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Abstract. An invariant for symplectic involutions on central simple algebras


of degree divisible by 4 over fields of characteristic different from 2 is defined


on the basis of Rost’s cohomological invariant of degree 3 for torsors under


symplectic groups. We relate this invariant to trace forms and show how


its triviality yields a decomposability criterion for algebras with symplectic


involution.


1. Introduction and Statement of Results


In contrast with orthogonal involutions, for which invariants corresponding to
the discriminant and Clifford algebras of quadratic forms are defined, no “classical”
invariant is known for symplectic involutions on central simple algebras, besides the
signature (see [6, (11.10)]). Using the cohomological invariant of degree 3 defined by
Rost for torsors under simply connected absolutely simple linear algebraic groups,
we introduce an invariant of symplectic involutions on central simple algeras of de-
gree multiple of 4 with values in the third Galois cohomology group of the center
with coefficients {±1} and give an alternative description in terms of trace forms.
We call this invariant discriminant since it is the first nontrivial invariant, and
because it is directly linked to the discriminant of hermitian forms, see Example 2.
Even though its definition is elementary, Rost’s computation of the invariants of
torsors under symplectic groups is needed to prove that there is no other cohomo-
logical invariant of degree 3 and to establish the relation with trace forms. In the
final section, we prove that symplectic involutions of trivial discriminant on central
simple algebras of degree 8 and index 4 afford a special type of decomposition. In
a sequel to this paper, the discriminant is used to give examples of non R-trivial
adjoint symplectic groups of even index.


1.1. Definition of the discriminant. Throughout this paper, F denotes a field
of characteristic different from 2. Let A be a finite-dimensional central simple F -
algebra, and θ : A → A be an anti-automorphism of order 2. We recall that θ is
called a symplectic involution on A if, after scalar extension to a splitting field,
θ is adjoint to an alternating form, see [6, (2.5)]. From now on, we suppose the
involution θ is of this type. In this case, the degree degA is necessarily an even
integer n = 2m.


The symplectic group Sp(A, θ) is the group scheme over F defined by


Sp(A, θ)(E) = {x ∈ A⊗F E | θ(x)x = 1}
for any commutative F -algebra E.
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Let Sym(A, θ) be the F -vector space of elements in A fixed by θ,


Sym(A, θ) = {x ∈ A | θ(x) = x}.
We denote by Sym(A, θ)× the set of units in Sym(A, θ),


Sym(A, θ)× = Sym(A, θ) ∩A×.
We recall that the pfaffian reduced norm is the homogeneous polynomial function


of degree m


Nrpθ : Sym(A, θ)→ F


uniquely determined by the following conditions:


Nrpθ(1) = 1 and Nrpθ(x)
2 = NrdA(x) for x ∈ Sym(A, θ),


see [6, (2.10)].
The cohomology set H1


(


F,Sp(A, θ)
)


can be represented as


H1
(


F,Sp(A, θ)
)


' Sym(A, θ)×/∼(1)


where ∼ is the equivalence relation defined by x ∼ y if and only if there exists
u ∈ A× such that y = uxθ(u), see [6, (29.24)].


Let Gm be the multiplicative group. The Kummer exact sequence


1→ µ2 → Gm


2−→Gm → 1


allows us to identify the cohomology sets H1(F, µ2) and H
2(F, µ2) respectively with


the quotient F×/F×2 and with the 2-torsion subgroup of the Brauer group. For all
x ∈ F×, we denote by (x)2 ∈ H1(F, µ2) the cohomology class associated to xF×2.
Similarly, we denote by [A] ∈ H2(F, µ2) the cohomology class associated to the
Brauer class of A. We define


∆θ : Sym(A, θ)× → H3(F, µ2)


as the map given by the cup-product


∆θ(s) =
(


Nrpθ(s)
)


2
∪ [A].


It follows from the properties of Nrpθ (see the proof of Proposition 1 below)
that ∆θ is well defined on the set of equivalence classes under the relation ∼. The
induced map on the quotient can be interpreted under the bijection (1) as the Rost
invariant of H1


(


F,Sp(A, θ)
)


, see [6, p. 440].
Since Nrpθ is homogeneous of degree m, we obtain, for α ∈ F× and s ∈


Sym(A, θ)×, the following relation


∆θ(αs) =
(


αmNrpθ(s)
)


2
∪ [A] =


{


∆θ(s) if m is even,


∆θ(s) + (α)2 ∪ [A] if m is odd.
(2)


Therefore, if m is even one can define a relative invariant for symplectic involu-
tions on A as follows:


Definition. Let A be a central simple algebra over F of degree n = 2m ≡ 0 mod 4.
Let θ and σ be symplectic involutions on A. There exists (see [6, (2.7)]) s ∈
Sym(A, θ)× such that


σ = Int(s) ◦ θ
where Int(s) denotes the inner automorphism associated with s,


Int(s)(x) = sxs−1 for x ∈ A.
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The element s is uniquely determined up to multiplication by an element of F×.
By (2), it follows that ∆θ(s) ∈ H3(F, µ2) only depends on σ, since m is even. We
call this element the discriminant of σ with respect to θ and denote it by ∆θ(σ).
Thus,


∆θ(σ) =
(


Nrpθ(s)
)


2
∪ [A] ∈ H3(F, µ2).


In the case m = 2, an analogue of this invariant has been studied in [6, §16.B],
where it is denoted by jθ(σ). Theorem (16.19) of [6] shows that this invariant
classifies, up to conjugation, symplectic involutions on a central simple algebra of
degree 4.


