

COHOMOLOGICAL INVARIANTS AND R-TRIVIALITY OF


ADJOINT CLASSICAL GROUPS
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Abstract. Using a cohomological obstruction, we construct examples of ab-


solutely simple adjoint classical groups of type 2An with n ≡ 3 mod 4, Cn or
1Dn with n ≡ 0 mod 4, which are not R-trivial hence not stably rational.


Introduction


For an algebraic group G defined over a field F , let G(F )/R be the group of
R-equivalence classes introduced by Manin in [6]. The algebraic group G is called
R-trivial if G(L)/R = 1 for every field extension L/F . It was established by Colliot-
Thélène and Sansuc in [2] (see also [7, Proposition 1]) that the group G is R-trivial
if the variety of G is stably rational.


In this paper, we focus on the case where G is an absolutely simple classical
group of adjoint type. Adjoint groups of type 1An or Bn are easily seen to be
rational (see [7, pp. 199, 200]). Voskresenskĭı and Klyachko [11, Cor. of Th. 8]
proved that adjoint groups of type 2An are rational if n is even, and Merkurjev [7,
Prop. 4] showed that adjoint groups of type Cn are stably rational for n odd. On
the other hand, Merkurjev also produced in [7] examples of adjoint groups of type
2A3 (= 2D3) and of type 2Dn for any n ≥ 4 which are not R-trivial, hence not
stably rational. Examples of adjoint groups of type 1D4 which are not R-trivial
were constructed by Gille in [3].


The goal of the present paper is to construct examples of adjoint groups of type
2An with n ≡ 3 mod 4 and of adjoint groups of type Cn or 1Dn with n ≡ 0 mod 4
which are not R-trivial. Our constructions are based on Merkurjev’s computation
in [7] of the group of R-equivalence classes of adjoint classical groups, which we
now recall briefly. According to Weil (see [4, §26]), every absolutely simple classical
group of adjoint type over a field F of characteristic different from 2 can be obtained
as the connected component of the identity in the automorphism group of a central1


simple algebra with involution (A, σ) over F . Let Sim(A, σ) be the algebraic group
of similitudes of (A, σ), defined (as a group scheme) by


Sim(A, σ)(E) = {u ∈ A⊗F E | (σ ⊗ Id)(u)u ∈ E×}
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for every commutative F -algebra E, and let PSim(A, σ) be the group of projective
similitudes,


PSim(A, σ) = Sim(A, σ)/RK/F (Gm,K )


where K is the center of A. The connected component of the identity in these
groups is denoted by Sim+(A, σ) and PSim+(A, σ) respectively. We let Sim(A, σ),
PSim(A, σ), Sim+(A, σ) and PSim+(A, σ) denote the corresponding groups of F -
rational points:


Sim(A, σ) = Sim(A, σ)(F ), PSim(A, σ) = PSim(A, σ)(F ), etc.


The group PSim+(A, σ) is canonically isomorphic (under the map which carries
every similitude g to the induced inner automorphism Int(g)) to the connected
component of the identity in the automorphism group of (A, σ). To describe the
group of R-equivalence classes of PSim+(A, σ), consider the homomorphism


µ : Sim(A, σ)→ Gm


which carries every similitude to its multiplier


µ(g) = σ(g)g.


Let G+(A, σ) = µ
(


Sim+(A, σ)
)


⊂ F× and NK× = µ(K×) ⊂ F× (so NK× = F×2


if K = F ). Let also Hyp(A, σ) be the subgroup of F× generated by the norms
of the finite extensions L of F such that (A, σ) becomes hyperbolic after scalar
extension to L. In [7, Theorem 1], Merkurjev shows that the multiplier map µ
induces a canonical isomorphism


(1) PSim+(A, σ)/R ' G+(A, σ)/
(


NK× ·Hyp(A, σ)
)


.


