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Abstract. For any absolutely simple, simply connected linear algebraic group G over a field

F , Rost has defined invariants for torsors under G with values in the Galois cohomology group

H3
(
F, Q/Z(2)

)
. The aim of this paper is to give an explicit description of these invariants

for torsors induced from the center of G, when G is of type An or Dn. As an application, we

show that the multipliers of unitary similitudes satisfy a relation involving the discriminant

algebra.

For an arbitrary field F , we let FieldsF denote the category of all field extensions of F and
we consider algebraic groups over F as functors from FieldsF to the category Groups of groups.
Similarly, if G is an algebraic group over F , the Galois cohomology set H1(L,G) is defined for
every field extension L/F , and this construction yields a functor H1(G) from FieldsF to the
category Sets* of pointed sets. If G is commutative, the Galois cohomology set H1(L,G) is a
group, and we obtain a functor H1(G) from FieldsF to Groups.

The cycle modules over F defined in [10] also give rise to a sequence of functors FieldsF →
Groups. (In the applications considered in this paper, all the cycle modules are given by
cohomology groups.) Let M be a cycle module over F and J be a functor from FieldsF to
Groups or to Sets*. As in [9], we define invariants of dimension d of J in M as natural
transformations of functors J →Md. The group of these invariants is denoted by

Invd(J,M) or Inv(J,Md).

In particular, if C is a commutative algebraic group and M is a cycle module, one can consider
the groups Invd(H1(C),M) and Invd(H1(C),M), and the forgetful functor Groups → Sets*
yields an embeddding

Invd(H1(C),M) ↪→ Invd(H1(C),M).

In this paper, we shall be mostly interested in the group of invariants Inv3(H1(G),M),
where G is an absolutely simple, simply connected linear algebraic group over F and M is the
cohomological cycle module H∗[Q/Z(−1)] (see section 1.3). Let C be the center of G. The
natural transformation H1(C)→ H1(G) induced by the inclusion i : C ↪→ G yields a map

i∗ : Inv3(H1(G),M)→ Inv3(H1(C),M).

It turns out that the image of this map is actually in the subgroup Inv3(H1(C),M) of group-
invariants, see Corollary 1.8. Our goal is to determine this image in the case where G is of type
An or Dn. (Groups of trialitarian type D4 are not considered.) In these cases, we construct in
section 1.2 a quasi-trivial torus T and a natural transformation ϕ : T → H1(C) such that the
induced map

ϕ∗ : Invd(H1(C),M)→ Invd(T,M)
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is injective (for all d). The group of invariants Invd(T,M) has an easy explicit description,
given in section 1.1. The image i∗

(
Inv3(H1(G),M)

)
is determined in terms of this description

in section 1.4. As an application, we obtain in section 1.5 some conditions on the image of the
map G(F )→ H1(F,C), where G = G/C is the adjoint group corresponding to G.

1. Statement of results

Throughout this section, F denotes an arbitrary field. Restrictions on the characteristic of
F will be explicitly mentioned when needed.

1.1. Invariants of quasi-trivial tori. Let A be an étale F -algebra and let RA/F (Gm) =
GL1(A) be the torus of invertible elements in A. Let also M be a cycle module over F . Every

element u ∈ Md−1(A) defines an invariant αA(u) ∈ Invd(RA/F (Gm),M) as follows: for any

field extension L/F and t ∈ RA/F (Gm)(L) = (A⊗F L)×,
αA(u) : t 7→ NA⊗L/L(t · uA⊗L) ∈Md(L),

where N is the norm map, and the product is taken for the module structure on M over the
Milnor K-ring.

Theorem 1.1. The map αA : Md−1(A)→ Invd(RA/F (Gm),M) is an isomorphism.

The proof is given in section 2 below. We shall actually construct an inverse of αA. (When
A is split, this theorem is already proven in [9, Proposition 2.5].)

1.2. Roots of unity. For any integer n which is not divisible by the characteristic of F , we
let µn denote the algebraic group of roots of unity, i.e., the kernel of the n-th power map
Gm → Gm. If K/F is a separable quadratic field extension, RK/F (µn) is the corestriction of
µn, and µn[K] is the kernel of the norm map

NK/F : RK/F (µn)→ µn.

The centers of absolutely simple, simply connected linear algebraic groups (except for trialitar-
ian groups D4) are all of type µn, µ2 × µ2, RK/F (µn) or µn[K] (see section 1.4 below).

In order to describe the invariants of H1(C), for C of the type above, it is useful to construct
a quasi-trivial torus TC and a natural transformation ϕ : TC → H1(C) such that ϕL : TC(L)→
H1(L,C) is surjective for every field extension L/F . We thus get an explicit description of the
cohomology group H1(L,C) and an injective map

ϕ∗ : Invd(H1(C),M)→ Invd(TC ,M)

for every cycle module M over F .

1.2.1. Suppose first C = µn. The cohomology sequence associated with the Kummer exact
sequence

1→ µn → Gm
n→ Gm → 1

yields for every field extension L/F a map

ϕL : L
× → H1(L, µn).

This map is surjective since H1(L,Gm) = 1 by Hilbert’s Theorem 90. Therefore, we may
take TC = Gm for C = µn, and the collection of maps ϕL for L ∈ FieldsF yields a natural
transformation

ϕ : Gm → H1(µn).(1)
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Since the kernel of ϕL is L×n, we obtain the (well-known) description of H1(L, µn) by the
isomorphism

L×/L×n
∼→ H1(L, µn).(2)

The image of x ∈ L× under ϕL is denoted by (x)n.

Corollary 1.2. Let M be a cycle module over F . For every invariant ι : H1(µn)→Md, there
is a uniquely determined element u ∈ Md−1(F ) satisfying nu = 0 such that for every field
extension L/F and x ∈ L×,

ιL
(
(x)n

)
= x · uL.

The proof is given in section 3.1 below.
The identification H1(L, µn × µn) = H1(L, µn) × H1(L, µn) for L ∈ FieldsF induces a

canonical isomorphism

Invd(H1(µn × µn),M) = Invd(H1(µn),M)× Invd(H1(µn),M).

Corollary 1.3. Let M be a cycle module over F . For every invariant ι : H1(µn × µn)→Md,
there are uniquely determined elements u1, u2 ∈ Md−1(F ) satisfying nu1 = nu2 = 0 such that
for every field extension L/F and x1, x2 ∈ L×,

ιL
(
(x1)n, (x2)n

)
= x1 · (u1)L + x2 · (u2)L.

1.2.2. Suppose C = RK/F (µn). The transfer of the Kummer sequence yields the following exact
sequence:

1→ RK/F (µn)→ RK/F (Gm)
n→ RK/F (Gm)→ 1.(3)

Since H1
(
L,RK/F (Gm)

)
= 1 for every L ∈ FieldsF , we may set TC = RK/F (Gm) and let

ϕ : RK/F (Gm)→ H1
(
RK/F (µn)

)
(4)

be the natural transformation given by the connecting map in the cohomology sequence asso-
ciated to (3).

For every field extension L/F , we obtain a map ϕL : (K⊗F L)× → H1
(
L,RK/F (µn)

)
which

induces an isomorphism

(K ⊗F L)×/(K ⊗F L)×n ∼→ H1
(
L,RK/F (µn)

)
.

The image of an element x ∈ (K ⊗F L)× under ϕL is again denoted by (x)n.

Corollary 1.4. LetM be a cycle module over F . For every invariant ι : H1
(
RK/F (µn)

)
→Md

there is a uniquely determined element u ∈Md−1(K) satisfying nu = 0 such that for every field
extension L/F and every x ∈ (K ⊗F L)×,

ιL
(
(x)n

)
= NK⊗L/L(x · uK⊗L).

The proof is given in section 3.2 below.

1.2.3. Suppose finally C = µn[K]. Let f : Gm×RK/F (Gm) → Gm be defined as follows: for
any F -algebra L/F ,

f(x, y) = xnNK⊗L/L(y)
−1

for x ∈ L× and y ∈ (K ⊗ L)×. Let P be the kernel of f . We then have two exact sequences

1→ P → Gm×RK/F (Gm)
f→ Gm → 1
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and

1→ µn[K] → RK/F (Gm)
g→ P → 1(5)

where g = (NK/F , n) is the cartesian product of the norm map and the n-th power map. Since

H1
(
L,RK/F (Gm)

)
= 1 for every field extension L/F , (5) yields an exact sequence

(K ⊗F L)×
gL−→ P (L)

δL−→ H1(L, µn[K])→ 1,

hence an isomorphism

P (L)

gL
(
(K ⊗F L)×

) =
{(x, y) ∈ L× × (K ⊗ L)× | xn = NK/F (y)}

{(NK⊗L/L(z), zn) | z ∈ (K ⊗ L)×}
∼→ H1(L, µn[K])

(see [5, (30.13)]). We let (x, y)n denote the image of (x, y) ∈ P (L) under this isomorphism.
For our purposes, it will be convenient to use slightly different descriptions, depending on

the parity of n.
If n is odd, n = 2m+1, let g1 : RK/F (Gm)→ RK/F (Gm) be the map defined as follows: for

L ∈ FieldsF and t ∈ (K ⊗F L)×,
(g1)L(t) = tnNK⊗L/L(t)

−m.

If tn = NK⊗L/L(t)
m, then taking the norm of each side and dividing by NK⊗L/L(t)

2m we obtain
NK⊗L/L(t) = 1. Therefore, the kernel of g1 is µn[K] and we have an exact sequence

1→ µn[K] → RK/F (Gm)
g1−→ RK/F (Gm)→ 1.(6)

Since H1
(
L,RK/F (Gm)

)
= 1 for every L ∈ FieldsF , we may set TC = RK/F (Gm) and let

ϕ : RK/F (Gm)→ H1(µn[K])

be the natural transformation given by the connecting map in the cohomology sequence as-
sociated to (6). Note that the exact sequences (5) and (6) can be combined in the following
commutative diagram:

1 −−−−→ µn[K] −−−−→ RK/F (Gm)
g1−−−−→ RK/F (Gm) −−−−→ 1

∥∥∥
∥∥∥

yh1

1 −−−−→ µn[K] −−−−→ RK/F (Gm)
g−−−−→ P −−−−→ 1

where the map h1 is defined by

(h1)L(t) = (NK⊗L/L(t), tNK⊗L/L(t)
m)

for L ∈ FieldsF and t ∈ (K ⊗F L)×. This map is in fact an isomorphism, with inverse defined
by

(h−11 )L(x, y) = yx−m

for L ∈ FieldsF and x ∈ L×, y ∈ (K ⊗F L)× such that NK⊗L/L(y) = xn. Thus, for t ∈
(K ⊗F L)×,

ϕL(t) = (NK⊗L/L(t), tNK⊗L/L(t)
m)n ∈ H1(L, µn[K]).(7)

Let denote the nontrivial automorphism of K/F . Abusing notation, we also denote by
the induced automorphism on M(K) for any cycle module M over F .
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Corollary 1.5. Suppose n = 2m + 1. Let M be a cycle module over F . For every invariant
ι : H1(µn[K]) → Md, there is a uniquely determined element u ∈ Md−1(K) satisfying nu = 0

and u+ u = 0 such that for every field extension L/F and every x ∈ L×, y ∈ (K ⊗F L)× with
NK⊗L/L(y) = xn,

ιL
(
(x, y)n

)
= NK⊗L/L(y · uK⊗L)−mx ·NK/F (u)L.

