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Abstract


We prove Knebusch’s Norm Principle for finite extensions of semi-local


regular rings containing a field of characteristic 0. As an application we


prove the version of Grothendieck-Serre’s conjecture on principal homo-


geneous spaces for the split case of the spinor group.
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1 Introduction


Let L/K be a finite field extension and q be a regular quadratic form over K.
Let D(qL) ⊂ L∗ be the subgroup generated by the set of non-zero elements
of the field L represented by the form q. The well-known Knebusch’s Norm
Principle for quadratic forms over fields [4], [3, VII.5.1] says there is an inclusion
NL


K(D(qL)) ⊂ D(qK) between the subgroups of K∗, where NL
K is the norm map.


The present paper is devoted to the proof of Knebusch’s Norm Principle for
quadratic forms over semi-local regular rings. Namely, we want to prove the
following


1.1 Theorem. Let S/R be a finite extension of semi-local regular rings con-
taining a field k of characteristic 0. Let q be a regular quadratic form over R
of rank m and qS = q ⊗R S be it’s base change. Then we have the following
inclusion between the subgroups of the group of invertible elements R∗


NS
R(D0(qS)) ⊂ D0(qR),


where NS
R : S∗ → R∗ is the norm map and the subgroup D0(qS) ⊂ S∗ is


generated by all products of two elements represented by qS, i.e., D0(qS) =
〈qS(x1)qS(x2) | x1, x2 ∈ Sm〉. In particular, the following inclusion holds


NS
R(D(qS)) ⊂ D(qR),


where the subgroup D(qS) ⊂ S∗ is generated by all invertible elements of S that
are represented by the quadratic form qS, i.e., D(qS) = 〈qS(x), x ∈ Sm〉.
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In order to prove 1.1, first, we prove Norm Principle for simple extensions of
semi-local domains (Theorem 4.2). Briefly speaking, a finite extension S/R is
called simple, where R is a semi-local domain, if S = R[t]/(p(t)) is the quotient of
the polynomial ring R[t] by some monic polynomial p. A finite etale extension
(or separable in the case of fields) is an example of a simple extension (see
section 2). The proof of 4.2 proceeds by induction on degree of extension. In
order to make the induction step we use general position arguments of section 3
(Theorem 3.11). Then, using 4.2 we prove the version of Grothendieck-Serre’s
conjecture on principal homogeneous spaces [2] for the case of the spinor group
(Theorem 5.2). The conjecture states the canonical map


iR : H1
et(R,Spinq) → H1


et(K,Spinq)


has trivial kernel, where R is a semi-local regular ring and K is it’s quotient
field. We prove the map iR has the trivial kernel if R is a semi-local regular
ring containing a field of characteristic 0. The main tool of the proof is the
injectivity theorem of section 2 of [7] together with the etale version of Geomet-
ric Presentation Lemma [8, 6.1]. We finish the proof of 1.1 by some diagram
chase, where Knebusch’s Norm Principle over fields and Grothendieck-Serre’s
conjecture over rings play the crucial role.


Agreements and Notations All rings are assumed to be commutative with
units. By R and S we denote semi-local domains. k means the residue field
(sections 2, 3 and 4) or the base field (section 5). By “bar” we mean the
reduction modulo the maximal ideal (radical) of a (semi-)local ring. By a ring
extension S/R we mean a ring S together with a ring monomorphism R → S.
By S∗ we denote the group of invertible elements of S.


For simplicity all the proofs and definitions of sections 2, 3 and 4 are given
for local rings only. In order to pass from the local case to the semi-local case,
one has to replace the words “maximal ideal” by the words “radical ideal”.


Let S/R be a ring extension such that S is free as the R-module. Then
there is the norm map denoted by NS


R that is given as follows. For any c ∈ S
let lc : S → S be the endomorphism of the free R-module S given by the left
multiplication by c. Then we set NS


R(c) = det(lc), where lc is the respective
matrix.


