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Abstract. Our main goal is to give proofs of all results announced by Oleg
Izhboldin in [13]. In particular, we establish Izhboldin’s criterion for stable
equivalence of 9-dimensional forms. Several other related results, some of
them due to the author, are also included.

All the fields we work with are those of characteristic different from 2. In
these notes we consider the following problem: for a given quadratic form φ
defined over some field F , describe all the quadratic forms ψ/F which are
stably birational equivalent to φ.

By saying “stably birational equivalent” we simply mean that the projective
hypersurfaces φ = 0 and ψ = 0 are stably birational equivalent varieties. In

this case we also say “φ is stably equivalent to ψ”(for short) and write φ
st∼ ψ.

Let us denote by F (φ) the function field of the projective quadric φ = 0

(if the quadric has no function field, one set F (φ) = F ). Note that φ
st∼ ψ

simply means that the quadratic forms φF (ψ) and ψF (φ) are isotropic (that is,
the corresponding quadrics have rational points).

For an isotropic quadratic form φ, the answer to the question raised is easily

seen to be as follows: φ
st∼ ψ if and only if the quadratic form ψ is also isotropic.

Therefore, we may assume that φ is anisotropic.
One more class of quadratic forms for which the answer is easily obtained

is given by the Pfister neighbors. Namely, for a Pfister neighbor φ one has:

φ
st∼ ψ if and only if ψ is a neighbor of the same Pfister form as φ. Therefore,

we may assume that φ is not a Pfister neighbor.
Let φ be an anisotropic quadratic form which is not a Pfister neighbor (in

particular, dimφ ≥ 4 since any quadratic form of dimension up to 3 is a

Pfister neighbor) and assume that dimφ ≤ 6. Then φ
st∼ ψ (with an arbitrary

quadratic form ψ) if and only if φ is similar to ψ (in dimension 4 this is due
to Wadsworth, [42]; 5 is done by Hoffmann, [4, main theorem]; 6 in the case of
the trivial discriminant is served by Merkurjev’s index reduction formula [33],
see also [34, thm. 3]; the case of non-trivial discriminant is due to Laghribi,
[32, th. 1.4(2)]).

Date: 5 July 2002.
Key words and phrases. Quadratic forms, Chow groups, correspondences. 2000 Mathe-

matical Subject Classifications: 11E04; 14C25.
1



2 N. KARPENKO

In this text we give a complete answer for the dimensions 7 and 9 (see §3
and §5). In dimension 8 the answer is almost complete (see §4). The only

case where the criterion for φ
st∼ ψ with dimφ = 8 is not established is the

case where the determinant of φ is non-trivial and the even Clifford algebra of
φ (which is a central simple algebra of degree 8 over the quadratic extension
of the base field given by the square root of the determinant of φ) is Brauer-
equivalent to a biquaternion algebra not defined over the base field. In this

exceptional case we only show that φ
st∼ ψ if and only if φ is motivic equivalent

to ψ. This is not a final answer: it should be understood what the motivic
equivalence means in this particular case.

The results on the 9-dimensional forms are due to Oleg Izhboldin and an-
nounced by himself (without proofs) in [13]. Here we also provide proofs for
all other results announced in [13]. In particular, we prove the following two
theorems (see Theorem 7.1.1 for the proof):

Theorem 0.0.1 (Izhboldin). Let φ be an anisotropic 10-dimensional quadratic
form with discφ = 1 and iS(φ) = 2. Let ψ be a quadratic form of dimension
≥ 9. Then φF (ψ) is isotropic if and only if ψ is similar to a subform of φ.

Theorem 0.0.2 (Izhboldin). Let φ be an anisotropic 12-dimensional quadratic
form from I3(F ). Let ψ be a quadratic form of dimension ≥ 9. Then φF (ψ) is
isotropic if and only if ψ is similar to a subform of φ.

Also the theorem on the anisotropy of an arbitrary 10-dimensional form over
the function of a non Pfister neighbor of dimension > 10 announced in [13] is
proved here (see Theorem 7.2.1).
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during this stay. Also I am grateful to the Max-Planck-Institut für Mathe-
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1. Notation and results we are using

If the field of definition of a quadratic form is not explicitly given, we mean
that this is a field F .

We use the following more or less standard notation concerning quadratic
forms: det(φ) ∈ F ∗/F ∗2 is the determinant of the quadratic form φ, disc(φ) =
(−1)n(n−1)/2 det(φ) with n = dimφ is its discriminant (or signed determinant);
iW (φ) is the Witt index of φ; iS(φ) is the Schur index of φ, that is, the Schur
index of the simple algebra C0(φ) for φ 6∈ I2(F ) and the Schur index of the
central simple algebra C(φ) for φ ∈ I2(F ). Here I(F ) is the ideal of the
even-dimensional quadratic forms in the Witt ring W (F ). In the case where
φ ∈ I2(F ), we also write c(φ) for the class of C(φ) in the Brauer group Br(F );
this is the Clifford invariant of φ.

We write φ ∼ ψ to indicate that two quadratic forms φ and ψ are similar,

i.e., φ ' cψ for some c ∈ F ∗; φ st∼ ψ stays for the stable equivalence (meaning
that for any field extension E/F one has iW (φE) ≥ 1 if and only if one has

iW (ψE) ≥ 1); and φ
m∼ ψ denotes the motivic equivalence of φ and ψ meaning

that for any field extension E/F and any integer n one has iW (φE) ≥ n if and
only if one has iW (ψE) ≥ n.

Theorem 1.0.3 (Izhboldin, [12, cor. 2.9]). Let φ and ψ be odd-dimensional

quadratic forms over F . Then φ
m∼ ψ if and only if φ ∼ ψ.

Theorem 1.0.4 (Hoffmann, [5, th. 1]). Let φ and ψ be two anisotropic qua-
dratic forms over F with dimφ ≤ dimψ. If the form φF (ψ) is isotropic, then
dimφ and dimψ are in the same interval ]2n−1, 2n] (for some n). In particular,
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the integer n = n(φ) such that dimφ ∈]2n−1, 2n] is a stably birational invariant
of an anisotropic quadratic form φ.

For an anisotropic φ, the first Witt index i1(φ) is defined as iW (φF (φ)).

Theorem 1.0.5 (Vishik, [22, th. 8.1]). The integer dimφ − i1(φ) is a stably
birational invariant of an anisotropic form φ.

1.1. Pfister forms and neighbors. A quadratic form isomorphic to a tensor
product of several (say, n) binary forms representing 1 is called an (n-fold)
Pfister form. Having a Pfister form π, we write π ′ for a pure subform of π,
that is, for for a subform π′ ⊂ π (determined by π up to an isomorphism) such
that π = 〈1〉⊥π′. A quadratic form is called a Pfister neighbor, if it is similar
to a subform of an n-fold Pfister form and has dimension bigger that 2n−1 (the
half of the dimension of the Pfister form) for some n. Two quadratic forms
φ and ψ with dimφ = dimψ are called half-neighbors, if the orthogonal sum
aφ⊥bψ is a Pfister form for some a, b ∈ F ∗.
1.2. Similarity of 1-codimensional subforms. We writeG(φ) ⊂ F ∗ for the
multiplicative group of the similarity factors of a quadratic form φ; D(φ) ⊂ F ∗

stays for the set of non-zero values of φ. The following observations are due to
B. Kahn:

Lemma 1.2.1. Let φ be an arbitrary quadratic form of even dimension. For
every a ∈ D(φ), let ψa be a 1-codimensional subform of φ such that φ '
〈a〉⊥ψa. Then for every a, b ∈ D(φ), the forms ψa and ψb are similar if and
only if ab ∈ G(φ).

Proof. Comparing the determinants of the odd-dimensional quadratic forms ψa
and ψb, we see that ψa ∼ ψb if and only if bψa ' aψb. By adding 〈ab〉 to both
sides, the latter condition is transformed in bφ ' aφ, that is, to ab ∈ G(φ). ¤

Corollary 1.2.2. Let ψ be a 1-codimensional subform of an even-dimensional
anisotropic quadratic form φ = 〈a0, a1, . . . , an〉 /F . Let F̃ = F (x0, x1, . . . , xn)/F

be the purely transcendental field extension and let ψ̃/F̃ be a subform of φF̃
complementary to the “generic value” ã = a0x

2
0 + a1x

2
1 + · · · + anx

2
n ∈ F̃ of φ

(so that φF̃ = ψ̃⊥〈ã〉). Then ψF̃ ∼ ψ̃ if and only if φ is similar to a Pfister
form.

Proof. We may assume that a0 = 1 and ψ = 〈a1, . . . , an〉. Then

ψF̃ ∼ ψ̃
Lemma 1.2.1⇐⇒ ã ∈ G(φF̃ )

[35, th. 4.4 of chap. 4]⇐⇒

φF̃ is a Pfister form
[5, prop. 7]⇐⇒ φ is a Pfister form

¤

We will refer to the subform ψ̃ appearing in Corollary 1.2.2 as to the generic
1-codimensional subform of φ (although ψ̃ is a subform of φF̃ and not of φ
itself).
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1.3. Linkage of Pfister forms. We need a result concerning the linkage of
two n-fold Pfister forms. This result is an easy consequence of the results
obtained in [2]. However, it is neither proved nor formulated in the article
cited and we do not know any other reference for it. It deals with the graded
Witt ring GW (F ) of a filed F which is the graded ring associated with the
filtration of the ordinary Witt ring W (F ) by the powers of the fundamental
ideal I(F ) ⊂ W (F ). It will be applied in §5 to the case with n = 3 and i = 2.

Lemma 1.3.1 (cf. [37, th. 2.4.8]). Let a1, . . . , an, b1, . . . , bn ∈ F ∗. We consider
the elements α and β of the graded Witt ring GW (F ) given by the Pfister forms
〈〈a1, . . . , an〉〉 and 〈〈b1, . . . , bn〉〉, and assume that they are non-zero (i.e., the
Pfister forms are anisotropic). If there exist some i < n and c1, . . . , ci ∈ F ∗

such that the difference α − β is divisible by 〈〈c1, . . . , ci〉〉 in GW (F ), then
there exist some d1, . . . , di ∈ F ∗ such that 〈〈d1, . . . , di〉〉 divides both α and β in
GW (F ).

Proof. Let us make a proof using an induction on i. The case i = 0 is without
contents.