The proof is given in section 3.3 below.
Suppose next n is even, n = 2m. Define a map g2 : Gm×RK/F (Gm) → Gm×RK/F (Gm)

as follows: for L ∈ FieldsF and x ∈ L×, y ∈ (K ⊗F L)×,
g2(x, y) = (NK⊗L/L(y), xy

m).

It is easily verified that the following sequence is exact (see [1, Lemma 2.9]):

1→ µn[K] → Gm×RK/F (Gm)
g2−→ Gm×RK/F (Gm)→ 1,(8)

where the map originating in µn[K] is the product of the m-th power map to Gm and the

inclusion in RK/F (Gm). Since H
1
(
L,Gm×RK/F (Gm)

)
= 1 for every L ∈ FieldsF , we may set

TC = Gm×RK/F (Gm) and let

ϕ : Gm×RK/F (Gm)→ H1(µn[K])

be the natural transformation given by the connecting map in the cohomology sequence as-
sociated to (8). Note that the exact sequences (5) and (8) can be combined in the following
commutative diagram:

1 −−−−→ µn[K] −−−−→ Gm×RK/F (Gm)
g2−−−−→ Gm×RK/F (Gm) −−−−→ 1

∥∥∥
yπ2

yh2

1 −−−−→ µn[K] −−−−→ RK/F (Gm)
g−−−−→ P −−−−→ 1

where π2 is the projection on the second factor and h2 is defined by

(h2)L(x, z) = (x, xmzz−1)

for L ∈ FieldsF and x ∈ L×, z ∈ (K ⊗F L)×. Therefore, for x ∈ L× and z ∈ (K ⊗F L)×,
ϕL(x, z) = (x, xmzz−1)n ∈ H1(L, µn[K]).

Corollary 1.6. Suppose n = 2m. Let M be a cycle module over F . For every invariant
ι : H1(µn[K]) → Md, there are uniquely determined elements u ∈ Md−1(F ), v ∈ Md−1(K)
satisfying uK +mv = 0 and NK/F (v) = 0, such that for every field extension L/F and every

x ∈ L×, y ∈ (K ⊗F L)× with NK⊗L/L(y) = xn,

ιL
(
(x, y)n

)
= x · uL +NK⊗L/L(z · vK⊗L),

where z ∈ (K ⊗F L)× is such that y = xmzz−1.

The proof is given in section 3.4 below.

1.3. The cycle module H∗[Q/Z(−1)]. Let Fsep be a separable closure of F and let Γ =
Gal(Fsep/F ) be the absolute Galois group. For every integer n prime to the characteristic of
F , let

rn : Γ→ Autµn(Fsep)
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be the action of Γ on µn(Fsep). Let sn : Γ → Autµn(Fsep) be the homomorphism such that
sn(γ) = rn(γ)

−1 for all γ ∈ Γ, and let µ⊗−1n (Fsep) be the corresponding Galois module. For
every integer i ≥ 0, we let

Q/Z(i− 1) = lim−→µ⊗(i−1)n (Fsep),

where the limit runs over the integers n prime to the characteristic of F . The cohomological
cycle module H∗[Q/Z(−1)] is defined by

Hd[Q/Z(−1)](L) = Hd
(
L,Q/Z(d− 1)

)

for any field extension L/F (see [10, Remark 1.11]). (This cycle module is denoted by H∗[µ⊗−1]
in [9].)

As part of the cycle module structure,
⊕

d≥0H
d[Q/Z(−1)](L) is a module over the Milnor

ring K∗L. For later use, we give an explicit description of the multiplication

L× ×Hd
(
L,Q/Z(d− 1)

)
→ Hd+1

(
L,Q/Z(d)

)
.

We have already observed the isomorphism L×/L×n
∼→ H1(L, µn), see (2) above. If m is a

multiple of n, there is a canonical (inclusion) map j : µn → µm, and the induced maps in
cohomology make the following diagram commute for all d ≥ 0 and x ∈ L×:

Hd(L, µ
⊗(d−1)
n )

j∗−−−−→ Hd(L, µ
⊗(d−1)
m )

(x)n∪•

y
y(x)m∪•

Hd+1(L, µ⊗dn )
j∗−−−−→ Hd+1(L, µ⊗dm )

where the vertical maps are the cup-products with (x)n and with (x)m respectively. (In
checking the commutativity of this diagram, one has to keep in mind that for a ∈ µm(L)

and b ∈ µ
⊗(d−1)
n (L), a ⊗ j(b) = j(am/n ⊗ b).) Therefore, if ξ ∈ Hd

(
L,Q/Z(d − 1)

)
=

lim−→Hd(L, µ
⊗(d−1)
n ) is represented by an element ξn ∈ Hd(L, µ

⊗(d−1)
n ) for some n, we may

define x · ξ ∈ Hd+1
(
L,Q/Z(d)

)
as the element represented by (x)n ∪ ξn ∈ Hd+1(L, µ⊗dn ); the

result does not depend on the choice of n.

1.4. Rost invariants. Let G be an absolutely simple, simply connected group over F . The
group

Inv3(H1(G), H∗[Q/Z(−1)]) = Inv
(
H1(G), H3

(
Q/Z(2)

))

has been investigated by Rost, who showed that it is cyclic with a distinguished generator,
see Proposition (31.40) in [5]. (Note that this group is denoted Inv3

(
G,Q/Z(2)

)
in [5].) The

distinguished generator is called the Rost invariant of H1(G). It has been explicitly determined
in a few cases only. In particular, its explicit description is not known for groups of outer type
An−1 with n even, nor for groups of type Dn. It is known however that the Rost invariant
of a torsor X ∈ H1(F,G) generates the kernel of the scalar extension map H3

(
F,Q/Z(2)

)
→

H3
(
F (X),Q/Z(2)

)
, by [2, Theorem B.11]. This property is sufficient to determine the group

Inv
(
H1(G), H3

(
Q/Z(2)

))
in certain cases.1

Let C be the center of G. The inclusion i : C ↪→ G yields a canonical map

i∗ : Inv3(H1(G), H∗[Q/Z(−1)])→ Inv3(H1(C), H∗[Q/Z(−1)]).

1A case in point is G = SL(D), where D is a central division algebra. The invariant described in [5, p. 437]

generates the group of invariants, but it is not known whether it is the Rost invariant.
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Our goal is to describe the image I(G) of the map i∗ above, i.e.,

I(G) = i∗
(
Inv

(
H1(G), H3

(
Q/Z(2)

)))
⊂ Inv

(
H1(C), H3

(
Q/Z(2)

))
.

The first step is to prove that I(G) is in the subgroup of group-invariants

Inv
(
H1(C), H3

(
Q/Z(2)

))
⊂ Inv

(
H1(C), H3

(
Q/Z(2)

))
.

As a preparation, we show how the Rost invariant behaves under twisting. Let ω be a 1-
cocycle of the absolute Galois group Γ in G(Fsep), and let Gω be the group obtained by twisting
G by ω (or, more precisely, by the cocycle of inner automorphisms Int(ω)). Multiplication on
the right by ω defines a canonical bijection

θω : H
1(F,Gω)→ H1(F,G)

which carries the distinguished element of H1(F,Gω) to the class [ω] of ω, see [5, (23.8)]. Let
ρ, ρω be the Rost invariants of H1(G) and H1(Gω) respectively.

Proposition 1.7. For L ∈ FieldsF , let tω,L : H
3
(
L,Q/Z(2)

)
→ H3

(
L,Q/Z(2)

)
be the trans-

lation by ρL([ωL]),

tω,L(ζ) = ζ + ρL([ωL]) for ζ ∈ H3
(
L,Q/Z(2)

)
.

The following diagram commutes:

H1(L,Gω)
θω,L−−−−→ H1(L,G)

ρω,L

y
yρL

H3
(
L,Q/Z(2)

) tω,L−−−−→ H3
(
L,Q/Z(2)

)
.

Proof. This is proved by Gille in [4, Lemme 7, p. 76]. We give a different proof, which relies
only on the following “additivity” property:

Inv
(
H1(G×G), H3

(
Q/Z(2)

))
= Inv

(
H1(G), H3

(
Q/Z(2)

))
× Inv

(
H1(G), H3

(
Q/Z(2)

))
(9)

(see [5, (31.38)]). We start with the following easy observation: if ω, ω′ are cohomologous
1-cocycles, then every f ∈ G(Fsep) such that ω′γ = fωγ

γf−1 for every γ ∈ Γ defines an

isomorphism α : Gω → Gω′ . The induced natural transformation H1(Gω) → H1(Gω′) makes
the following diagram commute for every L ∈ FieldsF :

H1(L,Gω)
θω,L−−−−→ H1(L,G)

α∗

y
∥∥∥

H1(L,Gω′)
θω′,L−−−−→ H1(L,G).

Moreover, since α is an isomorphism, the integer nα attached to this map as on [5, p. 436] is 1,
hence the following diagram commutes:

H1(L,Gω)
ρω,L−−−−→ H3

(
L,Q/Z(2)

)

α∗

y
∥∥∥

H1(L,Gω′)
ρω′,L−−−−→ H3

(
L,Q/Z(2)

)
.

It follows from this observation that

ρω,L ◦ θ−1ω,L = ρω′,L ◦ θ−1ω′,L,
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hence this map depends only on the cohomology class of ω. We may then define an invariant
Ψ of H1(G×G) = H1(G)×H1(G) as follows: for L ∈ FieldsF and ξ, η ∈ H1(L,G), we choose
a cocycle ω representing ξ and set

Ψ(ξ, η) = ρω,L ◦ θ−1ω,L(η).

