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Abstract


This paper uses scheme-theoretic methods to address algebraic problems about rank 3 quadratic forms
and rank 4 Azumaya algebras. It extends well-known results on semiregular rank 3 quadratic bundles
and rank 4 Azumaya algebra bundles to their degenerations by studying the scheme of specialisations of
Azumaya algebra bundle structures introduced in Part A of [3]. The Witt-invariant of a rank 3 quadratic
bundle (V, q), which by definition is the isomorphism class (as algebra bundle) of its even-Clifford algebra
C0(V, q), is shown to determine the pair (V, q) upto tensoring by a discriminant line bundle. The special,
usual and the general orthogonal groups of (V, q) are computed and canonically determined in terms of
Aut(C0(V, q)), and it is shown that the general orthogonal group is always a semidirect product. Any
element of Aut(C0(V, q)) can be lifted to a self-similarity, and in fact to an element of the orthogonal
group provided the determinant of the automorphism is a square. The special orthogonal group and the
group of determinant 1 automorphisms of C0(V, q) are naturally isomorphic. If the base scheme X is
integral and q is semiregular at some point of X, then every automorphism of C0(V, q) has determinant 1
and is thus induced from a self-isometry; the orthogonal group is also seen to be a semidirect product in
this case. If X is affine with coordinate ring a UFD, then every specialised algebra structure on a rank 4
vector bundle over it arises as the even-Clifford algebra of a global rank 3 quadratic bundle (V, q), so that
the set of rank 3 quadratic bundles upto tensoring by a discriminant line bundle naturally corresponds
to the set of isomorphism classes of specialised rank 4 algebra bundles. These results are seen as limiting


versions of the natural bijection Ȟ
1
fppf(X, O3)/Disc(X) ∼= Ȟ


1
étale(X, PGL2). The multiplication table of


every specialised algebra structure on any fixed free rank 4 vector bundle with fixed unit that is part of
a global basis is written down explicitly. For a connected proper scheme X of finite type over an alge-
braically closed field, the hypothesis of self-duality on a unital associative algebra bundle of square rank
over X forces the algebra to be either globally Azumaya or to be nowhere-Azumaya. This implies that
the existence of a non-Azumaya specialisation which is Azumaya at some point excludes the possibility of
the existence of global Azumaya algebra structures on that bundle. The use of the nice technical notion
of semiregularity introduced by Kneser in [1] allows all of the above results to be valid over an arbitrary
base scheme X, some (or even all) of whose points may have residue fields of characteristic two.
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1 Overview of the Main Results


The smoothness of the schematic closure of Azumaya algebra structures on a fixed vector bundle of
rank 4 over any scheme was obtained in Part A of [3]. Part B of that work had applied this result to
obtain desingularisations (with good specialisation properties) of certain moduli spaces over fairly general
base schemes. The present work is concerned with applications to the study of degenerations of rank 3
quadratic bundles over a scheme.


For a rank 3 vector bundle V over a scheme X with a quadratic form q on V (taking values in
OX), consider the natural functorial association of the pair (V, q) to its even Clifford algebra bundle
C0(V, q) of rank 4 over X. If q is a semiregular quadratic form, then C0(V, q) is an Azumaya algebra
bundle over X i.e., a twisted form for the the (2 × 2)-matrix algebra over OX for the étale topology
on X. (A generic quadratic form on a vector bundle of odd rank is semiregular and such forms are
technically the “good” ones—they were introduced by Kneser in [1] and are studied in detail by Knus in
his book [2]—coinciding with the usual regular quadratic forms when the residue field of every point of
X has characteristic different from 2). Therefore the association is one that “generically” takes a rank 3
semiregular quadratic bundle to a rank 4 Azumaya algebra bundle. This may also be described as the
natural bijection


Ȟ
1
fppf(X, O3)/Disc(X) ∼= Ȟ


1
étale(X, PGL2)


where the left side classifies semiregular rank 3 quadratic bundles upto tensoring by a discriminant line
bundle on X, and the right side classifies Azumaya algebra bundles of rank 4 on X. If none of the
residue fields of the points of X is of characteristic two, then the subscript ‘fppf’ on the left side may be
replaced with ‘étale’. What follows is an attempt to extend this bijection ‘to the limit’ i.e., with degenerate
(possibly non-semiregular) quadratic bundles on the left and specialised (possibly non-Azumaya) bundles
on the right. We extend the left side by replacing it with the set of quadratic bundles of rank 3 on X
upto tensoring by a discriminant line bundle and extend the right side by replacing it with algebra-
isomorphism classes of specialisations, of rank 4 Azumaya algebras, in the sense of Part A, [3]. We find
that the resulting map is always an injection; we are able to prove that it is a surjection in certain cases,
for example when X is affine with coordinate ring a UFD, and hope that it will always be a bijection.