If 〈〈c1, . . . , ci〉〉 with some i ≥ 1 divides the difference α−β, then 〈〈c1, . . . , ci−1〉〉
also divides it. By the induction hypothesis we can find some 〈〈d1, . . . , di−1〉〉
dividing both α and β. Therefore for some a′i, . . . , a

′
n, b

′
i, . . . , b

′
n ∈ F ∗ we have

isomorphisms of quadratic forms 〈〈a1, . . . , an〉〉 ' 〈〈d1, . . . , di−1, a′i, . . . , a′n〉〉 and
〈〈b1, . . . , bn〉〉 ' 〈〈d1, . . . , di−1, b′i, . . . , b′n〉〉, whereby the difference α − β turns
out to be represented by the quadratic form

〈〈d1, . . . , di−1〉〉 ⊗
(

〈〈a′i, . . . , a′n〉〉′⊥− 〈〈b′i, . . . , b′n〉〉′
)

of dimension 2i(2n−i+1 − 1). We claim that this quadratic form is isotropic,
and this gives what we need according to [2, prop. 4.4]. Indeed, assuming that
this quadratic form is anisotropic, we can decompose it as 〈〈c1, . . . , ci〉〉⊗δ with
some quadratic form δ. Counting dimension, we see that dim δ = 2n−i+1 − 1
is odd. This is a contradiction with the facts that 〈〈c1, . . . , ci〉〉 ⊗ δ ∈ In(F ),
n > i, and 〈〈c1, . . . , ci〉〉 is anisotropic. ¤

1.4. Special forms, subforms, and pairs. Here we recall (and slightly mod-
ify) some definitions given in [16, §8–9]. We will not work with the general
notion of special pairs introduced in [16, def. 8.3]. We will only work with the
degree 4 special pairs (see [16, examples 9.2 and 9.3]). Besides, it will be more
convenient for us to call special also those pairs which are similar to the special
pairs of [16, def. 8.3]. So, we give the definitions as follows:

Definition 1.4.1. A 12-dimensional quadratic form is called special, if it lies
in I3(F ). A 10-dimensional quadratic form is called special, if it has trivial
discriminant and Schur index ≤ 2. A quadratic form is called special, if it is
either a 12-dimensional or a 10-dimensional special form.

A 10-dimensional quadratic form is called a special subform, if it is divisible
by a binary form. A 9-dimensional quadratic form is called a special subform,
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if it contains a 7-dimensional Pfister neighbor. A special subform is a quadratic
form which is either a 10-dimensional or a 9-dimensional special subform.

A pair of quadratic forms φ0, φ with φ0 ⊂ φ is called special if either φ is a
12-dimensional special form while φ0 is a 10-dimensional special subform or φ
is a 10-dimensional special form while φ0 is a 9-dimensional special subform.

A special pair φ0, φ is called anisotropic, if the form φ is anisotropic (in this
case φ0 is of course anisotropic as well).

Proposition 1.4.2 ([16, §§8–9]). Special forms, subforms, and pairs have the
following properties:

1. for any special subform φ0, there exists a special form φ such that φ0, φ
is a special pair;

2. for any special form φ, there exists a special subform φ0 such that φ0, φ
is a special pair;

3. for a given special pair φ0, φ, the form φ is isotropic if and only if the
form φ0 is a Pfister neighbor;

4. for any anisotropic special pair φ0, φ, the Pfister neighbor (φ0)F (φ) is
anisotropic.

The items 3 and 4 give

Corollary 1.4.3 (cf. [16, prop. 8.13]). Let φ0, φ and ψ0, ψ be two special pairs.

If φ0
st∼ ψ0, then φ

st∼ ψ. ¤

1.5. Anisotropic 9-dimensional forms of Schur index 2. In this subsec-
tion, φ is an anisotropic 9-dimensional quadratic form with iS(φ) = 2.

Lemma 1.5.1. There exist one and unique (up to an isomorphism) 10-dimen-
sional special form µ containing φ. There exist one and unique (up to an
isomorphism) 12-dimensional special form λ containing φ. Moreover,

(i) µ is isotropic if and only if φ contains an 8-dimensional subform divis-
ible by a binary form;

(ii) λ is isotropic if and only if φ contains a 7-dimensional Pfister neighbor;
(iii) if µ and λ are both isotropic, then φ is a Pfister neighbor.

Proof. The form µ is constructed as µ = φ⊥〈− disc(φ)〉. The uniqueness of µ
is evident.

The form λ is constructed as λ = φ⊥ disc(φ)β ′, where β is a 2-fold Pfister
form with c(β) = c(φ). If λ′ is one more 12-dimensional special form containing
φ, then the difference λ − λ′ ∈ W (F ) is represented by a form of dimension
6. Since this difference lies in I3(F ), it should be 0 by the Arason-Pfister-
Hauptsatz.

Clearly, the form µ is isotropic if and only if φ represents its determinant,
that is, if and only if φ contains an 8-dimensional subform φ′ of trivial deter-
minant. Since iS(φ

′) = iS(φ) = 2, the form φ′ is divisible by some binary form
([29, example 9.12]).
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The form λ is isotropic if and only if λ = π for some form π similar to a
3-fold Pfister form. The latter condition holds if and only if φ and π contain
a common 7-dimensional subform.

Note that the isotropy of λ implies that φ is a 9-dimensional special subform
and φ, µ is a special pair. So, µ is isotropic if and only if φ is a Pfister neighbor
in this case (Proposition 1.4.2). ¤

2. Correspondences on odd-dimensional quadrics

In this section we give some formal rules concerning the game with the
correspondences on odd-dimensional quadrics.

2.1. Types of correspondences. Let φ be a completely split quadratic form
of an odd dimension and write n = 2r + 1 for the dimension of the projective
quadric Xφ given by φ. We recall (see, e.g., [20, §2.1]), that there exists a
filtration

X = X(0) ⊃ X(1) ⊃ · · · ⊃ X(n) ⊃ X(n+1) = ∅
of the variety X = Xφ by closed subsets X (i) such that every successive differ-
ence X(i)rX(i+1) is an affine space (so that X is cellular) and codimX X

(i) = i
for all i = 0, 1, . . . , n. It follows (see [3]) that for every i = 0, 1, . . . , n, the group
CHi(X) is infinite cyclic and is generated by the class of X (i). Note that for the
class of a hyperplane section h ∈ CH1(X) one has [X (i)] = hi for i < dimX/2
and 2 · [X(i)] = hi for i > dimX/2. In particular, the generators [X (i)] are
canonical.

Since the product of two cellular varieties is also cellular, the group CH∗(X×
X) is also easily computed. Namely, this is the free abelian group on [X (i) ×
X(j)] for i, j = 0, 1, . . . , n. In particular, CHn(X ×X) is generated by [X (i) ×
X(n−i)], i = 0, 1, . . . , n.

For any correspondence α ∈ CHn(X × X), we define its pretype (cf. [23,
§9]) as the sequence of the integer coefficients in the representation of α as the
linear combination of the generators.

Moreover, refusing to assume that φ is split, we may still define the pretype
of an α ∈ CHn(Xφ×Xφ) as the pretype of αF̄ , where F̄ is an algebraic closure
of F . Note that the entries of the pretype of α can be also calculated as the
half of the degrees of the 0-cycles hn−i · α · hi ∈ CH0(Xφ × Xφ). This is an
invariant definition of the pretype. In particular, the pretype of α does not
depend on the choice of F̄ (what can be also easily seen in the direct way).

Finally, we define the type as the pretype modulo 2.

2.2. Formal notion of type. We start with some quite formal (however con-
venient) definitions.

A type is an arbitrary sequence of elements of Z/2Z of a finite length. For
two types of the same length n, we define their sum and product as for the
elements of (Z/2Z)n. We may also look at a type as at the diagram of a subset
of the set {1, 2, . . . , n} (1 is on the i-th position iff the element i is in the
subset). Using this interpretation of types, we may define the union and the
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intersection in the evident way (the intersection coincides with the product).
We may also speak of the inclusion of types. In particular, we have the notion
of a subtype of a given type (all these is defined for types of the same length).

The reduction (or 1-reduction) of a type of length ≥ 2 is the type obtained
by erasing the two border entries. The n-reduction of a type is the result of n
reductions successively applied to the type.

The diagonal type is the type with all the entries being 1. The zero type is
the type with all the entries being 0.

We have two different notions of weight of a type: the sum of its entries
(this is an element of Z/2) and the number of 1-entries (this is an integer).
To distinguish between them, we call the second number cardinality. So, the
weight is the same as the cardinality modulo 2.

2.3. Possible and minimal types. Let φ be an odd-dimensional quadratic
form. A type is called possible (for φ), if this is the type (in the sense of §2.1)
of some correspondence on the quadric Xφ. Note that the possible types are
of the length dimφ− 1. A possible non-zero type is called minimal (for φ), if
no its proper subtype is possible.

We have the following rules (see [23, §9]): the diagonal and zero types are
possible (the diagonal type is realized by the diagonal, [23, lemma 9.4]); more-
over, sums, products, unions, and intersections of possible types are possible.

It follows that two different minimal types have no intersection. Moreover,
a type is possible if and only if it is a union of minimal ones.

Therefore, in order to describe all possible types for a given quadratic form
φ, it suffices to list the minimal types (see §2.7 as well as Propositions 3.0.9,
3.0.10, 3.0.12 or 5.0.22 for examples of such lists).

2.4. Properties of possible types. Here are some rules which help to detect
the impossibility of certain types.

Assume that the quadratic form φ is anisotropic. Then the weight of every
possible type is 0, [23, lemma 9.7].

And now we assume the contrary: φ is isotropic, say φ ' ψ⊥H (H is the
hyperbolic plane). Then the reduction of a type possible for φ is a type possible
for ψ, [23, lemma 9.6].

These two rules (together with a trivial observation that a type possible for
a φ is also possible for φE where E is an arbitrary field extension of the base
field) have a useful consequence (cf. [22, th. 6.4]): if φ is an anisotropic form
with the first Witt index n, then for any type possible for φ we have: the sum
of the first n entries coincides with the sum of the last n entries.

Let us note that a types possible for φE is also possible for φ/F if the field
extension E/F is unirational (this is easily seen by the homotopy invariance
of the Chow group).

2.5. Possible types and the Witt index. Here is a way to determine the
Witt index of a quadratic form φ looking at its possible types: for any integer
n ≤ (dimφ)/2, one has iW (φ) ≥ n if and only if the type with the only one 1
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entry staying on the n-th position is possible. Note that the “only if” part is
trivial while the “if” part follows from 2.4.

2.6. The Rost type. The Rost type of a given length is the type with 1 on
the both border places and with 0 on all inner places. By definition, the Rost
type is possible for a given odd-dimensional quadratic form φ if and only if
there exists a correspondence ρ ∈ CHn(Xφ ×Xφ) such that over an algebraic
closure of the base field one has ρ = a[X × pt] + b[pt × X] with some odd
integers a, b, where n = dimXφ = dimφ− 2 and where pt is a rational point.
We will use this reformulation as definition for the expression “Rost type is
possible” in the case of an even-dimensional quadratic form φ even though we
do not have a definition of types possible for an even-dimensional quadratic
form yet (cf. subsection 2.10).

As shown in [23, prop. 5.2], the Rost type is possible for any Pfister neighbor
of dimension 2n+1 (for any n ≥ 1). The converse statement for the anisotropic
forms is an extremely useful conjecture (cf. [23, conj. 1.6]) proved by A. Vishik
in all dimensions 6= 2n + 1: if dimφ 6= 2n + 1 for all n, then the Rost type is
not possible for φ (see [37] or [18, th. 6.1]). Vishik’s proof uses existence and
certain properties of the operations in the motivic cohomology obtained by
Voevodsky and involved in his proof of the Milnor conjecture. In the original
[40], the operations were constructed (or claimed to be constructed) only in
characteristic 0 (this was enough for the Milnor conjecture because the Milnor
conjecture in positive characteristics is a formal consequence of the Milnor
conjecture in the characteristic 0, [40, lemma 5.2]). This is the reason why
Vishik’s result is announced only in characteristic 0 in [18]. The new version
[41] of [40] is more characteristic independent. So, Vishik’s result extends to
any characteristic (cf. [38, th. 4.18]).