Clearly, this is an invariant of H1(G×G). By the additivity property (9), we have

Ψ(ξ, η) = Ψ(ξ, 1) + Ψ(1, η),

hence

ρω,L ◦ θ−1ω,L(η) = ρω,L ◦ θ−1ω,L(1) + ρL(η).(10)

If ξ = η, we have θ−1ω,L(η) = 1, hence (10) yields

ρω,L ◦ θ−1ω,L(1) = −ρL(ξ).
Substituting in (10), we obtain

ρω,L ◦ θ−1ω,L(η) = ρL(η)− ρL(ξ) = t−1ω,L ◦ ρL(η),
proving the proposition.

Corollary 1.8. I(G) ⊂ Inv
(
H1(C), H3

(
Q/Z(2)

))
.

Proof. We have to show that for every ι ∈ Inv3(H1(G), H∗[Q/Z(−1)]) and every field extension
L/F , the composition

H1(L,C)
i∗−→ H1(L,G)

ιL−→ H3
(
L,Q/Z(2)

)

is a group homomorphism (even though H1(L,G) is not a group). Clearly, it suffices to prove
this for ι = ρ, the Rost invariant. If ω is a 1-cocycle of the absolute Galois group of L in
C(Lsep), then (GL)i∗(ω) = GL, and Proposition 1.7 shows that

ρL ◦ θi∗(ω),L = ti∗(ω),L ◦ ρL.
For [ω′] ∈ H1(L,C), we have θi∗(ω),L

(
i∗([ω

′])
)
= i∗([ω])i∗([ω

′]), hence the last equation yields

ρL ◦ i∗([ω][ω′]) = ρL ◦ i∗([ω]) + ρL ◦ i∗([ω′]).

The description of I(G) will be obtained by a case-by-case analysis, using the explicit deter-
mination of dimension 3 invariants of H1(C) in Corollaries 1.2, 1.3, 1.4, 1.5 and 1.6.

1.4.1. Inner type An−1. Suppose the characteristic of F does not divide n, and let G = SL(A),
where A is a central simple F -algebra of degree n. Then C = µn and the invariants of H1(C)
are described in Corollary 1.2. For every field extension L/F , we denote by AL the central
simple L-algebra A ⊗F L, and we let [AL] be the Brauer class of AL, viewed as an element in
H2

(
L,Q/Z(1)

)
.

Theorem 1.9. The group I
(
SL(A)

)
is generated by the invariant ι : H1(µn) → H3

(
Q/Z(2)

)

such that for every field extension L/F and for every x ∈ L×,
ιL
(
(x)n

)
= x · [AL].

This follows from the description of a generating invariant for Inv
(
H1

(
SL(A)

)
, H3

(
Q/Z(2)

))

in [5, p. 437]; see also [12].
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1.4.2. Outer type An−1. Suppose the characteristic of F does not divide n, and let G =
SU(B, τ), where (B, τ) is a central simple algebra of degree n over a separable quadratic
extension K/F and τ is an involution of B whose restriction to K is the nontrivial automor-
phism of K/F . The center of G is C = µn[K], and the invariants of H1(C) are described in
Corollary 1.5 if n is odd, in Corollary 1.6 if n is even.

Theorem 1.10. If n is odd, the group I
(
SU(B, τ)

)
is generated by the invariant ι : H1(µn[K])→

H3
(
Q/Z(2)

)
such that for every field extension L/F and every x ∈ L×, y ∈ (K ⊗F L)× with

NK⊗L/L(y) = xn,

ιL
(
(x, y)n

)
= NK⊗L/L(y · [BK⊗L]).

This follows from the description of a generator of Inv
(
H1

(
SU(B, τ)

)
, H3

(
Q/Z(2)

))
in [5,

(31.45)].
If n is even, a discriminant algebra D(B, τ) is defined in [5, §10]. It is a central simple

F -algebra, hence it defines a Brauer class [D(B, τ)] ∈ H2
(
F,Q/Z(1)

)
.

Theorem 1.11. If n is even, I
(
SU(B, τ)

)
is generated by the invariant ι : H1(µn[K]) →

H3
(
Q/Z(2)

)
such that for every field extension L/F and every x ∈ L×, y ∈ (K ⊗F L)×

with NK⊗L/L(y) = xn,

ιL
(
(x, y)n

)
= x · [D(B, τ)L] +NK⊗L/L(z · [BK⊗L]),

where z ∈ (K ⊗F L)× is such that yx−n/2 = zz−1.

The proof is given in section 4.1.

1.4.3. Type Bn. Suppose the characteristic of F is not 2, and let G = Spin(q), where q is a
(2n+ 1)-dimensional quadratic form over F (with n ≥ 2). The center C of G is µ2.

Theorem 1.12. I
(
Spin(q)

)
= 0.

Indeed, it is shown in [5, p. 437] that the Rost invariant of a class in H1
(
F,Spin(q)

)
only

depends on its image in H1
(
F,O+(q)

)
.

1.4.4. Type Cn. Suppose the characteristic of F is not 2, and let G = Sp(A, σ), where A is a
central simple F -algebra of degree 2n (with n ≥ 2) and σ is a symplectic involution on A. The
center C of G is µ2.

Theorem 1.13. If n is even, I
(
Sp(A, σ)

)
= 0. If n is odd, I

(
Sp(A, σ)

)
is generated by the

invariant ι : H1(µ2) → H3
(
Q/Z(2)

)
defined as follows: for every field extension L/F and

x ∈ L×,
ιL
(
(x)2

)
= x · [AL].

This follows from the explicit description of the Rost invariant given in [5, p. 440].

1.4.5. Inner type Dn. Suppose the characteristic of F is not 2, and let G = Spin(A, σ), where
A is a central simple F -algebra of degree 2n (with n ≥ 3) and σ is an orthogonal involution on
A. Assume the discriminant of σ is trivial, hence the center of the Clifford algebra C(A, σ) is
the split étale algebra F × F . Therefore, C(A, σ) decomposes as

C(A, σ) ' C+(A, σ)× C−(A, σ)(11)

for some central simple F -algebras C+(A, σ), C−(A, σ). These algebras satisfy

2[C+(A, σ)] = 2[C−(A, σ)] = [A] and [C+(A, σ)] + [C−(A, σ)] = 0 if n is odd,

2[C+(A, σ)] = 2[C−(A, σ)] = 0 and [C+(A, σ)] + [C−(A, σ)] = [A] if n is even.
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Let C be the center of G. This group embeds in the center of C(A, σ), and we have

C '
{
µ4 if n is odd,

µ2 × µ2 if n is even.

For the following statement, we fix such an isomorphism. If n is even, this amounts to fixing an
isomorphism (11); we then have H1(C) = H1(µ2)×H1(µ2). For every field extension L/F , the
elements in H1(L,C) may then be represented as pairs

(
(x+)2, (x

−)2
)
, where x+, x− ∈ L×.

Theorem 1.14. If n is odd, the group I
(
Spin(A, σ)

)
is generated by the invariant ι : H1(µ4)→

H3
(
Q/Z(2)

)
such that for every field extension L/F and every x ∈ L×,

ιL
(
(x)4

)
= x · [C+(A, σ)L].

If n is even, the group I
(
Spin(A, σ)

)
is generated by the invariant ι : H1(µ2) × H1(µ2) →

H3
(
Q/Z(2)

)
such that for every field extension L/F and every x+, x− ∈ L×,

ιL
(
(x+)2, (x

−)2
)
=

{
x+ · [C+(A, σ)L] + x− · [C−(A, σ)L] if n ≡ 2 mod 4,

x+ · [C−(A, σ)L] + x− · [C+(A, σ)L] if n ≡ 0 mod 4.

The proof is given in section 4.2.

1.4.6. Outer type Dn. Suppose the characteristic of F is not 2, and let G = Spin(A, σ) where
A is a central simple F -algebra of degree 2n (with n ≥ 3) and σ is an orthogonal involution on
A. Assume the discriminant of σ is not trivial, hence the center of the Clifford algebra C(A, σ)
is a quadratic field extension Z of F . The center C of Spin(A, σ) embeds in RZ/F (Gm) and
we have

C =

{
µ4[Z] if n is odd,

RZ/F (µ2) if n is even.

Theorem 1.15. If n is odd, I
(
Spin(A, σ)

)
is generated by the invariant ι : H1(µ4[Z]) →

H3
(
Q/Z(2)

)
such that for every field extension L/F and every x ∈ L×, y ∈ (Z ⊗F L)× with

NZ⊗L/L(y) = x4,

ιL
(
(x, y)4

)
= x · [AL] +NZ⊗L/L(z · [C(A, σ)Z⊗L])

where z ∈ (Z ⊗F L)× is such that yx−2 = zz−1.
If n is even, the group I

(
Spin(A, σ)

)
is generated by the invariant ι : H1

(
RZ/F (µ2)

)
→

H3
(
Q/Z(2)

)
such that for every field extension L/F and every x ∈ (Z ⊗F L)×,

ιL
(
(x)2

)
=

{
NZ⊗L/L(x · [C(A, σ)]) if n ≡ 2 mod 4,

NZ⊗L/L(x · [C(A, σ)]) if n ≡ 0 mod 4.

The proof is given in section 4.3.

Remark. In all the cases discussed above, it turns out that the Brauer classes which appear in
the formulas for the invariants are Tits algebras associated with representations of the group
(see [5, §27]). In fact, these formulas can be rewritten in a more compact form by making use
of the Tits class of the group, see section 5.
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1.5. Applications. Let G = G/C be the adjoint group corresponding to the simply connected
absolutely simple group G over F . The cohomology sequence associated to

1→ C → G→ G→ 1

yields an exact sequence

G(F )
∂−→ H1(F,C)

i∗−→ H1(F,G).

Proposition 1.16. For every invariant ι ∈ I(G), the map ιF vanishes on ∂
(
G(F )

)
.

Proof. This is clear, since ιF ◦ ∂ factors through i∗ ◦ ∂ = 0.

For groups of type An, Cn (with n odd) or Dn, we thus get some restrictions on the image
of ∂, which may be regarded as a kind of generalized multiplier map, see [5, §31]. In the rest of
this section, we make this result explicit for the various types of groups.

