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1 INTRODUCTION.


Most people are first introduced to the characteristic polynomial and determi-
nant of a matrix in a linear algebra course as undergraduates. The determinant
is usually defined as an alternating sum of products of entries of the matrix (as
in Jacobi [16, sec. 4]) or as the unique map Mn(F ) → F that is multilinear
and alternating in the columns and has the value 1 at the identity matrix (as in
Weierstrass [28] and the books by Hungerford [15], Lang [22], and Dummit and
Foote [11]). As a student, I thought that these definitions were at best magical
and at worst ad hoc. Where did the determinant come from? This paper gives
definitions that I hope the reader will find more natural.


Admittedly, the determinant of a linear transformation on Rn is a natural
enough object: its absolute value gives the factor by which the transformation
enlarges volumes, and its sign says whether or not the map preserves orienta-
tion. These properties imply Weierstrass’s axioms (see, for example, [13] or [23,
sec. 5]).


Another good definition of the determinant—not so common at the under-
graduate level—is in terms of the nth exterior power ∧nFn, as in [5, chap. 3,
sec. 8]. This also leads to the Weierstrass axioms.


But even these two “good” definitions have a taint of being special to ma-
trices. (The first is even limited to matrices with real entries.) After all, ana-
logues of the determinant are known for the quaternions, the octonions, finite-
dimensional field extensions, . . . It is not clear how to adapt the two good
definitions to handle these algebras. As mathematicians, we should demand a
definition that works simultaneously in all cases. We give such a definition of the
characteristic polynomial in section 2; the constant term of this characteristic
polynomial gives an analogue of the determinant. (One normally begins with
a definition for the determinant and then defines the characteristic polynomial
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of a matrix a as det(xI − a). We work in the opposite direction here.) For n-
by-n matrices, we derive Jacobi’s alternating sum formula for the determinant.
We also recover the known ad hoc formulas for the determinant for quater-
nions and finite-dimensional field extensions. Moreover, the product formula
det(aa′) = det(a)det(a′) always holds.


The philosophy is the following. Consider the lines in R2 given by the equa-
tions


ax + by = c, a′x + b′y = c′.


If the coefficients a, b, c, a′, b′, and c′ are specific real numbers, the lines might be
parallel or the same (degenerate case), but “typically” they intersect at exactly
one point. If we treat the coefficients as independent indeterminates, we say
that the lines are generic. Such lines intersect at the point


(x, y) =


(


b′c − c′b


ab′ − a′b
,
ac′ − a′c


ab′ − a′b


)


.


A typical n-by-n matrix has n distinct eigenvalues.1 This is true in particular
for a generic matrix γ, meaning one whose entries are indeterminates. For such a
matrix, the traditional characteristic polynomial is just the minimal polynomial.
To define the characteristic polynomial of a specific matrix a, we first find the
minimal polynomial minpolyγ(x) of our generic matrix. Plugging in specific
values for the indeterminates in γ, we get a polynomial whose only indeterminate
is x, and this is the characteristic polynomial of a. This method of defining the
characteristic polynomial works for all finite-dimensional F -algebras, and the
determinant is (up to a sign) the constant term of the characteristic polynomial.


The core of the idea—looking at the minimal polynomial of a generic element—
goes back to the late 1800s (see, for example, [27, p. 241] and [26, p. 301]).
All treatments that I have found, however, do not develop the properties of the
general characteristic polynomial (as in [9, chap. 7]) or make use of known prop-
erties of the characteristic polynomial and determinant for matrices in studying
the general characteristic polynomial (as in [1, sec. 10.3], [19], [18], and [17,
sec. 5.18]). We use only elementary properties of matrices from the very nice
paper [3] and the book [4].


Readers with an algebraic background may argue that one can obtain the
characteristic polynomial of an n-by-n matrix over an arbitrary field F by apply-
ing the structure theory for finitely-generated torsion modules over a principal
ideal domain (as is done in [14, sec. 6.7]). But if one is using that much algebra,
the contents of this paper are not so far away and the results here are much
stronger.


1If you randomly choose an n-by-n real matrix, the probability that you pick one with
distinct complex eigenvalues is 100%. This is because the other real matrices are a set with
Lebesgue measure zero. Topologically, amongst the n-by-n matrices, those with distinct
eigenvalues form a dense open subset. Over R or C this is true in the usual topology; it is also
true over any infinite field in the Zariski topology (see, for example, [25]).
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2 THE CHARACTERISTIC POLYNOMIAL.


In this section, we define the characteristic polynomial of an element a in a
finite-dimensional F -algebra A and give some of its basic properties. We begin
with a definition.


Definition 2.1. Let F be a field. An F -algebra is a ring A with a multiplicative
identity 1 (6= 0) such that A is an F -vector space and


α(ab) = (αa)b = a(αb) (α ∈ F ; a, b ∈ A). (2.2)


(Alternately, A is a ring with identity such that there is a one-to-one homomor-
phism F → Z(A) that maps the identity in F to the identity in A.) All algebras
that we consider will be finite-dimensional as vector spaces over F . Principal
examples of F -algebras are the n-by-n matrices Mn(F ) and Hamilton’s quater-
nions, which form an R-algebra (see Example 4.1).


Note that the definition gives a copy of F inside the center of A, but there is
no requirement that F be the entire center of A. For example, A may be taken
to be a finite-dimensional field extension of F .


For clarity of exposition, we require that A be associative (for example, A
cannot be the octonions). However, the definition of the characteristic polyno-
mial that we present also works for the much broader class of strictly power-
associative F -algebras, which includes the octonions and Jordan algebras (see
section 7 for precise statements).