We also note that the conjecture on the Rost types is proved by simple and
characteristic independent methods which do not use any unpublished result,
in the following particular cases:

iS(φ) is maximal ([23, cor. 6.6], cf. Lemma 3.0.8); note that this covers the
cases of dimension 4 (because iS(φ) of a 4-dimensional anisotropic form is
always maximal) and 5 (because an anisotropic quadratic form φ with dimφ =
5 is not a Pfister neighbor if and only if iS(φ) is maximal);

dimφ = 7, 8 and φ does not contain an Albert subform (see [23, prop. 9.10]
for dimension 7; the same method works for dimension 8);

dimφ = 9, φ is arbitrary (this is the main result of [23]).
Finally, a simple and characteristic independent proof of the conjecture in all

dimensions 6= 2n + 1, using only the Steenrod operations on the Chow groups
(constructed in an elementary way in [1]) is recently given in [26].

2.7. Minimal types for 5-dimensional forms. To give an example, we find
the minimal types for a 5-dimensional anisotropic quadratic form φ (cf. [38,
prop. 5.10]). Note that iS(φ) = 2 if and only if φ is a Pfister neighbor; otherwise
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iS(φ) = 4. Also note that i1(φ) is always 1. Therefore, the diagonal type (1111)
is minimal for φ which is not a Pfister neighbor. For a Pfister neighbor φ, the
minimal types are given by the Rost type (1001) and its complement (0110).

2.8. Possible types for pairs of quadratic forms. Let (φ, ψ) be a pair of
quadratic forms (the order is important) having a same odd dimension n. A
type is called possible for the pair (φ, ψ) if it is the type of a correspondence
lying in the Chow group CHn(Xφ ×Xψ). Here are some rules.

The product of a type possible for (φ, ψ) by a type possible for (ψ, τ) is a
type possible for φ, τ . In particular, a product of a type possible for (φ, ψ) by
a type possible for ψ (that is, possible for (ψ, ψ)) is still a type possible for
(φ, ψ).

Therefore (see §2.5), one may compare the Witt indices of two quadratic
forms φ and ψ (with dimφ = dimψ being odd) over extensions E/F as follows:
let n be an integer such that a type with 1 on the n-th place (the other entries
can be arbitrary) is possible for (φ, ψ) as well as for (ψ, φ), let E/F be any
field extension of the base field F ; then iW (φE) ≥ n if and only if iW (ψE) ≥ n.

In particular, we get one part of Vishik’s criterion of motivic equivalence of
quadratic forms (cf. [21, criterion 0.1]): φ

m∼ ψ if the diagonal type is possible
for the pair (φ, ψ).

2.9. Rational morphisms and possible types. Given some different φ and
ψ, how can one construct at least one non-zero type possible for (φ, ψ)? In this
article we use essentially only one method which works only if the form ψF (φ)
is isotropic: we take the correspondence given by the closure of the graph of a
rational morphism Xφ → Xψ. Its type is non-zero because its first entry is 1.

Let us give an application. We assume that the diagonal type is minimal for

an odd-dimensional φ and we show that φ
st∼ ψ (for some ψ with dimψ = dimφ)

means φ ∼ ψ in this case as follows: taking the product of the possible types for
(φ, ψ) and (ψ, φ) given by the rational morphisms Xφ → Xψ and Xψ → Xφ,
we get a possible type for φ, starting with 1; therefore this is the diagonal
type; therefore the types we have multiplied are diagonal as well; therefore
the diagonal type is possible for (φ, ψ); therefore φ

m∼ ψ whereby φ ∼ ψ by
Theorem 1.0.3.

2.10. Even-dimensional quadrics. Even though this contradicts to the title
of the current section, we briefly discuss the notion of a type possible for an
even-dimensional quadratic form here. We need it in order to prove Proposition
4.0.14 on 8-dimensional quadratic forms (and only for this). So, let φ be an
even-dimensional quadratic form and X = Xφ. If φ is completely split (i.e.,
is hyperbolic), the variety X is also cellular (as it was the case with the odd-
dimensional forms). So, CH∗(X) is a free abelian group, and one may choose
the generators as follows: hi for CHi(X) with i ≤ dimX/2 and ln−i for CH

i(X)
with i ≥ dimX/2, where h ∈ CH1(X) is the class of a hyperplane section while
li ∈ CHn−i(X) is the class of an i-dimensional linear subspace lying onX. Note
that the “intermediate” group CHr(X), where r = dimX/2, has rang two (the
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other groups have rang 1). Moreover, the generator lr is not canonical (the
other generators are canonical).

It follows that CH∗(X×X) is the free abelian group on the pairwise products
of the listed above elements. In particular, CHn(X × X) with n = dimX is
freely generated by the elements hi × li (i = 0, . . . , r), li × hi (i = r, . . . , 0),
hr×hr, and lr×lr. We define the type of some α ∈ CHn(X×X) as the sequence
of the coefficients modulo 2 in the representation of α as a linear combination
of the generators (in the order given) where the last two coefficients are erased
(in other words, we do not care for the coefficients of hr × hr and lr × lr).

Now, if the even-dimensional quadratic form φ is arbitrary (i.e., not neces-
sarily split), we define the type of α ∈ CHn(X ×X) as the type of αF̄ , where
F̄ is an algebraic closure of F . As easily seen, the type does not depend on
the choice neither of F̄ nor of lr. To justify our decision to forget two last
coefficients, let us notice that the generator hr × hr is always defined over F ,
while the coefficient of lr × lr is necessarily even in the case of non-hyperbolic
φ. It is also important that the diagonal class is the sum of all the generators
(with coefficients 1) but the last two ones.

Now it is clear that one may define the notion of a type possible for some
even-dimensional φ in the exactly same way as it was done in §2.3 for odd-
dimensional forms (note that the length of a possible type equals now dimφ,
in particular, it is still even). Moreover, all properties of possible types given
above remain true.

Since the Rost type is not possible for an even dimensional form, we get the
following

Proposition 2.10.1. Let φ be an anisotropic even-dimensional form. Assume
that the splitting pattern of φ “has no jumps” (i.e., iW (φE) takes all values
between 0 and dimφ/2 when E varies). Then the diagonal type is minimal for

φ. In particular, if φ
st∼ ψ, where ψ is some other quadratic form of the same

dimension as φ, then φ
m∼ ψ. ¤

Remark 2.10.2. Since i1(φ) = 1 for φ as in Proposition 2.10.1, such a form
φ can not be stably equivalent to a form of a dimension < dimφ (Theorem
1.0.5). One can also show that φ can not be stably equivalent to a form of
dimension > dimφ. We do not give a proof for this fact, because we apply
Proposition 2.10.1 to the 8-dimensional forms where this fact can be explained
by Theorem 1.0.4.

3. Forms of dimension 7

Let φ be an anisotropic 7-dimensional quadratic form. In this section we
give a complete answer to the problem of determining quadratic forms ψ such

that φ
st∼ ψ.

To begin, let us consider the even Clifford algebra C0(φ) of the form φ.
Since this is a central simple algebra of degree 8, the possible values of iS(φ)
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are among 1, 2, 4, and 8. The condition iS(φ) = 1 is equivalent to the condition
that φ is a Pfister neighbor; this is a case we do not consider.

Assume that iS(φ) = 2 and consider the quadratic form τ = φ⊥〈− disc(φ)〉
which is a (unique up to an isomorphism) 8-dimensional quadratic form of
trivial discriminant containing φ (as a subform). Since the Clifford algebra
C(τ) is Brauer-equivalent with C0(φ), we have iS(τ) = iS(φ) = 2. It is now
easy to show that τ is anisotropic and i1(τ) = 2 (see, e.g., [8, th. 4.1] for the

second statement). Therefore φ
st∼ τ , and, taking in account [30], we get

Theorem 3.0.3. Let φ be an anisotropic 7-dimensional quadratic form with
iS(φ) = 2, defined over a field F ; let ψ be another quadratic form over F . The

relation φ
st∼ ψ can hold only if dimψ is 7 or 8. Moreover,

• for dimψ = 7, φ
st∼ ψ if and only if φ⊥〈− discφ〉 ∼ ψ⊥〈− discψ〉;

• for dimψ = 8, φ
st∼ ψ if and only if φ⊥〈− discφ〉 ∼ ψ.

¤

Example 3.0.4. For any given anisotropic 7-dimensional form φ/F with
iS(φ) = 2, one may find a purely transcendental field extension F̃ /F and

some 7-dimensional ψ/F̃ such that φF̃
st∼ ψ but φF̃ 6∼ ψ. Indeed, we may take

as ψF̃ the “generic 1-codimensional subform” (§1.2) of the 8-dimensional form
φ⊥〈− disc(φ)〉. Since this 8-dimensional form is not a Pfister neighbor (be-
cause its Schur index is 2 and not 1), we have φF̃ 6∼ ψ according to Corollary
1.2.2.

It remains to handle the forms φ with iS(φ) being 4 or 8. The main tool
here is the following

Proposition 3.0.5 ([23, cor. 9.11], cf. [38, prop. 5.11(iii)]). The diagonal type
is minimal (see §2.3) for any 7-dimensional anisotropic quadratic form φ with
iS(φ) ≥ 4.

Remark 3.0.6. The formulation of [23, cor. 9.11] includes one additional hy-
pothesis: φ does not contain an Albert subform (that is, the form φ⊥〈− disc(φ)〉
is anisotropic). However this hypothesis is included only in order to avoid
the use of the general theorem on the Rost types in dimension 7 which was
known only in characteristic 0 in that time (see §2.6). Moreover, the proofs of
Propositions 3.0.9 and 3.0.10 (generalizing Proposition 3.0.5) we give here are
essentially the same as the proof of Proposition 3.0.5 given in [23].

Corollary 3.0.7. Let φ be a 7-dimensional anisotropic quadratic form such

that iS(φ) ≥ 4, ψ an arbitrary quadratic form. Then φ
st∼ ψ if and only if

φ ∼ ψ.

Proof. Let ψ be a quadratic form stably equivalent with φ, and let us look at
the dimension of ψ. We can not have dimψ ≤ 6: one may either refer to the
results on stable equivalence of forms of dimension ≤ 6 or to Theorem 1.0.5
and the fact that i1(φ) = 1.
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If dimψ = 7, it follows from §2.9 and Proposition 3.0.5 that ψ ∼ φ.
Finally, if dimψ = 8, then all 1-codimensional subforms of ψ are similar

(to φ). Moreover, this is still true over any purely transcendental extension
of F . It follows by Corollary 1.2.2 that ψ is similar to a Pfister form, a
contradiction. ¤

Proposition 3.0.5 and Corollary 3.0.7 can be generalized to any odd dimen-
sion as follows. We start with a statement concerning every (odd and even)
dimension:

Lemma 3.0.8 ([23]). If φ is a quadratic form with maximal iS(φ) (i.e., such
that the even Clifford algebra C0(φ) is a division algebra or, in the case φ ∈ I2,
a product of two copies of a division algebra), then the Rost type is not possible
for φ.