1.5.1. Inner type An−1. With the notation of section 1.4.1, we have G = SL(A) and G =
PGL(A). Let PGL(A) = PGL(A)(F ) denote the group of rational points. The map

∂ : PGL(A)→ F×/F×n

carries g · F× to
(
NrdA(g)

)
n
, for g ∈ A× (see [5, p. 424]), and Proposition 1.16 takes the

following form:

Corollary 1.17. For all g ∈ GL(A) = A×,

NrdA(g) · [A] = 0 in H3
(
F,Q/Z(2)

)
.

This property is known, see [6].

1.5.2. Outer type An−1. With the notation of section 1.4.2, we have G = SU(B, τ) and G =
PGU(B, τ). For every similitude g ∈ GU(B, τ) (= GU(B, τ)(F )), let µ(g) = τ(g)g ∈ F× be
the multiplier of g. The map

∂ : PGU(B, τ)→ H1(F, µn[K])

carries g ·K× to
(
µ(g),NrdB(g)

)
n
for g ∈ GU(B, τ), see [5, p. 424].

If n is odd, Proposition 1.16 applied to the invariant of Theorem 1.10 yields

NK/F (NrdB(g) · [B]) = 0 for all g ∈ GU(B, τ).

This also follows from Corollary 1.17.
Suppose n is even, n = 2m. Taking the reduced norm of each side of the equation µ(g) =

τ(g)g, we see that

µ(g)2m = NK/F

(
NrdB(g)

)
,

hence there exists z ∈ K× such that zz−1 = µ(g)−mNrdB(g). Applying Proposition 1.16 to
the invariant of Theorem 1.11, we obtain:

Corollary 1.18. For g ∈ GU(B, τ),

µ(g) · [D(B, τ)] +NK/F (z · [B]) = 0 in H3
(
F,Q/Z(2)

)
.

Example 1.19. Let (A, σ) be a central simple algebra with orthogonal involution of degree n =
2m. Let discσ = dF×2 and consider B = A⊗F F (

√
t), where t is an indeterminate over F . Let

τ be the unitary involution on B which restricts to σ on A and such that τ(
√
t) = −

√
t. By [5,

(10.33)], we have

[D(B, τ)] = m[A] + [(t, d)F ].
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Let g ∈ GO+(A, σ) ⊂ GU(B, τ). We have NrdB(g) = NrdA(g) = µ(g)m, hence we may take
z = 1 in Corollary 1.18 to get

µ(g) ·
(
m[A] + [(t, d)F ]

)
= 0 in H3

(
F (t),Q/Z(2)

)
.

If m is even, then m[A] = 0; if m is odd, then m[A] = [A] and since µ(g)m = NrdA(g) it follows
that mµ(g) · [A] = 0. Thus in each case we have

µ(g) · [(t, d)F ] = 0,

and since t is an indeterminate over F it follows that (µ(g), d)F is split.
Suppose next g ∈ GO−(A, σ) ⊂ GU(B, τ). Then NrdB(g) = −µ(g)m, hence we may take

z =
√
t in Corollary 1.18. We thus obtain

µ(g) ·
(
m[A] + [(t, d)F ]

)
+ (−t) · [A] = 0.(12)

If m is even we have m[A] = 0, and the equation −µ(g)m = NrdA(g) shows that (−1) · [A] = 0.
Since t is an indeterminate, (12) yields [A] = [(µ(g), d)F ] by comparing residues at t.

If m is odd, the equation −µ(g)m = NrdA(g) yields µ(g) ·m[A] = (−1) · [A], and (12) again
yields [A] = [(µ(g), d)F ].

In conclusion, we have proved:

[(µ(g), d)F ] =

{
0 if g ∈ GO+(A, σ),

[A] if g ∈ GO−(A, σ).

This generalizes a theorem of Dieudonné on the multipliers of similitudes of quadratic forms.
This generalization was first observed in [7, Theorem A] (see also [5, §13C]).

1.5.3. Type Dn. Let A be a central simple algebra of degree 2n over a field F of characteristic
different from 2, and let σ be an orthogonal involution on A. Let Z be the center of the Clifford
algebra C(A, σ) and σ be the canonical involution on C(A, σ). (We allow the possibility that
Z ' F × F .) For G = Spin(A, σ), we have G = PGO+(A, σ). We denote by PGO+(A, σ)
the group of rational points of PGO+(A, σ). An extended Clifford group Ω(A, σ) and a map
χ′ : Ω(A, σ) → PGO+(A, σ) which is an analogue of the vector representation Spin(A, σ) →
O+(A, σ) are defined in [5, §13B].
Suppose n is even. The map

∂ : PGO+(A, σ)→ H1
(
F,RZ/F (µ2)

)
' Z×/Z×2

is described in [5, (13.32)] (where it is denoted by S). For g ∈ GO+(A, σ), ∂(g) = µ(ω) · Z×2
where ω ∈ Ω(A, σ) is such that χ′(ω) = g, and µ(ω) = σ(ω)ω ∈ Z×. Proposition 1.16 takes the
following form, with the invariant of Theorem 1.14 or 1.15:

Corollary 1.20. For g ∈ GO+(A, σ),

NZ/F

(
∂(g) · [C(A, σ)]

)
= 0 if n ≡ 2 mod 4,

NZ/F

(
∂(g) · [C(A, σ)]

)
= 0 if n ≡ 0 mod 4.

In particular, if g ∈ O+(A, σ)(F ), then ∂(g) is the spinor norm Sn(g), see [5, (13.33)]. Since

NZ/F

(
[C(A, σ)]

)
= NZ/F

(
[C(A, σ)]

)
= [A]

we obtain

Sn(g) · [A] = 0 for g ∈ O+(A, σ).

This also follows from the fact that spinor norms are reduced norms up to squares, see [8, §6].
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Suppose n is odd. The map

∂ : PGO+(A, σ)→ H1(F, µ4[Z])

is described in [5, (13.35)]. For g ∈ GO+(A, σ),

∂(g) = (µ(ω), µ(ω)2zz−1)4

where ω ∈ Ω(A, σ) is such that χ′(ω) = g and z ∈ Z× is such that z−1ω2 is an element of the
Clifford group mapped onto µ(g)−1g2 by the vector representation. Proposition 1.16, applied
with the invariant of Theorem 1.14 or 1.15, thus takes the form

Corollary 1.21. For g ∈ GO+(A, σ),

µ(ω) · [A] +NZ/F (z · [C(A, σ)]) = 0.

If g ∈ O+(A, σ), then we may choose ω in the Clifford group, hence we may choose z = 1.
Moreover, [5, (13.36)] shows that µ(ω) is then the spinor norm Sn(g). Thus, as in the preceding
case,

Sn(g) · [A] = 0 for g ∈ O+(A, σ).

2. Invariants of quasi-trivial tori

In this section, we give a proof of Theorem 1.1. Recall that A is an étale algebra over an
arbitrary field F . For brevity, we denote by

TA = GL(A) = RA/F (Gm)

the torus of invertible elements in A. Clearly, for any two étale F -algebras A, B,

TA×B = TA × TB .

Moreover, the group homomorphism αA defined in section 1.1 satisfies αA×B = αA ⊕ αB .

2.1. Cycle modules and Chow groups. Let M be a cycle module over F , X a scheme over
F (separated, of finite type). In [10, Sec. 5] the group of classes of cycles Ap(X,Md) with
coefficients in M is defined as the homology group of a complex

⊕

x∈Xp−1

Md−p+1

(
F (x)

)
→

⊕

x∈Xp

Md−p

(
F (x)

)
→

⊕

x∈Xp+1

Md−p−1

(
F (x)

)
.

For an open subscheme U ⊂ X there is a localization exact sequence associated with the
pair (U,X):

0→ A0(X,Md)→ A0(U,Md)
∂−→ A0(Z,Md−1)→ A1(X,Md)→ . . .

where Z = X \ U is of codimension 1.
The Chow groups are contravariant with respect to morphisms of smooth schemes (the

corresponding homomorphisms of the Chow groups are called the inverse images).
Let X be a smooth scheme over F . The structure morphism i : X → Spec(F ) induces

i∗ :Md(F ) = A0(Spec(F ),Md)→ A0(X,Md).

Any point p : Spec(F )→ X gives

p∗ : A0(X,Md)→ A0(Spec(F ),Md) =Md(F ).

Clearly, p∗ ◦ i∗ = Id. Thus we have a decomposition

A0(X,Md) =Md(F )⊕A
0
(X,Md),
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where

A
0
(X,Md) = ker(p∗).

If X is an algebraic group we will consider such a decomposition with respect to the unit p of
the group.

The homotopy invariance theorem [10, Prop. 2.2] states that the canonical homomorphism

Md(F )→ A0(A1,Md)

is an isomorphism and

A1(A1,Md) = 0.

Example 2.1. The localization exact sequence for the pair (Gm,A
1),

0→ A0(A1,Md)→ A0(Gm,Md)
∂−→ A0(SpecF,Md−1)→ A1(A1,Md)

and the homotopy invariance property show that the boundary homomorphism ∂ induces an
isomorphism

A
0
(Gm,Md) 'Md−1(F ).

In fact, this isomorphism is the inverse to αF . Indeed, by the multiplicative property, it is
sufficient to check the property in the case d = 1 and M = K the Milnor’s K-theory. But in
this case the property is evident.

The boundary homomorphisms ∂ have a nice functorial property.

Proposition 2.2. ([10, Prop. 4.4]) Let h : Y → Y ′ be a flat morphism of schemes of constant
relative dimension, Z ′ ⊂ Y ′ a closed subscheme, U ′ = Y ′ \Z ′. Set Z = h−1(Z ′), U = h−1(U ′).
Then the following diagram is commutative

A0(U ′,Md)
∂′−−−−→ A0(Z ′,Md−1)y

y

A0(U,Md)
∂−−−−→ A0(Z,Md−1)

(here the vertical homomorphisms are the inverse images and the horizontal ones are the bound-
ary maps associated to the pairs (U ′, Y ′) and (U, Y )).

2.2. The scheme SA. We consider the torus TA as an open subscheme in the affine space
A(A) of the algebra A. Let ZA be the complementary closed subscheme in A(A). The purpose
of this section is to define an open subscheme SA ⊂ ZA.

Consider first the split case A = F n. Then TA = Gm
n is an open subscheme in A(A) = An

and the closed subscheme ZA ⊂ An is given by the equation X1X2 . . . Xn = 0. Denote by SA

the open subscheme in ZA consisting of n-tuples (x1, x2, . . . , xn) such that exactly one of the
xi is zero. In other words, SA is obtained from ZA by removing all pairwise intersections of
the hyperplanes in An given by Xi = 0. Equivalently, SA is the smooth locus of ZA. Clearly,
SA is the disjoint union of n copies of the torus Gm

n−1. We will consider SA as a torus over
Spec(A).

