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1. Introduction


In the famous paper “A theorem on finite algebras” [15] from the year 1905,
Wedderburn1 first stated his theorem that any finite division algebra is commutative
and he gave three different proofs for it. In 1927, Emil Artin [1] remarked that
Wedderburn’s first proof is not valid. Artin did however not explicate what the
gap or flaw is, not even whether it is a gap that can be closed or a serious error
that vitiates the whole argument. Instead, he gave a new proof in the spirit of
Wedderburn’s original ideas. Karen H. Parshall, in her article [21] about the history
of Wedderburn’s finite division algebra theorem, also discussed the first proof. She
explained that it is in fact a gap that can be filled today (but she did not say how)
and judged that this would probably have been beyond Wedderburn’s scope.


In this paper, we first describe and analyse the gap. Then we present a variant of
Wedderburn’s first proof which makes no use at all of the statement that produced
the gap. We also demonstrate how to fill the gap in a manner that Wedderburn
might have done had he been aware of it. Finally, we give a (hopefully rather
complete) chronological list of proofs of Wedderburn’s theorem in literature.
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out Kasch’s proof of Wedderburn’s theorem to us.
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1Why is he called “Joseph H. M. Wedderburn” nowadays while according to his papers, his
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2. The gap


We first describe the gap in Wedderburn’s proof. This incorporates a good
amount of interpretation, for what Wedderburn writes down in the decisive section
is rather vague and misleading at first sight, which is probably due to the fact that
the strict modern language and perception of algebra was just emerging at that
time. We therefore go into this in rather detail in the beginning.


Wedderburn considers a finite division ring A. It is an algebra of finite dimension
s over its center Fpm = GF [pm], where p is a prime number. He chooses a basis
x1, . . . , xs of A over Fpm and hence for each x ∈ A a representation x =


∑s
i=1 ξixi


with coefficients ξi ∈ Fpm (called the coördinates of x by Wedderburn). The ques-
tionable section in Wedderburn’s article (pages 350 and 351 in [15]) starts as fol-
lows2:


It follows from the theory of hypercomplex numbers, that there is
an equation of lowest degree,


(2) f(x) ≡ xr + a1x
r−1 + a2x


r−2 + · · · + ar = 0,


with coefficients in GF [pm], which is satisfied identically by any
given number x of the algebra, irrespective of any special relation
between the coördinates of x, except the condition that they lie in
GF [pm]. Further, there is at least one element of the algebra which
satisfies no similar equation of lower degree.


At first sight, Wedderburn really seems to consider the normed polynomial f ∈
Fpm [X] of lowest degree which is satisfied by each element of the algebra3 and then
to claim that it is the minimal polynomial of some specific element x of the algebra.
This is of course impossible since under these circumstances, f would be on the one
hand irreducible, and would on the other hand contain a linear factor (X − a)
for each a ∈ Fpm . So in an attempt to rescue the statement one could consider
the polynomial which is satisfied only by all a ∈ A \ Fpm . But this f cannot be
the minimal polynomial of an element of the algebra either, which can be seen as
follows4: For each root a, the polynomial f can be divided (from the right) by the
linear polynomial (X − a). In general, if an irreducible polynomial f ∈ Fpm [X] is
divisible in A[X] from the right by two linear factors (X − a) and (X − b), then a
and b are conjugate in A (cf. Artin [1]). Thus, because each element of A \ Fpm is
a root of f , it follows that A \ Fpm would consist of one single conjugacy class. So
we would obtain for any a ∈ A \ Fpm with centralizer Z(a)


pms − pm = |A \ Fpm | = |A∗|/|Z(a)∗| = (pms − 1)/(pmt − 1)


where [Z(a) : Fpm ] = t. In any case this would yield the contradiction that p
divides one. But even if there was such an element with f as minimal polynomial,
this polynomial f would not fulfill the requirements for the rest of the proof. See
section 4.


2Like Parshall, we have corrected a misprint in the quotation: The constant coefficient in
equation (2) was called ar−1 instead of ar.