We say a quadratic form q over R is regular if the determinant of the respec-
tive symmetric matrix is invertible in R. Observe that any regular quadratic
form over a semi-local ring of characteristic different from 2 is diagonalizable,
i.e., q can be represented as a sum of squares with coefficients from R∗.


The author is grateful to Max-Planck-Institute für Mathematik in Bonn and
European Post-Doctoral Institute for hospitality and financial support. The
author is also grateful to the RTN-Network HPRN-CT-2002-00287 and INTAS-
Project 99-00817 for the travel support during the work.
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2 Simple extensions of local rings


2.1. We say a ring extension S/R is a simple extension of degree n if there
exists an element c ∈ S∗ such that S is free as the R-module with the basis
{1, c, . . . , cn−1} denoted by B(c). The element c is called a primitive element.
Let cn = a0 +a1c+ . . .+an−1c


n−1 be the unique presentation of the element cn


in the basis B(c). The polynomial pc(t) = tn − an−1t
n−1 − . . . − a0 is called a


minimal polynomial for the primitive element c. It has the property pc(c) = 0.
Observe that S can be identified with the quotient R[t]/pc(t) of the polynomial
ring R[t] modulo the principal ideal generated by pc(t). Since c is invertible, it’s
norm NS


R(c) = (−1)npc(0) = (−1)n−1a0 is invertible as well.
To the opposite direction, for a given monic polynomial p(t) ∈ R[t] such that


p(0) ∈ R∗ the ring extension S = R[t]/p(t) over R is a simple extension of degree
n = deg p. The image of t by means of the canonical map R[t] → R[t]/p(t) gives
the respective primitive element of the extension S/R.


2.2. Clearly, if c ∈ S∗ is a primitive element of a simple extension S/R, then
it’s inverse c−1 is primitive and r1c+ r0 is primitive for any r1 ∈ R∗ and r0 ∈ R
such that pc(−r0/r1) ∈ R∗.


2.3. Let S/R be a simple extension with the primitive element c, then S̄/R̄ is a
simple extension of the same degree with the primitive element c̄. Moreover, if b
is a primitive element of S̄, then by Nakayama’s lemma the preimage c ∈ ρ−1(b)
is primitive as well, where ρ : S → S̄ is the reduction map. In other words,
if S∗


prim denotes the subset of primitive elements of S and S̄∗


prim denotes the


subset of primitive elements of S̄, then we have S∗


prim = ρ−1(S̄∗


prim).


2.4 Remark. Let S/R be a simple extension. In the case R = k is a field the
algebra S can be viewed as the product of local Artinian algebras over k. For
instance, if k is algebraically closed, the algebra S is isomorphic to the product
of algebras of the kind k[t]/tm, m ≥ 1. In the case S is a field we get a simple
field extension S/k. Recall (by the Primitive Element Theorem) that any finite
separable field extension is simple but not in the other direction. There are
examples of finite field extensions which are not simple.


3 Some general position arguments


In the present section S will be a simple extension of an infinite field k.


3.1. Let S be a simple extension of k of degree n. The k-algebra S can be
viewed as the k-vector space of dimension n and, thus, can be identified with
the set of rational points of the affine space A


n over k. From this point on
we assume S = A


n(k) is the topological space by means of Zariski topology
structure.


For example, any map S → S given by b 7→ f(b) is continuous, where
f(t) ∈ S[t] is a polynomial with coefficients in S. And the set S∗ of invertible
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elements is open in S, since it is given by the equation NS
k (x) 6= 0, where NS


k is
the norm map.


In the case of an infinite field k this topology has the important property –
the intersection of any two open subsets is non-empty.


3.2 Lemma. Let S be a simple extension of a field k. Then the subset of
primitive elements S∗


prim is non-empty and open in S∗.