Let us give an algebraic description of SA in the split case. We have ZA = SpecC where

C = F [X1, X2, . . . , Xn]/(X1X2 · · ·Xn).

Let s be the class in C of the following polynomial:
n∑

i=1

∏

j 6=i

X1 · · · X̂j · · ·Xn.
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We set

SA = SpecCs

(Cs is the localization of C by s). Thus SA is a principal open subscheme in ZA. Let Ci be
the Laurent polynomial ring

F [X±11 , . . . , X̂±1i , . . . , X±1n ].

Denote gi the ring homomorphism

Cs → Ci, f(X1, . . . , Xi, . . . , Xn) 7→ f(X1, . . . , 0, . . . , Xn).

Then the collection (gi) defines an isomorphism

Cs '
n∏

i=1

Ci,

i.e. SA is indeed a disjoint union of n copies of an (n− 1)-dimensional split torus, so that SA

is a scheme over A = Fn. The unit elements of all tori SpecC i give rise to the unit element of
SA, a morphism SpecA→ SA.

In general, when the étale algebra A of dimension n is not necessarily split, we have an action
of the absolute Galois group Γ on the set of indeterminates Xi above by permutations. (Étale
F -algebras correspond to finite Γ-sets and we identify the set corresponding to A with the set
of indeterminates.) We have

TA = Spec
(
Fsep[X

±
1 , X

±
2 , . . . , X

±
n ]
)Γ
,

A(A) = Spec
(
Fsep[X1, X2, . . . , Xn]

)Γ
,

ZA = Spec
(
Fsep[X1, X2, . . . , Xn]/(X1X2 . . . Xn)

)Γ
= Spec

(
Csep

)Γ
.

The element s is Γ-invariant. We define

SA = Spec(Csep)
Γ
s .

Also,

SA = Spec
( n∏

i=1

(Ci)sep
)Γ

where Γ acts naturally by permutations on the factors of the product in such a way that

(Fn)Γ = A.

Thus, A is a subalgebra in (Csep)
Γ
s and hence the scheme SA is equipped with a structure

morphism

SA → SpecA

of a scheme over A. As above, there is the unit point

SpecA→ SA.

Hence we have a canonical presentation

A0(SA,Mq) =Mq(A)⊕A
0
(SA,Mq).(13)

If A and B are two étale F -algebras, then

SA×B = SA × TB + TA × SB

(here + stands for the disjoint union).
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2.3. Definition of βA. We define in this section a homomorphism

βA : Invd(TA,M)→Md−1(A)

and prove later that βA is the inverse of αA. The homomorphism βA is a composition of three
homomorphisms. The first is the embedding

βA1 : Invd(TA,M) ↪→ A
0
(TA,Md)

[9, Theorem 2.3, Lemma 1.9] given by evaluation of invariants at the generic point of TA.
The second homomorphism is the restriction of the connecting homomorphism associated to

the pair
(
TA,A(A)

)
,

βA2 : A
0
(TA,Md)

∂−→ A0(ZA,Md−1).

Lemma 2.3. βA2 is injective.

Proof. Consider the localization exact sequence for the pair
(
TA,A(A)

)
:

A0(A(A),Md)→ A0(TA,Md)
∂−→ A0(ZA,Md−1).

By homotopy invariance, the first term is canonically isomorphic to Md(F ) and hence the first
homomorphism in the sequence is the canonical embedding of Md(F ) into A0(TA,Md), whence
the result.

The third homomorphism is the restriction (inverse image) to the open subscheme SA ⊂ ZA,

βA3 : A0(ZA,Md−1)→ A0(SA,Md−1).

The exactness of the localization sequence for the pair (SA, ZA) implies that βA3 is also injective.
We then set

β
A
= βA3 ◦ βA2 ◦ βA1 : Invd(TA,M)→ A0(SA,Md−1),

and we proceed to prove that the image of this map is in Md−1(A). The map βA may then be

defined as β
A
viewed as a map Invd(TA,M)→Md−1(A).

We make some preliminary observations on the map β
A
. First, it is clear that β

A
commutes

with base field change and norms under finite field extensions. Next, suppose A and B are étale
F -algebras. Since SA×B = SA × TB + TA × SB , we have

A0(SA×B ,Md−1) = A0(SA × TB ,Md−1)⊕A0(TA × SB ,Md−1).(14)

The inverse images with respect to the projections SA × TB → SA and TA × SB → SB define
the right vertical map in the diagram

Invd(TA,M)⊕ Invd(TB ,M)
β

A
⊕β

B

−−−−−→ A0(SA,Md−1)⊕A0(SB ,Md−1)∥∥∥
y

Invd(TA×B ,M)
β

A×B

−−−−→ A0(SA×B ,Md−1).

(15)

Lemma 2.4. Diagram (15) is commutative.
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Proof. The proof is quite technical. Since the roles of A and B are symmetric, it suffices to
prove commutativity of the diagram

Invd(TA,M)
β

A

−−−−→ A0(SA,Md−1)y
y

Invd(TA×B ,M)
β

A×B

−−−−→ A0(SA×B ,Md−1)

where the vertical homomorphisms are induced by the projection A×B → A.

The homomorphism β
A

is defined as the composition of three homomorphisms, so we need
to prove commutativity of a few diagrams. The first diagram is

Invd(TA,M)
βA
1−−−−→ A0(TA,Md)y

y

Invd(TA×B ,M)
βA×B
1−−−−→ A0(TA×B ,Md).

The horizontal homomorphisms β1 are given by the values at the generic points. The right ver-
tical homomorphism, the inverse image homomorphism, is induced by the inclusion of function
fields at the generic points [10, Lemma 12.8]. The commutativity readily follows.

The next diagram is

A0(TA,Md)
βA
3 ◦β

A
2−−−−→ A0(SA,Md−1)y

y

A0(TA×B ,Md)
βA×B
3 ◦βA×B

2−−−−−−−−→ A0(SA×B ,Md−1).

Here the right vertical homomorphism is induced by the projection SA × TB → SA and the
decomposition (14).

First, we represent the composition β3 ◦ β2 as the boundary map for a certain pair. Denote
A(A)′ the open subset

A(A) \ (ZA \ SA)
in A(A). Then TA is an open subscheme in A(A)′ and A(A)′ \ TA = SA. By Proposition 2.2,
applied to the inclusion h : A(A)′ → A(A) and closed subscheme ZA ⊂ A(A) we get that the
composition βA3 ◦ βA2 coincides with the boundary map ∂A associated to the pair (SA,A(A)′).

Similarly, the composition βA×B3 ◦ βA×B2 coincides with the boundary map ∂A×B associated to
the pair (SA×B ,A(A×B)′).

Applying again Proposition 2.2 to the projection h : A(A)′ × TB → A(A)′ and the closed
subscheme SA ⊂ A(A)′ we get the commutative diagram

A0(TA,Md)
∂A

−−−−→ A0(SA,Md−1)y
y

A0(TA×B ,Md)
∂−−−−→ A0(SA × TB ,Md−1)

where ∂A (resp. ∂) is the boundary map with respect to the pair (SA,A(A)′) (resp. (SA ×
TB ,A(A)′ × TB)).
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Again, by Proposition 2.2 applied to the open embedding h : A(A)′× TB → A(A×B)′ and
the closed subscheme SA×B ⊂ A(A×B)′ we get the commutative diagram:

A0(TA×B ,Md)
∂A×B

−−−−→ A0(SA×B ,Md−1)∥∥∥
y

A0(TA×B ,Md)
∂−−−−→ A0(SA × TB ,Md−1).

The combination of the last two diagrams gives the commutativity we need.

Let A = L1× · · · ×Lk be the decomposition of an étale F -algebra A into a product of fields.
The height of A is the maximum of the degrees [Li : F ]. Thus, the height of A is 1 if and only if
A splits. The following proposition gives the final step in the definition of βA. It will be proved
by induction on the height of A.

Proposition 2.5. For any étale F -algebra A,

β
A(

Invd(TA,M)
)
⊂Md−1(A).

Proof. Consider the composition

γA : Invd(TA,M)
β

A

−−→ A0(SA,Md−1)→ A
0
(SA,Md−1),

where the second homomorphism is the natural projection. To prove the proposition, it suffices
to show that γA = 0. Arguing by induction on the height of A and using Lemma 2.4, we may
assume A = L is a field. If L = F , then SA = SpecF , Md−1(A) = A0(SA,Md−1), and the
claim is clear.

If L 6= F , we extend scalars to L and use the fact that A⊗F L = A×A′ for some algebra A′,
so the height of A⊗F L is less than the height of A. By induction, the bottom homomorphism
in the commutative diagram

Invd(TA,M)
γA

−−−−→ A
0
(SA,Md−1)y

y

Invd
(
(TA)L,M

) (γA)L−−−−→ A
0(
(SA)L,Md−1

)

is trivial. It remains to notice that the right vertical homomorphism is injective: this is because
(SA)L is a union of two varieties, one of which splits off a copy of SA since A⊗F L = A×A′.

2.4. Proof of βA = (αA)−1. Since βA is injective, as it is the composition of three injective
maps, it suffices to prove that βA ◦αA = Id. We prove this by induction on the height of A. By
Lemma 2.4, we may assume that A = L is a field. If L = F then by the multiplicative property
it is sufficient to consider the case where d = 1 and M = K is Milnor’s K-theory. In that case
the statement is obvious.

Since the height of the étale algebra A⊗FL over L is less than the height of A, the composition
in question for the algebra A⊗F L is the identity by induction. The homomorphisms α and β
commute with the norms for the field extension L/F , and the norm homomorphism

Md−1(A⊗F L)→Md−1(A)

is surjective, since A⊗F L = A×A′ splits off a copy of A. The statement follows.
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3. Invariants of torsors under roots of unity

In this section, we prove Corollaries 1.2, 1.4, 1.5 and 1.6. The basic tool is the following easy
lemma, whose proof is left to the reader:

Lemma 3.1. Let P
i−→ Q

j−→ R be natural transformations of functors from FieldsF to Groups,
and let M be a cycle module over F . If for every field extension L/F the sequence

P (L)
iL−→ Q(L)

jL−→ R(L)→ 1

is exact, then the following sequence is exact for every d ≥ 0:

0→ Invd(R,M)
j∗−→ Invd(Q,M)

i∗−→ Invd(P,M).