In section 2 we establish the following elementary result:


1. Proposition. (a) The discriminant ∆θ(σ) only depends on the conjugacy
classes of θ and σ, namely, if u, v ∈ A× and


θ′ = Int(u) ◦ θ ◦ Int(u)−1, σ′ = Int(v) ◦ σ ◦ Int(v)−1,
then


∆θ′(σ
′) = ∆θ(σ).


In particular, if σ and θ are conjugate, then ∆θ(σ) = 0.
(b) Let ρ, σ and θ be symplectic involutions on A; then


∆ρ(σ) = ∆ρ(θ) + ∆θ(σ) and ∆θ(σ) = ∆σ(θ).


If the Schur index indA divides 1
2 degA, i.e., if A ' M2(A0) for some central


simple F -algebra A0, then A carries hyperbolic symplectic involutions, such as
γ⊗θ0, where γ is the (unique) symplectic involution onM2(F ) and θ0 is an arbitrary
orthogonal involution onA0. Since all hyperbolic involutions are pairwise conjugate,
we may set ∆ = ∆θ for any hyperbolic symplectic involution θ.


2. Example. Consider the algebra A = EndQ V , where Q is a quaternion division
F -algebra and V is an m-dimensional Q-vector space. Symplectic involutions on A
are then adjoint to hermitian forms on V with respect to the conjugation involution
onQ. Suppose thatm is even and let σ be the involution adjoint to a fixed hermitian
form h on V . Let


h = 〈α1, . . . , αm〉
be the diagonalization of h relative to some orthogonal basis e of V (α1, . . . ,
αm ∈ F×), then


∆(σ) =
(


(−1)m/2α1 · · ·αm
)


2
∪ [Q].


Indeed, let θ be the hyperbolic involution adjoint to the hermitian form with di-
agonalization 〈1,−1, . . . , 1,−1〉 relative to the basis e. Then, identifying A with
Mm(Q) by e, we get


σ = Int diag(α1,−α2, . . . , αm−1,−αm) ◦ θ,
and we can compute ∆(σ) = ∆θ(σ) by Lemma 10(e) below.


Note that if V0 ⊂ V is the F -subspace spanned by e, then A = (EndF V0) ⊗Q,
and we obtain a decomposition σ = σ0⊗γ where σ0 is the involution adjoint to the
bilinear form on V0 with diagonalization 〈α1, . . . , αm〉 relative to e, and γ is the
canonical (conjugation) involution on Q.


This example can be slightly generalized:
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3. Example. Consider the algebra A = A0 ⊗F Q where Q is a quaternion F -
algebra and A0 is a central simple F -algebra. Let σ0 be an orthogonal involution
on A0, γ the canonical involution on Q, and


σ = σ0 ⊗ γ.


Suppose that indA0 divides 1
2 degA0. Then


∆(σ) = (discσ0)2 ∪ [Q],(3)


where discσ0 ∈ F×/F×2 is the discriminant of the orthogonal involution σ0 (see
[6, §7]). Indeed, let θ0 be a hyperbolic orthogonal involution on A0 and let x0 ∈
Sym(A0, θ0)


× be such that σ0 = Int(x0)◦θ0. The involution θ = θ0⊗γ is hyperbolic,
and we have σ = Int(x0 ⊗ 1) ◦ θ, so that


∆(σ) =
(


Nrpθ(x0 ⊗ 1)
)


2
∪ [A].


Thus, by Lemma 10(d), Nrpθ(x0 ⊗ 1) = NrdA0
(x0). Equation (3) follows, since


discσ0 is represented by NrdA0
(x0), and


(


NrdA0
(x0)


)


2
∪ [A0] = 0.


1.2. Trace forms. Let A be an arbitrary central simple F -algebra. For every
involution σ : A→ A, the associated trace form Tσ : A→ F is defined as follows:


Tσ(x) = TrdA
(


σ(x)x
)


where TrdA denotes the reduced trace. Denote by T+
σ the restriction of Tσ to


Sym(A, σ); this form can also be seen as the restriction to Sym(A, σ) of the form
TA : A→ F defined by


TA(x) = TrdA(x
2).


As is the case with involutions of the other types (see [6, §11]), the discriminant
of symplectic involutions can be expressed in terms of trace forms; indeed we have
the following result:


4. Theorem. Let A be a central simple algebra over F and let θ and σ be sym-
plectic involutions on A. The class in the Witt ring WF of the difference T+


σ −T+
θ


lies in the third power of the fundamental ideal, namely


T+
σ − T+


θ ∈ I3F.


Moreover, if e3 : I
3F → H3(F, µ2) denotes the Arason invariant, we obtain


e3(T
+
σ − T+


θ ) =


{


∆θ(σ) if degA ≡ 0 mod 4,


0 if degA ≡ 2 mod 4.


A proof of this result is given in section 3 below. For the trace forms Tσ, we
have the following result:


5. Corollary. Keeping the notation of the previous theorem, we have Tσ−Tθ ∈ I4F
and


e4(Tσ − Tθ) =


{


(−1)2 ∪∆θ(σ) if degA ≡ 0 mod 4,


0 if degA ≡ 2 mod 4,


where e4 : I
4F → H4(F, µ2) denotes the degree 4 invariant.
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Proof. Let T−σ be the restriction of Tσ (or of −TA) to the space of skew-symmetric
elements in A. We have


Tσ = T+
σ + T−σ and TA = T+


σ − T−σ ,


so that Tσ = 2T+
σ − TA. Similarly, Tθ = 2T+


θ − TA, so that


Tσ − Tθ = 2(T+
σ − T+


θ ),


hence the corollary is a direct consequence of the previous theorem.


