefore, there is a canonical isomorphism


(


D(Ã, σ̃), σ̃) = (λmB, γ),(5)


where γ is the canonical involution on λmB, by [14, (10.31)].
Recall from [14, (10.4)] that for r = 0, . . . , 2m, the algebra λrB is defined as


follows: let sr ∈ B⊗r be the element which in the split case B = EndF W satisfies


sr(w1 ⊗ · · · ⊗ wr) =
∑


p∈Sr


sgn(p)wp(1) ⊗ · · · ⊗ wp(r) for w1, . . . , wr ∈ W ,


where the sum runs over all the permutations p of {1, . . . , r} and sgn(p) is the
signature of p. Let Sr = B⊗rsr. Then λrB = EndB⊗m Sr.


To obtain an alternative description of λrB, consider the idealizer Ŝr and the
annihilator S0


r , defined by


Ŝr = {x ∈ B⊗r | Srx ⊂ Sr} and S0
r = {x ∈ B⊗r | Srx = 0}.


As explained in [14, p.9], right multiplication induces an isomorphism


Ŝr/S
0
r


∼→ EndB⊗r Sr = λrB.


It turns out that the even powers λ2rB can be represented as EndF E
+
r , and the


odd powers λ2r+1B as EndAE
−
r , as we now show.


First, we consider the case of even powers. Let σ? : B ⊗ B → EndF (e′Ae) be
the algebra homomorphism defined by σ?(x ⊗ y)(z) = xzσ(y). It is injective since
B is simple, hence it is an isomorphism by dimension count. Therefore, we get an
algebra isomorphism


σ⊗r
? : B⊗2r ∼→ EndF


(


(e′Ae)⊗r
)


.


On the other hand, pick a nonzero element κ ∈ ρ(e) and denote by Φ+
r the epimor-


phism


Φ+
r : (e′Ae)⊗r → c(e′Ae)rρ(e) = E+


r


which maps z1 ⊗ · · · ⊗ zr to c(z1) · · · c(zr)κ, for z1, . . . , zr ∈ e′Ae.


Lemma 1.8. For any x ∈ Ŝ2r, σ
⊗r
? (x)(ker Φ+


r ) ⊂ kerΦ+
r . Moreover, if x ∈ S0


2r,
then imσ⊗r


? (x) ⊂ kerΦ+
r .


Let us assume this lemma for the moment. For any x ∈ Ŝ2r, σ
⊗r
? (x) induces an


endomorphism of E+
r , which is trivial as soon as x ∈ S0


2r. Hence, we get an algebra
homomorphism


Ψ2r : λ2rB = Ŝ2r/S
0
2r → EndF E


+
r .


This homomorphism does not depend on the choice of κ ∈ ρ(e).


Proposition 1.9. The homomorphism Ψ2r is an isomorphism. Moreover, if m is
even, Ψm is an isomorphism of algebras with involution


Ψm : (λmB, γ)
∼→ (EndF E


+
m/2, adf+


m/2
)


where f+
m/2 is the restriction of f+ to E+


m/2.
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Proofs of Lemma 1.8 and Proposition 1.9. As in Proposition 1.1, we may assume
that A is split. Using the same notation as in the proof of Proposition 1.1, we have
B = EndF W ,


e′Ae = Hom(U,W ) = W ⊗ U∗ 'W ⊗W


(where the last isomorphism is induced by the polar form of q), and σ⊗r
? is the


natural isomorphism (EndF W )⊗2r ' EndF ((W ⊗ W )⊗r). As observed in the


proof of Proposition 1.1, E+
r '


∧2r
W , and Φ+


r is the canonical epimorphism


Φ+
r : W⊗2r → ∧2r


W , whose kernel is ker s2r (see [14, proof of (10.3)]). Lemma 1.8
then follows by explicit calculations. The homomorphism Ψ2r is thus well-defined.
It is injective since λ2rB is simple, hence it is an isomorphism by dimension count.


Assume now that m is even. The canonical involution γ of λmB ' EndF (
∧m


W )


is adjoint to the exterior power ∧ :
∧m


W × ∧m
W → ∧2m


W ' F (see [14,
(10.11)(a)]), and one may check that it coincides with f+


m/2 if m/2 is even and with


−f+
m/2 if m/2 is odd. Hence, in both cases, we get that γ corresponds to adf+


m/2
,


and this finishes the proof of Proposition 1.9.


Now, we consider the odd powers λ2r+1B. Letting A act on Ae ⊗ (e′Ae)⊗r by
left multiplication on the factor Ae, we get an algebra isomorphism


σ2r+1 : B⊗2r+1 → EndA


(


Ae⊗F (e′Ae)⊗r
)


such that


σ2r+1(x1 ⊗ · · · ⊗ x2r+1)(y ⊗ z1 ⊗ · · · ⊗ zr) =


yσ(x1) ⊗ x2z1σ(x3) ⊗ · · · ⊗ x2rzrσ(x2r+1)


for x1, . . . , x2r+1 ∈ B, y ∈ Ae, and z1, . . . , zr ∈ e′Ae. Let κ ∈ ρ(e), κ 6= 0, and
consider the A-module homomorphism


Φ−
r : Ae⊗F (e′Ae)⊗r → (Ae)b ·E+


r = (Ae)b · c(e′Ae)r · ρ(e)
which maps y ⊗ z1 ⊗ . . .⊗ zr to yb · c(z1) . . . c(zr)κ.


Lemma 1.10. For any x ∈ Ŝ2r+1, σ2r+1(x)(ker Φ−
r ) ⊂ kerΦ−


r . Moreover, if x ∈
S0


2r+1, then im
(


σ2r+1(x)
)


⊂ kerΦ−
r .


Assuming the lemma, we may use σ2r+1 to define a canonical algebra homomor-
phism


Ψ2r+1 : λ2r+1B = Ŝ2r+1/S
0
2r+1 → EndAE


−
r .


Proposition 1.11. The homomorphism Ψ2r+1 is an isomorphism. Moreover, if
m is odd, Ψm is an isomorphism of algebras with involution


Ψm : (λmB, γ)
∼→ (EndAE


−
(m−1)/2, adf−


(m−1)/2
)


where f−
(m−1)/2 is the restriction of f− to E−


(m−1)/2.


The proofs of Lemma 1.10 and Proposition 1.11 follow the same lines as those
of Lemma 1.8 and Proposition 1.9. We leave the details to the reader.


Recall that central simple algebras with involution are called Witt-equivalent if
they can be represented as endomorphism algebras of Witt-equivalent hermitian
spaces, see [5]. (If (A1, σ1) and (A2, σ2) are Witt-equivalent and degA1 ≥ degA2,
Garibaldi [7] writes that (A1, σ1) is a hyperbolic extension of (A2, σ2).)
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Corollary 1.12. The algebra
(


D(Ã, σ̃), σ̃
)


is Witt-equivalent to
(


C+(A, σ), σ
)


if m


is even, to
(


C−(A, σ), σ
)


if m is odd.


Proof. Combine the isomorphism (5) with Propositions 1.1 and 1.9 if m is even,
with Propositions 1.5 and 1.11 if m is odd.


Remark. For even m, this result was proved by Garibaldi [7, Main Theorem 0.1].
For odd m, Garibaldi proves a different result (see [7, Proposition 3.4]), which turns
out to be equivalent to the above by [8, Theorem 1.1].


2. The general case


In this section, we consider the general case described in the introduction: (A, σ)
is a central simple F -algebra of degree 4m with orthogonal involution, containing
an element θ such that σ(θ) = −θ and θ2 = a ∈ F ?. We assume a /∈ F ?2 and let
K = F (


√
a). We denote (AK , σK) = (A ⊗F K,σ ⊗ IdK). Now, θ ∈ AK satisfies


σK(θ) = −θ and θ2 ∈ K?2, hence (AK , σK) is hyperbolic and we may apply the
results of the preceding section.


2.1. Representation of the Clifford algebra. Let α ∈ K satisfy α2 = a. Let
also


e = 1
2 (1 + θ ⊗ α−1) ∈ AK , e′ = 1


2 (1 − θ ⊗ α−1) ∈ AK ,


ρ(e) = c(eAKe
′)m ⊂ C(AK , σK) and E+ = C(AK , σK)ρ(e) ⊂ C(AK , σK).


2.1.1. Representation of C+(A, σ). By Proposition 1.1, left multiplication defines
an isomorphism


Θ+ :
(


C+(AK , σK), σK


)


→ (EndK E+, adf+).(6)


Let denote the non trivial automorphism of K/F . We also denote by the
natural action of this automorphism on C(AK , σK) = C(A, σ) ⊗K. Our first goal
is to determine the corresponding action on EndK E+ under Θ+, as in [9, §4]. As
we proceed to show, it is given by f 7→ ψ ◦ f ◦ ψ−1, where ψ is defined in the
next lemma. This will enable us to define on E+ a module structure over a certain
quaternion F -algebra Q. This algebra will be defined as the subalgebra of EndF E


+


generated by K and a map ψ as in the following lemma.


Lemma 2.1. There is an invertible K-semilinear map ψ : E+ → E+ such that


ψ(ξη) = ξψ(η) for all ξ ∈ C(AK , σK), η ∈ E+.(7)


This map is unique up to a factor in K?. It satisfies


ψ2 = λ IdE+


for some λ ∈ F ?.


Proof. The Skolem–Noether theorem (see for instance [16, Chapter 8, Theorem 4.2])
yields an element t ∈ A? such that


tθt−1 = −θ,
hence et = te′ and σ(t)e′ = eσ(t). Let


g = ete′ + e′σ(t)−1e.
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Straightforward computations show that geg−1 = e′ = e and σK(g)g = 1, hence g
is in the orthogonal group O(AK , σK). We claim that g is in the special orthogonal
group O+(AK , σK). To prove this, observe that gθg−1 = −θ, hence


π(gθg−1) = (−1)2mπ(θ) = π(θ).