3.1. Proof of Corollary 1.2. The natural transformation ϕ of (1) fits in the following se-
quence

Gm
n−→ Gm

ϕ−→ H1(µn),

to which Lemma 3.1 may be applied. We thus obtain the exact sequence at the top of the
following diagram:

0→ Invd
(
H1(µn),M

) ϕ∗−−−−→ Invd(Gm,M)
n∗−−−−→ Invd(Gm,M)

αF

x
xαF

Md−1(F )
n−−−−→ Md−1(F ).

It is easily verified that the diagram commutes. Since the vertical maps are isomorphisms
by Theorem 1.1, Corollary 1.2 follows.

3.2. Proof of Corollary 1.4. The proof is completely similar to the preceding one. We apply
Lemma 3.1 to the sequence of natural transformations

RK/F (Gm)
n−→ RK/F (Gm)

ϕ−→ H1
(
RK/F (µn)

)
,

and obtain the exact sequence at the top of the following commutative diagram, whose vertical
maps are isomorphisms:

0→ Invd
(
H1

(
RK/F (µn)

)
,M

) ϕ∗−−−−→ Invd
(
RK/F (Gm),M

) n∗−−−−→ Invd
(
RK/F (Gm),M

)

αK

x
xαK

Md−1(K)
n−−−−→ Md−1(K).

3.3. Proof of Corollary 1.5. From the exact sequence (6), we derive the sequence of natural
transformations

RK/F (Gm)
g1−→ RK/F (Gm)

ϕ−→ H1(µn[K])

to which Lemma 3.1 may be applied. It remains to identify the map ` which makes the following
diagram commute:

0→ Invd
(
H1(µn[K]),M

) ϕ∗−−−−→ Invd
(
RK/F (Gm),M

) g∗1−−−−→ Invd
(
RK/F (Gm),M

)

αK

x
xαK

Md−1(K)
`−−−−→ Md−1(K).
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Let L ∈ FieldsF . For t ∈ (K ⊗F L)×, we have

(g1)L(t) = tnNK⊗L/L(t)
−m.

Therefore, for u ∈Md−1(K),

g∗1
(
αK(u)

)
: t 7→ nNK⊗L/L(t · uK⊗L)−mNK⊗L/L(NK⊗L/L(t) · uK⊗L).

By the projection formula, we have (writing simply N for NK⊗L/L)

N(N(t) · uK⊗L) = N(t) ·N(uK⊗L) = N
(
t ·N(uK⊗L)K⊗L

)
.

Moreover, N(uK⊗L)K⊗L = uK⊗L + uK⊗L. Therefore, the image of t under g∗1
(
αK(u)

)
can be

written as

N
(
t · (nuK⊗L −m(uK⊗L + uK⊗L))

)
= N

(
t · ((m+ 1)uK⊗L −muK⊗L)

)
.

It follows that the map ` is given by

`(u) = (m+ 1)u−mu.

To finish the proof, observe that if u ∈ ker `, then

(m+ 1)u = mu

hence, taking the image of each side under ,

(m+ 1)u = mu.

These two equations are equivalent to nu = u+u = 0. Thus, for every invariant ι : H1(µn[K])→
Md, there is a uniquely determined element u ∈Md−1(K) satisfying nu = u+ u = 0 such that
for every field extension L/F and every t ∈ L×,

ϕ∗(ι)L(t) = NK⊗L/L(t · uK⊗L).

Now, by definition we have

ϕ∗(ι)L(t) = ιL
(
ϕL(t)

)
.

If (x, y) ∈ P (L), i.e., if x ∈ L× and y ∈ (K ⊗ L)× are such that NK⊗L/L(y) = xn, then

(x, y)n = ϕL(yx
−m) (see equation (7)), hence

ιL
(
(x, y)n

)
= ϕ∗(ι)L(yx

−m) = NK⊗L/L(y · uK⊗L)−mx ·NK/F (u)L.

The proof of Corollary 1.5 is thus complete.

3.4. Proof of Corollary 1.6. When n is even, n = 2m, we apply Lemma 3.1 to the following
sequence of natural transformations derived from the exact sequence (8):

Gm×RK/F (Gm)
g2−→ Gm×RK/F (Gm)

ϕ−→ H1(µn[K]).

We thus obtain the exact sequence

0→ Invd(H1(µn[K]),M)
ϕ∗−→ Invd(Gm×RK/F (Gm),M)

g∗2−→ Invd(Gm×RK/F (Gm),M).

(16)

Let ` be the endomorphism of Md−1(F ×K) =Md−1(F )×Md−1(K) defined by

`(u, v) = (NK/F (v), uK +mv).
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Computation shows that the following diagram commutes:

Md−1(F ×K)
`−−−−→ Md−1(F ×K)

αF×K

y
yαF×K

Invd(Gm×RK/F (Gm),M)
g∗2−−−−→ Invd(Gm×RK/F (Gm),M).

Therefore, the exact sequence (16) shows that for every invariant ι : H1(µn[K]) → Md there
exist u ∈ Md−1(F ), v ∈ Md−1(K) satisfying NK/F (v) = 0 and uK + mv = 0 such that for

L ∈ FieldsF and x ∈ L×, z ∈ (K ⊗ L)×,

ιL
(
(x, xmzz−1)n

)
= x · uL +NK⊗L/L(z · vK⊗L).

This completes the proof of Corollary 1.6.

4. Rost invariants

In this section, we prove Theorems 1.11, 1.14 and 1.15. In each case, the idea is to reduce the
situation by scalar extension to a case where the Rost invariant has been computed. Indeed, its
functorial property implies that the Rost invariant is preserved under scalar extension, hence
I(G) is mapped by scalar extension onto I(GL), for every absolutely simple, simply connected
linear algebraic group over F and every field extension L/F .

4.1. Proof of Theorem 1.11. We use the notation of section 1.4.2. Let ι be a generator
of I

(
SU(B, τ)

)
. Corollary 1.6 shows that there exist Brauer classes X ∈ Br(F ) and Y ∈

Br(K) such that for every field extension L/F and every x ∈ L×, y ∈ (K ⊗F L)× such that
NK⊗L/L(y) = xn,

ιL
(
(x, y)n

)
= x ·XL +NK⊗L/L(z · YK⊗L),

where z ∈ (K ⊗F L)× is such that yx−n/2 = zz−1. We have to show that X = [D(B, τ)] and
Y = [B] for a suitable choice of ι.

Assume first that B is split, B = EndK V for some n-dimensional K-vector space V , and τ
is the adjoint involution with respect to some hermitian form h on V . Let q : V → F be the
trace form of h, defined by q(v) = h(v, v). The description of the Rost invariant in [5, (31.44)]
shows that

ιL
(
(x, y)n

)
= e3(〈x〉qL − qL) ∈ H3(L, µ2),

where e3 is the Arason invariant of quadratic forms. We have

e3(〈x,−1〉 · qL) = (x)2 ∪ e2(qL) in H3(L, µ2)

where e2 is the Witt–Clifford invariant. On the other hand, by [11, p. 3502], e2(q) is the
Brauer class of the quaternion algebra (K, (−1)n/2 deth), which is also the Brauer class of the
discriminant algebra D(B, τ), by [5, (10.35)]. Theorem 1.11 is thus proved in the case where B
is split.

To reduce the general situation to this case, we extend scalars to the function field E of the
transfer of the Severi–Brauer variety of B from K to F . Since the Rost invariant is preserved
under scalar extension, and since Theorem 1.11 is proved in the case where B is split, we must
have

XE = [D(B, τ)E ] (and YK⊗E = 0).

Now, the map Br(F )→ Br(E) is injective, by [7, Corollary 2.12], hence X = [D(B, τ)].

2The formula for the Witt–Clifford invariant of q in [11, p. 350] misses the (−1)n/2 factor.
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To determine Y , we extend scalars to K. For every field extension L/K, we have L⊗F K =
L × L, and the restriction of the functor H1(µn[K]) to FieldsK is naturally equivalent to the

restriction ofH1(µn), under the natural transformation which maps (x, y)n to (y1)n, for x ∈ L×,
y = (y1, y2) ∈ (K ⊗F L)× = L× × L× such that xn = y1y2. On the other hand, we have
B ⊗L L = BL × BL (where BL = B ⊗K L) and SU(B ⊗F L, τ ⊗ Id) ' SL(BL), and we may
use the description of I

(
SL(BL)

)
in Theorem 1.9. For a suitable choice of the generator ι, we

may thus assume that for every L ∈ FieldsK , x, y1, y2 ∈ L× such that xn = y1y2,

x · [D(B, τ)L] +NL×L/L(z1 · YL × z2 · Y L) = y1 · [BL]

where (z1, z2) ∈ L× ×L× is such that (y1x
−n/2, y2x

−n/2) = (z1z
−1
2 , z2z

−1
1 ). Given z1 ∈ L×, we

may set z2 = x = 1 and y1 = z1, y2 = z−11 , and the equality above yields

z1 · YL = z1 · [BL].

So, the invariants αK(Y ), αK([B]) : Gm → H3
(
Q/Z(2)

)
coincide, and by Theorem 1.1 it

follows that Y = [B].

4.2. Proof of Theorem 1.14. We use the same notation as in section 1.4.5.

4.2.1. Suppose n is odd. The center of Spin(A, σ) is then µ4, and, by Corollary 1.2, for any
generator ι of I

(
Spin(A, σ)

)
, there exists X ∈ Br(F ) such that for L ∈ FieldsF and x ∈ L×,

ιL
(
(x)4

)
= x ·XL.

We have to show that X = [C+(A, σ)] for a suitable choice of ι.
Consider first the case where A is split, A = EndF V for some 2n-dimensional F -vector space

V and σ is the adjoint involution of some quadratic form q on V of trivial discriminant. From
the description of the Rost invariant of Spin(V, q) in [5, (31.42)], it follows that for L ∈ FieldsF

and x ∈ L×,

ιL
(
(x)4

)
= e3(〈x〉qL − qL) = (x)2 ∪ e2(q)L

where, as in the preceding section, e3 denotes the Arason invariant and e2 the Witt–Clifford
invariant. Since q has trivial discriminant, the Clifford algebra of q is Brauer-equivalent to any
of the two factors of its even Clifford algebra, so

e2(q) = [C+(EndF V, σ)]

and the theorem is proved in this particular case.
The general case is reduced to the case where A is split by scalar extension to the fuction

field E of the Severi–Brauer variety of A. Thus, XE = [C+(A, σ)E ]. Since the only nontrivial
element in the kernel of the scalar extension map Br(F )→ Br(E) is [A], it follows that

X = [C+(A, σ)] or X = [C+(A, σ)] + [A].