The main tool we need that may not be typically discussed in first-year
graduate algebra is the tensor product ⊗. It is a canonical way to take a vector
space V over the field F and produce a vector space over a larger field K. The
new vector space is denoted by K ⊗V . Heuristically, one thinks of the elements
of K ⊗ V as finite sums


∑


kivi where the ki are in K and the vi are in V . The
addition and scalar multiplication are the obvious ones. Formally, one writes
such an element as


∑


ki ⊗ vi, although typically we will omit the symbol ⊗.
The map v 7→ 1⊗ v identifies V with a subset of K ⊗ V . In particular, linearly
independent elements of V are sent to linearly independent elements of K ⊗ V .
Moreover, if v1, v2, . . . , vm span the F -vector space V , then their images span
the K-vector space K ⊗ V . Consequently, the dimension of V (over F ) is the
same as the dimension of K ⊗ V (over K).


If the vector space V has a multiplication—as is the case for the algebra
A—then so does K ⊗ V . For simple elements k ⊗ v and k′ ⊗ v′ of K ⊗ V , put


(k ⊗ v)(k′ ⊗ v′) = kk′ ⊗ vv′


For general elements, expand (
∑


ki ⊗ vi)(
∑


k′
j ⊗ v′


j) using the distributive law
and apply the rule for simple elements. In this way, K ⊗A is a K-algebra. For
example, K ⊗ Mn(F ) is isomorphic to Mn(K).


(The previous two paragraphs are sufficient for understanding almost all of
this paper, but the proofs of Lemmas 2.3 and 6.3 and Propositions 2.7 and 2.11
require a more general version. Let R be an integral domain containing F . We
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write R ⊗ A for the ring of finite sums
∑


ri ⊗ ai with ri in R and ai in A,
endowed with the product described in the preceding paragraph. It is naturally
a subring of K⊗A for K the field of fractions of R. It is a free R-module whose
rank is the dimension of A over F . The curious reader can find a detailed and
more general introduction to the tensor product in [11, sec. 10.4].)


Now let a1, a2, . . . , am be an F -basis for A, let R = F [t1, t2, . . . , tm] for
(commuting) indeterminates t1, . . . , tm, and let K be the quotient field of R.
We call the element γ =


∑


i tiai of K ⊗ A a generic element. The powers
1, γ, γ2, . . . of γ live in the finite-dimensional K-vector space K ⊗ A, so they
are linearly dependent. That is, there is a nonzero polynomial f(x) in K[x]
such that f(γ) = 0. Let minpolyγ/K denote the nonzero monic polynomial in
K[x] of smallest degree such that minpolyγ/K(γ) = 0. It is called the minimal
polynomial of γ over K.


Note that this polynomial is unique, for if f(x) and g(x) are monic polyno-
mials of minimal degree such that f(γ) = g(γ) = 0, then h(x) = f(x) − g(x)
is a polynomial of smaller degree such that h(γ) = 0. This contradicts the
minimality of f and g unless h(x) = 0.


Lemma 2.3. The minimal polynomial minpolyγ/K is in R[x], not just K[x].


Proof. Consider the R-submodules Aj of R⊗A generated by {1, γ, γ2, . . . , γj}.
They form an ascending chain A1 ⊆ A2 ⊆ · · · . Since R is Noetherian (Hilbert’s
Basis Theorem) and R ⊗ A is a finitely-generated R-module, this chain must
stabilize. That is, γj+1 is in Aj for some j, so γ satisfies a monic polynomial f
in R[x].2 Since minpolyγ/K divides f in K[x] and both are monic, minpolyγ/K


lies in R[x] by Gauss’s lemma.


Definition 2.4. Express the element a of A in terms of the basis a1, a2, . . . , am


as a =
∑


i αiai with αi in F . The substitution ti 7→ αi defines a map R[x] →
F [x]. We call the image of minpolyγ/K in F [x] the characteristic polynomial of
a and denote it by chpolya,A/F or simply chpolya.


Remark 2.5. It is immediate from the definition that


deg(chpolya,A/F ) ≤ dimF A


and that the degree of chpolya,A/F is the same for all a in A.


Example 2.6 (Upper-triangular matrices). Let A be the algebra of n-
by-n upper-triangular matrices over F . Write Eij for the matrix whose only
nonzero entry is a 1 in the (i, j)-position. Fix a basis a1, a2, . . . , am for A over F
consisting of Eij such that ai = Eii when 1 ≤ i ≤ n. Let γ be the corresponding
generic element defined earlier.


2A more direct argument would be: R[γ] is an R-submodule of R⊗A and R⊗A is a finitely-
generated R-module. Hence γ is integral over R [15, Theorem 8.5.3]. Unfortunately, the typical
proof of this implication invokes determinants, so we use instead that R is Noetherian.
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Let In denote the n-by-n identity matrix. For i = 1, 2, . . . , n the matrix
γ − tiIn has n − 1 pivot columns—equivalently, n − 1 leading 1s—in its row-
reduced form, hence it has a nonzero kernel. That is, γ has an eigenvector in Kn


with eigenvalue ti. Since the ti are distinct elements of K, these eigenvectors
form a basis for Kn, so γ is similar in Mn(K) to the diagonal matrix with
diagonal entries t1, t2, . . . , tn. The minimal polynomial of γ is


∏n
i=1(x − ti),


since similar matrices have the same minimal polynomials.3 By substitution,
an upper-triangular matrix b has characteristic polynomial


∏n
i=1(x − bii).


We now show that the characteristic polynomial is well defined in general.


Proposition 2.7. The characteristic polynomial chpolya,A/F depends only on
a, A, and F (and not on the choice of basis a1, a2, . . . , am for A).


Proof. Suppose that we take another F -basis b1, b2, . . . , bm of A with a corre-
sponding generic element ε =


∑


i tibi. We may write bi =
∑


j gijaj for g an
invertible matrix in Mm(F ). Let f : R → R be the F -algebra automorphism
defined by


f(tj) =
∑


i


tigij .


Write a in A in terms of each basis as


a =
∑


j


αjaj =
∑


i


βibi. (2.8)


We have a diagram


R[x]
tj 7→αj−−−−→ F [x]


f








y


∥


∥


∥


R[x]
ti 7→βi−−−−→ F [x]


with horizontal arrows the substitution maps. Equation (2.8) ensures that αj =
∑


i βigij for all j, hence the diagram commutes.
If we begin with minpolyγ/K in the upper left, substitution gives the member


of F [x] that is chpolya computed with respect to the basis a1, a2, . . . , am. On
the other hand, f extends in an obvious way to an automorphism of R⊗A such
that


f(γ) =
∑


j


f(tj)aj =
∑


j


(


∑


i


tigij


)


aj =
∑


i


ti


(


∑


j


gijaj


)


= ε.