Since the automorphism of C(AK , σK) induced by the isometry g maps π(θ) to
π(gθg−1), it follows that this automorphism restricts to the identity on the center
of C(AK , σK). This proves the claim.


Consider then the Clifford group Γ(AK , σK). Since the vector representation
χ : Γ(AK , σK) → O+(AK , σK) is onto (see [14, §13.B]), there exists υ ∈ Γ(AK , σK)
such that χ(υ) = g. Lemma 4.5 of [9] shows that


υρ(e)υ−1 = ρ(geg−1) = ρ(e).


For ξ ∈ E+, we have ξ ∈ E+ = C(AK , σK)ρ(e), hence the preceding equation shows
that ξυ ∈ E+. Define ψ : E+ → E+ by


ψ(ξ) = ξυ for ξ ∈ E+.


The map ψ is clearly invertible and satisfies (7). If ψ′ : E+ → E+ is another such
map, then ψ′ ◦ ψ−1 ∈ EndK E+ commutes with left multiplication by elements
in C(AK , σK). It is therefore central, since the homomorphism Θ+ of (6) is onto,
hence ψ′ ◦ ψ−1 ∈ K?. Similarly, ψ2 ∈ EndK E+ is central, hence ψ2 = λ IdE+ for
some λ ∈ K?. Since ψ2 commutes with ψ, we must have λ = λ, hence λ ∈ F ?.


Since E+ is a K-vector space, there is a natural embedding K ↪→ EndF E
+.


Since the map ψ of Lemma 2.1 is uniquely determined up to a factor in K, the sub-
algebra Q ⊂ EndF E


+ generated by K and ψ is a uniquely determined quaternion
F -algebra. The centralizer of Q consists of the endomorphisms in EndK E+ which
commute with ψ. In view of Lemma 2.1, left multiplication by ξ ∈ C(AK , σK)
commutes with ψ if and only if ξ = ξ; therefore, the centralizer of Q is the image
of C+(A, σ) under Θ.


Since Q ⊂ EndF E
+, we may consider E+ as a (left) Q-module. Thus, the


isomorphism (6) restricts to


Θ+ : C+(A, σ)
∼→ EndQ E


+.


To complete the description of
(


C+(A, σ), σ
)


, we next determine a sesquilinear form
on E+ with respect to the quaternion conjugation on Q whose adjoint involution
corresponds to the canonical involution σ under Θ+.


Lemma 2.2. There exists κ ∈ ρ(e), κ 6= 0, such that σ ◦ ψ
(


σ ◦ ψ(κ)
)


= ψ2(κ).


Proof. Lemma 2.1 (and its proof) shows that we may assume ψ(ξ) = ξυ for some
υ ∈ Γ(AK , σK) such that υρ(e)υ−1 = ρ(e). Then


σ ◦ ψ
(


σ ◦ ψ(ξ)
)


= σ(υ)ξυ for all ξ ∈ E+.


Since υ ∈ Γ(AK , σK), we have σ(υ)υ ∈ K?, hence σ(υ)ξυ ∈ υ−1ξυ · K? for all


ξ ∈ E+. It follows that σ ◦ ψ
(


σ ◦ ψ(ξ)
)


∈ ρ(e) for all ξ ∈ ρ(e). Pick an arbitrary
element κ0 ∈ ρ(e), κ0 6= 0. Since dim ρ(e) = 1, we have


σ ◦ ψ
(


σ ◦ ψ(κ0)
)


= σ(υ)κ0υ = νκ0 for some ν ∈ K?.


Applying and multiplying on the left by σ(υ) and on the right by υ, we get


σ(υυ)κ0υυ = νσ(υ)κ0υ = ννκ0.(8)
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On the other hand, we have ψ2 = λ IdE+ for some λ ∈ F ?, hence


ψ2(ξ) = ξυυ = ξλ for all ξ ∈ E+.


Applying σ, we obtain σ(υυ)σ(ξ) = λσ(ξ) for all ξ ∈ E+. Since σ
(


ρ(e)
)


= ρ(e), it
follows that σ(υυ)κ0 = λκ0, hence


σ(υυ)κ0υυ = λ2
κ0.(9)


Comparing (8) and (9), we find λ2 = νν hence, by Hilbert’s Theorem 90 (see for
instance [14, (29.3)]), νλ−1 = µµ−1 for some µ ∈ K?. Setting κ = µκ0, we have


σ ◦ ψ
(


σ ◦ ψ(κ)
)


= νµκ0 = λµκ0 = ψ2(κ).


Fix a map ψ as in Lemma 2.1 and an element κ ∈ ρ(e) as in Lemma 2.2. Then
ρ(e) = κK and we may modify the bilinear form f+ of (4) to get a bilinear form
with values in K: we let


f+(ξ, η) = g+(ξ, η)κ for ξ, η ∈ E+.


We also define maps `+ : E+ ×E+ → K and h+ : E+ ×E+ → Q by


`+(ξ, η) = g+
(


ξ, ψ(η)
)


for ξ, η ∈ E+


and


h+(ξ, η) = α
(


`+(ξ, η) − g+(ξ, η)ψ
)


∈ K ⊕Kψ = Q


where α ∈ K is such that α2 = a.


Proposition 2.3. For ξ, η ∈ E+,


g+
(


ξ, ψ(η)
)


= g+
(


ψ(ξ), η
)


.(10)


The map g+ is a regular bilinear form on the K-vector space E+. It is symmetric
if m is even and skew-symmetric if m is odd. The map `+ is a regular (−1)m-
hermitian1 form on the K-vector space E+, and h+ is a regular (−1)m+1-hermitian
form on the left Q-module E+, with respect to the conjugation involution on Q.
Moreover, the isomorphism Θ+ of (6) is an isomorphism of algebras with involution


Θ+ :
(


C+(A, σ), σ
) ∼→ (EndQE


+, adh+).


Proof. Let λ ∈ F ? be such that ψ2 = λ IdE+ and let ξ, ζ ∈ E+. Using σ ◦
ψ


(


σ ◦ ψ(κ)
)


= λκ, we derive from g+(ξ, ζ)κ = σ(ξ)ζ


λg+(ξ, ζ)κ = σ ◦ ψ
(


σ ◦ ψ
(


σ(ξ)ζ
)


)


.


To compute the right side, write ξ = ξ0κ and ζ = ζ0κ for some ξ0, ζ0 ∈ C(AK , σK).
Using (7), we get


σ ◦ ψ
(


σ ◦ ψ
(


σ(ξ)ζ
)


)


= σ ◦ ψ(κ)σ(ξ0)ζ0ψ(κ) = σ ◦ ψ(ξ)ψ(ζ),


hence


g+
(


ψ(ξ), ψ(ζ)
)


κ = σ ◦ ψ(ξ)ψ(ζ) = λg+(ξ, ζ)κ.


Substituting η for ψ(ζ), we obtain (10).


1Note that `+ is linear in its first slot and semilinear in its second slot.
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Proposition 1.1 shows that f+ is a regular (−1)m-symmetric bilinear form, hence
g+ is also a regular (−1)m-symmetric bilinear form, and `+ is a regular (−1)m-
hermitian form since ψ is semilinear and satisfies (10). The fact that h+ is a
regular (−1)m+1-hermitian form follows from straightforward computations.


Finally, since adf+ = adg+ corresponds to σK under Θ+, by Proposition 1.1, it
is easily checked that


h+(ξη, ζ) = h+
(


η, σ(ξ)ζ) for ξ ∈ C(A, σ) and η, ζ ∈ E+,


proving the last part.


To shed some light on the structure of E+ as (−1)m+1-hermitian space over Q,
consider as in section 1 the following K-subspaces:


E+
r = c(e′AKe)


rρ(e) ⊂ E+ for r = 0, . . . , m.


In particular, E+
m = ρ(e′)ρ(e).


Lemma 2.4. The map ψ satisfies


ψ
(


ρ(e)
)


= ρ(e)ρ(e) = ρ(e′)ρ(e),


and ψ(E+
r ) = E+


m−r for r = 0, . . . , m.


Proof. It suffices to prove these properties after scalar extension to a splitting field
of A. Therefore, we may assume A is split and use the same notation as in Propo-
sition 1.1. We thus let A = EndF V for some 4m-dimensional vector space V over
F , and σ = adq for some quadratic form q on V .


Since σ(θ) = −θ, every v ∈ V is orthogonal to θ(v). If V0 is a maximal non-


singular subspace of V such that V0 and θ(V0) are orthogonal, then V = V0


⊥
⊕ θ(V0).


On the other hand, we also have VK = U ⊕W where U = e(VK) and W = e′(VK)
are totally isotropic subspaces of VK , as in the proof of Proposition 1.1. Let v1,
. . . , v2m be an orthogonal basis of V0 and let λi = q(vi) for i = 1, . . . , 2m. In VK ,
consider the vectors


ui = 1
2


(


vi + θ(vi)α
−1


)


, wi = 1
2


(


vi − θ(vi)α
−1


)


λ−1
i for i = 1, . . . , 2m.


Then u1, . . . , u2m (resp. w1, . . . , w2m) is a basis of U (resp.W ), and these elements
satisfy q(ui + wj) = δij . Moreover, their images in the Clifford algebra satisfy


uivi = uiwiλi = viwiλi for i = 1, . . . , 2m(11)


hence also, since ui = λiwi,


viui = λiwiui = λiwivi for i = 1, . . . , 2m.(12)


As observed in Proposition 1.1, we have


ρ(e) = u1 . . . u2mK ⊂ C0(VK , q) = C(AK , σK).


