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The main aim of the preprint is to prove the following result which is a variant of the
Springer theorem [La] for quadratic spaces over local rings.


Theorem. Let R be a local Noetherian domain which has an infinite residue field and let
S = R[T ]/(F (T )) be an integral extension which is étale over R. Let (V, q) be a quadratic
space over R such that the S-quadratic space (V ⊗R S, q⊗R S) contains a hyperbolic plane
HS. If the degree of the polynomial F (T ) is odd, then the space (V, q) contains a hyperbolic
plane already over R.


This theorem is one of the main ingredient in the proof of the following result proved
in [P].


0.1 Theorem. Let R be a regular local ring, K its field of fractions and (V, ϕ) a quadratic
space over R. Suppose R contains a field of characteristic zero. If (V, ϕ)⊗RK is isotropic
over K, then (V, ϕ) is isotropic over R, that is there exists a unimordular vector v ∈ V
with ϕ(v) = 0.


It is well-known that any finite étale extension S of R has the form S = R[T ]/(F (T )),
where F (T ) is a monic separable polynomial. If A is a semi-local ring and (W,φ) is a
quadratic space over A, then W contains a hyperbolic plane if and only if W contains a
unimodular isotropic vector w. A vector w is called unimodular if w can be taken as the
first vector w1 of a free A-base w1, . . . , wn of the A-module W .


1 Preliminaries


In this section we formulate two results which will be used in the proof of the main
theorem. These two results will be proved in Section 3. We need to fix certain notation


k is an infinite field (char(k) 6= 2)


f(t) is a monic separable polynomial of degree n over k


l = k[t]/(f(t)) is a separable k-algebra
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θ = t mod f(t) is an element of the algebra l


(W,φ) is a quadratic space over k


(Wl, φl) is the quadratic space (W ⊗k l, φ⊗k l) over l


W [t](m) = W · 1 ⊕W · t⊕ . . .⊕W · tm−1 ⊂W [t] = W ⊗k k[t]


k[t](m) = k · 1 ⊕ k · t⊕ . . .⊕ k · tm−1 ⊂ k[t]


ev : W [t](n) →Wl is a map given by


ev(v0 + v1t+ . . .+ vn−1t
n−1) = v0 + v1θ + . . .+ vn−1θ


n−1


v(θ)
def
= ev(v(t)) for any v(t) ∈W [t](n)


φ(n) : W [t](n) → k[t](2n−1) is the map given by


φn(v0 + v1t+ . . .+ vn−1t
n−1) = φ(v0) + 2(v0, v1) · t+ φ(v1) · t


2 + . . .+ φ(vn−1) · t
2n−2


1.1 Proposition. Suppose the quadratic space (Wl, φl) contains a hyperbolic plane Hl as
a direct summand. Then there exists a unimodular isotropic vector w ∈ Wl and for any
such a vector w there exists an element v(t) ∈W [t](n) satisfying the following conditions


(1) φ(n)(v(t)) ∈ k[t](2n−1) is a polynomial of degree 2n− 2


(2) φ(n)(v(t)) is a separable polynomial


(3) 〈w, v(θ)〉 ∈ l∗, where l∗ ⊂ l is the group of units of l


(4) φl(v(θ)) = 0 in l


1.2. Let A be a semi-local ring and let Ā = A/Rad(A) and let (U, ψ) be a quadratic
space over A and suppose (U, ψ) contains a hyperbolic plane HA as a direct summand.
We will use ”bar” for the reduction modulo the radical Rad(A). For example, (Ū , ψ̄) is
the quadratic space (U/Rad(A) · U, ψ̄) over Ā.


1.3 Lemma. Let u ∈ U be a unimodular isotropic vector. Then for any isotropic vector
v ∈ Ū with the property 〈v, ū〉 ∈ A∗ there exists a vector v ∈ U such that


(1) v̄ = v in Ū and


(2) ψ(v) = 0.


Proof. Let v0 be any vector in U with v̄0 = v. Then take


v =
−〈v0, v0〉


2〈v0, u〉
· u+ v0.