Hence f(minpolyγ/K) = minpolyε/K . The image of this in F [x] is chpolya


computed with respect to the basis b1, b2, . . . , bm. The commutativity of the
diagram establishes the proposition.


3This argument may appear to be excessively long. It is included here to illustrate that
we are not making use of determinants.
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Undergraduates are asked to find the characteristic polynomial of a matrix
whose entries are specific rational numbers. Of course their answer is the same
whether they think of the matrix as living in Mn(Q), Mn(R), or Mn(C). The
characteristic polynomial from Definition 2.4 has the same property.


Lemma 2.9. Let E be a field containing F , and fix a in A. The minimal
polynomials and characteristic polynomials of a are the same over F and over
E.


Proof. Let d be the degree of the polynomial minpolya/F . The elements 1A, a, . . . , ad−1


are linearly independent over F , hence the elements 1 ⊗ 1A, 1 ⊗ a, . . . , 1 ⊗ ad−1


of E⊗A are linearly independent over E. Note that 1⊗ai equals (1⊗a)i for all
i, so the minimal polynomial minpoly(1⊗a)/E of a over E has degree at least d.
Since this polynomial divides minpolya/F , the two polynomials are the same.


The F -basis a1, a2, . . . , am of A gives an E-basis 1 ⊗ a1, 1 ⊗ a2, . . . , 1 ⊗ am


of E ⊗A, and the generic element constructed from this E-basis is the image of
γ in E(t1, t2, . . . , tm)⊗A. Since the minimal polynomials of γ over K and over
E(t1, . . . , tm) are the same by the preceding paragraph, we get


chpolya,A/F = chpoly(1⊗a),(E⊗A)/E


by substitution.


In general, we write


chpolya(x) = xn − c1(a)xn−1 + · · ·
· · · + (−1)n−1cn−1(a)x + (−1)ncn(a). (2.10)


The elements c1(a) and cn(a) play the roles of the trace and determinant of a.


Proposition 2.11. Let A be a finite-dimensional F -algebra. Then the following
statements are true:


(1) (Cayley-Hamilton) chpolya(a) = 0 for each a in A.


(2) If ϕ : A → A is a ring automorphism or anti-automorphism that restricts
to an automorphism of F , then ϕ(ci(a)) = ci(ϕ(a)) for all a in A.


(3) The ci satisfy ci(αa) = αici(a) for all α in F and a in A.


(4) The mapping c1 : A → F is F -linear.


(5) If B is a subalgebra of A and b is in B, then chpolyb,B/F divides chpolyb,A/F


in F [x].


We will observe in Theorem 3.4 that our notion of characteristic polynomial
on Mn(F ) is the same as the usual one. Then Proposition 2.11 contains many
results that one typically proves in a linear algebra course. For example, (2)
tells us that that similar matrices have the same characteristic polynomial and
that det(at) = det(a) for a in Mn(F ), where at denotes the transpose of a.
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Proof. To establish (1), write a =
∑


i αiai. Then chpolya(a) is obtained by
making the substitution ti 7→ αi in minpolyγ/K(γ). (This substitution defines
a homomorphism R ⊗ A → A.) Since minpolyγ/K(γ) = 0 in R ⊗ A, we have
chpolya(a) = 0 in A.


We next prove (2). The map ϕ extends naturally to an automorphism g 7→
ϕg of K[x] by applying ϕ to the coefficients of g. Similarly, ϕ extends to an
automorphism or anti-automorphism of R⊗A such that ϕg(ϕ(u)) = ϕ(g(u)) for
every g in R[x] and u in R⊗A. We have: g(γ) = 0 if and only if ϕg(ϕ(γ)) = 0.
Hence


ϕminpolyγ/K = minpolyϕ(γ)/K .


The diagram


R[x]
ti 7→αi−−−−→ F [x]


ϕ








y








y


ϕ


R[x]
ti 7→ϕ(αi)−−−−−−→ F [x]


commutes. Beginning with minpolyγ/K in the upper left and going clockwise,
we obtain chpolya in the upper right F [x], and then ϕchpolya in the lower right
F [x]. Going counterclockwise, we obtain ϕminpolyγ/K = minpolyϕ(γ)/K in the
lower left. The image in the lower right F [x] is the characteristic polynomial
of ϕ(a) (computed with respect to the basis ϕ(a1), ϕ(a2), . . . , ϕ(am) of A, but
that is irrelevant by Proposition 2.7). The commutativity of the diagram gives
the desired equality chpolyϕ(a) = ϕchpolya.


Turning to (3) and (4), we suppose first that α is not 0. If we write the min-
imal polynomial of γ/K as


∑n
i=0 cix


i for ci in R, then the minimal polynomial
of αγ/K is


∑n
i=0 ciα


n−ixi. Thus


αn minpolyγ/K(x) = minpolyαγ/K(αx) (in R[x])


and
αn chpolya(x) = chpolyαa(αx) (in F [x]).


This gives
αnci(a) = αn−ici(αa) (0 ≤ i ≤ n;α 6= 0). (2.12)


In particular, (2.12) holds when α is an indeterminate. Since ci : A → F is given
by a polynomial in the coordinates of a with respect to some basis a1, a2, . . . , am,
this polynomial is homogeneous of degree i. This gives (3) and (4).