Using (11) and (12), it is easily seen that for υ = v1 . . . v2m, the equation ψ0(ξ) = ξυ
defines a K-semilinear map ψ0 : E+ → E+ satisfying condition (7) of Lemma 2.1,
hence ψ = µψ0 for some µ ∈ K?. Moreover, we have


u1 . . . u2mυ = υu1 . . . u2m = λ1 . . . λ2mw1 . . . w2mu1 . . . u2m.


Since ρ(e′)ρ(e) = w1 . . . w2mu1 . . . u2mK, it follows that ψ
(


ρ(e)
)


= ψ0


(


ρ(e)
)


=
ρ(e′)ρ(e), proving the first part of the lemma.


For the second part, observe that c(e′AKe) is spanned by the products wiwj ,
hence E+


r is the span of the products wi1 . . . wi2ru1 . . . u2m, where we may assume
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1 ≤ i1 < · · · < i2r ≤ 2m. It follows that ψ(E+
r ) = ψ0(E


+
r ) is spanned by the


elements of the form wi1 . . . wi2ru1 . . . u2mv1 . . . v2m, hence also, since wi = λ−1
i ui


and ui = λiwi, by the products ui1 . . . ui2rw1 . . . w2mv1 . . . v2m. By (11) and (12),
we have for 1 ≤ i1 < · · · < i2r ≤ 2m,


ui1 . . . ui2rw1 . . . w2mv1 . . . v2m = ui1 . . . ui2rw1 . . . w2mu1 . . . u2m


= ±wj1 . . . wj2su1 . . . u2m,


where the indices j1, . . . , j2s form the complementary subset of {i1, . . . , i2r} in
{1, . . . , 2m}. Therefore, ψ(E+


r ) = E+
m−r, and the proof is complete.


It follows from the lemma that for r < m/2 the sum


Ê+
r = E+


r ⊕E+
m−r


is a Q-submodule of E+, and that E+
m/2 is a Q-submodule of E+ if m is even. Their


dimensions over Q are respectively equal to
(


2m
2r


)


and 1
2


(


2m
m


)


.
For ε = ±1, let W ε(K, ) (resp. W ε(Q, )) denote the Witt group of ε-hermitian


spaces over K (resp. Q) with respect to . For any ε-hermitian space (E, `) over K,
a (−ε)-hermitian space R(E, `) over Q is defined by R(E, `) = (E ⊕ ψE, h) where


h(x1 + ψx2, y1 + ψy2) = α
(


`(x1, y1) + `(x2, y2)λ
)


− α
(


`(x1, y2) + `(x2, y1)
)


ψ


for x1, x2, y1, y2 ∈ E. As observed in [16, p. 359]2 the map R induces a group
homomorphism


R : W ε(K, ) →W−ε(Q, ).


Proposition 2.5. If ξ ∈ E+
r and η ∈ E+


s , then


g+(ξ, η) = 0 unless r + s = m and `+(ξ, η) = 0 unless r = s.


Therefore, letting h+
r (resp. h+


m/2) denote the restriction of h+ to Ê+
r (resp. E+


m/2,


if m is even), we have


(E+, h+) =











⊕⊥


0≤r≤(m−1)/2(Ê
+
r , h


+
r ) if m is odd,


(


⊕⊥


0≤r<m/2(Ê
+
r , h


+
r )


)


⊥


⊕ (E+
m/2, h


+
m/2) if m is even.


Moreover, for r < m/2 we have (Ê+
r , h


+
r ) = R(E+


r , `
+
r ), where `+r is the restriction


of `+ to E+
r .


Proof. The first part readily follows from Proposition 1.1 and Lemma 2.4. The


equality (Ê+
r , h


+
r ) = R(E+


r , `
+
r ) for r < m/2 follows from a straightforward compu-


tation.


Recall from [16, p. 359] the “extension of scalars” map S : W−1(Q, ) → WK
(denoted by π2 in [16]) which fits in an exact sequence


W 1(K, )
R−→W−1(Q, )


S−→WK.(13)


Corollary 2.6. If m is even, S(Ê+
r , h


+
r ) = 0 for all r < m/2.


The result holds trivially if m is odd, since the corresponding map S carries
hermitian forms over Q to skew-symmetric spaces over K.


2Scharlau denotes by ρ the map R. When comparing with [16], one has to keep in mind that
Scharlau considers sesquilinear forms which are semilinear in the first slot and linear in the second
slot, whereas the opposite convention is used here. Moreover, there is a misprint in Scharlau’s
definition of the form h, on p. 359 of [16]: it should involve the term f(x2, y2)∗ instead of f(x2, y2).
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2.1.2. Representation of C−(A, σ). In order to obtain an analogue of Proposition 2.3
for C−(A, σ), we consider


E− = B(AK , σK) · ρ(e) ⊂ B(AK , σK)


and the left multiplication isomorphism


Θ− :
(


C−(AK , σK), σK


) ∼→ (EndAK E−, adf−)


of Proposition 1.5.


Lemma 2.7. There is a unique action of ψ ∈ Q on E− such that


ψ · (ξ · η) = ξ · ψ(η) for ξ ∈ B(AK , σK) and η ∈ E+.


This action is A-linear.


Proof. Let κ0 ∈ ρ(e), κ0 6= 0. The proof of Lemma 2.4 shows that ψ(κ0) = κ0υ
for some υ ∈ Γ(AK , σK). Since


E− = B(AK , σK) · E+ = B(AK , σK) · κ0,


it follows that the action, if it exists, is necessarily defined by


ψ(x) = xυ.(14)


This proves uniqueness of the action. On the other hand, one may easily check that
equation (14) defines an action of ψ on E− having the required properties.


Since K acts naturally on E−, the lemma yields a left A⊗F Q-module structure
on E−, and Θ− restricts to an F -algebra isomorphism


Θ− : C−(A, σ)
∼→ EndA⊗QE


−.(15)


To define a sesquilinear form on E− whose adjoint involution corresponds to σ
under this isomorphism, fix an element κ ∈ ρ(e) as in Lemma 2.2. Then AK ⊗K


ρ(e) = AK ⊗ κ and we may define a map g− : E− ×E− → AK by the equation


f−(ξ, η) = g−(ξ, η) ⊗ κ for ξ, η ∈ E−.


We also define maps `− : E− ×E− → AK and h− : E− ×E− → A⊗F Q by


`−(ξ, η) = g−(ξ, ψ · η)
and


h−(ξ, η) = α
(


`−(ξ, η) − g−(ξ, η)ψ
)


∈ AK ⊕AKψ = A⊗F Q.


Proposition 2.8. For ξ, η ∈ E−,


g−(ξ, ψ · η) = g−(ψ · ξ, η).(16)


The map g− is a regular (−1)m-hermitian form on the AK-module E− with re-
spect to the involution σK , the map `− is a regular (−1)m-hermitian form on the
AK-module E− with respect to the involution σ ⊗ , and h− is a regular (−1)m+1-
hermitian form on the A ⊗ Q-module E− with respect to the involution σ ⊗ .
Moreover, the isomorphism Θ− of (15) is an isomorphism of algebras with involu-
tion


Θ− :
(


C−(A, σ), σ)
∼→ (EndA⊗QE


−, adh−).
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Proof. Let ξ, ζ ∈ E−. We compute in two different ways


τ ⊗ (σK ◦ ψ)
(


τ ⊗ (σK ◦ ψ)
(


f−(ξ, ζ)
)


)


(17)


where τ : AK → AK is the involution defined by τ(x) = σK(x) for x ∈ AK .
First, since f−(ξ, ζ) = g−(ξ, ζ) ⊗ κ and κ satisfies the condition in Lemma 2.2,


the expression in (17) is equal to g−(ξ, ζ) ⊗ ψ2(κ).
On the other hand, letting ξ = ξ0 ·κ and ζ = ζ0 ·κ for some ξ0, ζ0 ∈ B(AK , σK),


we have ξω = σK(κ) ∗ ξω
0 , hence


f−(ξ, ζ) = µ
(


σK(κ) ∗ ξω
0 ⊗ ζ0 · κ


)


= 1 ⊗ σK(κ) · µ(ξω
0 ⊗ ζ0) · 1 ⊗ κ.


Since for x ∈ AK and c ∈ C(AK , σK),


τ ⊗ (σK ◦ ψ)(x⊗ c · 1 ⊗ κ) = 1 ⊗ (σK ◦ ψ)(κ) · σK ⊗ σK(x⊗ c),


it follows that


τ ⊗ (σK ◦ ψ)
(


f−(ξ, ζ)
)


= 1 ⊗ (σK ◦ ψ)(κ) · σK ⊗ σK


(


µ(ξ0
ω ⊗ ζ0)


)


· 1 ⊗ κ


hence the expression in (17) is equal to


1 ⊗ (σK ◦ ψ)(κ) · µ(ξ0
ω ⊗ ζ0) · 1 ⊗ ψ(κ) = µ


(


(ψ · ξ)ω ⊗ (ψ · ζ)
)


.


Comparing the results, we obtain


λg−(ξ, ζ) = g−(ψ · ξ, ψ · ζ)
where λ ∈ F ? is such that ψ2 = λ IdE+ . Substituting η for ψ · ζ, we obtain (16).