Proof. We fix some primitive element c of S. An element b ∈ S∗ is primitive iff
the matrix (bi,j)


n−1
i,j=0 has non-zero determinant, where bi,j is the i-th coefficient


in the presentation of the j-th power bj of the element b in the basis B(c).
Observe that bi,1 = bi are the coefficients of the presentation of the element b
in the basis B(c), i.e, b = b0 + b1c + . . . + bn−1c


n−1. Clearly, the determinant
det(bi,j) can be viewed as the polynomial in n variables b0, . . . , bn−1 and, thus,
the subset


S∗


prim = {b = (b0, . . . , bn−1) ∈ S∗ | det(bi,j) 6= 0}


is open in S∗.


3.3 Lemma. Let S be a simple extension of an infinite field k of characteristic
different from 2 and let c ∈ S∗ be an invertible element. Then the subset Vc =
{b ∈ S∗ | cb2 is primitive} is non-empty and open in S∗.


Proof. Since the map S∗ → S∗ given by b 7→ cb2 is continuous, it is enough to
show that the image of the map f : S∗ → S∗ given by b 7→ b2 is dense. (observe
that the multiplication by c is the homeomorphism). The algebra S splits as
the product of local Artinian algebras and the image of f is dense if the image
of the restriction of f to the each component of this product is dense. Thus, we
may assume S is a local Artinian algebra over k and, hence, it is irreducible.


Assume the image of f is not dense. Then the closure of the image of f in
S must have the dimension strictly less than the dimension of S (considered as
the affine space over k). It means that f induces the regular map between two
affine spaces such that the dimension of the target space is strictly less than the
dimension of the origin space S. In particular, there exists an element u ∈ S∗


such that the equation b2 = u has infinite number of solutions (the dimension
of the fiber of f over u is ≥ 1 and k is infinite). Hence, we get contradiction by
Lemma 3.4.


3.4 Lemma. Let S be a simple extension over an infinite field k of characteristic
different from 2. Let u be an invertible element of S. Then the number of
solution of the equation b2 = u is finite (or empty).


Proof. Let k′ be the algebraic closure of the field k. Let S′ = S ⊗k k′ be the
base change of S. Clearly, S′ is the simple extension of k′ of the same degree.
The number of solutions of b2 = u over S is finite if it is finite over S′.


Since the algebra S′ splits as the finite product of algebras of the kind Am =
k′[t]/tm, m ≥ 1, it is enough to show that the number of solutions of b2 = u is
finite in Am for any m.
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The case m = 1 is trivial, since A1 = k′ is a field. Let m > 1. In the basis
B(t) of Am our equation can be written as:


(b0 + b1t + . . . + bm−1t
m−1)2 = u0 + u1t + . . . + um−1t


m−1.


Hence, we get the system of m quadratic equations over k′


b2
0 = u0, 2b0b1 = u1, 2(b0b2 + b2


1) = u2, 2(b3b0 + b2b1) = u3, . . . (*)


which has the property that any element bj is the solution of the quadratic
or linear equation over k′ (precisely the j + 1-th equation) with coefficients bi,
i < j, and ui, i ≤ j. Then it follows immediately that the number of solutions
of (*) is finite.


3.5 Remark. The assumption that the characteristic of k is different from 2
is essential. Take k to be the algebraic closure of the finite field F2 then the
algebra S = k[t]/t2 is the simple extension of k. But it easy to see that the
image of the map b → b2 coincides with the subspace k · 1 in S = k · 1 ⊕ k · t
which consists of all non-primitive elements of S..


3.6. Let c ∈ S∗ be a primitive element of a simple extension S/k of degree n.
Let x be an element of S. By the symbol {x, c} we denote the n-th coefficient of


the presentation of x in the basis B(c), i.e., {x, c} = xn−1, where
∑n−1


i=0 xic
i = x.


3.7 Lemma. Let S be a simple extension of degree n of a field k of characteristic
0. Let c ∈ S∗


prim be a primitive element and let x be a non-zero element of S.