For any positive integer d, let Hd(F, µ2) be the degree d cohomology group of the
absolute Galois group of F with coefficients µ2 = {±1}. In Section 3 we consider
the case where σ is of the first kind. If it is orthogonal, we assume further that its
discriminant is trivial. Assuming the index of A divides 1


2
degA, we construct a


homomorphism


Θ1 : PSim+(A, σ)/R→ H4(F, µ2),


and give examples where this homomorphism is nonzero, hence PSim+(A, σ)/R 6= 1.
Similarly, if σ is of the second kind and the exponent of A divides 1


2
degA, we


construct in Section 4 a homomorphism


Θ2 : PSim+(A, σ)/R→ H3(F, µ2)


and show that this map is nonzero in certain cases. In all the examples where we
show Θ1 6= 0 or Θ2 6= 0, the algebra with involution has the form (A, σ) = (B, ρ)⊗
(C, τ) where ρ is an orthogonal involution which admits improper similitudes.


Throughout the paper, the characteristic of the base field F is different from 2.


1. Improper similitudes


Let (A, σ) be a central simple F -algebra with orthogonal involution of degree
n = 2m. The group of similitudes Sim(A, σ) is denoted GO(A, σ). This group is
not connected. Its connected component of the identity GO+(A, σ) is defined by
the equation


NrdA(g) = µ(g)m,
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where NrdA is the reduced norm. We denote by GO(A, σ) and GO+(A, σ) the
group of F -rational points


GO(A, σ) = GO(A, σ)(F ), GO+(A, σ) = GO+(A, σ)(F ).


The elements in GO+(A, σ) are called proper similitudes, and those in the nontrivial
coset


GO−(A, σ) = {g ∈ GO(A, σ) | NrdA(g) = −µ(g)m}
are called improper similitudes.


For example, if m = 1 (i.e. A is a quaternion algebra), then every orthogonal
involution has the form σ = Int(q) ◦ γ, where γ is the canonical involution, q is
an invertible pure quaternion and Int(q) is the inner automorphism induced by q,
mapping x ∈ A to qxq−1. It is easily checked that


GO+(A, σ) = F (q)× and GO−(A, σ) = q′F (q)×,


where q′ is a unit which anticommutes with q. Therefore, GO−(A, σ) 6= ∅.
If m > 1, the existence of improper similitudes is an important restriction on A


and σ, since it implies that A is split by the quadratic étale F -algebra F [
√
discσ],


where discσ is the discriminant of σ, see [9, Theorem A] or [4, (13.38)]. In partic-
ular, the index of A satisfies indA ≤ 2, i.e. A is Brauer-equivalent to a quaternion
algebra. Moreover, if m is even, then −1 ∈ NrdA(A), see [9, Corollary 1.13]. There
is no other restriction on A, as the following proposition shows.


1. Proposition. Let H be an arbitrary quaternion F -algebra and let m be an
arbitrary integer. If m is even, assume −1 ∈ NrdH(H×). Then the algebra Mm(H)
carries an orthogonal involution which admits improper similitudes.


Proof. Suppose first m is odd. Let i, j be elements in a standard quaternion basis
of H. We set


σ = t⊗ (Int(i) ◦ γ) on Mm(H) = Mm(F )⊗F H,


where γ is the canonical involution on H. It is readily verified that 1 ⊗ j is an
improper similitude of σ.


Suppose nextm is even, and q ∈ H satisfies NrdH(q) = −1. We pick a quaternion
basis 1, i, j, k = ij such that i commutes with q, and set


σ = Int diag(j, i, . . . , i) ◦ (t⊗ γ) and g = diag(j, qj, . . . , qj).