3Note that such a polynomial exists if and only if the algebra is finite.
4A word of warning: One cannot simply divide f by each linear factor (X−a), concluding that


f would have degree at least |A \ Fpm | = pms − pm, while a minimal polynomial of an element


a ∈ A can have degree at most [A : Fpm ] = s. The reason is that evaluation of polynomials


with non-commutative coefficients is not compatible with multiplication, and this leads to strange


phenomena. Here is an example of a polynomial of degree 2 which has at least 6 different roots:


Let D = F ⊕Fu⊕Fv ⊕Fw be the quaternion algebra over some field F , i.e. u2 = v2 = w2 = −1
and uv = w. Then the polynomial X2 + 1 has ±u, ±v and ±w as roots.
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This indicates that Wedderburn must have meant something else than he ap-
parently wrote down. A first hint is given by the argument for the claim cited
above:


Indeed, (2) states that xr−1, xr−2, . . . , x0 are linearely independent
with respect to GF [pm], and the condition of independence can ev-
idently be put in a form which states that certain determinants,
whose elements are rational integral functions of the coördinates of
x, do not all vanish identically. Hence there must be some set of
values of the coördinates for which xr−1, xr−2, . . . , x0 are indepen-
dent and hence the particular x so obtained can satisfy no equation
of lower degree than r. (2) is called the characteristic or identical
equation, while the equation of lowest degree satisfied by a given x
is called its reduced equation.


Furthermore, comparing with the section “The identical equation” of his article “On
hypercomplex numbers” [16] from 1907, one sees5 that Wedderburn must actually
be talking about the generic minimal polynomial MX,A = MX of A (using modern
terminology): Let X1, . . . ,Xs be algebraically independent over Fpm . The generic


element of A is defined to be


X =


s
∑


i=1


Xi · xi ∈ Fpm(X1, . . . ,Xs) ⊗Fpm A.


Its minimal polynomial MX,A over the function field Fpm(X1, . . . ,Xs) is called the
generic minimal polynomial of A. We will see in section 4 that this polynomial
does the job in the rest of the proof, which leaves no doubt as to which polynomial
Wedderburn was talking about. The coefficients of the generic minimal polynomial
are in fact polynomials in the Xi, and so we can evaluate the coefficients of MX,A


at the coordinates ξi of an element x =
∑


i ξixi of A, thus obtaining a polynomial
Mx,A ∈ Fpm [T ], called the generic minimal polynomial of A evaluated at x. It has
the property that Mx,A(x) = 0. In this terminology, Wedderburn’s claim reads as
follows:


2.1. Claim. For a finite dimensional central division algebra A over Fpm , there


exists an element x ∈ A such that Mx,A equals the minimal polynomial of x over


Fpm .


Wedderburn argues as follows: Write Xj =
∑


i fij(X1, . . . ,Xs)xi with fij ∈
Fpm [X1, . . . ,Xs], and let MX,A be of degree r. Then from the Fpm(X1, . . . ,Xs)-
linear independence of the powers 1,X,X2, . . . ,Xr−1 it follows that some r-minor
of the matrix (fij)ij is a nonzero polynomial in Fpm [X1, . . . ,Xs]. Now Wedderburn
concludes without further reasoning that there are elements in Fpm for which this
polynomial does not vanish.


Wedderburn really does not seem to have had any further argument for this
step in mind because two years later, he made the same statement as claim 2.1 for
an arbitrary finite dimensional (associative) algebra instead of a division algebra,
saying it was obvious. While for a division algebra this can be proven, as shown in
section 5 below, it is false for an arbitrary algebra. The following counterexample is
tributetd to K. McCrimmon by Parshall ([21], p. 285): Let A = Fpme1⊕· · ·⊕Fpmen


with orthogonal idempotents ei. Then the generic minimal polynomial of X has
degree n while each element of the algebra satisfies the equation xpm


− x = 0. So
one just has to choose n large enough to obtain an algebra for which the generic


5Parshall [21, p. 285] also made this—to our judgement non-obvious—interpretation but gave
no hint as to how she arrived at this viewpoint.
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minimal polynomial has degree strictly larger than any of the minimal polynomials
of elements of A.


2.2. Conclusion. We consider the gap in Wedderburn’s first proof to be the insuf-


ficient proof for statement 2.1. 3


3. The generic minimal polynomial


In this section, we present some lemmas around the generic minimal polynomial
of a finite dimensional algebra, specifically a division algebra. Note that even if the
proofs are given in a modern language, they use only methods that were available
to Wedderburn.


Let us fix some notations. We consider finite dimensional algebras A over some
field F . These are always meant to be associative and to have a unit. Then for
an element a ∈ A we denote the minmal polynomial of a over F by ma or ma/F if
the reference to the ground field has to be made clear. Similarly, the characteristic
polynomial of a in A is denoted by pa = pa,A/F . If A is a division algebra, we have
pa,A/F = mα


a/F for some integer α.