For (5), fix a basis b1, b2, . . . , br of B and extend it to a basis a1, a2, . . . , am


of A with ai = bi when 1 ≤ i ≤ r. By analogy, set S = F [t1, t2, . . . , tr], let
L denote the quotient field of S, and let ε be the generic element


∑r
i=1 tibi in


S ⊗ A.
Write b =


∑


i βibi with βi in F . Define a map φ : R → S by sending tj to 0
when r < j ≤ m. The image of minpolyγ/K under the composition


R[x]
φ−→ S[x]


ti 7→βi−−−−→ F [x]


7







is chpolyb,A/F . Similarly, the image of minpolyε/L is chpolyb,B/F .
The homomorphism φ extends naturally to a map R⊗A → S ⊗A such that


φ(γ) = ε. We have
0 = φ(0) = φ(minpolyγ(γ)),


which equals the polynomial φ(minpolyγ) in S[x] evaluated at φ(γ) = ε. Con-
sequently, minpolyε/L divides φ(minpolyγ/K) in L[x]. Since S is a unique fac-
torization domain, minpolyε/L divides φ(minpolyγ/K) in S[x]. Consequently,
the image chpolyb,B/F of minpolyε/L in F [x] divides the image chpolyb,A/F of
φ(minpolyγ/K).


3 MATRICES.


In this section, we observe that the characteristic polynomial as defined in the
previous section agrees with the usual linear algebra notion of characteristic
polynomial in the case where A = Mn(F ).


Everyone knows the next lemma, but maybe not the clean proof:


Lemma 3.1. If T is a linear transformation on an F -vector space of positive
dimension n, then T satisfies a nonzero polynomial of degree at most n.


Proof. We sketch the nice proof from [7] that proceeds by induction on n. The
case n = 1 is clear. We assume that n > 1. Let v be a nonzero vector in the
vector space V . The n + 1 vectors


v, T (v), T 2(v), . . . , Tn(v)


must be linearly dependent, so there is a nonzero polynomial g(x) in F [x] of
degree ≤ n such that g(T )v = 0.


Set U = ker g(T ). The linear transformations T and g(T ) commute, so
T (U) ⊆ U and T induces a linear transformation TV/U on V/U . By induction,
T |U satisfies a polynomial mU (x) with deg(mU ) ≤ dim U , and TV/U satisfies
a polynomial mV/U (x) with deg(mV/U ) ≤ dimV/U = dimV − dim U . Then
mV/U (T )V ⊆ U and T satisfies the polynomial mU (x)mV/U (x). Moreover,


deg(mU · mV/U ) = deg(mU ) + deg(mV/U ) ≤ dimU + dim(V/U) = dimV.


Corollary 3.2. The characteristic polynomial (in the sense of this paper) of a
matrix in Mn(F ) has degree at most n.


Proof. Lemma 3.1 applies in particular to an element γ of Mn(K) considered
as a linear transformation of Kn. Substitution gives the corollary.


Fix an algebraic closure F of F . For a in Mn(F ), we call λ in F an eigenvalue
of a if the kernel of (λIn − a) is nonzero. Let Uλ denote the corresponding
generalized eigenspace; i.e., Uλ is the set of vectors v in F


n
that belong to the


kernel of (λIn − a)r for some natural number r. The multiplicity m(λ) of an
eigenvalue λ is dimF Uλ.
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Example 3.3 (Upper-triangular matrices). The multiplicity of an eigen-
value λ of an upper-triangular matrix b is the number of times λ appears as a
diagonal entry of b. This can be proved directly from the definitions (see, for
example, [4, Theorem 8.10]).


Theorem 3.4. For a in Mn(F ) the characteristic polynomial of a (as in Defi-
nition 2.4) factors in F [x] as


(x − λ1)
m(λ1)(x − λ2)


m(λ2) · · · (x − λk)m(λk), (3.5)


where λ1, λ2, . . . , λk are the distinct eigenvalues of a.


Proof. Let b be an upper-triangular matrix, and let B denote the subalgebra of
Mn(F ) consisting of all upper-triangular matrices. The characteristic polyno-
mial chpolyb,B/F of b as an element of B was computed in Example 2.6: it is
given by (3.5) as observed in Example 3.3. According to Proposition 2.11(5),
chpolyb,B/F divides the characteristic polynomial chpolyb,Mn(F )/F of b as an ele-
ment of Mn(F ). Since both polynomials are monic and have degree n (Example
2.6, Corollary 3.2), the theorem holds for upper-triangular matrices.


Since the characteristic polynomial of the given matrix a is unchanged under
scalar extension, we may assume that F is algebraically closed, i.e., F = F .
Here we need to invoke one somewhat sophisticated result from linear algebra:
since F is algebraically closed, a is similar to an upper-triangular matrix b [3,
Theorem 6.2]. But the theorem holds for b by the preceding paragraph. Since
similarity changes neither the characteristic polynomial (Proposition 2.11(2))
nor the eigenvalues, the theorem holds for a.


In [3], Axler develops many of the typical properties of matrices (e.g., the
existence of eigenvalues and the decomposition with respect to generalized eigen-
spaces) over an algebraically closed field without use of the determinant. For
example, in section 5 of that paper he defines the characteristic polynomial to
be exactly the product displayed in the theorem. Logically, one could replace
his section 5 with this paper.


Corollary 3.6. For a in Mn(F ) the minimal polynomial minpolya and the
characteristic polynomial chpolya have the same irreducible factors in F [x].


Proof. Irreducible polynomials in F [x] are determined (up to scalar factors) by
their roots in an algebraic closure F . Thus we may assume that F is algebraically
closed.


As in the proof of Theorem 3.4, a is similar to an upper-triangular matrix.
Since conjugation changes neither the characteristic nor the minimal polynomial,
we may assume that a is upper-triangular.


By Theorem 3.4, every irreducible factor of the characteristic polynomial is
of the form (x − λi) where λi is a diagonal entry in a, say λi = aii. The (i, i)-
entry of minpolya(a) = 0 is 0, but it is also minpolya(λi). Therefore, (x − λi)
divides minpolya.


Since minpolya divides chpolya by the Cayley-Hamilton theorem (Proposi-
tion 2.11(1)), the corollary is proved.
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Proposition 3.7. For a and a′ in Mn(F ), the following statements are true:


(1) a is invertible if and only if cn(a) 6= 0.


(2) (Jacobi formula) cn(a) =
∑


σ∈Sn
(sign σ)a1σ(1)a2σ(2) · · · anσ(n).