Since f− is a regular (−1)m-hermitian form with respect to σK , it is clear that
g− is also a regular (−1)m-hermitian form with respect to σK . Using (16), we
obtain


`−(η, ξ) = g−(ψ · η, ξ) = (−1)mσK


(


g−(ξ, ψ · η)
)


= (−1)mσK


(


`−(ξ, η)
)


for ξ, η ∈ E−. It follows that `− is a regular (−1)m-hermitian form with respect to
the involution σ⊗ (= τ) on AK . Straightforward computations show that h− is a
(−1)m+1-hermitian form with respect to the involution σ ⊗ on A⊗F Q. Finally,
since adf− = adg− corresponds to σK under Θ−, by Proposition 1.5, it is easily
checked that


h−(ξ · η, ζ) = h−
(


η, σ(ξ) · ζ
)


for ξ ∈ C(A, σ) and η, ζ ∈ E−,


completing the proof.


As in section 1, we define AK -submodules of E− by


E−
r = (AKe)


b ·E+
r ⊂ E−,


for r = 0, . . . , m− 1. We also set


Ê−
r = E−


r ⊕E−
m−r−1 for r < (m− 1)/2.


Proposition 2.9. For r = 0, . . . , m− 1, we have ψ ·E−
r = E−


m−r−1, hence Ê−
r is


an A ⊗ Q-submodule of E− for r < m/2, and if m is odd E−
(m−1)/2 is an A ⊗ Q-


submodule of E−.
If ξ ∈ E−


r and η ∈ E−
s , then


g−(ξ, η) = 0 unless r + s = m− 1 and `−(ξ, η) = 0 unless r = s.
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Therefore, letting h−r (resp. h−(m−1)/2) denote the restriction of h− to Ê−
r (resp.


E−
(m−1)/2, if m is odd), we have


(E−, h−) =











(


⊕⊥


0≤r<(m−1)/2(Ê
−
r , h


−
r )


)


⊥
⊕ (E−


(m−1)/2, h
−
(m−1)/2) if m is odd,


⊕⊥


0≤r<m/2(Ê
−
r , h


−
r ) if m is even.


Proof. Since E−
r = (AKe)


b ·E+
r , we have by Lemmas 2.4 and 2.7


ψ · E−
r = (AKe)b · ψ(E+


r ) = (AKe
′)b ·E+


m−r.


Extending scalars to a splitting field of AK , we may verify that


(AKe
′)b ·E+


m−r = (AKe)
b · E+


m−r−1,


hence ψ ·E−
r = E−


m−r−1. The other assertions easily follow, by Proposition 1.5.


Parimala, Sridharan and Suresh [2, Appendix 2, Theorem 2] have defined an
exact sequence


W ε(A⊗K,σ ⊗ )
R−→W−ε(A⊗Q, σ ⊗ )


S−→W ε(A⊗K,σ ⊗ IdK)


which is an analogue of (13).


Proposition 2.10. For r < (m − 1)/2, we have R(E−
r , `


−
r ) = (Ê−


r , h
−
r ), hence


S(Ê−
r , h


−
r ) = 0. If m is even, S(E−, h−) = 0.


Proof. Straightforward computation.


2.2. Representation of the discriminant algebra of the centralizer. Our
next goal is to establish an isomorphism


(


D(Ã, σ̃), σ̃
) ∼→











(EndQE
+
m/2, adh+


m/2
) if m is even,


(EndA⊗QE
−
(m−1)/2, adh−


(m−1)/2
) if m is odd.


We first define a canonical isomorphism Ã = e′AKe
′, then use the isomorphism Ψm


of Proposition 1.9 or 1.11.
For simplicity of notation, we let B = e′AKe


′. Since e′ = e = σK(e′), we have


σK(x) ∈ B for x ∈ B. Clearly, the map τ : B → B defined by


τ(x) = σK(x) for x ∈ B


is a unitary involution.


Lemma 2.11. For x ∈ B, we have x + x ∈ Ã. The map x 7→ x + x is an
isomorphism of F -algebras


T : (B, τ)
∼→ (Ã, σ̃)


such that T (α) = −θ.


Proof. It is clear that x+ x ∈ A. Since θe′ = −αe′ = e′θ, we have θx = −αx = xθ
hence also θx = αx = xθ for all x ∈ B, hence x + x ∈ Ã. Moreover, for x, x′ ∈ B
we have x, x′ ∈ eAKe, hence xx′ = xx′ = 0 and therefore


(x+ x)(x′ + x′) = xx′ + xx′.
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It follows that T is an F -algebra homomorphism. It is injective since x + x = 0
implies x ∈ (e′AKe


′) ∩ (eAKe), hence also surjective by dimension count. To see
that τ corresponds to σ̃ under T , observe that for x ∈ B


σ̃(x + x) = σK(x) + σK(x) = T
(


τ(x)
)


.


The isomorphism T induces a canonical isomorphism
(


D(Ã, σ̃), σ̃
)


'
(


D(B, τ), τ
)


.(18)


We may (and shall) therefore work with (B, τ) instead of (Ã, σ̃). Recall from
Propositions 1.9 and 1.11 that there are canonical isomorphisms


Ψ2r : λ2rB
∼→ EndK E+


r and Ψ2r+1 : λ2r+1B
∼→ EndAK E−


r .


Proposition 2.12. The involution τ∧2r on λ2rB induced by τ corresponds under
Ψ2r to the adjoint involution with respect to `+r , the restriction of `+ to E+


r . Sim-
ilarly, the involution τ∧(2r+1) corresponds under Ψ2r+1 to the adjoint involution
with respect to `−r , the restriction of `− to E−


r .


Proof. Extending scalars to a splitting field, we are reduced to proving the propo-
sition in the case where A is split. We may thus assume A = EndF V for some
4m-dimensional vector space V , and σ = adq for some quadratic form q on V , and


use the notation of Lemma 2.4. In particular, we define ψ : E+ → E+ by ψ(ξ) = ξυ,
where υ = v1 . . . v2m. Computation shows that the element κ = u1 . . . u2m satisfies
the condition of Lemma 2.2, and


ψ(κ) = υκ = λw1 . . . w2mκ.


A basis ofE+
r is given by the products (wi1 . . . wi2r κ)1≤i1<···<i2r≤2m. To compute


the Gram matrix of `+r with respect to this basis, observe that


(19) f+
(


wi1 . . . wi2r κ, ψ(wj1 . . . wj2r κ)
)


=


σK(κ)wi2r . . . wi1wj1 . . . wj2rψ(κ) =


λλ−1
j1
. . . λ−1


j2r
σK(κ)wi2r . . . wi1uj1 . . . uj2rw1 . . . w2mκ.


If {i1, . . . , i2r} 6= {j1, . . . , j2r}, say i1 /∈ {j1, . . . , j2r}, then wi1 commutes with
uj1 . . . uj2r , and (19) vanishes since wi1w1 . . . w2m = 0. Assume now {i1, . . . , i2r} =
{j1, . . . , j2r}. Since q(ui +wi) = 1, we have uiwi = 1−wiui for all i = 1, . . . , 2m.
Substituting 1−ui1wi1 for wi1ui1 in the rightmost side of (19), the term containing
ui1wi1 vanishes by the same argument as above. Therefore, we obtain


f+
(


wi1 . . . wi2r κ, ψ(wi1 . . . wi2r )κ
)


=


λλ−1
i1
. . . λ−1


i2r
σK(κ)w1 . . . w2mκ = λλ−1


i1
. . . λ−1


i2r
κ.


It follows that (wi1 . . . wi2r κ)1≤i1<···<i2r≤2m is an orthogonal basis for `+r , and


`+r (wi1 . . . wi2r κ, wi1 . . . wi2r κ) = λλ−1
i1
. . . λ−1


i2r
.(20)


On the other hand, as in the proof of Lemma 1.8, we have B = EndK W , and it
is easily checked that the involution τ is adjoint to the hermitian form hq defined
by


hq(x, y) = bq(x, y) = q(x+ y) − q(x) − q(y) for x, y ∈ W ,







20 ANNE QUÉGUINER-MATHIEU AND JEAN-PIERRE TIGNOL


where bq is the polar form of q. Thus,


hq(wi, wj) = bq(λ
−1
i ui, wj) = λ−1


i δij for i, j = 1, . . . , 2m.


The involution τ∧2r on λ2rB = EndK(
∧2r W ) is then adjoint to the hermitian form


h∧2r
q such that


h∧2r
q (x1 ∧ · · · ∧ x2r, y1 ∧ · · · ∧ y2r) = det


(


hq(xi, yj)
)


1≤i,j≤2r
.


For 1 ≤ i1 < · · · < i2r ≤ 2m and 1 ≤ j1 < · · · < j2r ≤ 2m, we have


h∧2r
q (wi1 ∧ · · · ∧ wi2r , wj1 ∧ · · · ∧ wj2r ) =


{


0 if {i1, . . . , i2r} 6= {j1, . . . , j2r},
λ−1


i1
. . . λ−1


i2r
if {i1, . . . , i2r} = {j1, . . . , j2r}.


Comparing with (20), we see that the map
∧2r W → E+


r which carries x1∧· · ·∧x2r


to x1 . . . x2rκ is a similitude of (
∧2r


W,h∧2r
q ) with (E+


r , `
+
r ). Therefore, the adjoint


involutions τ∧2r and ad`+r
correspond to each other.


The same computations as above show that for v, v′ ∈ V and 1 ≤ i1 < · · · <
i2r+1 ≤ 2m, 1 ≤ j1 < · · · < j2r+1 ≤ 2m,


`−r (v ⊗ wi1 . . . wi2r+1κ, v′ ⊗ wj1 . . . wj2r+1κ) =
{


0 if {i1, . . . , i2r+1} 6= {j1, . . . , j2r+1},
λλ−1


i1
. . . λ−1


i2r+1
v ⊗ v′ if {i1, . . . , i2r+1} = {j1, . . . , j2r+1}.