In the special case where θ is hyperbolic we get:


6. Proposition. Suppose A = M2(A0) for some central simple F -algebra A0, and
let θ be a hyperbolic symplectic involution on A. Then T+


θ is Witt-equivalent to
〈2〉 · TA0


, and Tθ is hyperbolic. If degA ≡ 2 mod 4, then A is split, hence ev-
ery symplectic involution on A is hyperbolic. If degA ≡ 0 mod 4, then, for any
symplectic involution σ on A, we have Tσ ∈ I4F and


e4(Tσ) = (−1)2 ∪∆(σ).


1.3. Decomposability of symplectic involutions. Section 4 below will be de-
voted to the relations between the discriminant and the decomposability of sym-
plectic involutions as tensor products of involutions defined on subalgebras. Our
main result is concerned with degree 8 algebras with index dividing 4. Such alge-
bras can be written in the form A = M2(A0), where A0 is a central simple algebra
of degree 4, hence they carry hyperbolic symplectic involutions. The case indA = 1
is trivial, since every symplectic involution on a split algebra is hyperbolic, and is
omitted in the following theorem.


7. Theorem. Let A be a central simple F -algebra of degree 8 having index 2 or 4.
For any symplectic involution σ on A, there is a quaternion subalgebra Q ⊂ A such
that


(1) Q is stable under σ, and σ restricts to the conjugation involution γ on Q,
(2) the index of the centralizer A0 of Q in A is


1
2 indA.


We thus have


A = A0 ⊗F Q and σ = σ0 ⊗ γ,


where σ0 is the restriction of σ to A0 (which is an orthogonal involution on A0).


When indA = 2, this theorem is easily proved and can be readily generalized to
any degree, see Example 2 or [1, Proposition 3.4]. The case indA = 4 is treated in
Section 4.


Theorem 7 shows that the discriminant of a symplectic involution σ on a central
simple F -algebra of degree 8 and index 2 or 4 can be computed as in Example 3
above. The following theorem gives a necessary and sufficient condition for the
discriminant to be trivial.


8. Theorem. Let A be a central simple F -algebra of degree 8 with index dividing
4. For any symplectic involution σ on A, ∆(σ) = 0 if and only if σ leaves invariant
a subalgebra A1 ⊂ A isomorphic to M2(F ) and restricts to an orthogonal involution
on A1.
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A proof is given in Section 4.
When the condition of Theorem 8 holds, the centralizer A′1 of A1 in A is also


invariant under σ, and the restriction of σ to A′1 must be symplectic. As any
symplectic involution on a degree 4 algebra decomposes as a tensor product of
involutions on quaternion subalgebras (see [6, (16.16)]), it follows that A′1 = A2 ⊗
A3 for some quaternion subalgebras A2, A3 ⊂ A′1 invariant under σ. Therefore,
Theorem 8 can be reformulated as follows:


9. Corollary. Let A be a central simple F -algebra of degree 8 with index dividing 4.
Then, for every symplectic involution σ on A, we have ∆(σ) = 0 if and only if there
exist quaternion subalgebras A1, A2, A3 ⊂ A, with A1 ' M2(F ), and orthogonal
involutions σ1 and σ2 on A1 and A2 respectively, such that


A = A1 ⊗A2 ⊗A3 and σ = σ1 ⊗ σ2 ⊗ γ3


where γ3 denotes the canonical involution on A3.


2. Discriminants and pfaffian Norms


The goal of this section is to prove Proposition 1. Throughout the section, A
denotes a central simple F -algebra of degree n = 2m.


10. Lemma. Let σ and θ be symplectic involutions on A and let s ∈ Sym(A, θ)×


be an element such that σ = Int(s) ◦ θ. Then,
(a) for every x ∈ Sym(A, σ) ∩ Sym(A, θ),


Nrpσ(x) = Nrpθ(x);


(b) for every x ∈ Sym(A, θ), the product sx lies in Sym(A, σ) and


Nrpσ(sx) = Nrpθ(s)Nrpθ(x);


(c) for every x ∈ Sym(A, θ)×,


Nrpθ(x
−1) = Nrpθ(x)


−1.


(d) Suppose A = A1 ⊗F A2 for some central simple F -algebras A1, A2 ⊂ A of
degree n1 = 2m1 and n2 = 2m2 respectively; if x1 ∈ A1 and x2 ∈ A2 are such
that x1 ⊗ x2 ∈ Sym(A, θ), then


Nrpθ(x1 ⊗ x2) = NrdA1
(x1)


m2 NrdA2
(x2)


m1 .


(e) Suppose A = Mr(A0) and θ
(


(aij)1≤i,j≤r
)


=
(


θ0(aij)
)t


1≤i,j≤r
for some sym-


plectic involution θ0 on the central simple F -algebra A0. For the diagonal
matrix x = diag(x1, . . . , xr) with xi ∈ Sym(A0, θ0) for i = 1, . . . , r, we have


Nrpθ(x) = Nrpθ0(x1) · · ·Nrpθ0(xr).


Proof. (a) Let t be an indeterminate over F . Define


Prpσ,x(t) = Nrpσ(t− x) ∈ F [t], Prpθ,x(t) = Nrpθ(t− x) ∈ F [t].