(3) cn(aa′) = cn(a)cn(a′).


(4) c1(a) = a11 + a22 + · · · + ann.


Proof. For (1), we note that the matrix a is invertible if and only if the kernel of
a is zero [4, Proposition 3.17], which happens if and only if 0 is not an eigenvalue
of A. By Theorem 3.4, this is true if and only if cn(a) 6= 0.


We now follow [3, sec. 9]. Write d(a) for the right-hand side of (2). A
straightforward rearrangement of terms as in [6, p. 179] or [4, Theorem 10.31]
shows that d(aa′) = d(a)d(a′). Therefore, (2) implies (3).


We now prove (2). Suppose first that a is upper-triangular. Then both sides
of (2) are just the product of the diagonal entries of a, hence (2) holds in this
case.


Now consider the general case. Since cn(a) and d(a) are unchanged if we
enlarge our base field, we may assume that F is algebraically closed, in which
event a is similar to an upper-triangular matrix b, i.e., b = gag−1 for some g in
Mn(F ). Then


cn(b) = d(b) = d(gag−1) = d(g)d(ag−1) = d(ag−1)d(g) = d(ag−1g) = d(a).


Since cn(a) = cn(b) by Proposition 2.11(2), we have proved (2).


As to (4), by Proposition 2.11(4) there exist βij in F such that


c1(a) =
∑


i


∑


j


βijaij


for every matrix a. In the case where a is upper-triangular, the proof of Theorem
3.4 shows that the characteristic polynomial of a is as in Example 2.6. In
particular, (4) holds. This gives


βij =


{


0 if i < j,


1 if i = j.


A symmetric argument with lower-triangular matrices shows that βij = 0 when
i > j.


Definition 3.8. For a an element of a finite-dimensional F -algebra A, we define
the trace of a to be


trA/F (a) = c1(a)


and the determinant of a to be


detA/F (a) = cn(a).
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If there is no danger of ambiguity, we write simply detA or det instead of detA/F


and similarly for the trace. The trace trMn(F ) and determinant detMn(F ) are
the usual trace and determinant from linear algebra by Proposition 3.7—or by
Theorem 3.4, depending on your point of view.


4 QUATERNIONS.


Example 4.1. Hamilton’s quaternions—usually denoted by H—are defined to
be the ring constructed by taking the complex numbers C and adjoining an
element j such that j2 = −1, j commutes with real numbers, and ij = −ji. It
has R-basis 1, i, j, and k, where k = ij. A lot of interesting information about
the quaternions can be found in [12, chap. 7]. (Note that H is an R-algebra but
not a C-algebra, since C is not in the center of H.)


Set φ to be the R-linear map H → M2(C) defined by


1 7→
(


1 0
0 1


)


, i 7→
(


i 0
0 −i


)


, j 7→
(


0 1
−1 0


)


, k 7→
(


0 i
i 0


)


.


This extends to an isomorphism φ : C ⊗ H → M2(C) (as C-algebras).
Since the characteristic polynomial is unchanged when we enlarge our base


field (Lemma 2.9), the characteristic polynomial of a quaternion q has degree 2,
just like a matrix in M2(C). That is,


chpolyq(x) = x2 − trH(q)x + detH(q).


We now determine trH and detH. Every quaternion can be written as q =
r + si + uj + vk = z + wj for some real numbers r, s, u, and v and complex
numbers z = r + si and w = u + vi. We have


φ(q) =


(


z w
−w z


)


.


Because the characteristic polynomial is unchanged when we enlarge our base
field, we find that


trH(q) = trM2(C)(φ(q)) = z + z = 2r


and
detH(q) = detM2(C)(φ(q)) = zz + ww = r2 + s2 + u2 + v2.


Example 4.2 (Matrices over the quaternions). Write M2(H) for the set
of 2-by-2 matrices with entries in H. The obvious addition and multiplication
make it into a 16-dimensional R-algebra.


In [8], Cayley defined a determinant Cdet : M2(H) → H by


Cdet


(


q11 q12


q21 q22


)


= q11q22 − q21q12.
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He noted that his determinant had some unsavory properties. For example,


Cdet


(


q q′


q q′


)


= 0 (q, q′ ∈ H),


whereas


Cdet


(


i i
j j


)


= ij − ji = 2ij 6= 0.


We can constrast this with the determinant that we have just defined. Just
as for H, there is an isomorphism φ2 : C ⊗ M2(H) → M4(C) such that


φ2


(


q11 q12


q21 q22


)


=


(


φ(q11) φ(q12)
φ(q21) φ(q22)


)


.


(Recall that φ(q) is a 2-by-2 complex matrix for every q in H.) If m in M2(H)
has a repeated row or column, then so does φ2(m), hence


detM2(H)(m) = detM4(C)(φ2(m)) = 0.


More generally, our trace and determinant have the nice properties of the usual
trace and determinant for matrices as given in Proposition 2.11.


For a more comprehensive discussion of various types of determinants for
M2(H), see [2]. Aslaksen refers to our detM2(H) as the Study determinant.


Example 4.3 (Central simple algebras). A typical topic for a first-year
graduate algebra course is Wedderburn’s description of simple Artinian rings:
they are isomorphic to Mr(D) for D a skew field. We write F for the center of
D (which is necessarily a field), and suppose that D is finite-dimensional over
F . Such an algebra Mr(D) is called central simple. We have just seen two
examples of these, with F = R, D = H, and r = 1, 2.


The trace trMr(D) and determinant detMr(D) are called the reduced trace and
reduced norm, respectively. They are usually constructed by “Galois descent”
as in [10, p. 145] or [24], using facts special to central simple algebras. Here we
get them as a consequence of the general theory of the characteristic polynomial
from section 2.


5 MORE PROPERTIES OF THE CHARAC-


TERISTIC POLYNOMIAL.


Here we discuss the example of finite-dimensional field extensions (Example
5.2). We also establish some additional nice properties of the characteristic
polynomial (Corollary 5.3).


Write EndF (A) for the set of F -linear maps A → A. It is an F -algebra, with
function composition as multiplication. It is isomorphic to Mm(F ).