A detailed analysis of the origins behind the smoothness result in Part A, [3], allows us to extend
many of the known results for semiregular rank 3 quadratic bundles (and rank 4 Azumaya bundles),
as in Chap.V, §3 of the book of Knus [2], to degenerate rank 3 quadratic bundles and specialisations
of rank 4 Azumaya algebra bundles. For example, it turns out that the Witt-invariant of (V, q), which
by definition is the isomorphism class (as algebra bundle) of C0(V, q), determines the pair (V, q) upto
tensoring by a discriminant line bundle. For another example, the orthogonal groups related to (V, q) viz.
the special, usual and the general orthogonal groups (contained in that order inside Aut(V )×Γ(X, O∗


X) =
GL(V ) × Γ(X, O∗


X)) may be computed and canonically determined in terms of Aut(C0(V, q)).
Let us fix some notations and terminology before proceeding further. In the following we switch


between the language of (geometric) vector bundles and the (equivalent) language of locally-free sheaves
of finite constant positive rank; as a convention, sheaves corresponding to vector bundles V, W, L . . . are
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respectively denoted V, W, L . . . Relative to any fixed base scheme B, consider the natural transformation
between two natural (covariant) functors


Witt : Q3 −→ A4, Q3, A4 : (B − Schemes)op −→ Sets


defined as follows. If X −→ B is a B-scheme, recall that a pair (L, h) is said to be a discriminant line
bundle on X if L is a line bundle and h : L ⊗X L ∼= A


1
X is an isomorphism of line bundles (i.e., coming


from an isomorphism of the associated locally-free sheaves of OX -modules of rank 1). In other words h is
a non-singular bilinear form on L with values in the trivial line bundle (hence necessarily symmetric). Let
Disc(X) be the set of isometry classes of such discriminant bundles. It is naturally an abelian group of
exponent 2 under the tensor product operation. It acts on the set of isometry classes of quadratic bundles
(V, q) on X, since given (L, h) there is the natural quadratic bundle (V, q) ⊗ (L, h) viz. the quadratic
form q ⊗ h on V ⊗ L. Define Q3(X) to be the set of equivalence classes under this action i.e., the set of
rank 3 quadratic bundles on X (isometric) upto tensoring by a discriminant bundle. Also define A4(X)
to be the set of isomorphism classes of associative unital algebra structures on rank 4 vector bundles
over X (here unital means that there exists a global nowhere-vanishing section which serves as the unit
for the algebra multiplication). Associating to (V, q) its Witt-invariant i.e., the isomorphism class of its
even Clifford algebra C0(V, q) gives rise to a functor in X:


Witt(X) : Q3(X) −→ A4(X) : [(V, q)] 7→ [C0(V, q)]


since tensoring a quadratic bundle with a discriminant bundle (which includes replacing it with a similar—
in particular with an isometric—quadratic bundle) does not affect the isomorphism class of its even
Clifford algebra (see Prop. 2.5). Observe that by considering only semiregular quadratic bundles we obtain
a subfunctor Q


sr
3 →֒ Q3 (since tensoring by a discriminant bundle preserves semiregularity, see Prop.2.2).


Also by considering only Azumaya algebra bundle structures we obtain a subfunctor A
Azu
4 →֒ A4 so that


the transformation Witt takes Q
sr
3 into A


Azu
4 . In fact, Witt(X) : Q


sr
3 (X) −→ A


Azu
4 (X) is bijective for


each scheme X, and this may be deduced from the case of an affine X which is proved in §3, Chap.V,
[2] (see Theorem 1.14). It follows from the main result of Part A of [3] that there exists a subfunctor
A


Sp−Azu
4 →֒ A4 that contains A


Azu
4 as well as the image of Witt. This subfunctor may be described as


those algebra bundle structures that are scheme-theoretic specialisations of Azumaya algebra structures,
or also as those that are locally (in the Zariski topology) the even Clifford algebras of quadratic bundles.
It turns out that these specialisations are quaternion algebra bundles i.e., those that have a standard
involution (in the sense of Knus, para.1.3, Chap.I, [2]) but of course even over an algebraically closed
field there are quaternion algebras that are not even-Clifford algebras of quadratic forms.


THEOREM 1.1 For each X, the map Witt(X) : Q3(X) −→ A
Sp−Azu
4 (X) is injective.


For two quadratic bundles (V, q) and (V ′, q′) denote by Sim[(V, q), (V ′, q′)] the set of similarities
(also called similitudes) from (V, q) to (V ′, q′) (with multipliers being global sections of O


∗
X) and by


Iso[(V, q), (V ′, q′)] the subset of isometries (i.e., similarities with trivial multipliers). When V = V ′, the
subset of isometries with trivial determinant is denoted S-Iso[(V, q), (V, q′)]. On taking q = q′ these sets
naturally become subgroups of Aut(V ) × Γ(X, O∗


X) = GL(V ) × Γ(X, O∗
X) and we get


Sim[(V, q), (V, q)] = GO(V, q) ⊃ Iso[(V, q), (V, q)] = O(V, q) ⊃ S-Iso[(V, q), (V, q)] = SO(V, q).