Then the subset Wc,x = {b ∈ Vc | {xb−1, cb2} 6= 0} is non-empty and open in
S∗, where Vc is the non-empty open subset from Lemma 3.3.


3.8 Remark. The assumption that k has characteristic 0 is essential. Take k to
be the algebraic closure of the finite field F3. Consider the algebra S = k[t]/t3−1.
Take x = c = t. It is easy to see that {xb−1, cb2} = 0 for all b ∈ S∗.


Proof. Let xb−1 = v0 + v1(cb
2) + . . . + vn−1(cb


2)n−1 be the presentation of the
element xb−1 in the basis B(cb2). Our goal is to show that the subset of the
elements b ∈ Vc with vn−1 6= 0 is non-empty and open in S∗.


Multiplying the presentation of xb−1 by b we get the following equation:


x = v0b + v1(cb
3) + . . . + vn−1c


n−1b2n−1. (*)


Now consider the primitive element c of S. Let x = x0 + x1c + . . . + xn−1c
n−1


and b = b0 + b1c + . . . + bn−1c
n−1 be the presentations of the elements x and b


in the basis B(c). Consider the equation (*) in terms of the basis B(c). We get
the system of n linear equations in n variables v0, . . . , vn−1:

















x0


x1


...
xn−1

















= v0 ·

















h0,0(b0, . . . , bn−1)
h1,0(b0, . . . , bn−1)


...
hn−1,0(b0, . . . , bn−1)

















+ . . . vn−1 ·

















h0,n−1(b0, . . . , bn−1)
h1,n−1(b0, . . . , bn−1)


...
hn−1,n−1(b0, . . . , bn−1)

















,
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where hi,j are polynomials in n variables b0, . . . , bn−1 with coefficients from k.
In particular, the first column is the vector of monomials (b0, . . . , bn−1), i.e.,
hi,0 = bi for all i = 0 . . . n − 1. The second column consists of the coefficient of
the presentation of cb3 in the basis B(c) and so on. Solving this linear system
we get


vn−1 = det(A(n−1))/det(A),


where A is the matrix of the system and the matrix A(n−1) is got by replacing the
last column of A by the vector x (of free terms). Observe that both det(A(n−1))
and det(A) are homogeneous polynomials (in n variables b0, b1, . . . , bn−1) of
degrees 1 + 3 + . . . + (2n − 3) = (n − 1)2 and 1 + 3 + . . . + (2n − 1) = n2


respectively. Hence, the map Vc → k given by b = (b0, . . . , bn−1) 7→ vn−1 is the
regular map (observe that the determinant det(A) is non-zero for all b ∈ Vc,
since cb2 is primitive). Thus, the subset Wc is open in S∗. The fact that Wc is
non-empty follows from Sublemma 3.9 below.


3.9 Sublemma. If x 6= 0, then the polynomial det(An−1) is non-trivial.


Proof. We may assume the field k is algebraically closed. We have the presen-
tation of the determinant


det(A(n−1)) = ∆0xn−1 − ∆1xn−2 + . . . + (−1)n−1∆n−1x0,


where ∆i, i = 0, . . . , n− 1, is the determinant of the (n− 1− i, n− 1)-minor of
A(n−1). For each monomial bm0


0 bm1


1 . . . b
mn−1


n−1 we define the weight to be the sum
∑n−1


i=0 i · mi. Observe that each polynomial ∆i consists of monomials of weight
≥ i. Indeed, it is enough to consider the simple extension S = k[t]/tn over k
(see 2.4). In this case the element hi,j(b0, . . . , bn−1) of the respective matrix A
is the zero polynomial if i < j and consists of monomials of the weight i − j
otherwise, i.e., we have the following matrix of weights























.


0 0 0 . . . 0
1 0 0 . . . 0
2 1 0 . . . 0
...


...
...