For a in A, write La for the element of EndF (A) defined by


La(b) = ab (b ∈ A).
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The map a 7→ La defines an F -algebra homomorphism called the left regular
representation of A. This homomorphism is injective: if La = 0, then La(a′) = 0
for all a′ in A, whence 0 = La(1A) = a · 1A = a.


Proposition 5.1. Let a be an element in a finite-dimensional F -algebra A. The
minimal polynomial minpolya/F divides the characteristic polynomial chpolya,A/F


of a, which in turn divides the characteristic polynomial chpolyLa,EndF (A)/F , all
in F [x]. All three polynomials have the same irreducible factors in F [x].


Proof. Since chpolya(a) = 0 by the Cayley-Hamilton theorem (Proposition
2.11(1)), the minimal polynomial of a divides the characteristic polynomial
chpolya. Because the left regular representation is injective, we see that chpolya


divides chpolyLa
by 2.11(5).


We are reduced to showing that chpolyLa
and minpolya have the same ir-


reducible factors. Now the left regular representation is injective, so a and La


have the same minimal polynomials. That is, we need show only that chpolyLa


and minpolyLa
have the same irreducible factors. Since EndF (A) is isomorphic


to Mm(F ) for m = dimF A, an appeal to Corollary 3.6 completes the proof.


The proposition gives us the power to handle another example.


Example 5.2 (Finite-dimensional field extensions). Let A be an extension
field of F of finite dimension m. Every element a of A corresponds to an element
La in EndF (A) ∼= Mm(F ), and the characteristic polynomial of a divides the
characteristic polynomial of La by Proposition 5.1. The trace and norm of a
are usually defined to be the trace and determinant of La.


If A is separable over F , then by the Theorem of the Primitive Element
A = F [θ] for some θ in A. The minimal polynomial of θ has degree m. Since
it divides the characteristic polynomial of Lθ by Proposition 5.1 and the latter
polynomial has degree m, we find that


chpolyθ,A/F = chpolyLθ
.


The characteristic polynomials chpolya have the same degree for all a in A.
Accordingly,


chpolya = chpolyLa
(a ∈ A).


In particular, for finite separable field extensions, our trace and determinant
agree with the usual trace and norm.


If A is not separable over F , there can be some disagreement. For example,
let F = F2(u, v) be the field of rational functions in indeterminates u and v,
where F2 is the field with two elements. The field A = F (


√
u,


√
v) is a purely


inseparable extension of dimension 4 over F , with basis 1,
√


u,
√


v, and
√


uv.
The generic element


γ = t1 · 1 + t2
√


u + t3
√


v + t4
√


uv


has minimal polynomial


γ2 − (t21 + t22u + t23v + t24uv).
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Here the characteristic polynomial of each element a in A divides but is not
equal to the characteristic polynomial of La.


Proposition 5.1 also allows us to prove that many nice properties of the
characteristic polynomial of a matrix hold as well for characteristic polynomials
of elements of A.


Recall (Remark 2.5) that the characteristic polynomial chpolya has the same
degree for every a in A. We say that A has degree n if chpolya has degree n for
each a in A.


Corollary 5.3. Let A be a finite-dimensional F -algebra of degree n. For a in
A, the following assertions hold:


(1) ci(1A) =
(


n
i


)


. In particular, trA(1A) = n and detA(1A) = 1.


(2) a is invertible if and only if detA(a) 6= 0.


(3) a is nilpotent if and only if chpolya = xn.


Proof. For (1) we observe that the minimal polynomial of 1A is x − 1. Propo-
sition 5.1 thus gives


chpoly1A
= (x − 1)n.


To treat the (⇐) direction of (2), we first define the adjoint of a, denoted
by adj a, as follows:


adj a = (−1)n+1[an−1 − c1(a)an−2 + · · · + (−1)n−1cn−1(a)].


Then
a · adj a = (−1)n+1[chpolya(a) − (−1)ncn(a)] = detA(a)1A.


This shows that a is invertible when detA(a) is not zero. For the converse,
assume that a is invertible. Then La is invertible with inverse La−1 . By Propo-
sition 3.7(1), the constant term detEndF (A)(La) of chpolyLa


is not zero. Because
chpolya,A/F and chpolyLa,EndF (A)/F have the same irreducible factors in F [x],
the constant term detA(a) of chpolya,A/F is not zero.


Finally, we consider (3). The element a is nilpotent if and only if it satisfies
the polynomial xr for some natural number r, which is the case if and only
if a has minimal polynomial xp for some natural number p. Since the mini-
mal polynomial and characteristic polynomial have the same irreducible factors
(Proposition 5.1), this holds if and only if the characteristic polynomial of a is
xn.


Remark 5.4. One might be tempted to accept the traditional definition of
characteristic polynomial for matrices, and then define the characteristic poly-
nomial of a in A as chpolyLa,EndF (A)/F . But this definition is unsatisfactory for
the quaternions, because their traditional characteristic polynomial—derived in
Example 4.1—has degree two, but chpolyLa


would have degree four. And there
is another problem: there is no strong mathematical reason to prefer the left
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regular representation over the right regular representation (defined in the obvi-
ous manner as a 7→ Ra), and the characteristic polynomials of La and Ra may
differ. Adrian Wadsworth points out that the upper-triangular matrices from
Example 2.6 provide an example of this difficulty. In particular, the generic
element γ has


chpolyLa
(γ) = (x − t1)


n(x − t2)
n−1 · · · (x − tn−1)


2(x − tn)


and
chpolyRa


(γ) = (x − t1)(x − t2)
2 · · · (x − tn−1)


n−1(x − tn)n.


6 THE PRODUCT FORMULA FOR DETER-


MINANTS.


In this section, we prove that the usual product formula for determinants of
matrices holds for an arbitrary finite-dimensional F -algebra A:


Theorem 6.1. For every a and a′ in A, it is true that


detA(aa′) = detA(a) detA(a′).


We postpone the proof until the end of the section. A more cryptic—but
also more powerful—proof can be found in [19, chap. 6, sec. 5].