Proof. If the Rost type is possible for φ, then by [23, cor. 6.6] the class of a
rational point in K(X̄) is in the subgroup K(X) ⊂ K(X̄), where X̄ is X over
an algebraic closure of F , while K(X) is the Grothendieck group (of classes of
quasi-coherent X-modules) of X. By the computation of K(X) given in [36],
it follows that iS(φ) is not maximal, a contradiction. ¤

Proposition 3.0.9. Let φ be an anisotropic quadratic form of an odd dimen-
sion 2n + 1. If iS(φ) = 2n (i.e., iS(φ) is maximal), then the diagonal type is
minimal for φ.

Proof. First of all let us notice that iS(φF (φ)) = 2n−1. Consequently i1(φ) = 1,

and the Schur index of the form
(

(φ)F (φ)
)

an
is maximal. Therefore we can give

a proof using induction on dimφ as follows.
Let t be a minimal type (for φ) with 1 on the first position. By §2.4 we

know that t has 1 on the last position as well. According to Lemma 3.0.8, the
reduction (see §2.2) of t is a non-zero type. Moreover, this is a type possible
for (φF (φ))an. Therefore, by the induction hypothesis, the reduction of t is the
diagonal type. It follows that the type t itself is diagonal. ¤

Proposition 3.0.10. Let φ be an anisotropic quadratic form of an odd dimen-
sion 2n+1 and assume that n is not a power of 2. If iS(φ) = 2n−1 (i.e., iS(φ)
is “almost maximal”), then the diagonal type is minimal for φ.

Proof. According to the index reduction formula for odd-dimensional quadrics
([34]), we have iS(φF (φ)) = iS(φ) = 2n−1. It follows that i1(φ) = 1 and that
the odd-dimensional quadratic form (φF (φ))an has the maximal Schur index (so
that we may apply Proposition 3.0.9 to it).

Let t be a minimal type (for φ) with 1 on the first position. We have to show
that t is the diagonal type. Since t has 1 on the last position as well, it suffices
to show that the reduction of t is diagonal. Since the reduction of t is a type
possible for (φF (φ))an it suffices to show that the reduction of t is non-zero, that
is, that t itself is not the Rost type. We finish the proof applying the theorem
stating that the Rost type is not possible for a quadratic form of dimension
different from a power of 2 plus 1, see §2.6. ¤
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Theorem 3.0.11. Let φ be as in Proposition 3.0.9 or as in Proposition 3.0.10.
We assume additionally that dimφ ≥ 5. Then φ is stably equivalent only with
the forms similar to φ.

Proof. We almost copy the proof of Corollary 3.0.7.
Let ψ be a quadratic form stably equivalent with φ, and let us look at the

dimension of ψ. We can not have dimψ < dimφ because of Theorem 1.0.5
and the fact that i1(φ) = 1.

If dimψ = dimφ, it follows by §2.9, Propositions 3.0.9, and 3.0.10 that
ψ ∼ φ.

Finally, if dimψ > dimφ, then ψ is stably equivalent to any subform ψ0 ⊂
ψ of dimension dimφ + 1. Therefore it suffices to consider the case where
dimψ = dimφ+ 1. In this case all 1-codimensional subforms of ψ are similar
(to φ). Moreover, this is still true over any purely transcendental extension of
F . It follows by Corollary 1.2.2 that ψ is similar to a Pfister form. Therefore
φ is a Pfister neighbor. However the Schur index iS(φ) of a Pfister neighbor of
dimension ≥ 5 is never maximal and it can be “almost maximal” only if dimφ
is a power of 2 plus 1. ¤

To complete the picture in dimension 7, we find the minimal types for 7-
dimensional forms of Schur index 2:

Proposition 3.0.12 (cf. [38, prop. 5.11(ii)]). Let φ be an anisotropic 7-
dimensional quadratic form with iS(φ) = 2. Then the minimal types for φ
are (101101) and its complement (010010).

Proof. Let t = (t1t2t3t4t5t6) be the minimal type with t1 = 1. Since i1(φ) = 1
(see e.g. [8, th. 4.1]), t6 = 1 as well (§2.4). Since the Rost type is not
possible for φ (see §2.6; note that φ can not contain an Albert form because of
iS(φ) = 2, therefore the Rost type is impossible by a simple reason, see §2.6),
the reduction t2t3t4t5 of t is a non-zero type. Moreover, this reduction is a
type which is possible for the 5-dimensional quadratic form (φF (φ))an. Since
iS(φF (φ)) is still 2 ([34]), t2t3t4t5 is either 1111, or 1001, or 0110 (§2.7). So,
there are three possibilities for t we have to consider:

(1) t = (111111)
(2) t = (110011)
(3) t = (101101)

In the first case we would be able to prove the following “theorem”: for any
purely transcendental field extension F̃ /F and for any 7-dimensional quadratic

form ψ/F̃ such that ψ
st∼ φF̃ , one has ψ ∼ φF̃ . This contradicts to Example

3.0.4. Therefore the diagonal type is not minimal for φ.
In the second case we would be able to prove the following “theorem”: for

any purely transcendental field extension F̃ /F and for any 7-dimensional qua-

dratic form ψ/F̃ such that ψ
st∼ φF̃ , one has iW (ψE) ≥ 2 for some E/F̃ if

and only if iS(φF̃ ) ≥ 2. However for F̃ and ψ/F̃ as in Example 3.0.4, we
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additionally have

iS(ψE) = 3⇔ iS(φ⊥〈− disc(φ)〉)E = 4⇔ iS(φE) = 3 .

It follows that φF̃
m∼ ψ, whereby φF̃ ∼ ψ (Theorem 1.0.3), a contradiction.

Therefore, the second case is not possible as well.
It follows that the only possible case is the third one, i.e., (101101) is a

minimal type. Since its complement is evidently minimal as well (having the
cardinality 2), we are done. ¤

The rest of the announcements of [13] concerning the 7-dimensional forms
given in [13, th. 3.1] is covered by the following proposition. Note that we use
[27] in the proof which is a tool that Izhboldin did not dispose.

Proposition 3.0.13. Let φ be an anisotropic quadratic form of dimension 7
such that iS(φ) ≥ 4. Let ψ be a form such that φF (ψ) is isotropic. Then

1. if ψ is not a 3-fold Pfister neighbor, then dimψ ≤ 7;
2. if dimψ = 7 and ψ is not a 3-fold Pfister neighbor, then ψ ∼ φ;
3. if dimψ = 7 and iS(φ) = 8, then ψ ∼ φ.

Proof. 1. First of all, dimψ ≤ 8 by Theorem 1.0.4. Furthermore, if dimψ = 8
then, since ψ is not a Pfister neighbor, we have i1(ψ) ≤ 2. It follows by [27]

that ψ
st∼ φ, a contradiction with Corollary 3.0.7.

2. Since dimψ = 7 and ψ is not a Pfister neighbor, one has i1(ψ) = 1.

Therefore ψ
st∼ φ by [27]. Applying Corollary 3.0.7, we get that ψ ∼ φ.

3. Since the form φF (ψ) is isotropic, one has iS(φF (ψ)) < 8 = iS(φ). By the
index reduction formula [34] it follows that iS(ψ) = 8; in particular, ψ can not
be a Pfister neighbor and we can apply 2. ¤

4. Forms of dimension 8

We do not have a complete answer for the 8-dimensional forms, but the
answer we give is almost complete. First we recall what is known.

Let φ be an anisotropic 8-dimensional quadratic form. We assume first that
disc(φ) = 1 and we consider the Schur index of φ. Since iS(φ) = 1 if and only
if φ is a Pfister neighbor (that is, a form similar to a 3-fold Pfister form), we

start with the case iS(φ) = 2. In this case we have: φ
st∼ ψ for some ψ with

dimψ ≥ 8 if and only if φ ∼ ψ, [30].

For iS(φ) = 4, 8 one has: φ
st∼ ψ if and only if φ and ψ are half-neighbors:

the case iS(φ) = 4 is done in [30] while the case iS(φ) = 8 is done in [31]. Note
that φ and ψ can be non-similar in each of these two cases, [7, §4].

Now we assume that disc(φ) 6= 1 and iS(φ) = 1. Let d ∈ F ∗ r F ∗2 be a
representative of disc(φ). As shown in [6], φ is similar to π ′⊥〈d〉 for some
3-fold Pfister form π. Clearly, the form πF (

√
d) ' φF (

√
d) is anisotropic. By [10,

lemma 3.5] one has: φ
st∼ ψ if and only if discψ = discφ, iS(ψ) = 1, and the

difference φ⊥− ψ is divisible by 〈〈d〉〉 (that is, φF (√d) ' ψF (
√
d)).
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It follows that the open cases are the cases where detφ 6= 1 and (in the
same time) iS(φ) ≥ 2. In this case, the splitting pattern of φ is {0, 1, 2, 3, 4}
([8, th. 4.1]), i.e., the splitting pattern of φ “has no jumps”. Therefore we may
apply Proposition 2.10.1 which gives us the following

Proposition 4.0.14. Let φ be an anisotropic 8-dimensional quadratic forms

of non-trivial discriminant and of Schur index ≥ 2. Then φ
st∼ ψ for some ψ

if and only if φ
m∼ ψ.

Proof. If dimψ = 8, then the statement announced is a particular case of

Proposition 2.10.1. If dimψ ≤ 7, then the relation φ
st∼ ψ is not possible

by Theorem 1.0.5 (because i1(φ) = 1; of course one may also refere to the
results of previous sections on the stable equivalence of the quadratic forms of
dimensions ≤ 7). Finally, dimψ > 8 is not possible by Theorem 1.0.4. ¤

Since the condition φ
m∼ ψ for two 8-dimensional forms φ and ψ “almost

always” imply that the forms are half-neighbors ([15, th. 11.1]), we get the
following

Theorem 4.0.15. Let φ be an anisotropic 8-dimensional quadratic forms of
non-trivial discriminant d and of Schur index ≥ 2. In the case where iS(φ) = 4

we assume additionally that the biquaternion division F (
√
d)-algebra, which is

Brauer equivalent to C0(φ), is defined over F . Then φ
st∼ ψ for some ψ if and

only if φ and ψ are half-neighbors. ¤

Remark 4.0.16. In the case excluded (i.e., in the case where detφ 6= 1,
iS(φ) = 4, and the underlying division algebra of C0(φ) is not defined over F ),

we can only prove that φ
st∼ ψ ⇔ φ

m∼ ψ. We do not consider this as a final
result. A further investigation should be undertaken in order to understand
what the condition φ

m∼ ψ means in this case. Note that detφ = detψ and
C0(φ) ' C0(ψ) if φ

m∼ ψ ([21, lemma 2.6 and rem. 2.7]).