However, we have [A] = 2[C+(A, σ)], so

[C+(A, σ)] + [A] = 3[C+(A, σ)] (= [C−(A, σ)]).

Therefore, substituting 3ι = −ι for ι if necessary, we may always assume X = [C+(A, σ)].
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4.2.2. Suppose n is even. The center of Spin(A, σ) is then µ2 × µ2. By Corollary 1.3, for any
generator ι of I

(
Spin(A, σ)

)
there exist X+, X− ∈ Br(F ) satisfying 2X+ = 2X− = 0 such

that for L ∈ FieldsF and (x+, x−) ∈ L× × L×,

ιL
(
(x+)2, (x

−)2
)
= x+ ·X+

L + x− ·X−L .
We have to show that X± = [C±(A, σ)] if n ≡ 2 mod 4 and X± = [C∓(A, σ)] if n ≡ 0 mod 4,
for a suitable choice of ι.

If A is split, A = EndF V for some 2n-dimensional F -vector space V and σ is the adjoint
involution of some quadratic form q on V with trivial discriminant, then we may use the explicit
description of the Rost invariant of Spin(q) in [5, (31.42)]. We thus obtain

ιL
(
(x+)2, (x

−)2
)
= e3(〈x+x−〉qL − qL) = (x+x−)2 ∪ e2(q)L.

As in the preceding section, we have

e2(q) = [C+(A, σ)] = [C−(A, σ)],

so the proof is complete in the case where A is split.
For the rest of this section, we assume A is not split. The next lemma yields a first relation

between X+ and X−.

Lemma 4.1. X+ +X− = [A].

Proof. Consider the exact sequence

1→ µ2 → Spin(A, σ)
χ−→ O+(A, σ)→ 1.

The kernel µ2 of the vector representation χ is diagonally embedded in the center µ2 × µ2 of
Spin(A, σ), and the Rost invariant on the image of H1(F, µ2) is known from [5, p. 441]: it is
the cup-product with [A], see the appendix. Therefore, for L ∈ FieldsF and x ∈ L×,

ιL
(
(x)2, (x)2

)
= x · [AL],

hence

x · (X+
L +X−L ) = x · [AL].

Thus, the invariants αF (X+ + X−) and αF ([A]) : Gm → H3
(
Q/Z(2)

)
coincide, and Theo-

rem 1.1 shows that X+ +X− = [A].

The rest of the proof proceeds by reduction to the case where (A, σ) is hyperbolic. In this
case, one of the Clifford factors C±(A, σ) is split, by [5, (8.31)]. The factors are not both split,
since their tensor product is Brauer-equivalent to A by [5, (9.14)].

Lemma 4.2. Suppose (A, σ) is hyperbolic of degree 2n = 4m and C+(A, σ) is split. The
image of the connecting map PGO+(A, σ)→ H1(F, µ2)×H1(F, µ2) in the cohomology sequence
associated with

1→ µ2 × µ2 → Spin(A, σ)→ PGO+(A, σ)→ 1

contains
(
(λm)2, (λ

m+1)2
)
for all λ ∈ F×.

Proof. Since (A, σ) is hyperbolic, there is an idempotent e ∈ A such that σ(e) = 1 − e. As
in [5, §8.E], let ρ(e) = c(eAe)m ⊂ C(A, σ), where c : A → C(A, σ) is the canonical map.
The set ρ(e) is a 1-dimensional F -vector space, and the left multiplication map C(A, σ) →
EndF

(
C(A, σ)ρ(e)

)
is onto with nontrivial kernel. This map therefore factors through an iso-

morphism

C+(A, σ)
∼→ EndF

(
C(A, σ)ρ(e)

)
(17)
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(since C+(A, σ) is split and C−(A, σ) is not).
Now, fix λ ∈ F× and let g = eλ + (1 − e). Computation shows that σ(g)g = λ, hence

g ∈ GO(A, σ). We claim that the induced automorphism C(g) of C(A, σ) restricts to the
identity on the center of C(A, σ) and to multiplication by λm on ρ(e). It suffices to prove the
claim after scalar extension to a splitting field of A. We may thus assume that A = EndF V
for some F -vector space V , that σ is adjoint to a hyperbolic quadratic form q on V , and that
e is the projection onto a totally isotropic subspace U ⊂ V , parallel to some totally isotropic
complement W ⊂ V . Let u1, . . . , un be a basis of U and w1, . . . , wn be the basis of W such
that q(ui + wj) = δij . Then ρ(e) = u1 . . . unF and the center of C(A, σ) is spanned by 1 and
(u1 + w1)(u1 − w1) · · · (un − wn). The automorphism C(g) of C(A, σ) = C0(V, q) maps v1 · v2
to λ−1g(v1) · g(v2), and g restricts to multiplication by λ on U and to the identity on W . The
claim then follows from a straightforward computation.

It follows from the claim that g is a direct similitude, and that C(g) restricts to an F -linear
map g∗ : C(A, σ)ρ(e) → C(A, σ)ρ(e). Let ω+ ∈ C+(A, σ) be the preimage of g∗ under the
isomorphism (17), i.e., an element such that (ω+, 0) ∈ C+(A, σ)×C−(A, σ) = C(A, σ) satisfies
(ω+, 0) · ξ = g∗(ξ) for all ξ ∈ C(A, σ)ρ(e). Since C(g) is an automorphism, we have

(ω+u(ω+)−1, 0) · ξ =
(
C(g)(u), 0

)
· ξ for u ∈ C+(A, σ), ξ ∈ C(A, σ)ρ(e),

hence C(g) = Int(ω+, ω−) for some ω− ∈ C−(A, σ). By definition, the image of gF× ∈
PGO+(A, σ) under the connecting map to H1(F, µ2)×H1(F, µ2) is

(
(σ(ω+)ω+)2, (σ(ω

−)ω−)2
)
,

where σ is the canonical involution on C(A, σ). The restriction of σ to C+(A, σ) corresponds
under (17) to the adjoint involution with respect to the bilinear form

b : C(A, σ)ρ(e)× C(A, σ)ρ(e)→ ρ(e)

defined by b(ξ, η) = σ(ξ)η, see [3, p. 334]. Since g∗ is the restriction of an automorphism
of C(A, σ) and since it restricts to multiplication by λm on ρ(e), it is a similitude of b with
multiplier λm, hence σ(ω+)ω+ = λm. On the other hand, Proposition (13.33) of [5] yields

σ(ω+)ω+ · σ(ω−)ω− ≡ σ(g)g mod F×2,

hence
(
σ(ω−)ω−

)
2
= (λm+1)2.

Corollary 4.3. If (A, σ) is hyperbolic of degree 2n = 4m and C+(A, σ) is split, then X+ = 0
if m is odd and X− = 0 if m is even.

Proof. For every L ∈ FieldsF , the map ιL vanishes on the image of PGO+(AL, σ), since this
image becomes trivial in H1

(
L,Spin(A, σ)

)
. From Lemma 4.2, it follows that for all λ ∈ L×,

λm ·X+
L + λm+1 ·X−L = λ · (mX+

L + (m+ 1)X−L ) = 0.

Therefore, the invariant αF (mX++(m+1)X−) : Gm → H3
(
Q/Z(2)

)
is trivial, and it follows

from Theorem 1.1 that mX+ + (m+ 1)X− = 0. Since 2X+ = 2X− = 0, this equation implies
that X+ = 0 if m is odd and X− = 0 if m is even.

We may now conclude the proof of Theorem 1.14. The scheme of isotropic ideals of reduced
dimension n in (A, σ) has two irreducible components V +, V −, and the Brauer kernel of the
scalar extension map to F (V ±) is generated by [C±(A, σ)], see [7, Corollary 2.11]. The preceding
corollary therefore yields

X+ = 0 or X+ = [C+(A, σ)] if m is odd

X− = 0 or X− = [C+(A, σ)] if m is even.
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Similarly, interchanging + and −, we have

X− = 0 or X− = [C−(A, σ)] if m is odd

X+ = 0 or X+ = [C−(A, σ)] if m is even.

Taking into account the relation between X+ and X− in Lemma 4.1, the only solution for X+,
X− is X+ = [C+(A, σ)], X− = [C−(A, σ)] if m is odd and X+ = [C−(A, σ)], X− = [C+(A, σ)]
if m is even. The proof is thus complete.

4.3. Proof of Theorem 1.15. We use the notation of section 1.4.6.

4.3.1. Suppose n is odd. Let ι be a generator of I
(
Spin(A, σ)

)
. Corollary 1.6 shows that there

exist Brauer classes X ∈ Br(F ) and Y ∈ Br(Z) such that for L ∈ FieldsF and x ∈ L×,
y ∈ (Z ⊗F L)× such that NZ⊗L/L(y) = x4,

ιL
(
(x, y)4

)
= x ·XL +NZ⊗L/L(z · YZ⊗L),

where z ∈ (Z ⊗F L)× is such that yx−2 = zz−1. We have to show that X = [A] and Y =
[C(A, σ)] for a suitable choice of ι.

The inclusion µ2 ↪→ µ4[Z] induces a map H1(L, µ2) → H1(L, µ4[Z]) which carries (x)2 to

(x, x2)4 for x ∈ L× (see [5, p. 444]). Since the Rost invariant on the image of H1(L, µ2) is
multiplication by [A] (see the appendix), we get

ιL
(
(x, x2)4

)
= x ·XL = x · [AL]

for x ∈ L×, hence X = [A].
To determine Y , we extend scalars to Z to reduce to the inner case, and argue as in section 4.1.

Observe that

C(AZ , σZ) = C(A, σ)⊗F Z = C(A, σ)× C(A, σ),

so C+(AZ , σZ) = C(A, σ). If ι is mapped by scalar extension on the generator described in
Theorem 1.14, then for L ∈ FieldsZ , x, y1, y2 ∈ Z× such that x4 = y1y2, we have

x · [AL] +NL×L/L(z1 · YL × z2 · Y L) = y1 · [C(A, σ)L]

where (z1, z2) ∈ Z× × Z× is such that (y1x
−2, y2x

−2) = (z1z
−1
2 , z2z

−1
1 ). Given z1 ∈ Z×, we

may set z2 = x = 1 and y1 = z1, y2 = z−11 , and the equality above yields

z1 · YL = z1 · [C(A, σ)L].