Again, computation shows that g is an improper similitude of σ. ¤


Necessary and sufficient conditions for the existence of improper similitudes for
a given involution σ are not known if m ≥ 4. For m = 2 (resp. m = 3), Corol-
lary (15.9) (resp. (15.26)) in [4] shows that GO−(A, σ) 6= ∅ if and only if the Clifford
algebra C(A, σ) has outer automorphisms (resp. outer automorphisms which com-
mute with its canonical involution). (For m = 2 another equivalent condition is
that A is split by the center of C(A, σ), see [4, (15.11)] or [9, Prop. 1.15].) We use
this fact to prove the following result:


2. Proposition. Let (A, σ) be a central simple F -algebra with orthogonal involution
of degree 4. Assume that A is not split and discσ 6= 1. Then there exists a field
extension L/F such that AL is not split and GO−(AL, σL) 6= ∅.
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Proof. By hypothesis, F (
√
discσ) is a quadratic field extension of F . We denote


it by K for simplicity and let ι be its nontrivial F -automorphism. The Clifford
algebra C = C(A, σ) is a quaternion K-algebra. Let X be the Severi-Brauer variety
of C ⊗K


ιC and let L be the function field of its Weil transfer:


L = F
(


RK/F (X)
)


.


Then (C ⊗K
ιC) ⊗K KL splits, so CKL is isomorphic to ιCKL, which means that


CKL has outer automorphisms. By [4, (15.9)], it follows that GO−(AL, σL) 6= ∅.
On the other hand, by [9, Corollary 2.12], the kernel of the scalar extension map


Br(F )→ Br(L) is generated by the corestriction of C⊗K
ιC. Since this corestriction


is trivial, AL is not split. ¤


2. Trace forms


In this section, A is a central simple F -algebra of even degree with an involution
σ of the first kind. We consider the quadratic forms TA and Tσ on A defined by


TA(x) = TrdA(x
2), Tσ(x) = TrdA


(


σ(x)x
)


for x ∈ A,


where TrdA is the reduced trace on A. We denote by T+
σ (resp. T−σ ) the restriction


of Tσ to the space Sym(σ) of symmetric elements (resp. to the space Skew(σ) of
skew-symmetric elements), so that


(2) TA = T+
σ ⊥ −T−σ and Tσ = T+


σ ⊥ T−σ .


Recall that if σ is orthogonal the (signed) discriminant discT+
σ is equal to the


discriminant discσ up to a factor which depends only on the degree of A, see for
instance [4, (11.5)]. In the following, we denote by InF the n-th power of the
fundamental ideal IF of the Witt ring WF .


3. Lemma. Let σ, σ0 be two involutions of the first kind on A.


• If σ and σ0 are both symplectic, then T+
σ − T+


σ0
∈ I3F .


• If σ and σ0 are both orthogonal, then disc(T+
σ −T+


σ0
) = discσ discσ0. More-


over, if discσ = discσ0, then T+
σ − T+


σ0
∈ I3F .


Proof. The symplectic case has been considered in [1, Theorem 4]. For the rest of
the proof, we assume that σ and σ0 are both orthogonal. By [4, (11.5)], there is a
factor c ∈ F× such that


discT+
σ = cdiscσ and discT+


σ0
= cdiscσ0,


hence


disc(T+
σ − T+


σ0
) = discT+


σ discT+
σ0


= discσ discσ0.


To complete the proof, observe that the Witt-Clifford invariant e2(T
+
σ ) (or, equiva-


lently, the Hasse invariant w2(T
+
σ )) depends only on discσ and on the Brauer class


of A, as was shown by Quéguiner [10, p. 307]. Therefore, if discσ = discσ0, then
e2(T


+
σ ) = e2(T


+
σ0
), hence T+


σ − T+
σ0
∈ I3F by a theorem of Merkurjev. ¤


We next compute the Arason invariant e3(T
+
σ − T+


σ0
) ∈ H3(F, µ2) in the special


case where σ and σ0 decompose. We use the following notation: [A] ∈ H2(F, µ2) is
the cohomology class corresponding to the Brauer class of A under the canonical
isomorphism H2(F, µ2) = 2 Br(F ). For a ∈ F× we denote by (a) the cohomol-
ogy class corresponding to the square class of a under the canonical isomorphism
H1(F, µ2) = F×/F×2.
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4. Lemma. Suppose A = B⊗F C for some central simple F -algebras B, C of even
degree. Let ρ and ρ0 be orthogonal involutions on B and let τ be an involution of
the first kind on C. Let also σ = ρ⊗ τ and σ0 = ρ0 ⊗ τ .