Remark 6.2. Recall that detA is both a function A → F and an element of
R = F [t1, . . . , tm]. To evaluate the function detA at a in A, we write a in terms
of the basis a1, a2, . . . , am as a =


∑


i αiai and make the substitution ti 7→ αi in
the polynomial detA. In this manner, we may view each polynomial in R as a
function A → F .


Lemma 6.3. Suppose that F is infinite. Let f in R be such that f(1A) = 1 and
f(aa′) = f(a) f(a′) for all a and a′ in A. If a member g of R divides f and has
g(1A) = 1, then g(aa′) = g(a) g(a′) for all a and a′ in A.


Proof. Since f(1A) = g(1A) = 1, the polynomials f and g are nonzero elements
of R. Suppose that f or g belongs to the group F× of units in R. Then g is a
unit, hence g = 1 and the lemma holds.


We may assume that f and g are nonzero nonunits. Since R is a unique
factorization domain, we can write f = f1f2 · · · fr, where each factor fk is
irreducible in R. After multiplying the fk by elements of F× if necessary, we
may assume that fk(1A) = 1 for every k. The fact that g divides f and g(1A) = 1
means that g is a product g =


∏


ℓ∈L fℓ for some subset L of {1, . . . , n}. To prove
the lemma, it suffices to prove that fk(aa′) = fk(a)fk(a′) for k = 1, . . . , n and
for all a, a′ in A.


Set R′ = F [u1, . . . , um, v1, . . . , vm] for independent indeterminates u1, . . . , um,
v1, . . . , vm. Define elements µ and ν of R′ ⊗ A by


µ =
∑


i


uiai, ν =
∑


j


vjaj .


15







As in Remark 6.2, every element of R defines a map R′ ⊗ A → R′. For
example, to find f(µ) we take f and replace ti with ui. Similarly, we get f(ν)
via the substitution tj 7→ vj .


We claim that f(µν) = f(µ)f(ν). Let δ = f(µν) − f(µ)f(ν) in R′. Every
element of R′ defines a function F 2m → F by plugging in for the ui and vj .
Making the substitutions ui 7→ αi and vj 7→ βj in δ, where αi and βj belong to
F , we obtain


f(ab) − f(a)f(b)


for a =
∑


αiai and b =
∑


βjaj , which is 0 by hypothesis. That is, δ gives the
map F 2m → F that is identically 0. Since F is infinite, δ = 0. (This can be
proved by induction on the number of variables appearing in the polynomial δ,
using that fact that a nonzero polynomial in one variable has only finitely many
roots; see [21, Proposition 1.3a].) This establishes the claim.


Thus
r


∏


k=1


fk(µν) = f(µν) = f(µ)f(ν) =


r
∏


k=1


fk(µ)fk(ν)


in R′. Recall that we obtain fk(µ) and fk(ν) by substituting one set of indeter-
minates for another in fk. Hence, since fk is prime in R, the polynomials fk(µ)
and fk(ν) are prime in R′ for all k. Therefore the prime factorization of fk(µν)
in the unique factorization domain R′ is a product of fp(µ) and fq(ν) for some
ps and qs. Substituting for the vj so that ν is sent to 1A has the effect that


fk(µν) 7→ fk(µ), fp(µ) 7→ fp(µ), fq(ν) 7→ fq(1A) = 1


for all p and q. Hence the only irreducible factor of fk(µν) amongst the fp(µ)
is fk(µ). Similarly, substituting for the ui so that µ 7→ 1A, we have fk(µν) 7→
fk(ν). It follows that


fk(µν) = fk(µ)fk(ν) (k = 1, . . . , n).


By doing the substitution µ 7→ a and ν 7→ a′, we obtain fk(aa′) = fk(a)fk(a′)
for all a and a′ in A.


Proof of Theorem 6.1. Since the determinant of an element of A is unchanged
when we enlarge the base field (Lemma 2.9), we may assume that F is infinite.
Let γ =


∑


tiai be a generic element of A as in section 2, and consider the
element Lγ in EndK(K ⊗ A).


The minimal polynomial minpolyγ divides chpolyLγ ,EndK(K⊗A)/K in K[x]
by Proposition 5.1. By Lemma 2.3, both polynomials actually lie in R[x] for
R = F [t1, . . . , tm], so minpolyγ divides chpolyLγ


in R[x] by Gauss’s lemma. Sub-
stituting 0 for x defines a surjection R[x] → R that sends minpolyγ to (−1)ndetA


for n = deg(minpolyγ) and chpolyLγ
to the function a 7→ (−1)mdetEndF (A)(La).


Since substitution is a ring homomorphism, detA divides a 7→ detEndF (A)(La)
in R.


We have


detEndF (A)(Laa′) = detEndF (A)(LaLa′) = detEndF (A)(La) detEndF (A)(La′),
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where the last equality comes from Proposition 3.7(3) since EndF (A) is isomor-
phic to Mm(F ). Note that


detEndF (A)(L1A
) = detMm(F )(1Mm(F )) = 1


and detA(1A) = 1 by Proposition 5.3(1). Because F is infinite, Lemma 6.3 gives


detA(aa′) = detA(a) detA(a′)


as desired.


To summarize: We defined the characteristic polynomial of an element in a
finite-dimensional F -algebra in section 2. We defined the determinant detA to be
the constant term of this polynomial (Definition 3.8). In the case A = Mn(F ),
we found that detMn(F ) is given by the Jacobi formula (Proposition 3.7(2)),
hence the product formula holds for detMn(F ) (Proposition 3.7(3)). Finally, we
used Proposition 5.1 to prove the product formula for detA (Theorem 6.1).


7 MISCELLANEOUS REMARKS.


This section is a survey of related results. It is necessarily briefer and more
technical than the rest of the paper.


The “usual” definition of the characteristic polynomial.