Then v is the desired isotropic vector. In fact, ψ(v) = −〈v0, v0〉+ 〈v0, v0〉 = 0 and v̄ = v̄0,
because 〈v̄0, v̄0〉 = 〈v, v〉 = 0. Since v̄0 = v one has v̄ = v. Lemma is proved.
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1.4 Lemma. Let k[t] be the polynomial ring over the field k and let (W,φ) be the quadratic
space over k. Let w(t) = w0 +w1 · t+ . . .+wn−1 · t


n−1 be an element of W [t] with wi ∈W .
Suppose the polynomial φ(n)(w(t)) ∈ k[t] is separable and let g(t) ∈ k[t] be an irreducible
polynomial dividing φ(n)(w(t)). Then w(t) does not vanish modulo g(t).


Proof. If w(t) vanishes modulo g(t), then w(t) = g(t) · u(t) for an element u(t) ∈ W [t].
In this case one has


φ(n)(w(t)) = φ(n)(g(t) · u(t)) = g(t)2 · φ(n)(u(t)) ∈ k[t].


This relation contradicts with the separability of φ(n)(w(t)). Thus w(t) does not vanish
modulo g(t). Lemma is proved.


1.5 Lemma. Let A be a semi-local ring and let (U, ψ) be a quadratic space over A. Let
v ∈ U be a unimodular isotropic vector. Then one can split a hyperbolic plane of (U, ψ),
i.e.,


(U, ψ) ∼= (U ′, ψ′) ⊥ H.


Proof. It is easy.


2 The proof of the main theorem


2.1 Theorem. Let R be a local Noetherian domain which has an infinite residue field
of characteristic different of 2. Let S = R[T ]/(F (T )) be an integral extension which
is étale over R. Let (V, q) be a quadratic space over R such that the S-quadratic space
(V ⊗R S, q⊗R S) contains a hyperbolic plane HS. If deg F (T ) is odd then the space (V, q)
contains a hyperbolic plane HR.


Proof. Let m be the maximal ideal of R and let k be the residue field R/m of R. Let
l = S/mS = k[t]/(f(t)), where f(t) = F [T ] mod m. Since S is étale over R so is the
k-algebra l. In particular the k-algebra l is separable.


We will write (VR, qR) for (V, q) and write (V̄ , q̄) for the reduction modulo m of the
R-quadratic space (VR, qR). Let (VS, qS) be the scalar extension of (VR, qR) up to S
and let (V̄l, q̄l) be the reduction modulo mS of the S-quadratic space (VS, qS). Clearly,
(V̄l, q̄l) = (V̄ , q̄) ⊗k l. Set now (W,φ) = (V̄ , q̄). Then (W ⊗k l, φ ⊗k l) = (V̄l, q̄l) and we
will write (Wl, φl) for (V̄l, q̄l).


By the hypotheses of the theorem the space (Wl, φl) contains a hyperbolic plane Hl


as a direct summand. Thus we are under the hypotheses of Proposition 1.1. So using
notation of Section 1 one can find a vector w ∈ Wl (unimodular and isotropic) and an
element v(t) = v0 · 1+ v1 · t+ . . .+ vn−1 · t


n−1 ∈W [t](n) satisfying the following conditions


(1) φ(n)(v(t)) ∈ k[t] has degree 2n− 2


(2) φ(n)(v(t)) is a separable polynomial over k


(3) 〈w, v(θ)〉 ∈ l∗ is an invertible element of l
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(4) φl(v(θ)) = 0 ∈ l, where θ = t mod f(t) is the element of l


Recall now that the quadratic space (Wl, φl) is the reduction modulo mS of the quadratic
space (VS, qS). Thus by Lemma 1.3 one can lift the element v = v(θ) ∈ Wl up to a
unimodular isotropic vector v ∈ VS.