Those polynomials, called pfaffian characteristic polynomials in [6, p. 19], are monic
and satisfy


Prp2σ,x = PcrdA,x = Prp2θ,x,


where PcrdA,x(t) = NrdA(t)(t − x) is the reduced characteristic polynomial of x.
Therefore, Prpσ,x(t) = Prpθ,x(t), and evaluation at t = 0 yields Nrpσ(x) = Nrpθ(x).
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(b) Straightforward calculations show that σ(sx) = sx if θ(x) = x. Let us
consider the two sides of the equality we aim to prove as polynomial functions of
x. The squares of the two sides are equal since the reduced norm is multiplicative,
hence they are equal up to sign. Moreover, they are equal and nonzero for x = 1
in view of part (a). Hence, they are equal for all x.


(c) We apply (b) with x = s−1 and use the relation Nrpσ(1) = 1.
(d) By taking the square root on both sides of the equation


PcrdA,x1⊗x2
= (PcrdA1,x1


)n2(PcrdA2,x2
)n1 ,


we obtain


Prpθ,x1⊗x2
= (PcrdA1,x1


)m2(PcrdA2,x2
)m1 .


The property follows by considering the constant terms.
(e) As in the preceding case, the property follows by extracting the monic square


root of each side of the equation


PcrdA,x = PcrdA0,x1
· · ·PcrdA0,xr


.


Proposition 1 easily follows from the lemma above. Indeed, if σ = Int(s) ◦ θ,
so that ∆θ(σ) =


(


Nrpθ(s)
)


2
∪ [A], then θ = Int(s−1) ◦ σ and hence ∆σ(θ) =


(


Nrpσ(s
−1)


)


2
∪ [A]. Now Lemma 10 shows that


Nrpσ(s
−1) = Nrpθ(s)


−1,


hence
(


Nrpσ(s
−1)


)


2
=


(


Nrpθ(s)
)


2
, and so ∆σ(θ) = ∆θ(σ). If ρ is another symplec-


tic involution, and if t ∈ Sym(A, ρ) is such that θ = Int(t) ◦ ρ, then σ = Int(st) ◦ ρ.
Part (b) of Lemma 10 yields


Nrpσ(st) = Nrpθ(s)Nrpθ(t).


Moreover, part (a) shows that Nrpσ(st) = Nrpρ(st) and Nrpθ(t) = Nrpρ(t). There-
fore, the preceding equality can be written as


Nrpρ(st) = Nrpθ(s)Nrpρ(t).


It follows that


∆ρ(σ) =
(


Nrpρ(st)
)


2
∪ [A] =
(


Nrpθ(s)
)


2
∪ [A] +


(


Nrpρ(t)
)


2
∪ [A] = ∆θ(σ) + ∆ρ(θ),


which completes the proof of part (b) of Proposition 1.
Let now v ∈ A× and σ′ = Int(v) ◦ σ ◦ Int(v)−1, so that σ′ = Int


(


vsθ(v)
)


◦ θ.
Then,


∆θ(σ
′) =


(


Nrpθ(vsθ(v))
)


2
∪ [A].


By [6, (2.13)], Nrpθ
(


vsθ(v)
)


= NrdA(v)Nrpθ(s). Since
(


NrdA(v)
)


2
∪ [A] = 0, it


follows that


∆θ(σ
′) = ∆θ(σ).


Similarly, if θ′ is a symplectic involution conjugate to θ, then ∆σ′(θ′) = ∆σ′(θ).
Now, part (b) of Proposition 10 shows that ∆θ′(σ


′) = ∆σ′(θ′) and ∆θ(σ
′) = ∆σ′(θ).


Therefore,


∆θ′(σ
′) = ∆θ(σ


′).
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We already observed that ∆θ(σ
′) = ∆θ(σ), hence


∆θ′(σ
′) = ∆θ(σ)


and the proof of Proposition 10 is complete.


3. Discriminant and trace form


In this section we prove Theorem 4 and Proposition 6.
Let FieldsF be the category of fields containing F and let G be any algebraic


group over F . We consider the functor


H1(G) : FieldsF → Sets*


where Sets* denotes the category of pointed sets, associating to every L ∈ FieldsF


the Galois cohomology set H1(L,G).
Similarly, the “cohomological cycle module” M =


⊕


d≥0H
d
(


•,Q/Z(d − 1)
)


,


introduced by Rost in [9], yields a sequence of functors


Md = Hd
(


•,Q/Z(d− 1)
)


: FieldsF → Sets* .


The natural transformations H1(G) → Md are called cohomological invariants
of degree d in Merkurjev’s paper [7]. These invariants form a group denoted


Invd(H1(G),M). (The group Invd(H1(G),M) is denoted by Invd
(


G,Q/Z(d − 1)
)


in [6, §31.B].)
Let now A be a central simple F -algebra of degree n = 2m and let θ be a


symplectic involution on A. We take for G the group GSp(A, θ) of symplectic
similitudes; this is the algebraic group scheme defined by


GSp(A, θ)(E) = {g ∈ A⊗F E | θ(g)g ∈ E×}
for any commutative F -algebra E. The set H1


(


L,GSp(A, θ)
)


is in one to one
correspondence with the set of conjugacy classes of symplectic involutions defined
on AL = A⊗F L, the class of θ being the distinguished one (see [6, (29.23)]). The
following proposition shows that for symplectic involutions there is no (nontrivial)
cohomological invariant of degree 1 or 2.


11. Proposition. Suppose M =
⊕


d≥0H
d
(


•,Q/Z(d − 1)
)


. If the algebra A is


split, we get H1
(


L,GSp(A, θ)
)


= 1, for every L ∈ FieldsF , so that


Invd
(


H1
(


GSp(A, θ)
)


,M
)


= 0 for all d.