The rest of the announcements of [13] concerning the 8-dimensional forms
which are given in [13, th. 3.3] is covered by the following proposition which is
an immediate consequence of [27] (note that this is a tool that Izhboldin did
not dispose).

Proposition 4.0.17. Let φ be an anisotropic quadratic form of dimension 8.
Let ψ be a form of dimension 8 such that the form φF (ψ) is isotropic. Suppose
also that i1(ψ) = 1 (i.e., ψ 6∈ I2 or iS(ψ) ≥ 4). Then the form ψF (φ) is

isotropic (and hence ψ
st∼ φ). ¤

5. Forms of dimension 9

In this section φ is a 9-dimensional quadratic form over F . We describe all

quadratic forms ψ/F such that φ
st∼ ψ.

We are going to use the following subdivision of anisotropic 9-dimensional
forms φ:
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kind 1: the forms φ which contain a 7-dimensional Pfister neighbor;
kind 2: the forms φ containing an 8-dimensional form divisible by a
binary form;
kind 3: the rest.

Remark 5.0.18. A form of kind 1 is a 9-dimensional special subform (in the
sense of §1.4) while a form of kind 2 is contained in certain 10-dimensional
special subform (and is stably equivalent with it).

A form which is simultaneously of kind 1 and of kind 2 (this happens) is a
Pfister neighbor (see Proposition 1.4.2(3) or Lemma 1.5.1 (iii)).

Theorem 5.0.19 (Izhboldin, cf. [13, th. 4.6]). Let φ1 and φ2 be anisotropic
9-dimensional quadratic forms each of which is not a Pfister neighbor. The

relation φ1
st∼ φ2 can hold only if φ1 and φ2 are of the same kind. Moreover,

3. For φ1 and φ2 of kind 3, φ1
st∼ φ2 if and only if φ1 ∼ φ2.

1. For φ1 and φ2 of kind 1, φ1
st∼ φ2 if and only if φi ∼ π′i⊥〈u, v〉 for

i = 1, 2 with some 3-fold Pfister forms πi and some u, v ∈ F ∗ such that
the Pfister form 〈〈u, v〉〉 divides the difference π1 − π2 in W (F ).

2. For φ1 and φ2 of kind 2, let τi, i = 1, 2, be some 10-dimensional special

subform containing φi. Then φ1
st∼ φ2 if and only if some 9-dimensional

subform of τ1 is similar to some 9-dimensional subform of τ2.

Corollary 5.0.20 (Izhboldin). Let φ be an anisotropic 9-dimensional qua-
dratic form which is not a Pfister neighbor. Let ψ be a quadratic form of

dimension 6= 9. Then φ
st∼ ψ is possible only for φ of kind 2 and for ψ being

a 10-dimensional special subform. Moreover, if τ is a special 10-dimensional
subform containing φ while ψ is a 10-dimensional special subform as well,

then φ
st∼ ψ if and only if some 9-dimensional subform of τ is similar to some

9-dimensional subform of ψ.

Proof. The condition φ
st∼ ψ implies that 9 ≤ dimψ ≤ 16 (Theorem 1.0.4)

and that i1(ψ) = dimψ− 8 (Theorem 1.0.5), i.e., the form ψ has the maximal
splitting (meaning that the first Witt index has the maximal possible value
among the quadratic forms of the same dimension as ψ). In particular, if
dimψ ≥ 11, then ψ is a Pfister neighbor, because there are no forms with
maximal splitting but Pfister neighbors in dimensions from 11 up to 16, [19]
(for a more elementary proof of this statement see [11]). Since φ is not a Pfister

neighbor, the relation φ
st∼ ψ therefore implies that dimψ = 10.

If a 10-dimensional quadratic form ψ has the maximal splitting and is not a
Pfister neighbor, then ψ is divisible by a binary form, [16, conj. 0.10]. In this
case ψ is also stably equivalent to any 9-dimensional subform ψ ′ ⊂ ψ. Having

φ
st∼ ψ′ and applying Theorem 5.0.19 we get the required result. ¤

Remark 5.0.21. Let φ be an anisotropic 9-dimensional quadratic form. Let
ψ be a quadratic form of a dimension ≥ 9. According to [14, th. 0.2], the
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form φF (ψ) is isotropic if and only if φ
st∼ ψ. Therefore Theorem 5.0.19 with

Corollary 5.0.20 give a criterion of isotropy of φF (ψ).

Proof of Theorem 5.0.19. The proof of the theorem takes the rest of the sec-
tion. We refer to [13] for the proof that the conditions given in the theorem

guaranty that φ
st∼ ψ (only the case where φ and ψ are of kind 1 requires some

work; the rest is clear).
The proof that the conditions are necessary starts with the following

Proposition 5.0.22 (Izhboldin, cf. [38, prop. 5.8]). Let φ be an anisotropic
9-dimensional quadratic form, and assume that φ is not a Pfister neighbor.
Here are the minimal types for φ depending on the kind (for the kind 3 see
Proposition 5.0.24):

kind 1: (11011011) and its complement;
kind 2: (10100101) and its complement.

Proof. Let t by the minimal type with t1 = 1. Since i1(φ) = 1, t8 = 1 as well.
Since φ is not a Pfister neighbor, the reduction t′ of t is a non-zero type (§2.6).
Moreover, t′ is a type possible for the 7-dimensional form φ′ = (φF (φ))an. Since
iS(φ

′) = iS(φ) = 2 ([34]), we may apply Proposition 3.0.12 to φ′ and conclude
that t′ is ether (101101), or (010010), or (111111). According to this, t is one
of the following three types: (11011011), (10100101), or (11111111).

Let us assume that φ is of the first kind. By the reason of Corollary 6.2.2,
the diagonal type can not be minimal for such φ. Assume that the second
possibility for t takes place. Then we get the following “theorem”: for any

unirational field extension L/F and any 9-dimensional ψ/L with φL
st∼ ψ one

has iW (φE) ≥ 3 for some field extension E/L if and only if iW (ψE) ≥ 3. This
contradicts however to Lemma 6.2.1. Therefore t = (11011011) for φ of kind
1.

Now we assume that φ is of the second kind. By the reason of Proposition
6.1.1, the diagonal type can not be minimal for such φ. Assume that the first
possibility for t takes place. Then we get the following “theorem”: for purely

transcendental field extension F̃ /F , any 9-dimensional ψ/F̃ with φF̃
st∼ ψ and

for n = 2, 4, one has iW (φE) ≥ n for some field extension E/F̃ if and only if
iW (ψE) ≥ n. However for F̃ and ψ as in Proposition 6.1.1 we evidently have
as well

iW (φE) ≥ 3⇔ iW (τE) ≥ 3⇔ iW (τE) ≥ 4⇔ iW (ψE) ≥ 3 .

It follows that φF̃
m∼ ψ, whereby φF̃ ∼ ψ, a contradiction. Therefore t =

(10100101) for φ of kind 2. ¤

Corollary 5.0.23. A 9-dimensional and a 10-dimensional anisotropic special
subforms are never stably equivalent. ¤

Proposition 5.0.24. Let φ be a 9-dimensional anisotropic form of kind 3, not
a Pfister neighbor. Then the diagonal type is minimal for φ.
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Proof. Since φ is not a Pfister neighbor, we have iS(φ) ≥ 2. If iS(φ) ≥ 4,
then the diagonal type is minimal for φ by [23, cor. 9.14]. So, we assume that
iS(φ) = 2 in the rest of the proof.

Let t by the minimal type with t1 = 1. As in the proof of Proposition 5.0.22,
we show that t is either (11011011), or (10100101), or (11111111).

Let µ and λ be respectively the 10-dimensional and the 12-dimensional spe-
cial forms containing φ (see §1.5). Over the function field F (λ), the form µF (λ)
is anisotropic ([16, th. 10.6]). Besides φF (λ) is a special subform of the special
form µF (λ) (Lemma 1.5.1). It follows that the form φF (λ) is an anisotropic
9-dimensional form of kind 1 and is not a Pfister neighbor. We conclude that
the type (10100101) is not possible for φ.

On the other hand, over the function field F (µ), the form λF (µ) is anisotropic
(Proposition 7.1.3). Let τ be any 10-dimensional subform of λ containing φ.
Besides τF (µ) is a special subform of the special form λF (µ) (Lemma 1.5.1). φ
is of kind 2 and still not a Pfister neighbor

So, we conclude that the type (11011011) is also not possible. The only
remaining possibility is t = (11111111). ¤

Corollary 5.0.25. Let φ and ψ be anisotropic 9-dimensional quadratic forms,

not Pfister neighbors. If φ
st∼ ψ, then φ and ψ are of the same kind. Moreover,

if the kind is 3, then φ
st∼ ψ is possible only if φ ∼ ψ. ¤

5.1. Stable equivalence for forms of kind 1. For a 9-dimensional form φ
of kind 1, we write µφ for the 10-dimensional special form φ⊥〈− disc(φ)〉 (so
that φ, µφ is a special pair).

Let φ and ψ be 9-dimensional quadratic forms of kind 1 each of which is not
a Pfister neighbor. We first prove

Proposition 5.1.1. If φ
st∼ ψ, then µφ ∼ µψ.

To prove this, we need

Lemma 5.1.2. Let n be 2 or 4. If φ
st∼ ψ, then for any field extension E/F

one has:
iW (φE) ≥ n ⇔ iW (ψE) ≥ n .

Proof. Follows from the fact that the type 11011011 is minimal for φ (Propo-
sition 5.0.22) as explained in §2.8. ¤

Proof of Proposition 5.1.1. Assuming that φ
st∼ ψ, let us check that µφ

m∼ µψ,
i.e., iW (µφ)E ≥ n ⇔ iW (µψ)E ≥ n for any E/F and any n ∈ Z. Since the
possible values of iW (µφ)E and iW (µψ) are 1, 3, and 5 (see, e.g., [8, th. 5.1]), it
is enough to check the equivalence desired only for n = 1, 3, 5. The case n = 1

is served since φ
st∼ ψ ⇒ µφ

st∼ µψ by Corollary 1.4.3.
For n = 3, 5, one has

iW (µφ)E ≥ n ⇒ iW (φE) ≥ n− 1
Lemma 5.1.2

=⇒
iW (ψE) ≥ n− 1 ⇒ iW (µψ)E ≥ n− 1 ⇒ iW (µψ)E ≥ n .
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By symmetry, the converse holds as well.
We have shown that µφ

m∼ µψ. It follows that µφ ∼ µψ according to

Lemma 5.1.3. Let π1, π2 be some 3-fold Pfister forms, and let τ1, τ2 be some
2-fold Pfister forms such that the 10-dimensional special forms µ1 = π′1⊥− τ ′1
and µ2 = π′2⊥− τ ′2 are anisotropic. The statements (1)–(5) are equivalent:

(1) µ1
m∼ µ2;

(2) (i) µ1
st∼ µ2,

(ii) c(µ1) = c(µ2) ∈ Br(F ), that is, µ1 ≡ µ2 mod I3(F ) in W (F );
(iii) (µ1)F (C) ≡ (µ2)F (C) mod I4(F ) in W (F (C)), where C/F is a

Severi-Brauer variety corresponding to the element of (2-ii);
(3) the elements τ1 and τ2 of W (F ) coincide and divide the difference π1−

π2;
(4) for some u, v, a1, a2, b, c, k ∈ F ∗ there are isomorphisms

(i) τ1 ' 〈〈u, v〉〉 ' τ2,
(ii) π1 ' 〈〈a1, b, c〉〉, π2 ' 〈〈a2, b, c〉〉,
(iii) 〈〈a1a2, b, c〉〉 ' 〈〈k, u, v〉〉;

(5) µ1 ∼ µ2.