...
n − 1 n − 2 n − 3 . . . 0























where the first column corresponds to the vector of monomials (b0, . . . , bn−1).
Now it is easy to see that the polynomial ∆i consists of monomials of the


weight that is greater or equal than the weight of the product of diagonal ele-
ments of the (n − 1 − i, n − 1)-minor of A(n−1), i.e., precisely i.


Now each minor can be viewed as the sum ∆i = hi+h>i of two homogeneous
polynomials (in n-variables b0, b1, . . . , bn−1) of degree (n − 1)2, where hi is the
sum of monomials of weight i and h>i is the sum of monomials of weight strictly
bigger than i.


We claim that hi 6= 0. Indeed, for i = 0 we have h0 = b
(n−1)2


0 , i.e., h0 6= 0.


For i = 1 we have h1 = −C1
2n−3b


n(n−2)
0 b1 = −(2n − 3)b


n(n−2)
0 b1 which is non-


zero if the characteristic of k doesn’t divide 2n − 3. For i > 1 the polynomial


6







hi contains the unique monomial (the monomial with the maximal power of b0)


(−1)i(2(n − i) − 1)b
n(n−2)
0 bi which is non-zero if the characteristic of k doesn’t


divide 2(n − i) − 1.
Now it follows immediately that the polynomials ∆i, i = 0, . . . , n − 1, are


linearly independent. And we are done.


We will need one more fact concerning the polynomials ∆i:


3.10 Sublemma. . For any integers 0 ≤ i, j ≤ n − 1 The polynomials ∆i∆j,
where i ≤ j, are linearly independent.


Proof. The product ∆i∆j is the homogeneous polynomial of degree 2(n − 1)2


and can be represented as follows ∆i∆j = hihj + g>i+j , where hihj is the
sum of monomials of weight i + j and g>i+j consists of monomials of weight
strictly bigger than i+ j. Observe now that hihj contains the unique monomial
(the monomial with the maximal power of b0) (−1)i+j(2(n− i)− 1)(2(n− j)−


1)b
2n(n−2)
0 bibj (see the proof of the previous Sublemma).


Now we are ready to prove the main result of this section:


3.11 Theorem. Let S be a simple extension of degree n of a field k of char-
acteristic 0. Let c be a primitive element of S/k. Let q be a regular quadratic
form over k of rank m. and x = (x(1), . . . , x(m)) be a vector in Sm such that


q(x) 6= 0. By {x, c} = (x
(1)
n−1, . . . , x


(m)
n−1) we denote the vector of the (n − 1)-th


coordinates of x in the basis B(c), i.e., {x, c}j = {x(j), c}. Then the subset


Uc,x,q = {b ∈ Vc | q({xb−1, cb2}) 6= 0}


is non-empty and open in S∗.


3.12 Remark. According to 3.8 the Theorem is not true if the characteristic
of the residue field k is non-zero. Take k = F̄3, S = k[t]/(t3 − 1), q(x) = x2 and
c = x = t.


Proof. The proof is a little modification of the proof of 3.7. We use the notation
introduced in the proof of Lemma 3.7.


Clearly, Uc,x,q is open (by the same arguments as in 3.7). The main problem
is to show that Uc,x,q is non-empty. Hence, we have to prove that the polynomial


q(det(A
(1)
(n−1)), . . . ,det(A


(m)
(n−1))) is non-trivial, where A


(j)
(n−1) denotes the matrix


corresponding to the element x(j). Let


det(A
(j)
(n−1)) = ∆0x


(j)
n−1 − ∆1x


(j)
n−2 + . . . + (−1)n−1∆n−1x


(j)
0


be the representation as in the proof of 3.9, where x(j) =
∑n−1


i=0 x
(j)
i ci is the


presentation of x(j) in the basis B(c). Let q(x) =
∑


j aj(x
(j))2 be our quadratic


form.
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Then, we have


(detA)2 · q({xb−1, cb2}) =
∑


j


aj(det A
(j)
(n−1))


2 =


=
∑


j


aj(
∑


i


(−1)ix
(j)
n−1−i∆i)


2


Now if we replace ∆i by (−1)itn−1−i we get precisely
∑


j


aj(
∑


i


(−1)ix
(j)
n−1−i∆i)


2 = q(x(1)(t), . . . , x(m)(t)) (*)


as the polynomial in R[t], where x(j)(t) =
∑


i x
(j)
i ti.