If A is not split, we have


Invd(H1
(


GSp(A, θ)
)


,M
)


= 0 for d = 1, 2


and


Inv3(H1
(


GSp(A, θ)
)


,M
)


=


{


0 if degA ≡ 2 mod 4,


Z/2Z if degA ≡ 0 mod 4.


Proof. Every symplectic involution on a split algebra is hyperbolic. Therefore,
when A is split, H1


(


L,GSp(A, θ)
)


= 1 for all L ∈ FieldsF .
For the rest of the proof, we may thus assume that A is not split. Let


µ : GSp(A, θ)→ Gm
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be the homomorphism which associates to each similitude g its multiplier µ(g) =
θ(g)g. The cohomology sequence induced by the exact sequence


1→ Sp(A, θ)→ GSp(A, θ)
µ−→ Gm → 1


yields for every L ∈ FieldsF the exact sequence


L× → H1
(


L,Sp(A, θ)
)


→ H1
(


L,GSp(A, θ)
)


→ 1


since H1(L,Gm) = 1 by Hilbert’s Theorem 90. Therefore, for every d, we have an
exact sequence


0→ Invd
(


H1
(


GSp(A, θ)
)


,M
)


→ Invd
(


H1
(


Sp(A, θ)
)


,M
)


→ Invd(Gm,M).


For d = 1 or 2, we obtain, by [6, (31.15)], Invd
(


H1
(


Sp(A, θ)
)


,M
)


= 0 and hence


Invd
(


H1
(


GSp(A, θ)
)


,M
)


= 0.


The group Inv3
(


H1
(


Sp(A, θ)
)


,M
)


is of order 2, the nontrivial element being the
Rost invariant ∆θ defined in the introduction. Equation (2) shows that this invari-
ant is zero in Inv3(Gm,M) if and only if degA ≡ 2 mod 4.


When degA ≡ 0 mod 4, the unique nontrivial invariant of degree 3 is the dis-
criminant. Our next goal is to give an explicit description of this invariant in terms
of trace forms.


Let T+
θ : Sym(A, θ)→ F be the quadratic form


T+
θ (x) = TrdA(θ(x)x) = TrdA(x


2).


This forms only depends, up to isometry, on the conjugacy class of θ since, if
θ′ = Int(v) ◦ θ ◦ Int(v)−1 for some v ∈ A×, then Int(v) defines an isometry between
T+
θ and T+


θ′ . Consider L ∈ FieldsF . The map sending every symplectic involution
σ : AL → AL to the discriminant


disc(T+
σ − T+


θ ) ∈ L×/L×2 = H1(L, µ2)


defines a cohomological invariant H1
(


GSp(A, θ)
)


→ H1(µ2). By Proposition 11,


this invariant is trivial, hence T+
σ − T+


θ ∈ I2L. Similarly, the map sending every
symplectic involution σ to the Witt (–Clifford) invariant


e2(T
+
σ − T+


θ ) ∈ H2(L, µ2)


defines a cohomological invariant of degree 2. Again, by Proposition 11, we get
e2(T


+
σ − T+


θ ) = 0, and hence T+
σ − T+


θ ∈ I3L using Merkurjev’s theorem. This


proves the first part of Theorem 4. Note that the equality e2(T
+
σ − T+


θ ) = 0 can
also be derived from Quéguiner’s explicit calculation of the Hasse invariant of trace
forms in [8, p. 307].


Consider the map associating to every symplectic involution σ : AL → AL the
Arason invariant


e3(T
+
σ − T+


θ ) ∈ H3(L, µ2).


Using Proposition 11, we see that this invariant is trivial either if degA ≡ 2 mod
4 or if A is split. We claim that it coincides with the discriminant ∆θ(σ) if A
is nonsplit and degA ≡ 0 mod 4. To prove this, it suffices to show that it is
nontrivial because, by Proposition 11, there is an unique nontrivial invariant in
Inv3


(


H1
(


GSp(A, θ)
)


,M
)


. Therefore, our goal is to find a field L ∈ FieldsF and
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two symplectic involutions σ1, σ2 on AL such that e3(T
+
σ1
− T+


σ2
) 6= 0. If θ is any


involution on A, the equality


e3(T
+
σ1
− T+


θ ) = e3(T
+
σ1
− T+


σ2
) + e3(T


+
σ2
− T+


θ )


shows that at least one of the terms e3(T
+
σ1
− T+


θ ) and e3(T
+
σ2
− T+


θ ) is nonzero,


hence the invariant σ 7→ e3(T
+
σ − T+


θ ) is nontrivial.


12. Lemma. Let A be a central simple F -algebra of exponent 2. There exists a
field L ∈ FieldsF such that indAL = 2.


Proof. We may take for L the fonction field of a suitable generalized Severi–Brauer
variety (cf [2]). Alternatively, we may consider a multiquadratic extension M/F of
minimal degree splitting A (such extensions exist, because A is Brauer–equivalent
to a tensor product of quaternion algebras by a theorem of Merkurjev) and take
for L a proper maximal subfield of M . The algebra AL is not split, because M is
of minimal degree, and it is of index 2 because it is split by the quadratic extension
M/L.


Thus we may suppose, after possibly replacing F by a suitable extension, that
indA = 2 i.e. that A is Brauer–equivalent to a quaternion division algebra Q over
F . Then, denoting by V an F -vector space of dimension m, we obtain


A ' Q⊗F EndF V.