If τ (hence also σ and σ0) is symplectic, then


e3(T
+
σ − T+


σ0
) =


{


0 if degC ≡ 0 mod 4,


(disc ρdisc ρ0) ∪ [C] if degC ≡ 2 mod 4.


If τ (hence also σ and σ0) is orthogonal, then


e3(T
+
σ − T+


σ0
) =


{


(disc ρdisc ρ0) ∪ (disc τ) ∪ (−1) if degC ≡ 0 mod 4,


(disc ρdisc ρ0) ∪
(


(disc τ) ∪ (−1) + [C]
)


if degC ≡ 2 mod 4.


Proof. The decomposition


Sym(σ) =
(


Sym(ρ)⊗ Sym(τ)
)


⊕
(


Skew(ρ)⊗ Skew(τ)
)


yields
T+
σ = T+


ρ T+
τ + T−ρ T−τ in WF.


Since TB = T+
ρ − T−ρ we may eliminate T−ρ in the equation above to obtain


T+
σ = T+


ρ T+
τ + (T+


ρ − TB)T
−
τ .


Similarly,
T+
σ0


= T+
ρ0
T+
τ + (T+


ρ0
− TB)T


−
τ


and subtracting the two equalities yields


T+
σ − T+


σ0
= (T+


ρ − T+
ρ0
)T+


τ + (T+
ρ − T+


ρ0
)T−τ = (T+


ρ − T+
ρ0
)Tτ .


Since degC is even, we have Tτ ∈ I2F (see [4, (11.5)]), hence


e3(T
+
σ − T+


σ0
) =


(


disc(T+
ρ − T+


ρ0
)
)


∪ e2(Tτ ) in H3(F, µ2).


By Lemma 3 we have


disc(T+
ρ − T+


ρ0
) = disc ρdisc ρ0.


The computation of e2(Tτ ) in [10, Theorem 1] or [5] completes the proof. ¤


Remark. If σ and σ0 are symplectic, the Arason invariant e3(T
+
σ − T+


σ0
) is the


discriminant ∆σ0
(σ) investigated in [1].


3. Involutions of the first kind


In this section, A is a central simple F -algebra of even degree, and σ is an
involution of the first kind on A. We assume indA divides 1


2
degA, i.e. A 'M2(A0)


for some central simple F -algebra A0, so that A carries a hyperbolic involution σ0
of the same type as σ. If σ is orthogonal, we assume discσ = 1 (= discσ0), so that
in all cases T+


σ − T+
σ0
∈ I3F , by Lemma 3.


5. Proposition. The map θ1 : Sim(A, σ)→ H4(F, µ2) defined by


θ1(g) =
(


µ(g)
)


∪ e3(T
+
σ − T+


σ0
)


induces a homomorphism


Θ1 : PSim+(A, σ)/R→ H4(F, µ2).


Moreover, for all g ∈ Sim(A, σ), we have


θ1(g) ∪ (−1) = 0 in H5(F, µ2).
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Proof. In view of the isomorphism (1), it suffices to show that for every finite field
extension L/F such that (A, σ)⊗F L is hyperbolic and for every x ∈ L×,


(


NL/F (x)
)


∪ e3(T
+
σ − T+


σ0
) = 0 in H4(F, µ2).


The projection formula yields
(


NL/F (x)
)


∪ e3(T
+
σ − T+


σ0
) = corL/F


(


(x) ∪ e3(T
+
σ − T+


σ0
)L


)


.


Since σL is hyperbolic, the involutions σL and (σ0)L are conjugate, hence


e3(T
+
σ − T+


σ0
)L = 0.