Assume that the polynomial q({xb−1, cb2}) is trivial. Since the polynomi-
als ∆i∆j are linearly independent (by Sublemma 3.10), this implies that the
polynomials ∆i∆j in the sum (*) have zero coefficients. In particular, the ti


have trivial coefficients as well, i.e., the polynomial q(x(1)(t), . . . , x(m)(t)) is
trivial. This contradicts with the hypothesis of the Theorem that the image of
q(x(1)(t), . . . , x(m)(t)) by means of the canonical map R[t] → R[t]/pc(t) = S,
i.e., precisely q(x), is non-trivial.


4 The Knebusch’s Norm Principle


4.1. Let qS be a quadratic form of rank m over a ring S. By D0(qS) (D1(qS)) we
denote the set of all even (odd) products of invertible elements of S represented
by qS , i.e.,


Di(qS) = {


l
∏


i=0


q(xi) | xi ∈ Sm, q(xi) ∈ S∗, l ≡ imod 2}, i = 0, 1.


Observe that D0(qS) forms the subgroup of the group D(qS) generated by all
invertible elements represented by qS . And D1(qS) is just a subset of D(qS).
Clearly, if c ∈ Di(qS), i = 0, 1, and b ∈ D0(qS), then cb ∈ Di(qS).


Let n be a positive integer, then we set Dn(qS) = D0(qS) if n is even and
Dn(qS) = D1(qS) if n is odd.


The goal of the present section is to prove the following


4.2 Theorem. Let R be a semi-local domain with residue fields of characteristic
0. Let S/R be a simple extension of degree n. Let q be a regular quadratic form
over R of rank m. Let c ∈ S∗ be an element represented by the form qS, i.e.,
c = qS(x) for some vector x ∈ Sm. Then NS


R(c) ∈ Dn(qR), where NS
R is the


norm map. In particular, there is an inclusion between the subgroups of R∗


NS
R(D0(qS)) ⊂ D0(qR),


where D0(qS) is the subgroup generated by all products of two elements of S∗


represented by qS.
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4.3 Lemma. In the hypothesis of Theorem 4.2 we have (S∗)2 ⊂ D0(qS).


Proof. Let r ∈ R∗ be a value of the quadratic form q, i.e., r = q(y) for some
y ∈ Rm. Then for any b ∈ S∗ we have b2 = q(yb)q(y/r) ∈ D0(qS).


The Proof of Theorem 4.2. We prove by induction on the degree n of the simple
extension S/R. The case n = 1 is trivial. Assume n > 1.


In order to make the induction step we use the following idea: Since any
square can be viewed as the product of two elements represented by the quadratic
form q, the multiplication by a square doesn’t change a lot, hence, it gives some
freedom in the choice of elements. As a consequence, by applying general po-
sition arguments (Theorem 3.11) we may control the leading coefficient of the
polynomial h (see the equation (**)) and make it invertible. Since it is invertible,
we may apply the induction hypothesis and we are done.


More precisely, let c = qS(x) for some x ∈ Sm. We want to show NS
R(c) ∈


Dn(q). By 2.3 and Lemma 3.3 the element c can be written as the product c =
cb2 ·(1/b)2, where cb2 = qS(xb) ∈ Dn(qS) is primitive. Hence, by multiplicativity
of the norm map and Lemma 4.3 we may assume c (replaced by cb2) is primitive.