For the rest of this section, we fix an isomorphism identifying A with Q⊗EndF V .
Let b be a symmetric non-degenerate bilinear form on V . The symmetric square


S2V and the exterior square
∧2


V are endowed with symmetric bilinear forms bS
2


and b∧2 respectively, defined by


bS
2


(x1 · x2, y1 · y2) = b(x1, y1)b(x2, y2) + b(x1, y2)b(x2, y1)


and


b∧2(x1 ∧ x2, y1 ∧ y2) = b(x1, y1)b(x2, y2)− b(x1, y2)b(x2, y1).


13. Lemma. Let Q = (α, β)F . On A = Q ⊗F EndF V , consider the symplectic
involution σ = γ ⊗ adb, where γ is the quaternion conjugation on Q and adb is the
(orthogonal) involution adjoint to b. Then, the bilinear form B+


σ (x, y) = TrdA(xy)
on Sym(A, σ) (which is the polar form of the quadratic form T+


σ ) decomposes as an
orthogonal sum


B+
σ = bS


2 ⊥ 〈−α,−β, αβ〉 · b∧2.
Proof. Let Skew(EndF V, adb) be the F -vector space of endomorphisms f of V
such that adb(f) = −f , and let Q0 be the F–vector space of pure quaternions in
Q. Straightforward calculation shows that the decomposition


Sym(A, σ) =
(


F ⊗ Sym(EndF V, adb)
)


⊕
(


Q0 ⊗ Skew(EndF V, adb)
)


is orthogonal with respect to the form B+
σ . Let B


+
b and B−b be the restrictions of the


bilinear trace form B(f, g) = tr(fg) to Sym(EndF V, adb) and Skew(EndF V, adb)
respectively. The decomposition above yields


B+
σ = 〈2〉 ·B+


b ⊥ 〈2α, 2β,−2αβ〉 ·B−b .


The lemma follows, since, by [6, (11.4)] B+
b ' 1


2b
S2


and B−b ' − 1
2b
∧2.
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If b = 〈a1, . . . , am〉 is a diagonalization of b, it is easily verified that


bS
2 ' m〈2〉 ⊥


(


⊥i<j 〈aiaj〉
)


and b∧2 ' ⊥i<j 〈aiaj〉
(cf [6, p. 135]). The formula of the preceding lemma can then be written as


B+
σ ' m〈2〉 ⊥ 〈1,−α,−β, αβ〉 · b∧2,


hence, in terms of quadratic forms,


T+
σ = m〈2〉+ nQ · q∧2


where nQ denotes the norm form of Q and q∧2 is the quadratic form defined by
q∧2(x) := b∧2(x, x).


Let b1 and b2 be two nonsingular symmetric bilinear forms on V , and let


σ1 = γ ⊗ adb1 , σ2 = γ ⊗ adb2


be the symplectic involutions on A = Q ⊗ EndF V constructed as in Lemma 13.
Observe that T+


σ1
− T+


σ2
= nQ · (q∧21 − q∧22 ), hence


e3(T
+
σ1
− T+


σ2
) = [Q] ∪ disc(q∧21 − q∧22 ).(4)


Explicit calculation shows that


disc(q∧21 − q∧22 ) = det b∧21 · det b∧22 = (det b1 · det b2)m−1.(5)


Adjoining an indeterminate to F if necessary, we may assume that there exists an
element t ∈ F× not belonging to Nrd(Q). By a theorem of Merkurjev, this element
satisfies [Q] ∪ (t)2 6= 0. It is easy to find two bilinear forms b1 and b2 on V such
that det b1 · det b2 = tF×2. Since m is even, it follows from (4) and (5) that the
corresponding involutions σ1 and σ2 satisfy


e3(T
+
σ1
− T+


σ2
) 6= 0.


This completes the proof of Theorem 4.
We now turn to Proposition 6 and assume A = M2(F )⊗FA0. Since all hyperbolic


involutions are conjugate, we may assume moreover θ = γ⊗ θ0 for some orthogonal
involution θ0 on A0, where γ is the unique symplectic involution on M2(F ) (which
is hyperbolic). As in Lemma 13, we have an orthogonal decomposition


Sym(A, θ) =
(


F ⊗ Sym(A0, θ0)
)


⊕
(


Skew(M2(F ), γ)⊗ Skew(A0, θ0)
)


which yields


T+
σ = 〈2〉 · T+


θ0
⊥ 〈2,−2,−2〉 · T−θ0 .


Therefore, T+
σ is Witt-equivalent to 〈2〉 · (T+


θ0
− T−θ0) = 〈2〉 · TA0


. Since the adjoint


involution to Tθ is θ ⊗ θ, by [6, (11.1)], it is clear that Tθ is hyperbolic when θ is
hyperbolic. If degA ≡ 2 mod 4, then degA0 is odd, hence A0 is split. Therefore,
A is also split. The other statements in Proposition 6 follow from Corollary 5.