Let x1, . . . , xs be a F -basis of A, and let X =
∑


Xi ·xi ∈ F (X1, . . . ,Xs)⊗F A be
the generic element of A. We have already defined the generic minimal polynomial
of A as the minimal polynomial MX,A := mX/F (X1,...,Xs) of X. Now we define the
generic characteristic polynomial of A as the characteristic polynomial PX,A :=
pX,F (X1,...,Xs)⊗A of X. As with the generic minimal polynomial, the coefficients
of PX,A are polynomials in the Xi and hence for any a =


∑


aixi ∈ A, we can
evaluate (the coefficients of) PX,A at a to obtain Pa,A ∈ F [T ]. We always have
Pa,A = pa,A/F . In particular, deg PX,A = [A : F ].


3.1. Lemma. Let F be any field, and let A be a finite dimensional non-commutative


algebra over F with F ⊂ C(A), the center of A. Then deg MX,A < [A : F ].


Proof. Let x1, . . . , xs be an F -basis for A, and let L = F (X1, . . . ,Xs). The L-
subalgebra L[X] of L ⊗F A generated by the generic element X =


∑


i Xi · xi is
of dimension deg MX,A. Now L ⊂ C(L ⊗F A) = L ⊗F C(A) since F ⊂ C(A),
and so L[X] is commutative. Hence L[X] ( L ⊗F A, because L ⊗F A is non-
commutative. ¤


3.2. Lemma. Let A be a finite dimensional division algebra over some field F .


Let T1, . . . , Tn be indeterminates over F . Then F (T1, . . . , Tn) ⊗F A is a division


algebra.


This lemma is well known. We we reproduce the following proof from Jacob-
son [11, p. 33] in order to show that the result was within Wedderburn’s reach.


Proof. The polynomial ring A[T1] = F [T1] ⊗F A is a domain. Hence by induc-
tion, F [T1, . . . , Tn] ⊗F A = A[T1, . . . , Tn] is a domain. Since every element of
F (T1, . . . , Tn) ⊗F A can be written in the form f · g−1 with f ∈ A[T1, . . . , Tn]
and g ∈ F [T1, . . . , Tn] \ {0}, it follows that F (T1, . . . , Tn) ⊗F A is a domain, too.
As a finite dimensional algebra over the field F (T1, . . . , Tn) it is thus a division
algebra. ¤


3.3. Corollary. For a finite dimensional division algebra A over a field F , we have


PX,A = Mα
X,A for a suitable integer α.


Proof. PX,A and MX,A are, respectively, the characteristic and minimal polynomial
of the same element X of the division algebra F (X1 . . . ,Xs) ⊗F A. ¤
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3.4. Lemma. Let F be any field, and let A be a finite dimensional division algebra


over F . Let a ∈ A. Then Ma,A is a power of the minimal polynomial ma/F of a
over F . In particular, the degree of ma divides the degree of the generic minimal


polynomial.


Proof. By the above corollary, PX,A = Mα
X,A for some integer α. Hence also for


any a ∈ A, we have Pa,A = Mα
a,A. Now Pa,A = pa,A/F = mβ


a/F for some integer


β. From the irreducibility of ma, we conclude that β is divisible by α and that
Ma,A = mγ


a for γ = β/α. ¤


4. A variant of Wedderburn’s first proof


In this section, we present a variant of Wedderburn’s first proof in a slightly
modernised language, which does not use the gap-producing claim 2.1 at all.


Variant of Wedderburn’s proof. Let A be a finite division ring. It is of some dimen-
sion s over its center C(A) ∼= Fpm = Fq, where p is a prime number. We divide the
proof into two steps:


(1) We choose representatives a1, . . . , at for the conjugacy classes of elements
of A \ Fpm . Denoting si := [C(ai) : Fq], we then have by the class equation


qs − 1 = |A∗| = |F∗


q | +


t
∑


i=1


|A∗|


|C(ai)|
= q − 1 +


∑ qs − 1


qsi − 1


It follows, that q − 1 is divisible by


gcd


(


qs − 1


qsi − 1
: i = 1, . . . t


)


=
qs − 1


lcm(qsi − 1 : i = 1, . . . , t)


=
qs − 1


qlcm(s1,...,st) − 1


Hence, denoting s′ = lcm(s1, . . . , st), we have


(q − 1) · (qs′


− 1) = l · (qs − 1)


for some integer l. It follows that l ≡ −1 (mod q), hence l = k · q − 1 for
some postive k. Using s′ ≤ s, we see that k = 1 and s′ = s.