Since S = R[T ]/(F (T )) we have VS = VR⊗RR[T ]/(F (T )). If we set θ = T mod F (T ),
then one can find elements v0, v1, . . . , vn−1 ∈ VR such that v = v0 ·1+v1·θ+. . .+vn−1·θ


n−1.
Consider now the element v(T ) = v0 · 1 + v1 · T + . . . + vn−1 · T


n−1 in VR ⊗R R[T ] and
consider the diagram


Wl W × . . .×W
evoo φ(n)


// k × . . .× k
disc // k


V̄l V̄ × . . .× V̄
evoo q̄(n)


// k × . . .× k
disc // k


VS


OO


VR × . . .× VR
Evoo


q
(n)
R //


OO


R × . . .× R
Disc //


OO


R


OO


where Ev(u0, . . . , un−1) = u0 · 1 + u1 · θ + . . .+ un−1 · θ
n−1 ∈ VS and q


(n)
R (u0, . . . , un−1) =


qR(u0) + 2 · (u0, u1) · T + qR(u1) · T
2 + . . . + qR(un) · T


2n−2 and Disc(a0, a1, . . . , a2n−2) is
the discriminant of the polynomial a0 + a1T + . . .+ a2n−2T


2n−2. The vertical arrows are
the canonical maps.


Clearly, this diagram commutes and maps Ev, ev are isomorphisms. In particular,
vi = vi mod m for the components v0, . . . , vn−1 (resp. v0, . . . , vn−1) of the element v(t) ∈


W [t] (resp. v(T ) ∈ VR[T ]). Thus the reduction modulo m of the polynomial q
(n)
R (v(T ))


coincides with the polynomial φ(n)(v(t)). The last polynomial is separable and has degree
2n− 2 by the choice of v(t).


Since v(θ) = v by the very choice of the element v(T ) and since v is qR-isotropic one
has the relation qR(v(T )) = 0. Thus qR(v(T )) vanishes modulo F (T ) in the ring R[T ],
i.e., there exists a polynomial H(T ) in R[T ] such that


q
(n)
R (v(T )) = F (T ) ·H(T ). (∗)


Taking the reduction modulo m we get the relation


φ(n)(v(t)) = f(t) · h(t), (∗∗)


where h(t) is the reduction of H(t) modulo m. Since deg φ(n)(v(t)) = 2n−2 and deg f(t) =
n one gets that deg h(t) = n− 2. Since degH(T ) ≤ n− 2 we see that degH(T ) = n− 2
and H(T ) is monic (the highest coefficient is invertible). Further φ(v(t)) is separable.
Thus h(t) is separable as well. This shows that the R-algebra S ′ = R[T ]/(H(T )) is an
étale R-algebra.


Denote by A the class of T modulo H(T ) in the ring S ′. Then the vector v(A) =
v0 · 1 + v1 · A + . . .+ vn−1 · A


n−1 of the quadratic S ′-space (VS′, qS′) is isotropic. In fact,
qS′(v(A)) = F (A) ·H(A) = 0 on S ′. If the vector v(A) is unimodular then one can split
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a hyperbolic plane HS′ of the quadratic space (VS′, qS′) over S ′ (see Lemma 1.5). So in
this case we constructed a finite étale extension S ′ = R[T ]/(H(T )) such that


degH(T ) = degF (T ) − 2


and such that the space (VS′, qS′) contains a hyperbolic plane HS′ as a direct summand.
Repeating this procedure several times we finally get a direct hyperbolic summand of the
quadratic space (VR, qR) itself. Thus to complete the proof of the theorem it remains to
check that the vector v(A) ∈ VS′ is unimodular.


For this denote by k′ the ring S ′/mS ′ and observe that k′ = k[t]/(h(t)), where as
above h(t) is the reduction modulo m of the polynomial H(t). Further denote by V̄k′ the
k′-module V̄ ⊗k k


′ and consider the commutative diagram (with the same elements v(T )
and v(t) as above in this proof)


v(α) ∈ V̄k′ V̄ [t](n)Evoo v(t)∋


v(A) ∈


_


OO


VS′


OO


VR[T ](n)Evoo


OO


v(T )∋


_


OO
.