Of course, O(V, q) and SO(V, q) may as usual be considered as subgroups of GL(V ) ≡ GL(V ) × {1}.
Since in general a quadratic bundle (V, q) on a non-affine scheme X may not be induced from a global
bilinear form, one is unable to identify the (Z/2.Z)– graded vector bundle underlying its Clifford algebra
bundle with that underlying the exterior algebra bundle of V (which is the same as the Clifford algebra
bundle of the zero quadratic form).


PROPOSITION 1.2 Every isomorphism of algebra-bundles φ : C0(V, q) ∼= C0(V
′, q′) is naturally as-


sociated to an isomorphism of bundles φΛ2 : Λ2(V ) ∼= Λ2(V ′) which induces a map


ζΛ2 : Iso[C0(V, q), C0(V
′, q′)] −→ Iso[Λ2(V ), Λ2(V ′)] : φ 7→ φΛ2


where Iso[C0(V, q), C0(V
′, q′)] is the set of algebra bundle isomorphisms. When V = V ′, we may thus


denote the subset of those φ for which det(φΛ2) ∈ Aut[det(Λ2(V ))] ∼= Γ(X, O∗
X) is a square (respectively =


1) by Iso′[C0(V, q), C0(V, q′)] (respectively by the smaller subset S-Iso[C0(V, q), C0(V, q′)]). Taking q = q′ in
these sets and replacing “ Iso” by “Aut” in their notations respectively defines the groups Aut(C0(V, q)) ⊃
Aut′(C0(V, q)) ⊃ S-Aut(C0(V, q)).
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THEOREM 1.3 For rank 3 quadratic bundles (V, q) and (V, q′) with the same underlying bundle V on
a scheme X, one has the following commuting diagram of natural maps of sets with the downward arrows
being the canonical inclusions, the horizontal arrows being surjective and the top horizontal arrow being
bijective:


S-Iso[(V, q), (V, q′)]
∼=−−−−−→ S-Iso[C0(V, q), C0(V, q′)]


inj
y


yinj


Iso[(V, q), (V, q′)]
onto−−−−−→ Iso′[C0(V, q), C0(V, q′)]


inj
y


yinj


Sim[(V, q), (V, q′)]
onto−−−−−→ Iso[C0(V, q), C0(V, q′)]


With respect to the surjections of the horizontal arrows in the diagram above, we further have the following
(where l is the function that associates to any similitude its multiplier, det(g, l) := det(g) for a similitude
with multiplier l and ζΛ2 is the map of Prop.1.2 above):


(a) there is a family of sections s2k+1 : Iso[C0(V, q), C0(V, q′)] −→ Sim[(V, q), (V, q′)] indexed by the
integers such that l ◦ s2k+1 = det2k+1 ◦ ζΛ2 and such that (det2 ◦ s2k+1)× (l−3 ◦ s2k+1) = det ◦ ζΛ2 ;


(b) there is also a section s′ : Iso′[C0(V, q), C0(V, q′)] −→ Iso[(V, q), (V, q′)] such that det2 ◦s′ = det◦ζΛ2 ;


(c) there is a family of sections s+
2k+1 : Iso[C0(V, q), C0(V, q′)] −→ Sim[(V, q), (V, q′)] indexed by the


integers which is multiplicative when followed by the natural inclusions into GL(V )×Γ(X, O∗
X), i.e.,


if φi ∈ Iso[C0(V, qi), C0(V, qi+1)] then s+
2k+1(φ2 ◦ φ1) = s+


2k+1(φ2) ◦ s+
2k+1(φ1) ∈ GL(V )×Γ(X, O∗


X).


Further, l ◦ s+
2k+1 = det2k+1 ◦ ζΛ2 and (det2 ◦ s+


2k+1) × (l−3 ◦ s+
2k+1) = det ◦ ζΛ2 .


(d) The maps s2k+1 and s′ above may not be multiplicative but are mutliplicative upto µ2(Γ(X, OX)) i.e.,
these followed by the quotient map, on taking the quotient of GL(V )×Γ(X, O∗


X) by µ2(Γ(X, OX))×
{1}, become multiplicative.