Remark 5.1.4. A stronger as Lemma 5.1.3 statement on the 10-dimensional

special forms will be given in Proposition 7.1.3: µ1 ∼ µ2 already if µ1
st∼ µ2.

Proof of Lemma 5.1.3. We prove the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒
(5)⇒ (1).

(1)⇒ (2). The property (2-i) constitutes a part of the definition of the prop-
erty (1); (2-ii) follows from (1) by [21, rem. 2.7]. As to (2-iii), in the Witt
ring of F (C) we have (µ1)F (C) = (π1)F (C) and (µ2)F (C) = (π2)F (C). There-
fore the Pfister forms (π1)F (C) and (π2)F (C) are stably equivalent, whereby
(π1)F (C) = (π2)F (C) ∈ W (F (C)).

(2) ⇒ (3). Since c(µi) = c(τi) for i = 1, 2, (2-ii) gives c(τ1) = c(τ2) whereby
τ1 = τ2 (because τi are 2-fold Pfister forms). Let τ be a quadratic form isomor-
phic to τ1 and τ2. Since F (C) 'F F (τ

′) for C as in (2-iii), (π1)F (τ) ≡ (π2)F (τ)
mod I4(F ) in W (F (τ)). It follows that (π1)F (τ) = (π2)F (τ) ∈ W (F (τ)) and
therefore the difference π1 − π2 is divisible by τ in W (F ) ([28, lemma 4.4]).

(3) ⇒ (4). Since τ1 and τ2 are isomorphic 2-fold Pfister forms, we may find
u, v ∈ F ∗ satisfying (4-i).

Since the Witt class of 〈〈u, v〉〉 divides the difference π1−π2, the 3-fold Pfister
forms π1 and π2 are 2-linked (or, simply, linked), that is, divisible by a common
2-fold Pfister forms (Lemma 1.3.1). So, we may find a1, a2, b, c satisfying the
condition (4-ii). Now, the difference π1−π2 is represented by a quadratic form
similar to the 3-fold Pfister form 〈〈a1a2, b, c〉〉. Since this 3-fold Pfister form is
divisible by 〈〈u, v〉〉, we may find k ∈ F ∗ satisfying (4-iii).
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(4)⇒ (5).1 We write τ for 〈〈u, v〉〉. Let us consider the difference γ = φ1−kφ2 ∈
W (F ) with k from (4-iii). If γ = 0 then φ1 ' kφ2 and we are done. So, we
assume that γ 6= 0. We have:

γ = (π1 − τ)− k(π2 − τ) = (π1 − kπ2)− 〈〈k〉〉 τ ≡
(π1 − π2)− 〈〈k〉〉 τ ≡ 0 mod I4(F ) .

So, γ ∈ I4(F ). Since the element γF (π1) can be evidently represented by a
quadratic form of dimension < 16, the Arason-Pfister-Hauptsatz tells that
γF (π1) = 0, whereby π1 divides γ in W (F ) ([28, lemma 4.4]). In particular,
γ ≡ 〈〈s〉〉 π1 mod I5(F ) for some s ∈ F ∗. Having

〈〈s〉〉 π1 ≡ γ = (π1 − τ)− kφ2 mod I5(F ) ,

we get

0 ≡ (sπ1 − τ)− kφ2 mod I5(F ) .

By the Arason-Pfister-Hauptsatz, this congruence turns out to be an equality,
i.e., (sπ1−τ) = kφ2. In particular, the quadratic form sπ1⊥−τ is isotropic. It
follows (Elman-Lam, see [16, th. 8.1(1)]) that the anisotropic part of the form
sπ1⊥− τ is similar to (π1⊥− τ)an = φ1. Therefore φ1 ∼ φ2.

(5)⇒ (1). This implication is trivial. ¤

We have checked the implication φ
st∼ ψ ⇒ µφ ∼ µψ. The proof of Proposi-

tion 5.1.1 is therefore finished. ¤

Lemma 5.1.5. Let φ1 and φ2 be 9-dimensional quadratic forms of kind 1 each
of which containing the pure subform of some (common) 3-fold Pfister form

π. If φ1
st∼ φ2, then φ1 ∼ φ2.

Proof. Using the hypothesis, we write φi (for i = 1, 2) as φi ' π′⊥βi, where β1
and β2 are some binary forms. Since the forms

β1⊥〈− det(β1)〉 and β2⊥〈− det(β2)〉
are isomorphic (Proposition 5.1.1 with Lemma 5.1.3(3)), we can find some
u, v1, v2 ∈ F ∗ such that βi ' 〈u, vi〉.

Let µ be a 10-dimensional form isomorphic to φi⊥〈− disc(φi)〉 and let τ be a
2-fold Pfister form isomorphic to 〈〈u, vi〉〉. Since the form µ ' π′⊥−τ ′ becomes
isotropic over the function field F (µ), the forms π ′ and µ′ over F (µ) have a
common value d. Therefore, 〈〈d〉〉 is a common divisor of π and µ over F (µ). Let
k ∈ F (µ)∗ be such that τ ' 〈〈d, k〉〉 over F (µ). Then (φi)F (µ) is a neighbor of

the 4-fold Pfister form π 〈〈−uvik〉〉. Since (φ1)F (µ) st∼ (φ2)F (µ), the Pfister forms
π 〈〈−uv1k〉〉 and π 〈〈−uv2k〉〉 are isomorphic, i.e., π 〈〈v1v2〉〉 = 0 ∈ W (F (µ)).
Since µ is not a Pfister neighbor, it follows that π 〈〈v1v2〉〉 = 0 already inW (F ),

1A proof of this implication was found in the hand-written private notes of Oleg Izhboldin;
we reproduce it here almost word by word.
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that is, v1v2 ∈ G(π). We note additionally that the relation 〈〈u, v1〉〉 = 〈〈u, v2〉〉
implies that v1v2 ∈ G(〈〈u〉〉). Now we get:

v1v2φ1 = v1v2(π − 〈〈u〉〉+ 〈v1〉) = π − 〈〈u〉〉+ 〈v2〉 = φ2 ∈W (F ) ,

thereafter, φ1 is similar to φ2. ¤

Corollary 5.1.6. Let φ1 and φ2 be 9-dimensional quadratic forms of kind 1

and assume that φ1
st∼ φ2. Then there exists some linked 3-fold Pfister forms

π1 and π2 and a binary form 〈u, v〉 such that φ1 ∼ π′1⊥〈u, v〉, φ2 ∼ π′2⊥〈u, v〉,
and the difference π1−π2 ∈ W (F ) is divisible by the 2-fold Pfister form 〈〈u, v〉〉.

Proof. By the definition of the first kind, up to similarity, we can write φ1 and
φ2 as φi = π′i⊥〈ui, vi〉 with some 3-fold Pfister forms π and some ui, vi ∈ F ∗.
We assume that φ1

st∼ φ2. Then the difference π1 − π2 is divisible by 〈〈u1, v1〉〉
according to Proposition 5.1.1 and Lemma 5.1.3. Let us consider the quadratic

form φ3 = π′2⊥〈u1, v1〉. By [13, example 4.4] we have φ1
st∼ φ3. It follows that

φ2
st∼ φ3. Applying Lemma 5.1.5 to the forms φ2 and φ3, we get that φ2 ∼ φ3.

Therefore, we may take u = u1 and v = v1. ¤

We have finished the proof of Theorem 5.0.19 for the 9-dimensional quadratic
forms of kind 1.

5.2. Stable equivalence for forms of kind 2. The only thing to check here
is the following

Proposition 5.2.1. Let τ1 and τ2 be anisotropic 10-dimensional quadratic
special subforms (see §1.4). We assume that neither τ1 nor τ2 are Pfister
neighbors. Then τ1

st∼ τ2 if and only if some 9-dimensional subform of τ1 is
similar with some 9-dimensional subform of τ2.

Proof. The “if” part of the statement is evident. We are going to prove the
“only if” part.

For i = 1, 2, let ρi be a 12-dimensional special form containing τi. Let us
choose some 11-dimensional form δi such that τi ⊂ δi ⊂ ρi. It is enough to
show that δ1 ∼ δ2 and we are going to do this.

According to [12], it suffices to check that δ1
m∼ δ2, that is,

(∗) iW (δ1)E ≥ n ⇔ iW (δ2)E ≥ n

for any E/F and any integer n. Since the possible positive values of iW (δi)E
are 1, 2, and 5 (see, e.g., [8, th. 5.4(ii)]), the relation (∗) has to be checked
only for n = 1, 2, 5.

First of all, to handle the case of n = 1, let us check that δ1
st∼ δ2. The

condition τ1
st∼ τ2 implies ρ1

st∼ ρ2 by Corollary 1.4.3. Besides, since i1(ρi) = 2,

we have δi
st∼ ρi whereby the forms δ1 and δ2 are stably equivalent, indeed.
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For n = 2 we have:

iW (δ1)E ≥ 2 ⇒ iW (τ1)E ≥ 1
τ1

st
∼τ2=⇒

iW (τ2)E ≥ 1
i1(τ2)=2
=⇒ iW (τ2)E ≥ 2 ⇒ iW (δ2)E ≥ 2 .

By the symmetry, iW (δ2)E ≥ 2⇒ iW (δ1)E ≥ 2 as well.
Finally, to handle the case n = 5, let us choose some 9-dimensional subforms

φ1 ⊂ τ1 and φ2 ⊂ τ2. Since the quadratic forms φ1 and φ2 are of the 2nd kind
and stably equivalent, it follows from Proposition 5.0.22 that iW (φ1)E ≥ 3 if
and only if iW (φ2)E ≥ 3. Now we have:

iW (δ1)E = 5 ⇒ iW (φ1)E ≥ 3 ⇒
iW (φ2)E ≥ 3 ⇒ iW (δ2)E ≥ 3 ⇒ iW (δ2)E = 5

and iW (δ2)E = 5⇒ iW (δ1)E = 5 by the symmetry,. ¤

The proof of Theorem 5.0.19 is finished. ¤

The following corollary will be used in the proof of Theorem 0.0.2.

Corollary 5.2.2. Let τ1, ρ1 and τ2, ρ2 be anisotropic special pairs with dim τ1 =
dim τ2 = 10 (and dim ρ1 = dim ρ2 = 12). Let δ1 and δ2 be some 11-dimensional

“intermediate” forms: τ1 ⊂ δ1 ⊂ ρ1 and τ2 ⊂ δ2 ⊂ ρ2. If τ1
st∼ τ2, then δ1 ∼ δ2

and ρ1 ∼ ρ2.