Here Ev(u0 + u1T + . . .+ un−1T
n−1) = u0 + u1 · A + . . .+ un−1 · A


n−1 and Ev(w0 + w1 ·
t + . . . + wn−1 · t


n−1) = w0 + w1 · α + . . . + wn−1 · α
n−1 and α = t mod h(t) ∈ k′. To


check that v(A) is unimodular it suffices to verify that v(α) is unimodular. Observe that
V̄k′ = V̄ ⊗k k[t]/(h(t)). Let h(t) = h1(t) · . . . · hr(t) be the decomposition of h(t) in a
product of irreducible polynomials. Since h(t) is separable one has hi(t) 6= hj(t) for i 6= j.
Then V̄k′ =


∏r
i=1 V̄ ⊗k (k[t]/(hi(t))) and thus v(α) is unimodular in V̄k′ if and only if the


elements v(t) ∈ V̄ [t] does not vanish modulo any of hi(t) (i = 1, . . . , r).
The polynomial hi(t) divides h(t) and the polynomial h(t) divides φ(n)(v(t)) (see (∗)).


Thus hi(t) divides φ(n)(v(t)). Since hi(t) is irreducible and φ(n)(v(t)) is separable Lemma
1.4 proves that v(t) does not vanish modulo hi(t). Thus indeed the element v(α) is
a unimodular vector in V̄k′ and the element v(A) is a unimodular vector in VS′. This
completes the proof of the theorem.


3 The proof of Proposition 1.1


3.1. Since the quadratic space (Wl, φl) contains a hyperbolic plane Hl as a direct summand
one can find a unimodular isotropic vector w ∈Wl. Choose and fix such a vector w ∈Wl.


Now set X(l) = {v ∈ Wl | φ(v) = 0} and consider a map ρw : X(l) → l taking v into
the scalar product 〈w, v〉 ∈ l. Consider then a diagram of sets and their polynomial maps


l X(l)
ρwoo


_�


i


��


Yoo
_�


j
��


Wl W × . . .×W = W [t](n)evoo φ(n)
// k[t](2n−1) disc // k


,
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where ev is the map defined in the beginning of Section 1 (this map is clearly an isomor-
phism) and where Y = ev−1(X(l)) and maps i, j are the inclusions and φ(n) is defined
in the beginning of Section 1. The map disc takes a polynomial g(t) ∈ k[t](2n−1) into its
discriminant. It is well-known that disc(g(t)) has a polynomial expression in terms of
coefficients of the polynomial g(t).


This diagram is the diagram of k-rational points and their maps induced by the fol-
lowing one


Rl/k(A
1
l ) Rl/k(Xl)


Ewoo
_�


i
��


Y
∼=oo


_�


j


��
Rl/k(Wl) W × . . .× W


ev
∼=


oo φ(n)
// A1


k × . . .× A
1
k


disc // A1
k


of algebraic varieties. Here Rl/k is the Weil restriction functor. Here W (resp. Wl) is
the k-vector space (resp. the l-vector space) considered as the k-variety (resp. as the
l-variety) and Xl is the affine quadric in Wl given by the equation φl = 0 and Ew is the
Weil restriction of the morphism ρw : Xl → A1


l taking v into 〈w, v〉 and the variety Y is
the preimage of Rl/k(Xl) under the evaluation isomorphism ev : W× . . .×W → Rl/k(Wl)
and morphisms i and j are the closed embeddings. The product W × . . .× W consists of
n factors and the product A1


k × . . .× A1
k consists of 2n− 1 factors.


Define open subsets of the variety Y as follows


U1 = j−1((φ(n))−1(A1
k × . . .× A1


k × (A1
k − {0})))


U2 = j−1((φ(n))−1(disc−1(A1
k − {0})))


U3 = ev−1(E−1
w (Rl/k(A


1
l − {0}l)))


We need in the following Lemmas


3.2 Lemma. Y is k-rational variety.


3.3 Lemma. U1 ∩ U2 6= ∅


3.4 Lemma. U3 6= ∅


Having these three Lemmas one can prove Proposition 1.1 as follows. Since Y is
k-rational variety any its non-empty open subset has a k-rational point (even infinitely
many). Thus by Lemma 3.3 and Lemma 3.4 one can find a point


v ∈ (U1 ∩ U2 ∩ U3)(k) ⊂ Y(k) ⊂ (W × . . .× W)(k).