Now we mimic the proof of [4] (see also [3, VII.5.1]). Replace c by it’s inverse
c−1. We get the equation 1 = cqS(x), where c is primitive. More precisely, we
have


1 = cqS(x(1)(c), . . . , x(m)(c)), (*)


where x(j)(c) ∈ S is the j-th coordinate of the vector x written in the basis B(c).
According to Theorem 3.11 we may assume that the value of the quadratic form


qS on the last coefficients of the vectors x(j), i.e., q(x
(1)
n−1, . . . , x


(m)
n−1), is invertible


in R. In fact, it is enough to consider the quotient modulo the maximal ideal of
R (see 2.3), i.e., the simple extension S̄/k. The open subset Uc,x,q from 3.11 is
non-empty and open. Take any element b from Uc,x,q and replace c by cb2 and
x by x/b.


Consider the pull-back of the equation (*) by means of the canonical map
R[t] → R[t]/pc(t) = S. Since tq(x(t))−1 lies in the principal ideal (pc(t)) of the
polynomial ring R[t] there is a polynomial h(t) such that


1 + p(t)h(t) = tqS(x(1)(t), . . . , x(m)(t)). (**)


Since R is a domain the leading coefficient of the left hand side of (**) coincides
with the leading coefficient of h, denoted by r, and coincides with the leading


coefficient of the right hand side that is r = q(x
(1)
n−1, . . . , x


(m)
n−1), where r is


invertible in R. Clearly, we have n+deg h = 2(n−1)+1. So that deg h = n−1.
As in [4] we have NS


R(c) = (−1)npc(0) and 1 + pc(0)h(0) = 0. Hence, we
have


NS
R(c)−1 = (−1)n−1g(0)r,


where g(t) = h(t)/r is the monic polynomial of degree deg h = n − 1. Observe
that the norm of the primitive element u = t of the respective simple extension
T = R[t]/g(t) over R is precisely NT


R (u) = (−1)n−1g(0). Hence, in order to
show that NS


R(c) ∈ Dn(q) it is enough to show that NT
R (u) ∈ Dn−1(q). But
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this follows by the induction hypothesis, since u is represented by the quadratic
form qT . Indeed, taking (**) modulo the principal ideal (g(t)) we get similar to
(*) the equation 1 = uqT (x(u)), i.e., u = qT (x(u)/u).


5 Grothendieck-Serre’s conjecture for the case


of the spinor group


5.1. Let R be a semi-local domain with the residue fields of characteristic differ-
ent from 2 and q be a regular quadratic form over R. Following [5, IV.6] we define
the spinor group (scheme) Spinq to be Spinq(R) = {x ∈ SΓq(R) | xσ(x) = 1},
where σ is the canonical involution. Recall that SΓq(R) = {c ∈ C0(V, q)∗ |
cV c−1 ⊂ V }, where C0(V, q) is the even part of the Clifford algebra of the
respective quadratic space (V, q) over R.


The goal of the present section is:


5.2 Theorem. Let R be a semi-local regular ring containing a field of charac-
teristic 0. Let K be it’s quotient field. Let q be a regular quadratic form over
R. Then the induced map on the sets of principal homogeneous spaces


H1
et(R,Spinq) → H1


et(K,Spinq)


has trivial kernel, where Spinq is the spinor group for the quadratic form q.


5.3 Remark. Observe that the theorem is the particular case G = Spinq


of Grothendieck-Serre’s conjecture on principal homogeneous spaces [2], which
states for a flat reductive group scheme G over R the induced map H1


et(R,G) →
H1


et(K,G) has trivial kernel.