For the last equality, observe that (2) yields the following equations in WF :


Tσ + TA = 〈1, 1〉T+
σ and Tσ0


+ TA = 〈1, 1〉T+
σ0


,


hence


Tσ − Tσ0
= 〈1, 1〉(T+


σ − T+
σ0
).


Since σ0 is hyperbolic, we have Tσ0
= 0. Moreover, for g ∈ Sim(A, σ) the map


x 7→ gx is a similitude of Tσ with multiplier µ(g), hence


〈1,−µ(g)〉Tσ = 〈1,−µ(g)〉〈1, 1〉(T+
σ − T+


σ0
) = 0.


Since


e5
(


〈1,−µ(g)〉〈1, 1〉(T+
σ − T+


σ0
)
)


= θ1(g) ∪ (−1),
the proposition follows. ¤


6. Proposition. Let (A, σ) = (B, ρ) ⊗ (C, τ), where B and C are central simple
F -algebras of even degree and ρ, τ are involutions of the first kind. Suppose indB
divides 1


2
degB and ρ is orthogonal. For g ∈ GO−(B, ρ), we have g⊗1 ∈ Sim+(A, σ)


and


θ1(g ⊗ 1) =


{


0 if degC ≡ 0 mod 4,


[B] ∪ [C] if degC ≡ 2 mod 4.


Proof. For g ∈ GO(B, ρ), we have


σ(g ⊗ 1)g ⊗ 1 = ρ(g)g = µ(g)


and


NrdA(g ⊗ 1) = NrdB(g)
degC ,


so g ⊗ 1 ∈ Sim+(A, σ).
Since indB divides 1


2
degB, we may find a hyperbolic orthogonal involution ρ0


on B, and set σ0 = ρ0 ⊗ τ , a hyperbolic involution on A of the same type as σ.
If τ is symplectic, Lemma 4 yields


e3(T
+
σ − T+


σ0
) =


{


0 if degC ≡ 0 mod 4,


(disc ρ) ∪ [C] if degC ≡ 2 mod 4.


The proposition follows by taking the cup-product with
(


µ(g)
)


, since
(


µ(g)
)


∪
(disc ρ) = [B] by [9, Theorem A] (see also [4, (13.38)]).


Suppose next τ is orthogonal. By Lemma 4,


e3(T
+
σ − T+


σ0
) =


{


(disc ρ) ∪ (disc τ) ∪ (−1) if degC ≡ 0 mod 4,


(disc ρ) ∪
(


(disc τ) ∪ (−1) + [C]
)


if degC ≡ 2 mod 4.
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Using again the equation
(


µ(g)
)


∪ (disc ρ) = [B] and taking into account the equa-
tion (−1) ∪ [B] = 0, which follows from [9, Corollary 1.13], we obtain the formula
for θ1(g ⊗ 1). ¤


Using Proposition 6, it is easy to construct examples where θ1 6= 0. For these
examples, the map Θ1 of Proposition 5 is not trivial, hence PSim+(A, σ) is not
R-trivial.


7. Corollary. Let Q, H be quaternion F -algebras satisfying


(−1) ∪ [H] = 0 in H3(F, µ2) and [H] ∪ [Q] 6= 0 in H4(F, µ2).


Let A = M2r(H)⊗Ms(Q), where r is arbitrary and s is odd. Let ρ be an orthogonal
involution on M2r(H) which admits improper similitudes (see Lemma 1), and let
τ be any involution of the first kind on Ms(Q). Then PSim+(A, ρ ⊗ τ) is not
R-trivial.


To obtain explicit examples, we may take for F the field of rational fractions
in four indeterminates F = C(x1, y1, y2, y2) and set H = (x1, y1)F , Q = (x2, y2)F .
Note that the degree of A can be any multiple of 8 and that the conditions on Q
and H in Corollary 7 imply indA = 4. Indeed, if there is a quadratic extension of
F which splits Q and H, then [H] ∪ [Q] is a multiple of (−1) ∪ [H].