For a in A, we claim that the formula


chpolya = det(x · 1A − a) (7.1)


holds in F [x]. But what does the expression “det(x · 1A − a)” mean? For
matrices, the determinant is given by the Jacobi formula involving the entries
of a matrix, a formula that makes sense whether the entries are elements of F
or polynomials in F [x]. The same reasoning holds for our more general notion
of determinant.


One way to prove (7.1) is as follows. First prove it for the algebra A of
upper-triangular matrices from Example 2.6. Then prove (7.1) for A = Mn(F )
by reducing to the upper-triangular case as in the proof of Theorem 3.4. This
implies (7.1) for general A by the arguments in [19, p. 225].


The characteristic polynomial of a product.


If a and b are n-by-n matrices, it is well known that the products ab and ba
have the same characteristic polynomials. We can prove this statement directly
for general A. Let ci be any of the coefficients of the characteristic polynomial
as in (2.10). Then ci : A → F , and we want to show that ci(ab) = ci(ba) for all
i and for all a and b in A. Fix i.
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First assume that b is invertible. Then


ci(ab) = ci(b(ab)b−1) = ci(ba)


by Proposition 2.11(2). Now the set U of pairs (a, b) in A × A such that b
is invertible is a nonempty open subset of A × A in the Zariski topology by
Corollary 5.3. The map A × A → F defined by


(a, b) 7→ ci(ab) − ci(ba)


is given by a polynomial in the coordinates of a and b and is zero on U , hence
is identically zero on A × A. This proves that ci(ab) = ci(ba) for all a and b in
A. (This argument also works for A = Mn(F ) with the traditional definition of
the characteristic polynomial.)


Octonions, Jordan algebras, etc.


The results of sections 2 and 5 hold for many nonassociative algebras A. Specif-
ically, suppose that A is an F -algebra in the sense of Definition 2.1, except that
the multiplication need not be associative. (We still require that elements of
F associate with every pair of elements of A, as in (2.2).) We say that A is
power-associative if the value of a product aa · · · a does not depend on where
one puts the parentheses. We say that A is strictly power-associative if K ⊗ A
is power-associative for every field extension K of F . For example, the octo-
nions are strictly power-associative. So is every Jordan algebra over a field of
characteristic different from 2. When F is infinite, the algebra A is strictly
power-associative if and only if it is power-associative.


The statements of section 2, Proposition 5.1, and parts (1) and (3) of Corol-
lary 5.3 hold verbatim if we merely require that A be strictly power-associative
and finite-dimensional. The proofs go through with essentially no change. In
section 5, the left regular representation A → EndF (A) is just an injection of
vector spaces. But the restriction to the subring generated by F and a does
preserve multiplication for every a in A, and this is enough to prove Proposition
5.1 and parts (1) and (3) of Corollary 5.3. The statement of Proposition 5.3(2)
has to be modified slightly (see [19, Corollary 2, p. 227] for a correct version).


The product formula (Theorem 6.1) does not hold in this level of generality.
For example, it fails when A is a 27-dimensional exceptional Jordan algebra.4


The Pfaffian.


Suppose that the characteristic of F is not 2. Write Skewn(F ) for the vector
space of skew-symmetric n-by-n matrices, i.e., matrices a such that at = −a. If n
is odd, then det(−a) = −det(a) by Proposition 2.11(3). Since det(at) = det(a)
by Proposition 2.11(2), all n-by-n skew-symmetric matrices have determinant
0.


4These algebras correspond to Lie algebras of type F4 in the Killing-Cartan classification.
Their determinants are 27-dimensional cubic forms associated with Lie algebras of type E6.
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Suppose next that n is even. There is a polynomial map Pf : Skewn(F ) → F
such that


(Pf(a))2 = detMn(F )(a) (7.2)


called the Pfaffian (see, for example [22, chap. 15, sec. 9]). It seems a bit
mysterious! (Note that equation (7.2) determines the Pfaffian only up to sign.
Classically one chooses an invertible skew-symmetric matrix S with det(S) = 1
and fixes the sign of Pf so that Pf(S) = 1.)


In fact, the Pfaffian exists as a consequence of the characteristic polynomial
as defined in section 2. Fix a matrix S as in the preceding paragraph and define
a multiplication · on Skewn(F ) by


a · b =
1


2
(aS−1b + bS−1a).


This makes Skewn(F ) into a Jordan F -algebra with identity element S. These
algebras arise naturally in the classification of central simple Jordan algebras.5


They are associated with nondegenerate skew-symmetric bilinear forms on Fn.
As described in the previous subsection, the theory developed in section 2


delivers a characteristic polynomial and a determinant for this Jordan algebra.
One finds that the determinant is the Pfaffian:


detSkewn(F )(a) = Pf(a)


(see [19, pp. 230–232]).


Matrices over rings.


We have given a uniform construction of an analogue of the characteristic poly-
nomial (hence the determinant) for every algebra over a field F . But the char-
acteristic polynomial and determinant are typically defined for Mn(R), where R
is merely a commutative ring with 1. Our definition also gives a characteristic
polynomial in that case.


First, consider Mn(Z) as a Z-algebra. Since Z is a Noetherian unique fac-
torization domain and Mn(Z) is a free Z-module of finite rank, the results in
section 2 hold with A = Mn(Z) and F = Z. (In Proposition 2.11(5), we require
that B be a direct summand of A.) The argument in Lemma 2.9 gives that
the characteristic polynomial of a matrix a in Mn(Z) is the same as the char-
acteristic polynomial of a considered as a matrix in Mn(Q), which is the usual
characteristic polynomial by Theorem 3.4.


A coefficient ci of the characteristic polynomial is given by an element of
Z[t1, t2, . . . , tm], and it is evaluated on a matrix a as described in Remark 6.2.
For example, undergraduates are taught how to evaluate cn = det, which is
given by the Jacobi formula with respect to the standard basis of Mn(Z). In
this manner, one can evaluate ci on a matrix in R ⊗ Mn(Z) = Mn(R) for any


5See [19, chap. 5, sec. 7]. They correspond to Lie algebras of type C in the Killing-Cartan
classification.
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commutative ring R with 1. This gives a characteristic polynomial—the usual
one—for every a in Mn(R).
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