(2) Now we suppose by induction that all division rings of order strictly less
than |A| are commutative. Then in particular, the centralizers C(a) of
elements a ∈ A \ Fq are commutative, so these are precisely the maximal
subfields of A. Since Fq is perfect, each centralizer C is, as a finite field
extension of Fq, generated by one element a, hence [C : Fq] equals the
degree of the minimal polynomial of a. But by lemma 3.4, the degree of
the minimal polynomial always divides the degree r of the generic minimal
polynomial. So we have


(4.1) s = lcm
(


[C(a) : Fq] : a ∈ A \ Fq


)


| r ≤ s


which implies [A : F ] = s = r = deg MX,A. But by lemma 3.1, this yields
A = F . ¤


4.2. Remark. Step one above is taken more or less directly from Wedderburn’s
proof. In the second step, Wedderburn argues that in addition by claim 2.1, there
is one b ∈ A \ Fq, for which mb/Fq


= Mb,A, whence equation (4.1) simplifies to


s = lcm
(


[C(a) : Fq] : a ∈ A \ Fq


)


= [C(b) : Fq] = r.


Then he concludes that C(b) = A, contradicting b ∈ A \ C(A). 3
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5. Filling the gap


In this section we demonstrate how to fill the gap in Wedderburn’s proof. We
do not rescue his insufficient argument but instead give a new proof of claim 2.1.
The proof is based upon the following three statements:


5.1. Lemma. Let F be any field, and let A be finite dimensional central division


algebra over F .


(1) The dimension of A over F is a square.


(2) Each maximal subfield L of A has degree [L : F ] =
√


[A : F ].


(3) The degree of the generic minimal polynomial of A is
√


[A : F ].


We first show how to prove claim 2.1 using these statements.


Proof of claim 2.1. For a finite ground field F = Fpm and a central division algebra
A of dimension s = r2 over F , take a maximal subfield L and choose a generator
a (note that Fpm is perfect and hence L is separable over Fpm). Then the minimal
polynomial ma of a has degree r. The degree of the generic minimal polynomial
also equals r and, since Ma(a) = 0, we conclude ma = Ma. ¤


We now investigate to what extent Wedderburn knew or could have proven the
above statements.


Statement (1): The first statement has surely been within Wedderburn’s reach.
He could have argued as follows using his famous structure theorem [16] on simple
algebras: Central simple algebras stays simple under extension of the base field.
So in particular for any algebraically closed field extension F ′ of F , the F ′-algebra
F ′⊗F A is isomorphic to a matrix algebra over a finite dimensional division algebra
over F ′ by the structure theorem. But over an algebraically closed field, there is
no finite dimensional division algebra except for F ′ itself since any bigger algebra
would contain a proper finite commutative field extension of F ′ which is impossible.
So as a matrix algebra, F ′ ⊗F A has square dimension over F ′, and this dimension
equals the dimension of A over F .


Statement (2): Statement (2) (and therefore also (1)) can be proven completely
elementary for a finite base field, cf. e.g. Artin [1] or Schue [23]. Artin’s proof
uses polynomials with coefficients in a skew field, conjugation of subfields, some
linear algebra and counting arguments. Schue’s proof employs normalizers, some
Galois theory and a lot of linear algebra. All of these means have been available to
Wedderburn.


5.2. Remark. Although Wedderburn could have proven statement (2), he was
surely not aware of this fact. If he had been, he would also have noticed that this
immediately yields another, much shorter proof of his theorem, since it stongly
simplifies the class equation also employed in Wedderburn’s proof:


Let A be a central division algebra of dimension s = r2 over F = Fq. Assume
by induction, that all division algebras of lower dimension are commutative. In
particular all centralizers C1, . . . , Ct of elements of A \ F are maximal subfields,
hence [Ci : F ] = r. Then the class equation for conjugacy classes of A∗ reads


qr2


− 1 = |A∗| = |F ∗| +


t
∑


i=1


qr2


− 1


qr − 1
,


which implies that qr2


−1
qr−1 divides q − 1 and hence that r = 1. (This is also how


Schue completes his proof of Wedderburn’s theorem.)
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Furthermore, statement (2) also abbreviates step (2) of Wedderburn’s original
proof, if one wants to use the class equation in his way:


As before, we have by induction that the centralizers are exactly the maximal
subfields. Combined with the statement that the maximal subfields all have
degree r with r2 = s, this yields r2 = s = lcm


(


[C(a) : Fq] : a ∈ A \ Fq


)


= r,
and thus r = 1. 3


Statement (3): So we are left with the task of proving the third statement, using
only means available to Wedderburn.