Other examples can be obtained from Proposition 2.


8. Corollary. Let (B, ρ) be a central simple algebra of degree 4 and index 2 with
orthogonal involution of nontrivial discriminant over a field F0. Let F = F0(x, y)
be the field of rational fractions in two indeterminates x, y over F0, and let (C, τ)
be a central simple F -algebra with involution of the first kind such that


degC ≡ 2 mod 4 and [C] = (x) ∪ (y) ∈ H2(F, µ2).


Then PSim+(B ⊗ C, ρ⊗ τ) is not R-trivial.


Proof. Proposition 2 yields an extension L0/F0 such that ρL0
admits an improper


similitude g and BL0
is not split. Set L = L0(x, y). By Proposition 6,


g ⊗ 1 ∈ Sim+(B ⊗ C, ρ⊗ τ)(L) and θ1(g ⊗ 1) = [BL] ∪ (x) ∪ (y).


Since [BL0
] 6= 0, taking successive residues for the x-adic and the y-adic valuations


shows that θ1(g ⊗ 1) 6= 0. Therefore, PSim+(B ⊗ C, ρ ⊗ τ)(L)/R 6= 1, hence
PSim+(B ⊗ C, ρ⊗ τ) is not R-trivial. ¤


4. Involutions of the second kind


We assume in this section that (A, σ) is a central simple algebra with unitary
involution over F . In this case, the group of similitudes is connected,


Sim+(A, σ) = Sim(A, σ) and PSim+(A, σ) = PSim(A, σ).


We denote by K the center of A and write K = F [X]/(X2 − α). We assume the
degree of A is even, degA = n = 2m, and denote by D(A, σ) the discriminant
algebra of (A, σ) (see [4, §10] for a definition).


9. Lemma. D(A, σ) is split if (A, σ) is hyperbolic.
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Proof. The lemma is clear if A is split, for then σ is adjoint to a hyperbolic hermitian
form h and [D(A, σ)] = (α) ∪ (disch) by [4, (10.35)]. The general case is reduced
to the case where A is split by scalar extension to the field of functions L =
F
(


RK/F


(


SB(A)
))


of the Weil transfer of the Severi-Brauer variety of A. Indeed,
A ⊗F L is split and the scalar extension map Br(F ) → Br(L) is injective by [9,
Corollary 2.12]. ¤


10. Proposition. Suppose A⊗m is split. The map θ2 : Sim(A, σ) → H3(F, µ2)
defined by


θ2(g) =
(


µ(g)
)


∪ [D(A, σ)]


induces a homomorphism


Θ2 : PSim(A, σ)/R→ H3(F, µ2).


Moreover, for any g ∈ Sim(A, σ),


θ2(g) ∪ (α) = 0 in H4(F, µ2).


Proof. In view of the isomorphism (1), it suffices to show that for every finite field
extension L/F such that (A, σ)⊗F L is hyperbolic and for every x ∈ L×,


(


NL/F (x)
)


∪ [D(A, σ)] = 0 in H3(F, µ2),


and that for every λ ∈ K×,
(


NK/F (λ)
)


∪ [D(A, σ)] = 0 in H3(F, µ2).


As in the proof of Proposition 5, we are reduced by the projection formula to
proving that D(A, σ) is split by K and by every extension L/F such that (A, σ)⊗L
is hyperbolic. The latter assertion follows from the lemma. On the other hand, by
[4, (10.30)] and by the hypothesis on B we have


[D(A, σ)K ] = [λmA] = m[A] = 0.


To prove the last part, we use the trace form Tσ defined as in Section 2,


Tσ(x) = TrdA(σ(x)x) for x ∈ A,


and its restrictions T+
σ , T−σ to Sym(A, σ) and Skew(A, σ) respectively. In the case


of involutions of unitary type we have


Tσ = T+
σ ⊥ T−σ = 〈1,−α〉T+


σ .