4. Discriminant and decomposability of involutions


Our first goal in this section is to give a proof of Theorem 7. As observed in
Section 1.3, the theorem is easy if indA = 2. Therefore, we assume indA = 4. We
may then represent A as


A = EndD V


where D is a division algebra of degree 4 and V is a 2-dimensional D-vector space.
Let θ0 be an arbitrary symplectic involution on D. The involution σ is adjoint to a
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hermitian form h on V (with respect to θ0). Using an orthogonal basis of V relative
to h, we may identify


A = M2(D) and σ = Int diag(u1, u2) ◦ θ̂0
for some u1, u2 ∈ Sym(D, θ0)


×, where


θ̂0
(


(aij)1≤i,j≤2
)


=
(


θ0(aij)
)t


1≤i,j≤2
,


i.e., θ̂0 = t⊗θ on A = M2(F )⊗F D. Substituting Int(u1)◦θ0 for θ0, we may assume
u1 = 1. By [6, (16.16)], we may find a decomposition of D into a tensor product of
quaternion subalgebras stable under θ0,


D = Q1 ⊗F Q, θ0 = θ1 ⊗ γ


where θ1 is an orthogonal involution on Q1 and γ is the canonical involution on Q.
Moreover, we may assume u2 ∈ Q1. Then


σ = Int diag(1, u2) ◦ (t⊗ θ1 ⊗ γ) = σ0 ⊗ γ


with σ0 = Int diag(1, u2) ◦ t⊗ θ1 on M2(F )⊗Q1. Theorem 7 is thus proved. Note
that the quaternion algebra Q is not uniquely determined by [6, (16.16)].


Let us now prove Theorem 8, starting with the following general remark:


14. Lemma. Let σ and θ be two symplectic involutions on a central simple al-
gebra A having degree a multiple of 4. Assume that the algebra A decomposes as
A = A1 ⊗ A2 for some subalgebras A1, A2 ⊂ A and, furthermore, that there exist
involutions σ1, θ1 on A1 and σ2, θ2 on A2 such that σ = σ1 ⊗ σ2 and θ = θ1 ⊗ θ2.
Moreover assume degA1 ≡ 2 mod 4 and degA2 ≡ 0 mod 4. Then, if σ1 and θ1 are
of orthogonal type, ∆θ(σ) = 0.


Proof. Consider u1 ∈ Sym(A1, θ1)
× and u2 ∈ Sym(A2, θ2)


× such that


σ1 = Int(u1) ◦ θ1 and σ2 = Int(u2) ◦ θ2,
hence


σ = Int(u1 ⊗ u2) ◦ θ.
Then ∆θ(σ) =


(


Nrpθ(u1 ⊗ u2)
)


2
∪ [A], and, by Lemma 10(d),


Nrpθ(u1 ⊗ u2) = NrdA1
(u1)


1
2
degA2 NrdA2


(u2)
1
2
degA1 .(6)


Since degA2 ≡ 0 mod 4, the first factor is a square. Moreover, since σ1 and θ1 are
of orthogonal type, σ2 and θ2 must be of symplectic type. Hence,


NrdA2
(u2) = Nrpθ2(u2)


2.


Therefore, equation (6) shows that Nrpθ(u1 ⊗ u2) ∈ F×2, so that ∆θ(σ) = 0.


Even in the case degA = 8, the converse of Lemma 14 does not hold, since
there are examples of algebras with involution which do not contain any invariant
quaternion subalgebra on which the restriction of the involution is of orthogonal
type. Indeed, arguing as in the proof of Corollary 9 (see section 1.3), we see that if
θ is a symplectic involution on a central simple algebra A of degree 8, and if A1 ⊂ A
is a quaternion subalgebra on which θ restricts to an orthogonal involution θ1, then
A and θ decompose in the form


A = A1 ⊗A2 ⊗A3 and θ = θ1 ⊗ θ2 ⊗ γ3,
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where A1, A2 and A3 are quaternion algebras, θ1 and θ2 are orthogonal involutions
on A1 and A2 respectively, and γ3 is the canonical involution on A3. This implies,
in particular, that the signature of θ with respect to every ordering of the field
F is either 0 or 8. For example, if F = R is the field of real numbers and θ is
the involution adjoint to the hermitian form 〈1, 1, 1,−1〉 on the usual quaternion
algebra H, then sgn θ = 4, and so A = M4(H) has no quaternion subalgebras on
which θ restricts to an orthogonal involution. Therefore, even though ∆θ(θ) = 0,
there is no decomposition as in Lemma 14. (See Example 15 for a subtler example
where the converse of Lemma 14 fails.)


Returning to the proof of Theorem 8, we suppose until the end of this section
that A is a central simple F -algebra of degree 8, with index dividing 4. Let σ be
a symplectic involution on A, and suppose A1 'M2(F ) is an invariant subalgebra
on which the restriction of σ is an orthogonal involution. In this situation, we
have a decomposition A = A1 ⊗ A′1, where A


′
1 denotes the centralizer of A1, and


σ = σ1 ⊗ σ′1, where σ1 and σ′1 are the restrictions of σ to A1 and A′1 respectively.
As A1 'M2(F ), we can find a hyperbolic symplectic involution θ1 on A1 and set


θ = θ1 ⊗ σ′1.


The involution θ is hyperbolic of symplectic type and, by Lemma 14, we have


∆(σ) = ∆θ(σ) = 0.


Conversely, let σ be a symplectic involution on A such that ∆(σ) = 0. To prove
that σ leaves invariant a subalgebra of A isomorphic to M2(F ) on which it restricts
to an orthogonal involution, we consider separately various cases, depending on the
index of A. If A is split, every symplectic involution is hyperbolic and the property
is a consequence of [1, Theorem 2.2]. If indA = 2, we can always represent A in
the form


A = EndQ V


where Q is a quaternion algebra and V is a 4-dimensional vector space over Q.
The involution σ is then adjoint to a hermitian form h on V (with respect to
the canonical involution γ on Q). Let e be an orthogonal basis for h. Since h is
determined by σ up to a factor in F×, we may assume that the diagonalization of
h with respect to the basis e is 〈1, α1, α2, α3〉 with α1, α2, α3 ∈ F×. Let V0 ⊂ V
be the F -subspace with basis e. We have V = V0 ⊗F Q and