Therefore, the map V ⊗ ∧2r+1
W → E−


r which carries v ⊗ (x1 ∧ · · · ∧ x2r+1) to


v⊗x1 . . . x2r+1κ is a similitude of the form `−r and the form on V ⊗∧2r+1
W with


values in V ⊗ V which maps (v ⊗ ξ, v′ ⊗ ξ′) to v⊗ v′h∧2r+1
q (ξ, ξ′) for v, v′ ∈ V and


ξ, ξ′ ∈ ∧2r+1
W . Therefore, the adjoint involutions adl−r


and τ∧2r+1 correspond to
each other.


Corollary 2.13. If m is even, the map Ψm induces an isomorphism of algebras
with involution


Ψm :
(


D(B, τ), τ
) ∼→ (EndQE


+
m/2, adh+


m/2
).


Similarly, if m is odd, the map Ψm induces an isomorphism of algebras with invo-
lution


Ψm :
(


D(B, τ), τ
) ∼→ (EndA⊗QE


−
(m−1)/2, adh−


(m−1)/2
).


Proof. Recall from [14, §10.E] that D(B, τ) is the F -subalgebra of λmB fixed under
the automorphism τ∧m ◦ γ.


Suppose first that m is even. Proposition 1.9 shows that γ corresponds to
adf+


m/2
= adg+


m/2
under Ψm, and Proposition 2.12 shows that τ∧m corresponds


to ad`+
m/2


. Therefore, Ψm maps D(B, τ) to the F -subalgebra of EndK E+
m/2 fixed


under ad`+
m/2


◦ adg+
m/2


. We claim that for f ∈ EndK E+
m/2,


ad`+
m/2


◦ adg+
m/2


(f) = ψ−1 ◦ f ◦ ψ


or, equivalently,


ad`+
m/2


(f) = ψ−1 ◦ adg+
m/2


(f) ◦ ψ.
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To check the latter equality, observe that for ξ, η ∈ E+
m/2,


`+
(


ξ, f(η)
)


= g+
(


ψ(ξ), f(η)
)


=


g+
(


adg+(f) ◦ ψ(ξ), η
)


= `+
(


ψ−1 ◦ adg+(f) ◦ ψ(ξ), η
)


.


Therefore, the subalgebra of EndK E+
m/2 fixed under ad`+


m/2
◦ adg+


m/2
is the central-


izer of ψ, which is EndQE
+
m/2. Clearly, ad`+


m/2
and adg+


m/2
both restrict to adh+


m/2


on EndQE
+
m/2.


If m is odd, it follows from Propositions 1.11 and 2.12 that Ψm maps D(B, τ) to
the F -subalgebra of EndAK E−


(m−1)/2 fixed under ad`−
(m−1)/2


◦ adg−


(m−1)/2
. The same


computation as above (substituting `−(m−1)/2 for `+m/2 and g−(m−1)/2 for g+
m/2) shows


that this subalgebra is the centralizer of ψ, which is EndA⊗QE
−
(m−1)/2.


3. Algebras of exponent 2 with unitary involution


In this section, we depart from the viewpoint laid out in the introduction, and
take as starting point a central simple algebra B of degree 2m over a quadratic
extension K of the base field F . We assume that B has exponent 2 and carries a
unitary involution τ which is the identity on F . Our goal is to construct a central
simple F -algebra B̂ of degree 4m which contains B, and an orthogonal involution
τ̂ on B̂ which extends τ . Then B is the centralizer of K in B̂, so the results of
section 2 apply to relate the discriminant algebra D(B, τ) to the Clifford algebra


C(B̂, τ̂).
Since B has exponent 2, we may find on B an orthogonal involution ν, by [14,


(3.1), (2.8)].


Lemma 3.1. There exists u ∈ B× such that ν(u) = τ(u) = u and (τ ◦ ν)2(x) =
uxu−1 for all x ∈ B.


Proof. The composite τ ◦ ν ◦ τ is an involution on B of the same type as ν, since
Sym(B, τ ◦ν ◦τ) = τ


(


Sym(B, ν)
)


has the same dimension as Sym(B, ν). Therefore,
we may find u0 ∈ B× such that ν(u0) = u0 and


τ ◦ ν ◦ τ = Int(u0) ◦ ν
(where Int(u0) is the inner automorphism which maps x ∈ B to u0xu


−1
0 ), hence


(τ◦ν)2 = Int(u0). Then Int(u0) commutes with τ◦ν, hence τ◦ν(u0) ≡ u0 mod K×.
Since ν(u0) = u0, it follows that τ(u0) = λu0 for some λ ∈ K×. Then NK/F (λ) = 1,


and Hilbert’s Theorem 90 (see for instance [14, (29.3)]) yields λ0 ∈ K× such that


λ = λ0λ0
−1


. The element u = λ0u0 meets the requirements.


Let u ∈ B× be as in Lemma 3.1. Define an F -algebra


B̂ = B ⊕ Bz


by the following multiplication rules:


z2 = u and zb = τ ◦ ν(b)z for b ∈ B.


Define also τ̂ : B̂ → B̂ by


τ̂ (b1 + b2z) = τ(b1) + zτ(b2).
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Proposition 3.2. The F -algebra B̂ is central simple of degree 4m, and τ̂ is an
orthogonal involution on B̂.


Proof. To prove the first part, observe that the algebra B̂ is constructed from B by
a “generalized crossed product” process, see Albert [1, Chapter XI, Theorem 10].


It is readily verified that τ̂ is an involution on B̂. Since ν is orthogonal and


Sym(B̂, τ̂ ) = Sym(B, τ) ⊕ z Sym(B, ν),


it follows that


dim Sym(B̂, τ̂) = (2m)2 + 2m(2m+ 1) =
4m(4m+ 1)


2
,


hence τ̂ is orthogonal.


Remark. The element u is determined by the conditions in Lemma 3.1 up to a factor
in F×. The additivity property for crossed products (see [11, (1.15)]) shows that


substituting u′ = λu for u in the definition of B̂ yields an algebra B̂′ which is Brauer-


equivalent to B̂ ⊗F (a, λ)F , if K = F (
√
a). On the other hand, suppose C is an


arbitrary central simple F -algebra of degree 4m containing B. Left multiplication
defines an F -algebra homomorphism C → EndB C, where C is viewed as a right
B-module, hence C ⊗F K ' EndB C ' M2(B). Therefore, C ⊗F K ' B̂ ⊗F K,


and it follows that C is Brauer-equivalent to B̂⊗F (a, λ)F for some λ ∈ F×. Thus,
any central simple F -algebra of degree 4m containing B can be obtained by the
construction above.


4. Algebras of degree 8


In this section, we state the main results before giving the proofs, which are
based on the results of section 2 and on the strong “triality” relationship between a
degree 8 central simple algebra with orthogonal involution and its Clifford algebra
described in [14, §42].


Let A be a central simple algebra endowed with an orthogonal involution σ. As
mentioned in the introduction, if A contains a square-central skew-symmetric unit
θ, the discriminant of σ is trivial. From Proposition 2.3, we get moreover that
one of the components of C(A, σ), namely C+(A, σ), has index at most 2. When A
has degree 8, these conditions turn out to be sufficient for the existence of such an
element θ, as the following theorem shows:


Theorem 4.1. Let (A, σ) be a central simple algebra of degree 8 with orthogonal
involution. The following conditions are equivalent:


(1) A contains a square-central skew-symmetric unit;
(2) the discriminant of σ is trivial, so C(A, σ) = C1 ×C2 for some central simple


F -algebras C1, C2 of degree 8, and at least one of C1, C2 has index 1 or 2.


If these conditions hold, then A contains square-central units θ1, θ2, θ3 ∈ Skew(A, σ)
such that F (θ1, θ2, θ3) is an étale 8-dimensional commutative F -subalgebra of A.


Remark. Using this theorem, one may easily find degree 8 central simple algebras
with orthogonal involution which do not contain any square-central skew-symmetric
element. For split examples, use for instance [14, (42.11)].


The following result is proven in [14, (42.11)]:
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Theorem 4.2 (Knus–Merkurjev–Rost–Tignol). Let (A, σ) be a central simple al-
gebra of degree 8 with orthogonal involution. The following conditions are equiva-
lent:


(1) (A, σ) = (A1, σ1) ⊗ (A2, σ2) ⊗ (A3, σ3) for some quaternion algebras with
involution (Ai, σi), i = 1, 2, 3;


(2) the discriminant of σ is trivial, so C(A, σ) = C1 ×C2 for some central simple
F -algebras C1, C2 of degree 8, and at least one of C1, C2 splits.


If (A, σ) is decomposable, so that


(A, σ) = (H, σH) ⊗F (A0, σ0)(21)


where H is a σ-stable quaternion subalgebra of A and A0 is of degree 4, it contains
a square-central skew-symmetric unit, and hence satisfies the equivalent conditions
of Theorem 4.1. On the other hand, Example 4.5 below shows that (A, σ) is not
always isomorphic to a tensor product of three quaternion algebras with involution.


The next result gives a criterion of decomposability for (A, σ).


Theorem 4.3. Let (A, σ) be a central simple algebra of degree 8 with orthogonal
involution. The following conditions are equivalent:


(1) (A, σ) is decomposable, i.e. (A, σ) = (H, σH )⊗F (A0, σ0) where H is a quater-
nion algebra and A0 is of degree 4;


(2) the discriminant of σ is trivial, so C(A, σ) = C1 ×C2 for some central simple
F -algebras C1, C2 of degree 8, and at least one of C1, C2 contains a square-
central symmetric unit whose centralizer is split.