THEOREM 1.4 For a rank 3 quadratic bundle (V, q) on a scheme X, one has the following natural
commutative diagram of groups with exact rows, where the downward arrows are the canonical inclusions
and where l is the function that associates to any orthogonal similitude its multiplier:


SO(V, q)


inj
²²


∼=
// S-Aut(C0(V, q))


inj
²²


1 // µ2(Γ(X, OX)) //


inj
²²


O(V, q) //


inj
²²


Aut′(C0(V, q))


inj
²²


// 1


1 // Γ(X, O∗
X) // GO(V, q) //


det2×l−3


²²


Aut(C0(V, q))


det
²²


// 1


Γ(X, O∗
X) Γ(X, O∗


X)


Further, we have


(a) There are splitting homomorphisms s+
2k+1 : Aut(C0(V, q)) −→ GO(V, q) such that l◦s+


2k+1 = det2k+1


and (det2◦s+
2k+1)×(l−3◦s+


2k+1) = det. The restriction of s+
2k+1 to Aut′(C0(V, q)) does not necessarily


take values in O(V, q), but the further restriction to S-Aut(C0(V, q)) does take values in SO(V, q). In
particular, GO(V, q) is a semidirect product. The maps s2k+1 and s′ of Theorem 1.3 above (under
the current hypotheses) may not be homomorphisms but are homomorphisms upto µ2(Γ(X, OX)).


(b) Suppose X is integral and q ⊗ κ(x) is semiregular at some point x of X with residue field κ(x).
Then any automorphism of C0(V, q) has determinant 1 so that Aut(C0(V, q)) = Aut′(C0(V, q)) =
S-Aut(C0(V, q)) and in particular, O(V, q) is the semidirect product of µ2(Γ(X, OX)) and SO(V, q).


We next turn to the question whether the map Witt(X) : Q3(X) −→ A
Sp−Azu
4 (X) is always sur-


jective. This is the same as asking if, given a specialisation A of rank 4 Azumaya bundles on X, there
exists a rank 3 quadratic bundle (V, q) such that C0(V, q) ∼= A (as algebra bundles)—of course Theorem
1.1 will guarantee that (V, q) is unique upto tensoring by a discriminant bundle. It is this question of
surjectivity that seems to involve the geometry of X.
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THEOREM 1.5 Let X be a scheme and A a specialisation of rank 4 Azumaya algebra bundles on X.
Let A denote the locally-free OX-algebra corresponding to A. Let OX .1A →֒ A denote the image of the
canonical morphism OX −→ A defined by the nowhere-vanishing global section of A corresponding to the
unit for algebra multiplication.


(a) There exists a rank 3 vector bundle V on X (with corresponding OX-module V) such that the following
hold:


(1) det(A) ⊗ Λ2(V) ∼= A/OX .1A , from which the following may be deduced:


(2) det(Λ2(V)) ∼= (det(A))⊗−2;


(3) V ∼= (A/OX .1A)∨ ⊗ det(V) ⊗ det(A);


(4) det(A∨) ∼= (det(A))⊗−3 ⊗ (det(V))⊗−2 which implies that det(A) ⊗ det(A∨) ∈ 2.Pic(X).


(b) If there exists a quadratic bundle (V, q) on X such that A ∼= C0(V, q) then A/OX .1A
∼= Λ2(V ) which


implies that det(A∨) ∈ 2.Pic(X), and therefore using (4) of (a) above, that det(A) ∈ 2.Pic(X).


A bilinear form b (with values in OX) on a vector bundle V on X induces a quadratic form qb given on
sections by x 7→ b(x, x). Further, b also defines a (Z/2.Z)-graded linear isomorphism ψb : C(V, qb) ∼= Λ(V )
which is unique with respect to certain properties (see (2d), Theorem 2.1). When X is affine, every (global)
quadratic form on a vector bundle is induced from a (global) bilinear form. Therefore the following
theorem is optimal for affine X.


THEOREM 1.6 With X and A as in Theorem 1.5 above, there exists a rank 3 quadratic bundle (V, q)
(on X) induced from a rank 3 bilinear-form bundle (V, b) such that C0(V, q) ∼= A (isomorphism as algebra
bundles) iff the following two conditions hold:


(1) the determinant bundle of A is an element of 2.Pic(X);


(2) OX .1A is an OX-direct summand of A.


The hypothesis (2) is satisfied in the following cases:


(i) X is an affine scheme;


(ii) the residue field of every point of X has characteristic 6= 2.


The hypothesis (1) is satisfied when A is itself an Azumaya algebra bundle of rank 4 over X. It is
also satisfied whenever det(A) ∼= OX (for example, when A is (globally) free) and whenever Pic(X) =
2.Pic(X)—a condition which is trivially satisfied when Pic(X) = 0, for example when X = Spec(R) and
R is a UFD or a local ring or a field. It follows therefore that if X = Spec(R) is an affine scheme such
that Pic(X) = 2.Pic(X), then the map Witt(X) : Q3(X) −→ A


Sp−Azu
4 (X) is surjective, and hence a


bijection.