Proof. The relation δ1 ∼ δ2 is checked in the proof of Proposition 5.2.1. It
implies the relation ρ1 ∼ ρ2 because ρi ' δi⊥〈− disc(δi)〉. ¤

6. Examples of non-similar stably equivalent 9-dimensional

forms

The examples constructed in this section are good not only on its own: they
also work in the proof of Proposition 5.0.22.

6.1. Forms of kind 2. For any given anisotropic 9-dimensional quadratic
form φ of kind 2, we get another 9-dimensional form ψ (over a purely tran-

scendental extension of the base field) such that ψ 6∼ φ while ψ
st∼ ψ as follows:

Proposition 6.1.1. Let φ be a 9-dimensional anisotropic form of kind 2. Let
τ be a 10-dimensional special subform containing φ. Then there exists a purely
transcendental field extension F̃ /F and a a 9-dimensional subform ψ ⊂ τF̃
such that φF̃

st∼ ψ while φF̃ 6∼ ψ.

Proof. Since φ
st∼ τ , the form τ is anisotropic. Since the dimension of τ is not

a power of 2, τ is not a Pfister form. To finish, we apply Corollary 1.2.2 and
use the fact that any two 1-codimensional subform of τ (or of τF̃ ) are stably
equivalent. ¤
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6.2. Forms of kind 1. Let φ/F be an arbitrary 9-dimensional anisotropic
quadratic form of the first kind, say, φ ' 〈〈a, b, c〉〉′⊥〈u, v〉 with some a, b, c, u, v ∈
F ∗. We assume that the 10-dimensional special form 〈〈a, b, c〉〉′⊥ − 〈〈u, v〉〉′ is
anisotropic (i.e., that φ is not a Pfister neighbor). Let us construct a new
quadratic form over certain field extension of F as follows.

We consider a degree 2 purely transcendental extension F (t, z)/F and the
quadratic form ψ = 〈〈t, b, c〉〉′⊥〈u, v〉 over F (t, z). Let L/F (t, z) be the top of
the generic splitting tower of the quadratic F (t, z)-form 〈〈at, b, c〉〉⊥−〈〈z, u, v〉〉.
We state that the data obtained this way have the following properties:

Lemma 6.2.1. (1) the field extension L/F is unirational;
(2) the forms φL and ψL are stably equivalent;
(3) the forms φL and ψL are not similar;
(4) there exists a field extension E/L such that iW (ψE) ≥ 3 while iW (φE) ≤

2.

Proof. 1. Over the field F (
√
at,
√
z), the Pfister forms 〈〈at, b, c〉〉 and 〈〈z, u, v〉〉

are split. Therefore the filed extension L(
√
at,
√
z)/F (

√
at,
√
z) is purely tran-

scendental. Since the extension F (
√
at,
√
z)/F is also purely transcendental,

it follows that the extension L(
√
at,
√
z)/F is purely transcendental and there-

after L/F is unirational.
2. According to the definition of L, the form 〈〈at, b, c〉〉L is divisible by 〈〈u, v〉〉L.
So, φL

st∼ ψL by [13, example 4.4].
3. Follows from 4.
4. We take E = L(〈〈t, b, c〉〉). Since the form 〈〈t, b, c〉〉 splits over E, the Witt
index of (〈〈t, b, c〉〉′)E is 3. Therefore iW (ψE) ≥ 3.

To see that iW (φE) ≤ 2, it suffices to check that the form 〈〈a, b, c〉〉E is
anisotropic. We will check that this form is still anisotropic over a bigger
extension, namely, over the field E(

√
t). For this we decompose the field

extension E(
√
t)/F in a tower as follows:

F ⊂ F (
√
t, z) ⊂ K ⊂ L′ ·F K ⊂ L ·F K

where K = F (
√
t, z)(〈〈t, b, c〉〉) and where the field L′, sitting between F (t, z)

and L, is the almost biggest field in the generic splitting tower of 〈〈at, b, c〉〉⊥−
〈〈z, u, v〉〉. Recall that L is the top of this tower and therefore L = L′(π) where
π/L′ is a Pfister form similar with

(

(〈〈at, b, c〉〉⊥ − 〈〈z, u, v〉〉)L′

)

an
.

Since the extensionK/F is purely transcendental (note that 〈〈t, b, c〉〉F (√t,z) is
hyperbolic), the form 〈〈a, b, c〉〉K is anisotropic. Since the extension (L′ ·K)/K
is a tower of the function fields of some quadratic forms of dimension > 8,
the form 〈〈a, b, c〉〉L′·K is still anisotropic (Theorem 1.0.4). In this situation the
hyperbolicity of this form over L · K would mean that 〈〈a, b, c〉〉L′·K = π ∈
W (L′ ·K). Since π = 〈〈at, b, c〉〉 − 〈〈z, u, v〉〉 = 〈〈a, b, c〉〉 − 〈〈z, u, v〉〉, this would
give hyperbolicity of 〈〈z, u, v〉〉L′·K . However, the latter form is anisotropic by
the reasons similar to those we have given already: the field extension K/F (z)
is purely transcendental (note that 〈〈z, u, v〉〉 is defined over F (z) and is of
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course anisotropic over F (z) because 〈〈u, v〉〉 is anisotropic over F ) while the
field extension L′ · K/K is a tower of the function fields of some forms of
dimensions > 8. ¤

In particular, we get

Corollary 6.2.2. Let φ/F be an anisotropic 9-dimensional quadratic form of
the first kind. Then there exists a unirational field extension L/F and a 9-
dimensional quadratic form ψ/L which is in the same time stably equivalent
and non-similar to φL. ¤

7. Other related results

7.1. Isotropy of special forms.

Theorem 7.1.1 (Izhboldin). Let φ be an anisotropic special quadratic form
and let ψ be a quadratic form of dimension ≥ 9. Then φF (ψ) is isotropic if and
only if ψ is similar to a subform of φ.

The proof will be given after certain preliminary observations.

Lemma 7.1.2. If φ0 is an anisotropic special subform while ψ is a special
form, then the form (φ0)F (ψ) is anisotropic.

Proof. We assume that the form (φ0)F (ψ) is isotropic (in particular, the form
ψ is anisotropic). We have dimφ0 = 9 or 10. Let φ1 ⊂ φ0 be a 9-dimensional

subform of φ0 (in the case dimφ0 = 9 we set φ1 = φ0). We have φ0
st∼ φ1 and

therefore the form (φ1)F (ψ) is isotropic. Consequently φ1
st∼ ψ by Theorem [14,

th. 0.2]. It follows that the form ψ has the maximal splitting. However this is
not possible because ψ is special (and therefore i1(ψ) = 1 for a 10-dimensional
ψ while i1(ψ) = 2 for a 12-dimensional ψ). ¤

Proposition 7.1.3. Let φ and ψ be special anisotropic quadratic forms. If the
form φF (ψ) is isotropic, then the forms φ and ψ are similar.

Proof. We can choose some subforms φ0 ⊂ φ and ψ0 ⊂ ψ such that φ0, φ
and ψ0, ψ are anisotropic special pairs. Let E/F be the extension constructed
in [16, prop. 6.10]. We recall that this extension is obtained as the union
of an infinite tower of fields where each step is either an odd extension or
the function field of some 4-fold Pfister form. By [16, lemma 10.1(1)] the
special pairs (φ0)E, φE and (ψ0)E, ψE are still anisotropic. Since the form
φE(ψ) is isotropic, the form (φ0)E(ψ) is a 4-fold Pfister neighbor (Proposition
1.4.2 (3)). Moreover, in view of Lemma 7.1.2 this 4-fold Pfister neighbor is
anisotropic. By the same reason or by Proposition 1.4.2 (4), the form (ψ0)E(ψ)
is also an anisotropic 4-fold Pfister neighbor. By [16, lemma 6.7] we have

(ψ0)E(ψ)
st∼ (φ0)E(ψ). Hence (φ0)E(ψ,ψ0) is isotropic. Since ψ0 ⊂ ψ, the form

(φ0)E(ψ0) is already isotropic. By [16, prop. 8.13], it follows that (φ0)E
st∼ (ψ0)E.

By Corollary 5.0.23, it follows that dimφ0 = dimψ0 and dimφ = dimψ. In
the case where dimφ0 = dimψ0 = 10, that is, dimφ = dimψ = 12, we get
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that φE ∼ ψE applying Corollary 5.2.2. In particular, φE ≡ ψE mod I4(E).
It follows by [16, prop. 6.10, n = 4] that φ ≡ ψ mod I4(F ). Therefore φ ∼ ψ
by [9, cor.].

In the case where dimφ0 = dimψ0 = 9, that is, dimφ = dimψ = 10, we get

that φE ∼ ψE by Proposition 5.1.1. In particular, φE
st∼ ψE, c(φE) = c(ψE),

and φE(C) = ψE(C) ∈W (E(C)) for C as in (2-iii) of Lemma 5.1.3. These three

relations can be descended to F : the first one implies φ
st∼ ψ according to

[16, lemma 10.1(2)]; the second one implies c(φ) = c(ψ) by [16, prop. 6.10(v),
n = 3], while the third one gives φF (C) = ψF (C) ∈ W (F (C)) according to
the construction of E/F and [16, cor. 4.5, n = 4] with [16, lemma 1.2, odd
extensions]. We have got the condition (2) of Lemma 5.1.3. Hence φ ∼ ψ. ¤

Lemma 7.1.4. Let φ0, φ be an anisotropic special pair and let ψ be a quadratic
form with dimψ ≥ 9. Let E/F be the field extension constructed in [16,
prop. 6.10]. If the form (φ0)E(ψ) is isotropic, then ψ is similar to a subform of
φ.

Proof. Note that the forms (φ0)E, φE are anisotropic by [16, lemma 10.1(1)].
We have dimφ0 = 9 or 10. We consider first the case with dimφ0 = 9.

The isotropy of (φ0)E(ψ) implies the condition (φ0)E
st∼ ψE ([14, th. 0.2]).

Moreover, since (φ0)E is a 9-dimensional form of the 1-st kind, ψE is 9-
dimensional of the 1st kind as well (Theorem 5.0.19) and the forms φE =
(φ0⊥〈− disc(φ0)〉)E and (ψ⊥〈− disc(ψ)〉)E are similar (Proposition 5.1.1). It
follows by [16, lemma 10.1(2)] that the special forms φ and ψ⊥〈− disc(ψ)〉 are
stably equivalent. Therefore these two forms are similar (Proposition 7.1.3),
and we see that ψ is similar to a subform of φ in this case.