Remarks 4.4. 1. Let g ∈ Ci be a square-central symmetric unit as above. Its
centralizer is Brauer-equivalent to Ci ⊗ F [g]. Hence, the splitting hypothesis im-
plies that Ci has index at most 2. If Ci is represented as (EndQ V, adh) for some
quaternion division algebra Q, the existence of such an element g is equivalent the
existence of a certain type of diagonalisation for h (see the appendix). Note that if
g ∈ F×2, then F [g] is isomorphic to F×F and by the hypothesis that the centralizer
splits, we mean that Ci splits over F .


2. In the situation of Theorem 4.3, we may always find a decomposition of
(A, σ) as (21) in which the involutions σH and σ0 are orthogonal. Indeed, if they
are symplectic, then it follows from the second proof of [14, (16.1)] (see also (16.16)
and exercise 2 of chapter II) that there is a decomposition


(A0, σ0) = (H ′, σ′) ⊗F (H ′′, σ′′)


where H ′, H ′′ are quaternion algebras, and σ′ (resp. σ′′) is a symplectic (resp.
orthogonal) involution. Substituting H ′′ for H , we are reduced to the case where
the restriction of σ to H is orthogonal.


The following examples show that the conditions of Theorems 4.1, 4.2 and 4.3
are not equivalent.


Example 4.5. Let 〈1, u, v, w〉 be a quadratic form over F with non-trivial dis-
criminant. Consider the algebra A = M8(K) over the field K = F (t), where t is
an indeterminate over F , endowed with the adjoint involution with respect to the
quadratic form q = 〈1, t〉 ⊗ 〈1, u, v, w〉. The algebra (A, σ) is decomposable, and to
prove it does not decompose as a tensor product of three σ-invariant quaternion
subalgebras, it suffices to prove, according to Theorem 4.2, that both components
of C(A, σ) are non-split. To compute C(A, σ), we proceed as follows: consider
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an orthogonal basis (e1, e2, . . . , e8) of q = 〈1, u, v, w, t, tu, tv, tw〉. One may check
that the elements e1e2, e1e3, e1e2e3e4, e1e2e3e5, e1e2e3e4e5e6 and e1e2e3e4e5e7
generate a subalgebra of C(A, σ) = C0(q) which is the tensor product of three
quaternion algebras B = (u, v)⊗ (uvw, uvt)⊗ (vw, uw). Since q has trivial discrim-
inant, the center of C0(q) is isomorphic to F × F and both components of C(A, σ)
are isomorphic to B, which is Brauer equivalent to (uvw, uvwt) and hence is not
split.


Since (A, σ) is decomposable, the conditions of Theorem 4.3 hold. A square-
central symmetric unit whose centralizer is split may here be explicitly found: the
element e1e2e3e4 has the required properties.


Example 4.6. Let A be the central simple algebra of degree 8 and exponent 2
constructed in [10, (5.7.37)]. As explained there, A contains a square-central el-
ement θ, but does not contain any quaternion subalgebra. By Theorem (4.14) of
[14] we may endow A with an involution σ of orthogonal type which extends the
canonical involution of the quadratic field extension F (θ)/F . Hence (A, σ) satisfies
the equivalent conditions of Theorem 4.1, but not those of Theorem 4.3 since A
itself is not decomposable.


Finally, we give a new version of Theorem 4.2 which, for a given choice of θ,
yields the more precise decomposition described in (3), under the hypothesis that
the split component of C(A, σ) is C(A, σ)+.


Theorem 4.7. Let (A, σ) be a central simple F -algebra of degree 8 with orthogonal
involution and let θ ∈ A be a square-central skew-symmetric unit. The following
statements are equivalent:


(1) C+(A, σ) is split;


(2) D(Ã, σ̃) is split;
(3) (A, σ) = (A1, σ1) ⊗ (A2, σ2) ⊗ (A3, σ3) for some quaternion algebras with


involution (Ai, σi), i = 1, 2, 3, and θ ∈ A1.


Moreover, if these conditions hold, we may find a decomposition of (A, σ) as above
such that σ1 = Int(θ) ◦ γ1, σ2 = γ2 and σ3 = γ3, where γi denotes the canonical
involution on Ai.


Remark. The choice of θ is essential in determining which of the two components
of C(A, σ) is C+(A, σ) (see Proposition 4.13).


Let us now prove those results. We start with the following:


Lemma 4.8. Let (A, σ) be a central simple F -algebra with orthogonal involution
of even degree, and let e1, . . . , er ∈ A be symmetric orthogonal idempotents such
that e1 + · · ·+er = 1. For i = 1, . . . , r, let Ai = eiAei, and let σi be the restriction
of σ to Ai. Assume each Ai has even degree. We may then identify C(Ai, σi) to an
F -subalgebra of C(A, σ). For s1 ∈ Skew(A1, σ1), . . . , sr ∈ Skew(Ar, σr), we have
s1 + · · · + sr ∈ Skew(A, σ) and


π(s1 + · · · + sr) = π1(s1) · · ·πr(sr),


where π : Skew(A, σ) → Z
(


C(A, σ)
)


, π1 : Skew(A1, σ1) → Z
(


C(A1, σ1)
)


, . . . ,


πr : Skew(Ar , σr) → Z
(


C(Ar, σr)
)


are the generalized pfaffian maps to the cen-
ters of the Clifford algebras. Moreover, the elements π1(s1), . . . , πr(sr) pairwise
commute and F


(


π1(s1), . . . , πr(sr)
)


is an étale F -algebra of dimension 2r con-
taining the center of C(A, σ). If the center is isomorphic to F × F , and if f is
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an idempotent 6= 0, 1 in the center of C(A, σ), then F
(


π1(s1), . . . , πr(sr)
)


· f =


F
(


π1(s1), . . . , πr−1(sr−1)
)


· f is an F -algebra of dimension 2r−1.


Proof. The inclusion Ai ↪→ A induces an algebra homomorphism on the tensor
algebras of the underlying vector spaces T (Ai) → T (A), which induces an injective
algebra homomorphism C(Ai, σi) → C(A, σ), see Dejaiffe [4]. (It suffices to check
this last part in the split case. If A = EndF V , then Ai = EndF Vi for some even-
dimensional regular subspace Vi ⊂ V , and the map C(Ai, σi) → C(A, σ) reduces to
the canonical map C0(Vi) ↪→ C0(V ).)


For s1 ∈ Skew(A1, σ1), . . . , sr ∈ Skew(Ar, σr), it is clear that s1 + · · · +
sr ∈ Skew(A, σ). To prove that π1(s1), . . . , πr(sr) pairwise commute and that
π(s1 + · · ·+ sr) = π1(s1) · · ·πr(sr), we may extend scalars to a splitting field of A.
The previous equality implies in particular that π1(s1) · · ·πr(sr)f ∈ F ?f so that
F


(


π1(s1), . . . , πr(sr)
)


· f = F
(


π1(s1), . . . , πr−1(sr−1)
)


· f .


Proof of Theorem 4.1. We only have to prove (2) ⇒ (1). Suppose C1 has index 1
or 2, and let σ1 be the restriction to C1 of the canonical involution of C(A, σ). We
may then represent C1 = EndQ V , σ1 = adh for some quaternion F -algebra Q and
some skew-hermitian Q-space (V, h) of rank 4, and we have


C(EndQ V, adh) ' A× C2


by triality [14, (42.3)]. Consider an orthogonal decomposition


V = V1


⊥
⊕ V2


⊥
⊕ V3


⊥
⊕ V4


where V1, . . . , V4 are Q-subspaces of rank 1. For i = 1, . . . , 4, let ei ∈ C1 be
the orthogonal projection V → Vi ⊂ V . The elements e1, . . . , e4 are symmetric
orthogonal idempotents such that e1 + · · · + e4 = 1, and eiC1ei is a quaternion
F -algebra isomorphic to Q for i = 1, . . . , 4.


Let si ∈ eiC1ei be an invertible element such that σ(si) = −si for i = 1, . . . , 4
and consider the generalized pfaffian


πi(si) ∈ Z
(


C(eiC1ei, σ1|eiC1ei)
)


⊂ C(C1, σ1) = A× C2.


Let


πi(si) = (θi, θ
′
i) ∈ A× C2.


Since πi(si) is skew-symmetric for the canonical involution of C(C1, σ1), we have
σ(θi) = −θi for i = 1, . . . , 4. Moreover,


πi(si)
2 = NrdeiC1ei(si) ∈ F ?,


hence θ21 , . . . , θ24 ∈ F ?.
The last statement is a consequence of lemma 4.8.


Remark 4.9. The idea to use an orthogonal basis of V to produce skew-symmetric
units in the Clifford algebra of EndQ V is borrowed from [15].


Proof of Theorem 4.3: “if” part. Suppose C1 contains a unit g such that g2 ∈ F ?,
σ1(g) = g, where σ1 is the canonical involution on C1, and the centralizer of g in
C1 is split.


If C1 is split (see Remark 4.4), then the existence of a stable decomposition
of A into a tensor product of quaternion subalgebras follows from Theorem 4.2.
We may thus assume C1 is not split for the rest of the proof of the “if” part.
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Then F [g] is a quadratic field extension of F and the index of C1 is 2. As in the
proof of Theorem 4.1, we may choose a representation C1 = EndQ(V ), σ1 = adh


for some quaternion division F -algebra Q split by F [g] and some 4-dimensional
skew-hermitian Q-space (V, h). Let j ∈ Q be a pure quaternion such that j2 = g2.


We claim that there exists an anisotropic vector v ∈ V such that g(v) = vj.
Assuming this result, we may complete the proof by considering s ∈ EndQ V defined
by


s(x) = vh(v, x) for x ∈ V .