Proof of (3). Let A be a central division algebra of dimension s = r2 over a field
F . We first prove that the degree of the generic minimal polynomial is at least r.
Choose an algebraically extension field F ′ of F . Then F ′ ⊗F A = AF ′


∼= Mr(F
′),


the F ′-algebra of r × r matrices with entries in F ′, as shown in the argument for
statement (1). We choose an F -basis ei,j (i, j = 1, . . . r) of A such that the 1⊗ ei,j


correspond to the standard basis of Mr(F
′). Since MX,AF ′


divides MX,A, it suffices
to show that deg MX,AF ′


≥ r. Over F ′, the generic element X =
∑


Xijeij is
thus the “generic matrix” (Xij). If we specialise (Xij) to a diagonal matrix in
AF ′


∼= Mr(F
′) with pairwise distinct non-vanishing diagonal entries, the minimal


polynomial of this matrix equals its characteristic polynomial and hence has degree
r. (Note that for such a matrix to exist, F ′ must contain at least r + 1 distinct
elements; since we choose F ′ to be algebraically closed, we are on the safe side.)
We conclude deg MX,AF ′


≥ r, as required6.
To show that the degree of the generic minimal polynomial is at most r, we note


that by lemma 3.2 above, F (X11, . . . ,Xrr)⊗F A is again a central division algebra
of dimension r2, and thus the subfield generated by X is of degree at most r over
F (X11, . . . ,Xrr) by statement (2) of lemma 5.1; but the degree of this subfield is
just the degree of the generic minimal polynomial, hence we are done. ¤


5.3. Remark. The statement of (3) is true more generally for any finite dimen-
sional central simple algebra. One can also prove the more precise statement that
the generic minimal polynomial equals the generic reduced characteristic polyno-
mial. The proof is very similar to the proof given above, but one of course has to
systematically introduce the reduced characteristic polynomial of a central simple
algebra—which was implicitly used above in case of a matrix algebra—and show
that it is well defined using the theorem of Skolem-Noether. As we need the state-
ment only in the simpler form of (3), we skip this proof. 3


5.4. Conclusion. Our final conclusion is that Wedderburn’s proof did in fact con-


tain a gap he was not aware of, but that he could well have provided the necessary


arguments to fill it with. 3


Appendix. Chronological list of proofs


All over the past century, new proofs of Wedderburn’s theorem on finite division
algebras have been given by numerous mathematicians. The proofs vary enor-
mously with respect to length and depth of the means employed. In her graduation
paper [18], the second author has searched through the literature for proofs and
gave a detailed exposition of each proof found in a thematically ordered compilation
as well as a comparison of the different proofs. As a result of this effort, we present
here a chronologically ordered and hopefully rather complete list of (original) proofs
of Wedderburn’s theorem present in literature with short comments on each proof.


6By the theorem of Cayley-Hamilton, the r × r-matrix (Xij) satisfies its characteristic poly-


nomial, which is of degree r. Thus, we do in fact have deg MX,A
F ′


= r.
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1905, Wedderburn: There are three different proofs in “A theorem on finite
algebras” [15]. The first proof was discussed in the preceding sections, the
two others are more group theoretic, using Zsigmondy’s theorem and the
automorphism group of the algebra.


1905, Dickson: Dickson published a proof in the same year [5]. This proof
is very similar to Wedderburn’s second and third proof. Dickson remarked
that Wedderburn found these proofs only after having seen Dickson’s proof.


1927, Artin: In [1], after remarking that Wedderburn’s first proof from [15]
was not valid, Artin gave a new proof close to Wedderburn’s main ideas,
using some group theory, divisibility properties of polynomials, proving that
all maximal subfields of the algebra are conjugate.


1928, Noether: This proof from lectures by E. Noether, written down in
1931 by van der Waerden [27], is very similar to that of Artin, using maximal
subfields and group theoretic conjugacy arguments.


1929, Brauer: In the article [2] concerned with the study of algebras via
group theoretic means using factor systems (certain Galois cocycles), Brauer
derives Wedderburn’s theorem from the more general theorem that the
Schur index of a finite simple algebra equals one.


1931, Witt: In this one-page paper [28], Witt uses only cyclotomic polyno-
mials and elementary group theory to prove Wedderburn’s theorem.