Before proceeding further, we need to recall a few concepts from Part A of [3]. For a rank n2 vector
bundle W on a scheme X and w ∈ Γ(X, W ) a nowhere-vanishing global section, recall that if Id-w-AzuW


is the open X–subscheme of Azumaya algebra structures on W with identity w then its schematic
image (or the scheme of specialisations or the limiting scheme) in the bigger X–scheme Id-w-AssocW of
associative w-unital algebra structures on W is the X–scheme Id-w-Sp-AzuW . By definition, the set of
distinct specialised w-unital algebra structures on W corresponds precisely to the set of global sections
of this last scheme over X.


THEOREM 1.7 Let X be a connected proper scheme of finite type over an algebraically closed field
and let W be a vector bundle on X of rank n2 for some n ≥ 2.


(a) If W is self-dual (⇔ W ∼= W∨) and A is an associative unital algebra structure on W such that
A⊗X OX,x is Azumaya even for a single point x ∈ X, then A is Azumaya at every point of X. This
may also be stated as follows: if a section to Id-w-AssocW over X topologically meets Id-w-AzuW ,
then it factors as a morphism through the open subscheme Id-w-AzuW , where w := 1A and A
corresponds to the given section.


(b) Let the rank of W be 4. If there exists an associative unital algebra structure on W which is not
globally Azumaya but is Azumaya atleast at one point of X, then there does not exist any global
Azumaya algebra structure on W. Thus, if there is a section over X of Id-w-AssocW that topologically
meets both the open subscheme Id-w-AzuW and its complement (with w = 1A where A corresponds
to the given section), then the X-schemes Id-w′-AssocW (with w′ global nowhere-vanishing) cannot
have sections that land topologically inside Id-w′-AzuW and hence in particular the X-schemes
Id-w′-AzuW have no sections over X.
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Recall that an integral separated Noetherian scheme is said to be locally-factorial if each of its local
rings is a unique factorisation domain (=UFD=factorial ring).


THEOREM 1.8 Let X be a scheme and W a rank 4 vector bundle on X with a global nowhere-vanishing
section w. Let DX denote the closed subset Id-w-Sp-AzuW \Id-w-AzuW .


(a) X is irreducible iff Id-w-Sp-AzuW is irreducible iff Id-w-AzuW is irreducible iff DX is irreducible.
The set of irreducible components of X is locally finite—for example this happens when X is locally
noetherian—iff the same is true of the corresponding set for Id-w-Sp-AzuW or for Id-w-AzuW . If
X is noetherian and finite-dimensional then the same are true for Id-w-Sp-AzuW and Id-w-AzuW .


(b) If X ′ −→ X is a morphism of schemes, and if (W ′, w′) denotes the pullback of (W, w), then we have
a canonical isomorphism


Id-w′-AzuW ′
∼= Id-w-AzuW ×Id-w-Sp-AzuW


Id-w′-Sp-AzuW ′


In particular, the topological image of DX′ is DX . Moreover, when X ′ −→ X is a homeomorphism
onto its topological image—which is for example the case when it is a closed or an open immersion,
then DX ∩ Id-w′-Sp-AzuW ′ can be identified with DX′ .


(c) If X is a scheme which is finite dimensional and whose set of irreducible components is locally finite,
then the closed subset DX is a divisor i.e., it has codimension 1 in Id-w-Sp-AzuW .


(d) X is affine iff Id-w-Sp-AzuW is affine iff Id-w-AzuW is affine. If X is regular in codimension 1
(respectively locally-factorial) then so are Id-w-Sp-AzuW and Id-w-AzuW .


(e) Assume that X is locally-factorial and W is self-dual (i.e., W ∼= W∨). Then the (Weil) divisor
n.(DX) is principal for some positive integer n, so that the natural homomorphism given by re-
striction of line bundles Pic(Id-w-Sp-AzuW ) −→ Pic(Id-w-AzuW ) is an isomorphism iff n = 1.
The integer n is divisible by 2 iff det(W ⊗X Id-w-Sp-AzuW ) ∈ 2.Pic(Id-w-Sp-AzuW ) so that in this
case if there exists a specialised algebra structure on W with unit w, then det(W ) ∈ 2.Pic(X); if in
addition, OX .w is an OX-direct summand of W , then W is of the form Λeven(V ) for a rank 3 vector
bundle V on X, and for every X-scheme T and for every specialisation AT on WT := (W ⊗X T )
with unit wT := (w ⊗X T ), there exists a rank 3 quadratic bundle (VT , qT ) induced from a rank 3
bilinear form bundle (VT , bT ) on T such that C0(VT , qT ) ∼= AT as algebra bundles. (this last con-
clusion holds for any affine scheme T over X, even if OX .w were not an OX-direct summand of
W ).