The computation of the Clifford algebra of T+
σ in [4, (11.17)] shows that Tσ ∈ I3F


and
e3(Tσ) = (α) ∪ [D(A, σ)].


Now, for g ∈ Sim(A, σ) the map x 7→ gx is a similitude of Tσ with multiplier µ(g),
hence 〈1,−µ(g)〉Tσ = 0 in WF . Taking the image under e4 yields


0 =
(


µ(g)
)


∪ e3(Tσ) = θ2(g) ∪ (α).


¤


11. Remarks. (1) If indA divides 1
2
degA, so that A carries a hyperbolic uni-


tary involution σ0, then [4, (11.17)] and Lemma 9 yield


[D(A, σ)] = e2(T
+
σ − T+


σ0
).


This observation underlines the analogy between θ2 and the map θ1 of
Proposition 5. Note however that no hypothesis on the index of A is re-
quired in Proposition 10.
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(2) For g ∈ Sim(A, σ), the equation θ2(g) ∪ (α) = 0 implies that θ2(g) lies in
the image of the corestriction map corK/F : H3(K,µ2) → H3(F, µ2), by
[4, (30.12)]. On the other hand, if the characteristic does not divide m,
Corollary 1.18 of [8] yields an explicit element ξ ∈ H3(K,µ⊗2m ) such that
corK/F (ξ) = θ2(g). In particular, if m is odd it follows that θ2 = 0.


The following explicit computation yields examples where θ2 6= 0.


12. Proposition. Let ι be the nontrivial automorphism of K/F , and assume


(A, σ) = (B, ρ)⊗F (K, ι)


for some central simple F -algebra with orthogonal involution (B, ρ) of degree n =
2m. Assume m is even. For g ∈ GO−(B, ρ) we have g ⊗ 1 ∈ Sim(A, σ) and


θ2(g ⊗ 1) = (α) ∪ [B].


Proof. For g ∈ GO−(B, ρ),


σ(g ⊗ 1)g ⊗ 1 = ρ(g)g = µ(g),


so g ⊗ 1 ∈ Sim(A, σ). By [4, (10.33)], we have


[D(A, σ)] = m[B] + (α) ∪ (disc ρ).


Since m is even, the first term on the right side vanishes. The proposition follows by
taking the cup-product with


(


µ(g)
)


, since [B] =
(


µ(g)
)


∪ (disc ρ) by [9, Theorem A]
(see also [4, (13.38)]). ¤


Remark. If m is odd in Proposition 12, then the definition of θ2 requires the extra
hypothesis that B is split by K. Computation then shows that θ2(g ⊗ 1) = 0 for
all g ∈ GO−(B, ρ), as follows also from Remark 11.2 above.


13. Corollary. Let r be an arbitrary integer. Let H be a quaternion F -algebra,
α ∈ F×, K = F [X]/(X2 − α), and let ι be the nontrivial automorphism of K/F .
Assume


(−1) ∪ [H] = 0 in H3(F, µ2) and (α) ∪ [H] 6= 0 in H3(F, µ2).


Let ρ be an orthogonal involution on M2r(H) which admits improper similitudes
(see Lemma 1). Then PSim(M2r(H)⊗F K, ρ⊗ ι) is not R-trivial.


As in the previous section (see Corollary 8), alternative examples can be con-
structed from Proposition 2:


14. Corollary. Let (B, ρ) be a central simple algebra of degree 4 with orthogonal
involution over a field F0. Assume B is not split and disc ρ 6= 1. Let F = F0(x) be
the field of rational fractions in one indeterminate over F0, let K = F (


√
x) and let


ι be the nontrivial automorphism of K/F . The group PSim(B ⊗F0
K, ρ⊗ ι) is not


R-trivial.


Note that this corollary also follows from [7, Theorem 3].
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