It remains to consider the case where dimφ0 = 10. Note that any 9-
dimensional subform φ1 ⊂ (φ0)E is of the 2nd kind and stably equivalent
to (φ0)E. Therefore, by Theorem 5.0.19 and Corollary 5.0.20, ψE is contained
in a 10-dimensional special subform. It follows that ψ considered over F is
also contained in a 10-dimensional special subform τ (in the case dimψ = 10
we simply take τ = ψE). Moreover, τE is stably equivalent with (φ0)E (Corol-
lary 5.0.20). Applying Corollary 5.2.2, we get that φE ∼ ρE where ρ is the
12-dimensional special F -form containing τ . It follows by [16, lemma 10.1(2)]
that the special forms φ and ρ are stably equivalent. Therefore these two forms
are similar (Proposition 7.1.3), and we see that ψ is similar to a subform of φ
in this case as well. ¤

Lemma 7.1.5. Let F be a field such that H4(F ) = 0 (the degree 4 Galois
cohomology group of F with coefficients Z/2 is 0). Let φ0, φ be a degree 4
anisotropic special pair over F and let ψ/F be a quadratic form of dimension
≥ 9. If the form φF (ψ) is isotropic while the form (φ0)F (ψ) is anisotropic, then

TorsCH3(Xψ) 6= 0, where TorsCH3(Xψ) stays for the torsion subgroup of the
Chow group CH3(Xψ).

Proof. Since the form φF (ψ) is isotropic, (φ0)F (ψ) is a neighbor of a 4-fold Pfis-
ter form π/F (ψ) ([16, th. 8.6(2)]). Since the form (φ0)F (ψ) is anisotropic, the
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Pfister form π is anisotropic and so the cohomological invariant e4(π) gives
a non-zero element of H4(F (ψ)). Since π contains a 9-dimensional subform
defined over F , the element e4(π) is unramified over F ([16, lemma 6.2]).
We conclude that the unramified cohomology group H4

ur(F (ψ)/F ) is non-zero.
Since H4(F ) = 0, we even get, that the cokernel of the restriction homomor-
phism H4(F ) → H4

ur(F (ψ)/F ) is non-zero. Since this cokernel is isomorphic
to TorsCH3(Xψ) ([16, th. 0.6]), the proof is finished (note that the hypothesis
of [16, th. 0.6] saying that ψ is not a 4-fold Pfister neighbor is satisfied because
otherwise the form ψ would be isotropic and φF (ψ) would be not). ¤

Lemma 7.1.6. Let ψ/F be a quadratic form of dimension ≥ 9 and let E/F
be the extension constructed in [16, prop. 6.10]. If TorsCH3(XψE

) 6= 0, then
TorsCH3(Xψ) 6= 0.

Proof. If TorsCH3(XψE
) 6= 0, then the form ψE is a form of one of the types

(9-a), (9-b), (10-a), (10-b), (10-c), (11-a), (12-a) of forms listed in [16, th. 0.5].
Consider these types case by case.

ψE ∈ (9-a). In this case, (ψ⊥〈− disc(ψ)〉)E is an element of I3(E) (repre-
sented by an anisotropic 3-fold Pfister form) which does not lie in I4(F ). There-
fore, the 10-dimensional F -form ψ⊥〈− disc(ψ)〉 gives an element of I3(F ) r
I4(F ) ([16, prop. 6.10(v)]). It follows that this element is represented by an
anisotropic 3-fold Pfister F -form, whereby ψ ∈(9-a).

ψE ∈ (9-b). This type is characterized as follows: ψ ∈ (9-b) for a 9-
dimensional ψ iff iS(ψ) = 2 and the both 10- and 12-dimensional special
forms containing ψ (see §1.5) are anisotropic. Since iS(ψE) = iS(ψ) ([16,
prop. 6.10(ii)]), and a special F -form is anisotropic iff it is anisotropic over E
([16, lemma 10.1(2)]), it follows that φ ∈ (9-b) if φE ∈ (9-b).

ψE ∈ (10-a). This condition means that the class of the 10-dimensional form
ψE in W (E) is represented by an anisotropic 3-fold Pfister form. As explained
in the part (9-a), this is equivalent to the fact that the element ψ ∈ W (F )
is represented by an anisotropic 3-fold Pfister form, i.e., to the fact that ψ ∈
(10-a).

ψE ∈ (10-b) means that ψE is a 10-dimensional anisotropic special form. As
explained above, this implies that ψ over F is a 10-dimensional anisotropic
special form.

ψE ∈ (10-c). Here ψ is an anisotropic 10-dimensional form with disc(ψ) 6= 1
and iS(ψ) = 1, because the form ψE has these properties (to see that disc(ψ) 6=
1 one may use the binary form 〈〈disc(ψ)〉〉) and [16, prop. 6.10(v), n = 2]).
Therefore, there exists a 12-dimensional special form ρ containing ψ (see, e.g.,
[16, lemma 1.19(i)]). Note that such ρ is also unique: if ρ′ is another one, then
the difference ρ−ρ′ ∈ I3(F ) is represented by a form of dimension 4 and hence
is 0 by the Arason-Pfister-Hauptsatz. Since the special form ρ is anisotropic
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over E, is is anisotropic over F as well. Finally, the condition that ψF (
√
d) is

not hyperbolic for a representative d ∈ F ∗ of the discriminant of ψ is given by
[16, prop. 6.10(vi)].

ψE ∈ (11-a) means that ψE⊥〈− disc(ψ)〉 is a 12-dimensional anisotropic
special form. In this case the 12-dimensional F -form ψ⊥〈− disc(ψ)〉 is also
anisotropic and special.

ψE ∈ (12-a). Here ψ is a 12-dimensional anisotropic special form because ψE
is so. ¤

Lemma 7.1.7. Let ψ/F be a quadratic form of one of the seven types (9-
a)–(12-a) listed in [16, th. 0.5]. Then at least on of the following conditions
hold:

(i) φ is isotropic or contains a 4-fold Pfister neighbor;
(ii) there exists a special form ρ containing φ and such that the form φF (ρ)
is isotropic or contains a 4-fold Pfister neighbor;

(iii) there exist two special forms ρ and ρ′ of different dimensions which
(both) contain φ and such that the form φF (ρ,ρ′) is isotropic or contains
a 4-fold Pfister neighbor.

Remark 7.1.8. Since any isotropic 9-dimensional quadratic form is a 4-fold
Pfister neighbor, one may simplify the formulation of Lemma 7.1.7 by saying
“contains a 4-fold Pfister neighbor” instead of “isotropic or contains a 4-fold
Pfister neighbor” in (i), in (ii), and in (iii).

Proof of Lemma 7.1.7. We consider all the seven types (9-a)–(12-a) case by
case.

If φ ∈ (9-a), then φ is a 4-fold Pfister neighbor; condition (i) is satisfied.
If φ ∈ (10-a), then φ is isotropic; condition (i) is satisfied as well.
If φ ∈ (9-b), then, by Lemma 1.5.1, there exists a (unique) 12-dimensional

special form ρ containing a subform similar to φ and there exists a (unique)
10-dimensional special form ρ′ containing φ. Moreover, both ρ and ρ′ are
anisotropic. Over the function field F (ρ, ρ′) the form φ becomes a 4-fold Pfister
neighbor (Lemma 1.5.1).

If φ ∈ (10-b), then φ is a 10-dimensional special form.
If φ ∈ (12-a), then φ is a 12-dimensional special form.
If φ ∈ (11-a), then φ becomes isotropic over the function field of quadratic

form φ⊥〈− disc(φ)〉 which is a 12-dimensional special form.
Finally, if φ ∈ (10-c), then φ is contained in some 12-dimensional special form

ρ (mentioned in the definition of this type). Let us write ρ = φ + β ∈ W (F )
with some binary quadratic form β. Since ρF (ρ) = π in the Witt ring of
the function field F (ρ), where π/F (ρ) is some 3-fold Pfister form, we have
φF (ρ) = π − βF (ρ). It follows that the form φF (ρ) contains a 3-fold Pfister
form as a subform. Consequently, φF (ρ) contains a 9-dimensional 4-fold Pfister
neighbor (one may take any 9-dimensional subform containing π). ¤
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Proof of Theorem 7.1.1. Let us choose a special subform φ0 ⊂ φ. So, we have
an anisotropic special pair φ0, φ. We assume that φF (ψ) is isotropic, where ψ
is some quadratic form over F of a dimension ≥ 9. We write E/F for the field
extension constructed in [16, prop. 6.10].

If the form (φ0)E(ψ) is isotropic, then ψ is similar to a subform of φ (Lemma

7.1.4) and the proof is finished. Otherwise, we have TorsCH3(XψE
) 6= 0

(Lemma 7.1.5, note that the special pair φ0, φ remains anisotropic over E
according to [16, lemma 10.1(1)]). Therefore one has TorsCH3(Xψ) 6= 0 al-
ready over F (Lemma 7.1.6). It follows that ψ is a quadratic form of one of
the seven types listed in [16, th. 0.5], and we may apply Lemma 7.1.7.

Assume that condition (i) of Lemma 7.1.7 is fulfilled, i.e., ψ contains a 4-fold
Pfister neighbor ψ0 ⊂ ψ (see Remark 7.1.8). Then the form φ becomes isotropic
over the function field F (ψ0) which is a contradiction (cf. [16, lemma 10.1(1)].

Assume that condition (ii) of Lemma 7.1.7 is fulfilled, i.e., ψ is a subform of
a special form ρ and the form ψF (ρ) contains a 4-fold Pfister neighbor. Then
the form φ becomes isotropic over the function field F (ρ). Therefore φ ∼ ρ
(Proposition 7.1.3), whereby ψ is similar to a subform of φ.

Finally, assuming that condition (iii) of Lemma 7.1.7 is fulfilled, we get that
ψ is contained in two special forms ρ and ρ′ of different dimensions while the
form ψF (ρ,ρ′) contains a 4-fold Pfister neighbor. Then the form φ becomes
isotropic over the function field F (ρ, ρ′). Since the dimensions of ρ and ρ′

are different, one of these two forms, say ρ, has the same dimension as the
special form φ. If the form φF (ρ) would be anisotropic, the form F (ρ, ρ′) would
be anisotropic as well, because ρ′F (ρ) 6∼ φF (ρ) (the dimensions are different).

Therefore φF (ρ) is isotropic, whereby φ ∼ ρ (Proposition 7.1.3). Consequently
ψ is similar to a subform of φ in this case too. ¤

7.2. Anisotropy of 10-dimensional forms. The following theorem will be
proved with a help of [27]. The original proof is not known.

Theorem 7.2.1 (Izhboldin, cf. [13, th. 5.3]). Let φ be an anisotropic 10-
dimensional quadratic form. Let ψ be a quadratic form of dimension > 10 and
assume that ψ is not a Pfister neighbor. Then the form φF (ψ) is anisotropic.

Proof. It suffices to consider the case with dimψ = 11. In this case we have
i1(ψ) ≤ 3 by Theorem 1.0.4. Since ψ is not a Pfister neighbor, i1(ψ) 6= 3 ([19]
or [11]). Besides, i1(ψ) 6= 2 by [17, cor. 5.13] (see also: [24, th. 1.1], [39], or
[25]). It follows that i1(ψ) = 1; consequently, φF (ψ) is anisotropic by [27]. ¤
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