1932, Hasse-Noether: Noether [20] and Hasse [9] remark that the relative
Brauer group Br(L/K) is isomorphic to K∗/NL/K(L) for a finite cyclic
extension L/K. Combined with the fact that the norm is surjective for
finite extensions of finite fields, this yields Wedderburn’s theorem.7


1935, Chevalley: Inspired by Tsens work [26] about function fields of tran-
scendence degree one over an algebraically closed field, and a remark of
Artin, Chevalley proved in [4] that finite fields are C1 and that over a C1-
field, there are no finite dimensional central division algebras except for the
field itself, obtaining Wedderburn’s theorem as a corollary.


1951, Serre: In his report [25] on Galois cohomology and the theory of sim-
ple algebras, Serre proves Wedderburn’s theorem using (and proving) the
facts8 that the relative Brauer group Br(L/K) ∼= H2


(


Gal(L/K), L∗
)


for a


finite Galois extension L/K, that H2
(


Gal(L/K), L∗
)


∼= K∗/NL/K(L∗) for
a cyclic extension L/K, and the classical fact that the norm is onto for
finite fields.


1952, Zassenhaus: In his rather long group theoretic proof [29], Zassenhaus
derives Wedderburn’s theorem from the theorem (proved in the same paper)
that a finite group is abelian if for each abelian subgroup, the normalizer
conincides with the centralizer.


1961, Herstein: Herstein [10] gives a completely elementary proof by longish
calculations, using only some theory of finite fields and group theory.


1964, Kaczynski: Using deep results from the theory of finite groups, Kac-
zynski [12] shows that the group of units of a finite division algebra is simple
and solvable, which is only possible for an abelian group.


1964, Scott: In this group theoretical proof [24, p. 427], Scott shows that all
q-Sylow subgroups of the group of units of the division algebra are cyclic


7Although the authors do not mention this consequence explicitly, there is no doubt that they


were aware of it. Furthermore, since the two articles given above do neither contain a proof of the


result nor a reference, it is not clear to us to whom the proof should be tributed, and so we have


cited both.
8Each of these statements was known before, cf. e.g. Eilenberg [7], but we have not found them


put together like this to give a proof of Wedderburn’s theorem, any earlier.
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for q 6= 2 and cyclic or generalised quaternion groups for q = 2, and derives
a contradiction studying the order of suitable elements and subgroups.


1969, Ebey and Sitaram: The authors [6] use projective geometries to de-
scribe the group of units as the Frobenius complement of a Frobenius group
and then employ deep results from the theory of finite groups to prove Wed-
derburn’s theorem.


1970, Burn and Maduram: Burn and Maduram [3] give a variant of [6],
avoiding the use of geometry.


1971, Rogers: Rogers’ proof [22] strongly resembles Herstein’s proof [10]
from 1961. Being hardly less elementary, the calculations are more struc-
tured and make use of conjugates of subfields.


1974, Nagahara and Tominaga: Proving a theorem of Jacobson in [19],
the authors give two proofs of Wedderburn’s theorem, applying elementary
ring and group theory and several dimension arguments.


1988, Schue: Schue [23] calculates the dimension of centralizers as the square
root of the dimension of the algebra by means of linear algebra and Galois
theory, and then applies the class equation.


1989, Meixner: For a finite division algebra, Meixner [17] considers a Sy-
low subgroup for the maximal prime divisor of the order of the group of
units. Using elementary group theory, he concludes that the corresponding
cyclotomic number must be a power of 2, deriving a contradiction.


1990, Lorenz: Lorenz’ textbook [14] on algebra contains a proof of Wedder-
burn’s theorem on page 269, that we did not find earlier in literature. It
uses an explicit formula for the behaviour of the presentation of central
division algebras as crossed products under cyclic extensions.


1994, Kasch: In his booklet [13], Kasch gives a simple proof of the main
theorem of Galois theory for skew fields. As an application, this theorem is
used in a proof of Wedderburn’s theorem (pages 22–23, loc. cit.) to calculate
the degree of a maximal subfield of a finite central division algebra and to
obtain an upper bound for the number of maximal subfields.


1998, Grundhöfer: Grundhöfer’s proof [8] resembles Witt’s proof in that he
uses cyclotomic polynomials, group theory and elementary number theory,
but the main argument is transferred to obtain a purely group theoretical
result at first.


Remark. We have not taken into account any of the huge number of generalizations
of Wedderburn’s theorem but only listed publications which contain a “direct” proof
that does not merely obtain the theorem as a special case of a more general result.
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