Notice that under the hypotheses (1) and (2) of Theorem 1.6, there exists by (1), Theorem 1.5, a
rank 3 bundle V on X such that Λeven(V) = OX ⊕ Λ2(V) ∼= A with OX


∼= OX .1A . In this situation the
‘if’ part of Theorem 1.6 as well as the latter part of (e) of Theorem 1.8 are consequences of the next one
which describes the specialisations as bilinear forms. We continue with the notations introduced before
Theorem 1.7. If Stabw ⊂ GLW is the stabiliser subgroupscheme of w, recall from Theorems 3.4 and
3.8, Part A, [3], that there exists a canonical action of Stabw on Id-w-Sp-AzuW such that the natural
inclusions


(♣) Id-w-AzuW →֒ Id-w-Sp-AzuW →֒ Id-w-Assoc-AlgW


are all Stabw-equivariant. Now let V be a rank 3 vector bundle on the scheme X and BilV be the associated
rank 9 vector bundle of bilinear forms on V with values in OX . Let Bilsr


V →֒ BilV correspond to the open
subscheme of semiregular bilinear forms—we say that a bilinear form is semiregular if the quadratic form
it induces is semiregular (though it may turn out that a semiregular bilinear form may be degenerate).
Let W := Λeven(V ) and let w ∈ Γ(X, W ) be the nowhere-vanishing global section corresponding to the
unit for the natural multiplication in the even-exterior algebra bundle. There is an obvious natural action
of GLV on BilV . There is also a natural morphism of groupschemes GLV −→ Stabw given on valued
points by g 7→ Λeven(g) and therefore the natural inclusions marked by (♣) above are GLV -equivariant.
Finally, note that there is an obvious involution Σ on Id-w-Assoc-AlgW given by A 7→ opposite(A) which
leaves the open subscheme Id-w-AzuW invariant.


THEOREM 1.9


(1) Let V be a rank 3 vector bundle on the scheme X, W := Λeven(V ) and w ∈ Γ(X, W ) correspond to
1 in the even-exterior algebra bundle. There is a natural GLV -equivariant morphism of X–schemes
Υ′ = Υ′


X : BilV −→ Id-w-AssocW whose schematic image is precisely the scheme of specialisations
Id-w-Sp-AzuW . Further if Υ′ factors canonically through Υ = ΥX : BilV −→ Id-w-Sp-AzuW , then Υ
is a GLV -equivariant isomorphism and it maps the GLV -stable open subscheme Bilsr


V isomorphically
onto the GLV -stable open subscheme Id-w-AzuW .
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(2) The involution Σ of Id-w-Assoc-AlgW defines a unique involution (also denoted by Σ) on the scheme
of specialisations Id-w-Sp-AzuW leaving the open subscheme Id-w-AzuW invariant, and therefore
via the isomorphism Υ, it defines an involution on BilV . This involution is none other than the one
on valued points given by B 7→ transpose(−B).


(3) For an X-scheme T , let VT (resp.WT ) denote the pullback of V (resp.W ) to T , and let wT be the
global section of WT induced by w. Then the base-changes of Υ′


X and ΥX to T , namely Υ′
X ×X T :


BilV ×X T −→ Id-w-AssocW ×X T and ΥX ×X T : BilV ×X T ∼= Id-w-Sp-AzuW ×X T may be
canonically identified with the corresponding ones over T namely Υ′


T : BilVT
−→ Id-wT -AssocWT


and ΥT : BilVT
∼= Id-wT -Sp-AzuWT


.


The explicit computation of the morphism Υ locally over X is an important step in proving the above
theorem. To describe this, suppose that V is free of rank 3 over X, so that we may fix a basis {e1, e2, e3}
for V , which naturally gives rise to a basis of BilV . For any X-scheme T , a T -valued point B of BilV
is just a global bilinear form with values in OT on the pull-back V ⊗X T of V to T. Such a B is given
uniquely by a (3 × 3)-matrix (bij) with the bij being global sections of the trivial line bundle A


1
T (or


equivalently, elements of Γ(T, OT )). The chosen basis for V also gives rise to the basis {ǫ0 := w = 1 ; ǫ1 :=
e1 ∧ e2 , ǫ2 := e2 ∧ e3 , ǫ3 := e3 ∧ e1} of W = Λeven(V ). A T -valued point A of Id-w-Assoc-AlgW is just
a wT := (w ⊗X T )-unital associative algebra structure on the bundle WT := W ⊗X T. Let ·A denote the
multiplication in the algebra bundle A, and for ease of notation, let s◦ denote the section s⊗X T induced
from a section s (for example, (w ⊗X T ) = w◦, ǫi ⊗X T = ǫ◦i etc).