For x, y ∈ V we have


h
(


s(x), y
)


= h(v, x)h(v, y) = −h(x, v)h(v, y) = −h
(


x, s(y)
)


,


so s is skew-symmetric. Moreover, since σ1(g) = g we have


s
(


g(x)
)


= vh
(


v, g(x)
)


= −vjh(v, x),
whereas


g
(


s(x)
)


= g(v)h(v, x) = vjh(v, x),


so s ◦ g = −g ◦ s.
Consider now the Clifford algebra


C(C1, σ1) = A× C2,


and let c(s) = (θ, θ′) be the image of s in A × C2 under the canonical map
c : C1 → C(C1, σ1). If we call e the orthogonal projection on vF , s belongs to eC1e
which is a quaternion algebra. Hence, the restriction of c to eC1e coincides with
the generalized pfaffian π : Skew(eC1e, σ1|eC1e) → Z(C(eC1e, σ1|eC1e). Hence, as
in the proof of Theorem 4.1, the element θ ∈ A is a square-central skew-symmetric
unit. The inner automorphism Int(g) commutes with σ1 since σ1(g)g ∈ F ?. There-
fore, it induces an automorphism C


(


Int(g)
)


of the Clifford algebra C(C1, σ1). This


automorphism is the identity on the center F×F , since NrdC1(g) = g8 =
(


σ1(g)g
)4


.
Its restriction to A is therefore an inner automorphism Int(ρ) for some ρ ∈ A. Since
g2 ∈ F ?, we have Int(g)2 = IdC1 , hence also Int(ρ)2 = IdA. Thus, ρ2 ∈ F ?. More-
over, C


(


Int(g)
)


commutes with the canonical involution of C(C1, σ1), hence Int(ρ)
commutes with σ, and therefore σ(ρ)ρ ∈ F ?. Finally, since


C
(


Int(g)
)(


c(s)
)


= c(gsg−1) = −c(s),
we have ρθ = −θρ. It follows that the subalgebra H of A generated by ρ and θ is
a quaternion algebra stable under σ. The proof of the “if” part is thus complete
if we prove the claim on the existence of v ∈ V . This claim follows from the next
lemma.


Lemma 4.10. Let (V, h) be a skew-hermitian space over some quaternion division
algebra Q. Assume g ∈ EndQ V is symmetric for the adjoint involution adh and
satisfies g2 = j2 for some (non-zero) pure quaternion j ∈ Q. Then there exists an
orthogonal basis (v1, . . . , vn) of V such that g(v`) = v`j for ` = 1, . . . , n.


Proof. Let L = F (j) ⊂ Q and let i ∈ Q be a non-zero pure quaternion which
anticommutes with j, so that Q = L ⊕ iL. We may then decompose the skew-
hermitian form h by letting


h(x, y) = h0(x, y) + ih1(x, y)
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with h0(x, y), h1(x, y) ∈ L for x, y ∈ V . The form h0 : V × V → L is skew-
hermitian, and h1 is symmetric bilinear (compare [16, p. 359]). Consider now
ψ ∈ EndL V defined by


ψ(x) = 1
2


(


x− g(x)j−1
)


for x ∈ V .


Since g2 = j2, we have ψ2 = ψ, hence the L-vector space V decomposes as


V = kerψ ⊕ imψ.


For x ∈ V , we have


ψ(xi) = 1
2


(


x+ g(x)j−1
)


i =
(


x− ψ(x)
)


i,


hence (kerψ)i = imψ. Therefore,


dimL kerψ = dimL imψ = dimQ V,


and every L-basis of kerψ is a Q-basis of V . For x, y ∈ kerψ, we have g(x) = xj,
g(y) = yj, hence the equation h


(


g(x), y
)


= h
(


x, g(y)
)


yields


−jh(x, y) = h(x, y)j


and it follows that h0(x, y) = 0. Therefore, every h1-orthogonal basis (v1, . . . , vn)
of kerψ is an h-orthogonal basis of V such that g(v`) = v`j for ` = 1, . . . , n.


Remark 4.11. The same arguments can be used in the case where g is skew-sym-
metric. Then h1(x, y) = 0 for all x, y ∈ kerψ, and every h0-orthogonal basis
(v1, . . . , vn) of kerψ is an h-orthogonal basis of V such that g(v`) = v`j for ` = 1,
. . . , n.


To prove the “only if” part of Theorem 4.3, we shall need the following result of
independent interest:


Proposition 4.12. Let B be a central simple algebra of degree 4 over a quadratic
field extension K of F , and let τ be a unitary involution on B whose restriction to
K is the non-trivial automorphism of K/F . There exists an F -subalgebra B0 ⊂ B
stable under τ such that B = B0 ⊗F K if and only if the discriminant algebra
D(B, τ) contains a square-central unit g of reduced trace zero which is symmetric
under the canonical involution τ . Moreover, if this condition holds, then D(B, τ) is
Brauer-equivalent to the quaternion algebra (a, λ)F , where K = F (


√
a) and λ = g2.


Proof. If it exists, the F -subalgebra B0 is the algebra of fixed points of a semi-linear
automorphism ϕ of B such that ϕ ◦ τ = τ ◦ ϕ and ϕ2 = IdB . By [14, (15.26)](see
also (15.24)), we have


AutF (B, τ) = AutF


(


D(B, τ), τ
)


,


and the semi-linear automorphisms of (B, τ) correspond to inner automorphisms of
D(B, τ) induced by improper similitudes. Therefore, an automorphism ϕ as above
exists if and only if there is in D(B, τ) an element y such that


τ (y)y ∈ F ?, y2 ∈ F ? and NrdD(B,τ)(y) = −
(


τ (y)y
)3
.(22)


It remains to prove that such an element y exists if and only if there is in D(B, τ)
a square-central symmetric unit of reduced trace zero.


Suppose first g ∈ D(B, τ) is such that g2 ∈ F ?, τ (g) = g and TrdD(B,τ)(g) = 0.


If g2 = λ, the reduced characteristic polynomial of g has the form (X2 −λ)3, hence


NrdD(B,τ)(g) = −λ3 = −
(


τ (g)g
)3
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and we may take y = g.
Conversely, if there is in D(B, τ) an element y satisfying (22), let τ (y)y = µ and


y2 = λ. If λ /∈ F ?2, then the reduced characteristic polynomial of y is (X2 − λ)3,
hence TrdD(B,τ)(y) = 0, NrdD(B,τ)(y) = −λ3 and (22) implies µ3 = λ3. For ω =


µλ−1, we thus have ω3 = 1 and τ (y)y = ωy2, hence τ (y) = ωy. This last equation
implies ω2 = 1, hence ω = 1. It follows that y is a square-central symmetric unit
of reduced trace zero.


If λ ∈ F ?2, let λ = λ2
0 with λ0 ∈ F ?. The reduced characteristic polynomial of y


then has the form (X−λ0)
m1(X+λ0)


m2 with m1 +m2 = 6, hence NrdD(B,τ)(y) =


(−1)m1λ3. Conditions (22) yield −µ3 = (−1)m1λ3. Arguing as in the preceding
case, we obtain τ (y) = (−1)m1+1y. If m1 is even, we have τ (y) = −y, hence −y
has the same reduced characteristic polynomial as y. This is a contradiction since
the reduced characteristic polynomial of −y is (X−λ0)


m2(X +λ0)
m1 and m1 even


implies m1 6= m2.
If m1 = m2 = 3, then y is a square-central symmetric unit of trace zero. Finally,


if m1 = 1 (resp. 5), then the right ideal generated by y − λ0 (resp. y + λ0) has
dimension 6 (note that y is diagonalisable), hence the algebra D(B, τ) is split,
and we may represent D(B, τ) as the endomorphism algebra of some 6-dimensional
vector space, and τ as the adjoint involution with respect to some symmetric bilinear
form. The orthogonal reflection with respect to any non-singular 3-dimensional
subspace is a square-central symmetric unit of trace zero.


To prove the last statement, observe that g is an improper similitude of D(B, τ)
with multiplier λ, hence Theorem (13.38) of [14] shows that D(B, τ) is Brauer-
equivalent to the quaternion algebra (disc τ , λ)F . By the equivalence A3 ≡ D3 (see
[14, (15.24)]), the algebra B is isomorphic to the Clifford algebra of


(


D(B, τ), τ
)


,


hence disc τ = a · F ?2 and the proof is complete.


Proof of Theorem 4.3: “only if” part. As observed in Remark 4.4, we may assume


(A, σ) = (H, σH) ⊗F (A0, σ0)


where σH is an orthogonal involution on the quaternion algebra H . Let θ ∈ H be
a skew-symmetric unit. Since H is a quaternion algebra, θ is square-central.


Let a = θ2 ∈ F ?. If a ∈ F ?2, then the discriminant of σH is trivial, hence
σH is hyperbolic by [14, (7.4)]. It follows that σ is also hyperbolic, hence one of
C1, C2 is split, by [14, (8.31)]. It is easy to find in the split component a square-
central symmetric unit of trace zero (for instance an orthogonal reflection), hence
the theorem follows.


For the rest of the proof, we may thus assume a /∈ F ?2, and apply the results of
section 2. These results yield a quaternion F -algebra Q and a representation


(


C+(A, σ), σ
) ∼→ (EndQE


+, adh+)


for some skew-hermitian form h+ (see Proposition 2.3). Proposition 2.5 yields an
orthogonal decomposition


E+ = Ê+
0


⊥
⊕ E+


1 ,


where dimQ Ê
+
0 = 1 and dimQE


+
1 = 3, and Corollary 2.13 yields a representation


(


D(Ã, σ̃), σ̃
) ∼→ (EndQE


+
1 , adh+


1
),
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where h+
1 is the restriction of h+ to E+


1 . Since A0 is a σ̃-stable F -subalgebra of Ã


such that Ã = F (θ)⊗F A0, Proposition 4.12 shows that D(Ã, σ̃) contains a square-
central symmetric unit of reduced trace zero. We may thus find g1 ∈ EndQE


+
1 such


that adh+
1
(g1) = g1 and g2


1 ∈ F ?. Let λ = g2
1 . Proposition 4.12 also shows that


D(Ã, σ̃) is Brauer-equivalent to the quaternion algebra (a, λ)F , hence Q = (a, λ)F .
Since discσ = 1, we also have discσ = 1 by triality [14, (42.3)]. On the other


hand, disc σ̃ = a · F ?2 because Ã is the Clifford algebra of
(


D(Ã, σ̃), σ̃
)


by [14,


(15.24)]. Therefore, the restriction of adh+ to EndQ Ê
+
0 has discriminant a · F ?2.