A = (EndF V0)⊗F Q, σ = σ0 ⊗ γ


where σ0 is the orthogonal involution on EndF V0 adjoint to the bilinear symmetric
form 〈1, α1, α2, α3〉. As in Example 2, ∆(σ) = (α1α2α3)2 ∪ [Q]. Therefore, the
condition ∆(σ) = 0 implies, by a theorem of Merkurjev, that α1α2α3 ∈ NrdQ(Q


×).
Changing basis if necessary, we may assume that α3 = α1α2. Then


〈1, α1, α2, α3〉 = 〈1, α1〉 ⊗ 〈1, α2〉.
This implies σ0 = σ1 ⊗ σ2 on EndF V0 ' M2(F ) ⊗M2(F ), where σ1 and σ2 are
the involutions adjoint to the bilinear forms 〈1, α1〉 and 〈1, α2〉, respectively. This
proves the theorem in this case.


Finally, suppose indA = 4. As in the proof of Theorem 7, given at the beginning
of this section, we may then represent A as A = EndD V where D is a division
algebra of degree 4 and V is a 2-dimensional D-vector space. For the rest of the
proof, we use the same notation as in the proof of Theorem 7. We may thus
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assume A = M2(D) = M2(F )⊗F D and σ = Int diag(1, u2)◦ θ̂0 for some symplectic


involution θ0 on D and θ̂0 = t ⊗ θ0. The involution θ = Int diag(1,−1) ◦ θ̂0 is
hyperbolic, and σ = Int diag(1,−u2) ◦ θ. By Lemma 10(e), we have


Nrpθ
(


diag(1,−u2)
)


= Nrpθ0(−u2) = Nrpθ0(u2),


hence


∆(σ) = ∆θ(σ) =
(


Nrpθ0(u2)
)


2
∪ [D].


Therefore, the condition ∆(σ) = 0 implies by [6, (16.19)] that the involution
Int(u2) ◦ θ0 on D is conjugate to θ0. We may then find v ∈ D× such that


Int(u2) ◦ θ0 = Int(v) ◦ θ0 ◦ Int(v)−1 = Int
(


vθ0(v)
)


◦ θ0,
hence u2 = vθ0(v)λ for some λ ∈ F×. The involution θ is conjugate to


Int diag(1, v)−1 ◦ θ ◦ Int diag(1, v) = Int diag(1, λ) ◦ θ̂0,
which restricts to Int diag(1, λ) ◦ t on M2(F ) ⊂ M2(D). Therefore, θ leaves the
subalgebra diag(1, v)M2(F ) diag(1, v−1) invariant and restricts to an orthogonal
involution on that subalgebra. The proof of Theorem 8 is thus complete.


15. Example. The following is another example where the converse of Lemma 14
fails. Consider three quadratic extensions K1, K2, K3 of a field k,


Ki = k(
√
ai) for some ai ∈ k,


such that K1⊗kK2⊗kK3 is a field, and let F = k(x1, x2, x3) be the field of rational
fractions in three indeterminates over k. For i = 1, 2, 3, consider Ki as a subfield
of the quaternion algebra Ai = (ai, xi)F . On the tensor product


A = A1 ⊗F A2 ⊗F A3,


consider the symplectic involution


θ = θ1 ⊗ θ2 ⊗ γ3,


where γ3 is the conjugation involution on A3 and θ1 (resp. θ2) is an orthogonal
involution on A1 (resp. A2) which is the identity on K1 (resp. K2).


Let λ ∈ NK1/k(K
×
1 ) ∩ NK2/k(K


×
2 ). By a well-known property of biquadratic


extensions (see for instance [4, 2.13]), we may find u ∈ K1 ⊗k K2 and v ∈ k× such
that


λ = v2NK1⊗kK2/k(u).


Viewing u = u⊗ 1 in A, we let


σ = Int(u) ◦ θ.
By Lemma 10(d), we have Nrpθ(u) = NrdA1⊗FA2


(u) = NK1⊗kK2/k(u), hence


∆θ(σ) = (λ) ∪ [A].


Since λ is a norm from K1 and K2, hence a reduced norm from A1 and A2, it
follows that


∆θ(σ) = (λ) ∪ [A3].


Therefore, ∆θ(σ) = 0 if and only if λ ∈ NK1/k(K
×
1 ) ∩NK2/k(K


×
2 ) ∩NK3/k(K


×
3 ).


Now, suppose σ = Int(w) ◦ σ′ ◦ Int(w)−1 for some involution σ′ leaving A1


invariant. Then σ′ = Int
(


w−1uθ(w)−1
)


◦ θ, and the proof of Lemma 14 shows that
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Nrpθ
(


w−1uθ(w)−1
)


∈ F×2. Since Nrpθ
(


w−1uθ(w)−1
)


= Nrpθ(u)NrdA(w)
−1 =


λv−2NrdA(w)
−1, it follows that


λ ∈ F×2 ·NrdA(A
×).


By Proposition 9 of [3], we then have


λ ∈ k×2 ·NM/k(M
×) with M = K1 ⊗k K2 ⊗k K3.


Therefore, examples of triquadratic extensions M = K1 ⊗k K2 ⊗k K3/k such that


NK1/k(K
×
1 ) ∩NK2/k(K


×
2 ) ∩NK3/k(K


×
3 ) 6= k×2 ·NM/k(M


×)


yield examples of involutions σ for which ∆θ(σ) = 0 even though σ is not conjugate
to an involution leaving A1 invariant. Triquadratic extensions of this type were
constructed in [10] (see also [5, Proposition 3]).
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