Therefore, Y = [C(A, σ)].

4.3.2. Suppose n is even. Let ι be a generator of I(Spin
(
A, σ)

)
. By Corollary 1.4, there exists

a Brauer class X ∈ Br(Z) such that for L ∈ FieldsF and x ∈ (Z ⊗F L)×,
ιL
(
(x)2

)
= NZ⊗L/L(x ·XZ⊗L).

We have to show that X = [C(A, σ)] if n ≡ 2 mod 4 and X = [C(A, σ)] if n ≡ 0 mod 4, for a
suitable choice of ι.

As in the preceding case, we extend scalars to Z to reduce to the inner case, and we observe
that

C(AZ , σZ) = C(A, σ)⊗F Z = C(A, σ)× C(A, σ).

For L ∈ FieldsZ , we have Z⊗F L = L×L under a map which carries z⊗` to (z`, z`). Therefore,
the formula above for ιL yields for x1, x2 ∈ L× (for a suitable choice of ι)

ιL
(
(x1)2, (x2)2

)
= NL×L/L(x1 ·XL × x2 ·XL) = x1 ·XL + x2 ·XL.



26 A.S. MERKURJEV, R. PARIMALA, AND J.-P. TIGNOL

Comparing with Theorem 1.14, we obtain

x1 ·XL + x2 ·XL =

{
x1 · [C(A, σ)L] + x2 · [C(A, σ)L] if n ≡ 2 mod 4,

x1 · [C(A, σ)L] + x2 · [C(A, σ)L] if n ≡ 0 mod 4.

Therefore, the invariant αZ(X) coincides with αZ
(
[C(A, σ)]

)
if n ≡ 2 mod 4, with αZ

(
[C(A, σ)]

)

if n ≡ 0 mod 4, and Theorem 1.1 completes the proof.

5. Tits classes

Let G be an absolutely simple, simply connected linear algebraic group over an arbitrary
field F whose characteristic is not a special prime of G, so that the center C of G is a smooth
algebraic group scheme. The Tits class tG is defined in [5, p. 426] as follows: consider the exact
sequence

1→ C → G→ G→ 1,

where G = G/C is the adjoint group corresponding to G, and the connecting map

δ : H1(F,G)→ H2(F,C)

in the corresponding exact sequence. The setH1(F,G) classifies the inner forms ofG; it contains
an element νG corresponding to the unique quasi-split inner form of G. We let

tG = −δ(νG) ∈ H2(F,C).

The Tits class tG is explicitly determined for various groups G in [5, pp. 427–428]. Consider
for instance G = Spin(A, σ) where σ is an orthogonal involution on a central simple F -algebra
A of degree 2n with n even, and let Z be the center of the Clifford algebra C(A, σ). Then
C = µ2 × µ2 if discσ = 1 and C = RZ/F (µ2) if discσ 6= 1, and the Tits class is related to the
Clifford algebra as follows:

tG =

{(
[C+(A, σ)], [C−(A, σ)]

)
∈ H2(F, µ2 × µ2) if discσ = 1,

[C(A, σ)] ∈ H2
(
F,RZ/F (µ2)

)
= H2(Z, µ2) if discσ 6= 1.

Fix an isomorphism Z ⊗F Fsep ' Fsep × Fsep, so that C(Fsep) = µ2(Fsep) × µ2(Fsep) (with
a nontrivial Galois action if discσ 6= 1), and define a pairing C(Fsep) × C(Fsep) → Q/Z(2) as
follows:

(
(x1, x2), (y1, y2)

)
7→

{
x1y1 + x2y2 if n ≡ 2 mod 4,

x1y2 + x2y1 if n ≡ 0 mod 4.

The following proposition is clear:

Proposition 5.1. The generator of I
(
Spin(A, σ)

)
in Theorems 1.14 and 1.15 can be written

in the form

ιL(ξ) = ξ ∪ tG
for ξ ∈ H1(L,C), where the cup-product is calculated for the pairing above.

In the rest of this section, we show that analogous results hold when n is odd, and also for
G of type An−1 with n even. In each case, the center has the form µ2m[K] for some quadratic
field extension K/F and some integer m. We may consider the restriction map

res : H2(F, µ2m[K])→ H2(K,µ2m)

and the map λ∗ induced by the m-th power map λ(x) = xm,

λ∗ : H
2(F, µ2m[K])→ H2(F, µ2).
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The following proposition was pointed out to us by M. Rost (see also [1, Proposition 2.10]):

Proposition 5.2. The map (λ∗, res) : H
2(F, µ2m[K]) → H2(F, µ2) ×H2(K,µ2m) is injective.

Its image consists of the pairs (ξ, η) such that res(ξ) = λ∗(η) and cor(η) = 0.

Proof. Since H1
(
F,Gm×RK/F (Gm)

)
= 1, the cohomology sequence associated to (8) yields

the exact sequence

1→ H2(F, µ2m[K])
(λ∗,res)−−−−−→ Br(F )× Br(K)

(g2)∗−−−→ Br(F )× Br(K).

The proposition follows.

Corollary 5.3. For every invariant ι : H1(µ2m[K])→ H3
(
Q/Z(2)

)
, there exists a unique ele-

ment θ ∈ H2(F, µ2m[K]) such that for every L ∈ FieldsF , ϕ ∈ H1(L, µ2m[K]),

ιL(ϕ) = ϕ ∪ θL.
Proof. Corollary 1.6 shows that for every invariant ι : H1(µ2m[K]) → H3

(
Q/Z(2)

)
there exist

uniquely determined elements u ∈ H2
(
F,Q/Z(1)

)
, v ∈ H2

(
K,Q/Z(1)

)
satisfying uK +mv = 0

andNK/F (v) = 0 such that for L ∈ FieldsF and x ∈ L×, y ∈ (K⊗FL)× withNK⊗L/L(y) = x2m,

ιL
(
(x, y)2m

)
= x · uL +NK⊗L/L(z · vK⊗L),

where z ∈ (K ⊗F L)× is such that y = xmzz−1. Taking the norm of uK + mv = 0, we
get 2u = 0 since NK/F (v) = 0, hence 2mv = 0. Therefore, we may represent u by an element

ξ ∈ H2(F, µ2) and v by an element η ∈ H2(K,µ2m) such that cor(η) = 0 and res(ξ)+λ∗(η) = 0,
where λ∗ : H

2(K,µ2m)→ H2(K,µ2) is induced by the m-th power map. Proposition 5.2 yields
a unique element θ ∈ H2(F, µ2m[K]) such that res(θ) = η and λ∗(θ) = ξ, and computation
shows that for x, y, z as above, x · uL +NK⊗L/L(z · vK⊗L) is represented by the cup-product
(x, y)2m ∪ θ for the canonical pairing

µ2m[K](Fsep)× µ2m[K](Fsep)→ µ2m[K](Fsep)
⊗2 = µ2m(Fsep)

⊗2 ↪→ Q/Z(2).

(Observe that (x, y)2m = (x, xm)2m(1, zz−1)2m and

(x, xm)2m = j∗(x)2, (1, zz−1)2m = cor′(z)2m,

where j∗ is induced by the inclusion µ2 ↪→ µ2m[K] and cor′ : H1(K,µ2m) → H1(F, µ2m[K]) is
the corestriction map.)

Corollary 5.4. With the same notation as in Theorem 1.11,

ιL(ϕ) = ϕ ∪ tSU(B,τ)

for every L ∈ FieldsF and ϕ ∈ H1(L, µn[K]).

Proof. In view of Theorem 1.11 and the proof of Corollary 5.3, it suffices to see that

res(tSU(B,τ)) = [B] and λ∗(tSU(B,τ)) = [D(B, τ)].

This is shown in [5, (31.8)].

Corollary 5.5. Use the same notation as in Theorem 1.15, and assume n is odd. Then

ιL(ϕ) = ϕ ∪ tSpin(A,σ)

for L ∈ FieldsF and ϕ ∈ H1(L, µ4[Z]).

Proof. It suffices to see that res(tSpin(A,σ)) = [C(A, σ)] and λ∗(tSpin(A,σ)) = [A]. This is proved
in [5, (31.11)].
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Appendix: the Rost invariant on the kernel of the vector representation

Let A be a central simple algebra of even degree over a field F of characteristic different
from 2, and let σ be an orthogonal involution on A. Consider the exact sequence

1→ µ2
i−→ Spin(A, σ)

χ−→ O+(A, σ)→ 1

where χ is the vector representation, and let ρ : H1
(
Spin(A, σ)

)
→ H3

(
Q/Z(2)

)
be the Rost

invariant.
The following proposition, stated without proof in [5, p. 441], is used in the proofs of Theo-

rems 1.14 and 1.15:

Proposition. For L ∈ FieldsF and x ∈ L×,
ρ
(
i∗(x)2

)
= x · [AL].

Proof. The composition ρ ◦ i∗ : H1(µ2) → H3
(
Q/Z(2)

)
is an invariant of H1(µ2). By Corol-

lary 1.2, there is a Brauer class X satisfying 2X = 0 such that for L ∈ FieldsF and x ∈ L×,
ρ
(
i∗(x)2

)
= x ·XL.

We have to show that X = [A].
If A is split, then the Rost invariant of a torsor in H1

(
Spin(A, σ)

)
only depends on its image

in H1
(
O+(A, σ)

)
, by [5, p. 437]. Therefore, ρ ◦ i∗ = 0, and X = 0 in this case.

For the rest of the proof, we may thus assume A is not split. Let σ be the canonical involution
on the Clifford algebra C(A, σ), and let Γ(A, σ) ⊂ C(A, σ)× be the Clifford group. Let t be an
indeterminate over F . The closed subscheme Vt ⊂ Γ(AF (t), σ) defined by the equation

σ(v)v = t

is a torsor under Spin(AF (t), σ) which represents i∗(t)2 ∈ H1
(
F (t),Spin(A, σ)

)
. Therefore, by

[2, Theorem B.11], ρ
(
i∗(t)2

)
= t ·XF (t) generates the kernel of the scalar extension map

res : H3
(
F (t),Q/Z(2)

)
→ H3

(
F (t)(Vt),Q/Z(2)

)
.

Since t is a spinor norm over F (t)(Vt), and since spinor norms are reduced norms up to squares
(see [8, §6]), we have t · [AF (t)] ∈ ker res. On the other hand, t · [AF (t)] 6= 0 since A is not split,
hence

t · [AF (t)] = t ·XF (t).

Taking residues at t, we obtain [A] = X.
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