Set v(t) = j(v). Then the element v(t) satisfies the condition (1), (2) and (3) of Proposi-


tion 1.1 by the very definition of the open sets U1, U2 and U3. Since v(θ)
def
= ev(v(t)) thus


v(θ) is a k-rational point of the variety Rl/k(Xl), i.e., v(θ) ∈ X(l). Thus φl(v(θ)) = 0 and
the condition (4) is satisfied as well. To complete the proof of Proposition 1.1 it remains
to prove Lemmas 3.2 – 3.4.
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3.5 (Proof of Lemma 3.2). Since Y is isomorphic to the variety Rl/k(Xl) it suffices to
check the k-rationality of the last one. The quadric Xl has an l-rational point and thus
Xl is an l-rational variety. This implies that there exist non-empty open subvarieties V1 in


Xl and V2 in A
r−1
l (r = dimkW ) and an isomorphism α : V1


∼=
−→ V2 of l-varieties. Consider


now the diagram of l-varieties


Xl ⊃ V1


∼=
−→ V2 ⊂ A


r−1
l


and apply the Weil restriction functor to this diagram. One obtains a diagram


Rl/k(Xl) ⊃ Rl/k(V1)
∼=
−→ Rl/k(V2) ⊂ Rl/k(A


r−1
l )


of k-varieties. Since the left and the right hand side inclusions are open imbeddings
and since the variety Rl/k(A


r−1
l ) is an affine space over k one concludes that Rl/k(Xl) is


k-rational. Lemma is proven.


3.6 (Proof of Lemma 3.4). The morphism ev : Y → Rl/k(Xl) is an isomorphism by
the very definition of the variety Y. Therefore it suffices to verify that the variety
E
−1
w (Rl/k(A


1
l − {0}l)) is non-empty. We show now that the last variety has k-rational


points. For this recall that the morphism Ew : Rl/k(Xl) → Rl/k(A
1
l ) induces a map of


k-rational points which coincides with the one


ρw : X(l) → l (v 7→ 〈v, w〉).


Take any v ∈ X(l) with 〈w, v〉 ∈ l∗ and observe that for this element v one has ρw(v) ∈
l∗ and moreover the group l∗ coincides with the set of k-rational points of the variety
Rl/k(A


1
l −{0}l). Thus the element v is a k-rational point of the variety E


−1
w (Rl/k(A


1
l−{0}l)).


Lemma is proved.


3.7 (Proof of Lemma 3.3). We show that already (U1 ∩ U2)(l) 6= ∅. For this consider an
l-basis e1, e2, . . . , er of the free l-module Wl such that e21 = 0, e22 = 0, (e1, e2) = 1 and
(e1, ei) = (e2, ei) = 0 for i ≥ 3. For any polynomial h(t) ∈ l[t](n) and for any element
e ∈Wl we set h(t) ·e = (a0 ·e) ·1+(a1 ·e) · t+ . . .+(an−1 ·e) · t


n−1) ∈ l⊗kW [t](n) = Wl[t]
(n).


Since l = k[t]/(f(t)) and θ = t mod f(t) (see page 3 for the definition of θ) one has a
unique decomposition f(t) = f (1)(t)(t− θ) in l[t]. Let g(t) ∈ k[t] be a separable of degree
n− 2 polynomial which is coprime with f(t). Consider now the element


v(t) = f (1)(t) · e1 + (t− θ)g(t) · e2 ∈ l ⊗k W [t](n) = Wl[t]
(n).


3.8 Claim. v(t) ∈ (U1 ∩ U2)(l)


To check this claim observe first that


φ(n)(v(t)) = 2 · f (1)(t) · (t− θ) · g(t) · 〈e1, e2〉 = 2f(t) · g(t) (∗)


Thus φ(v(θ)) = 2 · f(θ) · g(θ) = 0 in l and therefore v(t) ∈ Y(l). Further (∗) shows that
φ(n)(v(t)) ∈ k[t] ⊂ l[t] and it has degree 2n− 2. Therefore v(t) ∈ U1(l).


Finally, φ(n)(v(t)) is separable because f(t), g(t) are separable and coprime poly-
nomials in k[t]. Thus disc(φ(n)(v(t))) ∈ k∗ →֒ l∗ and, therefore, v(t) ∈ U2(l). So
(U1 ∩ U2)(l) ∋ v(t) and, hence, (U1 ∩ U2)(l) 6= ∅. Lemma is proved.
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