THEOREM 1.10 In addition to the hypothesis of Theorem 1.9, assume that V is free of rank 3. Then
fixing a basis for V and adopting the notations above, the map Υ(T ) takes B = (bij) to (A, 1A, ·) =
(WT , wT = w◦, ·A) with multiplication given as follows, where Mij(B) is the determinant of the minor
of the element bij in B :


• ǫ◦1 ·A ǫ◦1 = −M33(B)w◦ + (b21 − b12)ǫ
◦
1


• ǫ◦2 ·A ǫ◦2 = −M11(B)w◦ + (b32 − b23)ǫ
◦
2


• ǫ◦3 ·A ǫ◦3 = −M22(B)w◦ + (b13 − b31)ǫ
◦
3


• ǫ◦1 ·A ǫ◦2 = −M31(B)w◦ − b23ǫ
◦
1 − b12ǫ


◦
2 − b22ǫ


◦
3


• ǫ◦2 ·A ǫ◦3 = +M12(B)w◦ − b33ǫ
◦
1 − b31ǫ


◦
2 − b23ǫ


◦
3


• ǫ◦3 ·A ǫ◦1 = +M23(B)w◦ − b31ǫ
◦
1 − b11ǫ


◦
2 − b12ǫ


◦
3


• ǫ◦1 ·A ǫ◦3 = +M32(B)w◦ + b13ǫ
◦
1 + b11ǫ


◦
2 + b21ǫ


◦
3


• ǫ◦2 ·A ǫ◦1 = −M13(B)w◦ + b32ǫ
◦
1 + b21ǫ


◦
2 + b22ǫ


◦
3


• ǫ◦3 ·A ǫ◦2 = −M21(B)w◦ + b33ǫ
◦
1 + b13ǫ


◦
2 + b32ǫ


◦
3


The key to the proofs of Theorems 1.1, 1.3 and 1.4 lies in a deeper study of a different identification
of the scheme of specialisations, namely one related to the scheme of quadratic forms on a trivial rank 3
bundle in the special situation when W is free and w part of a global basis. Without loss of generality we
may in this situation therefore take V to be a free rank 3 vector bundle on X and (W, w) = (Λeven(V ), 1),
so that we are in the situation of Theorem 1.10 above. This relationship with quadratic forms was shown
in Theorem 5.3, Part A, [3], which we briefly recall next. Let QuadV denote the bundle of quadratic forms
on V (with values in OX) and Quadsr


V the open subscheme of semiregular quadratic forms. Let A0 denote
the algebra bundle structure (with unit w = 1) on W = Λeven(V ) given by Λeven(V ) itself. Fix a basis
for V and adopt the notations preceding Theorem 1.10 above. Then Stabw is the semidirect product of
a commutative 3-dimensional subgroupscheme Lw


∼= (A3
X , +) with the stabiliser subgroupscheme StabA0


of A0 in Stabw (Lemma 5.1, Part A, [3]).


THEOREM 1.11 (Definition 5.2 & Theorem 5.3, Part A, [3]) There is a natural isomorphism
Θ : QuadV ×X Lw


∼= Id-w-Sp-AzuW which maps the open subscheme Quadsr
V ×X Lw isomorphically onto


the open subscheme Id-w-AzuW .


Section 3 is essentially devoted to studying Θ. There we compute Θ explicitly and in Theorem 3.1 we
write out the multiplication table of every specialised algebra structure on any fixed free rank 4 vector
bundle with fixed unit that is part of a global basis. It turns out that Θ is not equivariant with respect
to GLV , but nevertheless satisfies a ‘twisted’ form of equivariance (Theorem 3.4). A T -valued point q
of QuadV


∼= A
6
X may be identified uniquely with a 6-tuple (λ1, λ2, λ3, λ12, λ13, λ23) corresponding to


the quadratic form (x1, x2, x3) 7→ Σiλix
2
i + Σi<jλijxixj . A T -valued point t of Lw


∼= (A3
X , +) may be
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identified uniquely with a 3-tuple (t1, t2, t3) which corresponds to the valued point of Stabw given by the
(4 × 4)-matrix (


1 t1 t2 t3
0 I3


)


where I3 is the (3× 3)-identity matrix. With these notations, the identification of Theorems 1.9 and 1.10
may be compared with that of the above Theorem 1.11 as follows.


THEOREM 1.12 The isomorphism Υ−1 ◦Θ : QuadV ×X Lw
∼= BilV takes the valued point ( q, t ) =


( (λ1, λ2, λ3, λ12, λ13, λ23), (t1, t2, t3) ) to the valued point B = (bij) given by


B =






λ1 t1 λ13 − t3
λ12 − t1 λ2 t2


t3 λ23 − t2 λ3






Moreover, under this identification, the involution B 7→ (−B)t on BilV (induced from the isomorphism
Υ of Theorem 1.9) translates into the involution on QuadV ×X Lw given by


( q, (t1, t2, t3) ) 7→ ( −q, (t1 − λ12, t2 − λ23, t3 − λ13) ).