Proof. The proof is based on the results of papers [7] and [8].
Assume R is a semi-local regular ring of geometric type over a field of char-


acteristic 0. Let K be it’s quotient field. We have the following commutative
diagram (see [5, IV.8.2.7]):


SOq(R)
SN


//


²²


R∗/(R∗)2 //


²²


H1
et(R,Spinq) //


²²


H1
et(R,SOq)


²²


SOq(K)
SN


// K∗/(K∗)2 // H1
et(K,Spinq) // H1


et(K,SOq),


where SN : SOq(R) → H1
et(R,µ2) = R∗/(R∗)2 is the spinor norm. The main


result of paper [6] says that the vertical arrow on the right hand side has
trivial kernel (see also [7, 3.4]). Thus, in order to show that the middle one
has trivial kernel it is enough to check that the induced map on the cokernels
coker(SN)(R) → coker(SN)(K) is injective.


Consider the group scheme F : S 7→ coker(SN)(S). According to the the-
orem of section 2 of [7] to prove the mentioned injectivity we have to show
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that the functor F satisfies all the axioms C,TE,TA,TB, E of sections 1 and
2 of [7]. In fact, all the axioms, excluding the existence of transfer map, i.e.,
TE, holds by the same arguments as in sections 3.2 and 3.4 of [7]. Hence, in
order to prove the injectivity we have to produce a well-defined transfer map
TrS


R : F (S) → F (R) for any finite surjective extension of semi-local rings S/R
(see the axiom TE of [7]).


Observe that for any finite surjective extension S/R of semi-local rings there
is already a well-defined norm map NS


R : S∗/(S∗)2 → R∗/(R∗)2. Hence, if we
show that the norm map NS


R is compatible with the spinor norm, i.e.,


NS
R(SN(SOq(S))) ⊂ SN(SOq(R)),


then taking TrS
R = NS


R on the quotients modulo the images of SN we get the
desired transfer map.


In fact, instead of finite surjective extensions we may consider only finite
etale extensions S/R of semi-local rings. Indeed, if we replace the Geometric
Presentation Lemma [6, 10.1] used in the section 1.1 of [7] by it’s stronger (etale)
version from [8, 6.1], then nothing will be changed in the proof of the injectivity
theorem of section 2 of [7].


According to the definition of the spinor norm [5, IV.6], [1, III.3.21] to show
the norm map commutes with the spinor norm is equivalent to show the norm
map commutes with the functor D : S 7→ D0(qS) (that sends any R-algebra S
to the subgroup D0(qS)), i.e., NS


R(D0(qS)) ⊂ D0(qR). Hence, we have to prove
the analog of Knebusch’s Norm Principle for quadratic forms in the case of finite
etale extensions of semi-local rings. But this is done by Theorem 4.2.


Finally, to extend our result to the case of a semi-local regular ring containing
a field of characteristic 0 we use Popesky’s approximation theorem [8, 7.5]. We
refer to the item 1 of section 5 of [7] for the precise arguments.


Now we are ready to prove the main theorem of this paper


The Proof of Theorem 1.1. We use the notations of the proof of Theorem 5.2.
Let K and L be the quotient fields of the semi-local rings R and S respectively.
Observe that L/K is a finite field extension. We have the commutative diagram
of abelian groups


S∗/(S∗)2
can


//


NS


R


²²


coker(SN)(S)
iS


// coker(SN)(L)


NL


K


²²


R∗/(R∗)2
can


// coker(SN)(R)
iR


// coker(SN)(K)


where can is the quotient map, the maps iR and iS are injective according to
the proof of 5.2 and NL


K is the norm map for the finite field extension L/K
taken modulo the images of the spinor norms. Observe that NL


K is well-defined
since the Norm Principle holds in the case of finite field extensions [4].
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The diagram immediately implies that the norm map NS
R is well-defined on


the quotients, i.e., NS
R(SN(SOq(S))) ⊂ SN(SOq(R)) or, equivalently,


NS
R(D0(qS)) ⊂ D0(qR).


5.4 Remark. Observe that under some restrictions the proofs of 5.2 and 1.1
imply that the Grothendieck-Serre’s conjecture for the spinor group is equivalent
to the Knebusch’s Norm Principle.
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