Since dimQ Ê
+
0 = 1, we have EndQ Ê


+
0 ' Q, and there is an isomorphism under


which the restriction of adh+ to EndQ Ê
+
0 corresponds to the involution of Q =


(a, λ)F which maps the elements i, j of the standard quaternion basis to −i, j
respectively, since this orthogonal involution also has discriminant a · F ?2 (see [14,


(7.4)]). The element g0 ∈ EndQ Ê
+
0 corresponding to j is such that adh+(g0) = g0


and g2
0 = λ. Now, the endomorphism g = g0 ⊕ g1 of E+ = Ê+


0


⊥
⊕ E+


1 satisfies
adh+(g) = g and g2 = λ ∈ F ?, and its centralizer is split.


Proof of Theorem 4.7. The equivalence of (1) and (2) follows from the Brauer-


equivalence of C+(A, σ) and D(Ã, σ̃), see Proposition 2.3 and Corollary 2.13.


(3) ⇒ (2) If (3) holds, we have Ã = F (θ) ⊗F Q2 ⊗F Q3 and σ̃ = ⊗ σ2 ⊗ σ3,


hence D(Ã, σ̃) is split, by [14, (10.33)].
(2) ⇒ (3) By Karpenko-Quéguiner [13], (2) implies that


(Ã, σ̃) =
(


F (θ) ⊗Q2 ⊗Q3, ⊗ γ2 ⊗ γ3


)


for some quaternion F -algebras Q2, Q3 with conjugation involutions γ2, γ3. The
centralizer of Q2 ⊗Q3 in A is a quaternion algebra Q1 containing θ.


Finally, since γ2⊗γ3 is orthogonal, the restriction σ1 of σ to Q1 must be orthog-
onal, otherwise σ would be symplectic. Since it maps θ to −θ, it coincides with
Int(θ) ◦ γ1


As explained in the introduction, the choice of which of the two components of
C(A, σ) is C+(A, σ) depends on the choice of θ. The following proposition makes
this fact clear and emphasizes the difference between Theorems 4.7 and 4.2.


Proposition 4.13. Let Q be a quaternion division algebra over an arbitrary field
F , and let A = M4(Q). Let also σ be an orthogonal hyperbolic involution on A and
let C(A, σ) = C1 × C2 for some central simple F -algebras C1, C2. Then one of the
components (C1, say) is split, and the other one is Brauer-equivalent to Q. There
exist θ1, θ2 ∈ Skew(A, σ) such that θ2


1 = θ22 ∈ F ? and, letting a = θ2
1 = θ22,


1
2


(


1 + a−2π(θ1)
)


· C(A, σ) = C1,
1
2


(


1 + a−2π(θ2)
)


· C(A, σ) = C2.


Thus, the equivalent conditions of Theorem 4.7 hold for θ1 but not for θ2.


Proof of Proposition 4.13. Note that since hyperbolic involutions on A are isomor-
phic, it is enough to prove the result for a particular one.


Let A0 = M2(F ) ⊗F Q and let σ0 be the tensor product of the symplectic invo-
lutions on M2(F ) and Q. Since the symplectic involution on M2(F ) is hyperbolic,
the involution σ0 is hyperbolic. Letting M2(F )0, Q0 denote the vector spaces of
(reduced) trace zero elements in M2(F ) and Q respectively, we have


Skew(A0, σ0) =
(


M2(F )0 ⊗ 1
)


⊕
(


1 ⊗Q0
)


.
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Moreover, C(A0, σ0) = M2(F )×Q, by [14, (8.19)], and the generalized pfaffian map


π0 : Skew(A0, σ0) → Z
(


C(A0, σ0)
)


= F × F


satisfies


π0(u⊗ 1) = (u2,−u2) for u ∈M2(F )0,(23)


π0(1 ⊗ q) = (−q2, q2) for q ∈ Q0,(24)


see [14, (16.32)]. Let


A = M2(F ) ⊗F A0 ('M4(Q))


and let σ = t ⊗ σ0, the tensor product of the transpose involution on M2(F ) and
σ0. Since σ0 is hyperbolic, the involution σ is hyperbolic. The elements


e1 =
(


1 0
0 0


)


⊗ 1 ∈ A, e2 =
(


0 0
0 1


)


⊗ 1 ∈ A


are symmetric orthogonal idempotents such that e1 + e2 = 1. Using the same
notation as in Lemma 4.8, we have canonical isomorphisms (A1, σ1) = (A0, σ0) =
(A2, σ2).


Let q ∈ Q0 be an invertible pure quaternion and let a = q2 ∈ F ?. We may find
a matrix u ∈ M2(F )0 such that u2 = a. In A = M2(F ) ⊗M2(F ) ⊗Q, consider the
elements


θ1 = 1 ⊗ 1 ⊗ q


and


θ2 =
(


1 0
0 0


)


⊗ 1 ⊗ q +
(


0 0
0 1


)


⊗ u⊗ 1.


We have θ1, θ2 ∈ Skew(A, σ) and θ2
1 = θ22 = a. Lemma 4.8 yields


π(θ1) = π1(1 ⊗ q)π2(1 ⊗ q), π(θ2) = π1(1 ⊗ q)π2(u⊗ 1).


By (23) and (24), we have π2(1⊗q) = −π2(u⊗1), hence π(θ1) = −π(θ2). Therefore,
letting


C1 = 1
2


(


1 + a−2π(θ1)
)


· C(A, σ) and C2 = 1
2


(


1 − a−2π(θ1)
)


· C(A, σ),


we have C(A, σ) = C1 × C2 and 1
2


(


1 + a−2π(θ2)
)


· C(A, σ) = C2.
Since condition (3) of Theorem 4.7 holds for θ1, it follows that C1 is split. Since


C1 ⊗F C2 is Brauer-equivalent to A by a theorem of Jacobson (see [14, (9.14)]), C2


is Brauer-equivalent to A, hence also to Q.


The index of the algebra A in Proposition 4.13 is 2. This turns out to be a
general property for algebras exhibiting the behaviour of Proposition 4.13, as the
following corollary shows:


Corollary 4.14. Let (A, σ) be a central simple algebra of degree 8 with orthogonal
involution of trivial discriminant. Suppose the index of A is not 2 and one of the
components of C(A, σ) is split. Then for every square-central unit θ ∈ Skew(A, σ),
there is a decomposition of A into a tensor product of σ-invariant quaternion F -
subalgebras A = Q1 ⊗F Q2 ⊗F Q3 such that θ ∈ Q1 and the restriction of σ to Q1


is an orthogonal involution.
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Proof. Let C(A, σ) = C1 × C2 and suppose C1 is split. By Jacobson’s theorem
(see [14, (9.14)]), it follows that C2 is Brauer-equivalent to A. On the other hand,
Proposition 2.3 shows that for each square-central unit θ ∈ Skew(A, σ) the index
of C+(A, σ) is at most 2. Therefore, we must have C+(A, σ) = C1 if the index of A
is 4 or 8, and C+(A, σ) ' C1 ' C2 if A is split. Thus in all cases C+(A, σ) is split
and Theorem 4.7 applies.


Appendix


In this appendix, we show that the existence of a square-central symmetric
or skew-symmetric element in the endomorphism algebra of some skew-hermitian
space over a quaternion division algebra can be accounted for by a certain type of
diagonalisation of the corresponding skew-hermitian form.


Proposition. Let Q be a division quaternion algebra over F , and (V, h) a skew-
hermitian module over Q. The following conditions are equivalent:


(1) the algebra with involution (EndQ(V ), adh) contains a square-central symmet-
ric (resp. skew-symmetric) element g whose centralizer splits;


(2) the hermitian form h admits a diagonalisation of the form h = 〈q1, . . . , qn〉,
where q1, . . . , qn are pure quaternions satisfying q`j = −jq` (resp. h =
〈λ1j, . . . , λnj〉, where λ` ∈ F ?), for some pure quaternion j.


If these conditions hold, the element g and the quaternion j are related by j2 = g2.


Proof. (1) ⇒ (2) Since the centralizer of g splits, the quaternion algebra Q contains
a pure quaternion j satisfying j2 = g2. If g is symmetric, we apply Lemma 4.10
to find an orthogonal basis (v1, . . . , vn) of V such that g(v`) = v`j for ` = 1,
. . . , n. The equation h


(


g(v`), v`


)


= h
(


v`, g(v`)
)


then yields q`j = −jq` for q` =
h(v`, v`). The same arguments can be used in the case where g is skew-symmetric,
see Remark 4.11.


(2) ⇒ (1) Let us consider an orthogonal basis (v1, . . . , vn) of V over Q in which
the form h has a diagonalisation as in (2). The endomorphism g defined by g(v`) =
v`j for ` = 1, . . . , n has the required properties.


Note that if g is skew-symmetric and V0 is the F -vector space spanned by the
basis v1, . . . , vn constructed in the proof above, then EndQ V = Q ⊗F EndF V0


and Q, EndF V0 are stable under adh.
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