We next make some comments relevant to the question of the surjectivity of Witt(X) : Q3(X) −→
A


Sp−Azu
4 (X). Given a specialised algebra structure A (on a rank 4 vector bundle on X) which is itself


an Azumaya algebra, we first indicate briefly how to naturally retrieve a rank 3 quadratic bundle (V, q)
such that C0(V, q) ∼= A. Let R be a unital commutative ring and A a unital associative R-algebra. Given
any involution σ on A, we may define the associated trace trσ : x 7→ x + σ(x) and the associated norm
nσ : x 7→ x.σ(x); in para.1.3, Chap.I, [2], Knus calls σ standard if σ fixes R.1A and both trσ and nσ take
values in R.1A. In Prop.1.3.4 of the same chapter, he proves that a standard involution is unique if it
exists, provided the R-module underlying A is finitely generated projective and faithful. Thereafter, in
para.1.3.7, Knus defines A to be a quaternion algebra if A is a projective R-module of rank 4 and A has
a standard involution. Thus we may define a rank 4 algebra bundle on a scheme X to be a quaternion
algebra bundle if it is locally (in the Zariski topology) a quaternion algebra in Knus’ sense, and it would
follow that the local standard involutions glue to define a unique global standard involution on the bundle.


PROPOSITION 1.13 Any specialised algebra bundle is a quaternion algebra bundle.


This result can be deduced from the following two facts:


(1) Any specialised algebra is locally (in the Zariski topology) the even Clifford algebra of a rank 3
quadratic bundle (Theorems 3.8 and 5.3, Part A, [3]).


(2) The even Clifford algebra of a quadratic module of rank 3 over a commutative ring has a standard
involution which is none other than the restriction of the ‘standard’ involution on the full Clifford
algebra (Prop.3.1.1, Chap.V, [2]). Q.E.D.


THEOREM 1.14 For each scheme X, the map Witt(X) : Q
sr
3 (X) −→ A


Azu
4 (X) is bijective.


The proof of the above Theorem follows from Prop.3.2.3 and Prop.3.2.4, Chap.V, [2] generalised to the
scheme-theoretic setting. We recall how the surjectivity is established. Let A be a specialised algebra
bundle on the scheme X. By the results just quoted if A is Azumaya, or more generally by Prop.1.13,
we have the existence of a unique standard involution σA on A, to which are associated the norm
nσA


: A −→ A
1
X given on sections by x 7→ x.σA(x) and the trace trσA


: A −→ A
1
X given on sections by


x 7→ x + σA(x). Let A′ := kernel(trσA
) →֒ A be the subsheaf of trace zero elements. As the calculations


in para.3.2, Chap.V, [2] show, the trace map is surjective if A is itself an Azumaya algebra; if this is the
case, then it is further shown there that the rank 3 quadratic bundle (V, q) := (A′, nσA


|A′) is semiregular
and its even Clifford algebra C0(V, q) ∼= A.


However the above method of retrieving a canonical rank 3 quadratic bundle fails badly for specialised
non-Azumaya algebras. Consider even the case of X = Spec(k) where k is a field of characteristic two
and the Clifford algebra A = C0(V, q) of a quadratic form q on V = k⊕3 which is a perfect square (i.e.,
a square of a linear form or equivalently a sum of squares). In this case an easy computation shows that
the subspace A′ of trace zero elements is the full space A. However, the underlying module of A trivially
satisfies the hypotheses of Theorem 1.6, and so the existence of (V, q) follows from that Theorem.


The good algebraic properties of Azumaya algebras are reflected as good geometric properties of the
scheme of Azumaya algebra structures on a fixed vector bundle: this scheme is separated, of finite type
and smooth relative to the base scheme (over which the vector bundle is fixed) and also base-changes
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well relative to the base scheme (Theorem 3.4, Part A, [3]). When the vector bundle is of rank 4, the
nice thing that happens is that all these good properties also pass over to the limit i.e., to the scheme of
specialisations, defined to be the schematic image of the scheme of Azumaya algebra structures (Theorem
3.8, Part A, [3]). If A is Azumaya over X, then as seen above, A ∼= C0(V, q) with (V, q) semiregular. So
by (b), Theorem 1.5, we have that det(A) ∈ 2.Pic(X). On the other hand, by the same Theorem, this
is a necessary condition for a specialisation to arise as C0(V, q) for a global q. Therefore the author
expects this condition to hold in general (the assertions in (e), Theorem 1.8, arose after an attempt to
investigate this viewpoint). Of course, if this holds and also if OX .1A is an OX -direct summand of A, then
by Theorem 1.6 we get something more, i.e., even a bilinear form bundle (V, b) such that C0(V, qb) ∼= A.
But the latter hypothesis is seemingly strong for non-affine X. The author hopes that the surjectivity
of Witt(X) is valid for general X, and believes that this may follow from a deeper understanding of the
geometry of the scheme of specialisations. We next state some results on rank 3 quadratic forms and
specialised algebras in certain particular cases.


PROPOSITION 1.15 Let S be a commutative semilocal ring that is 2-perfect i.e., such that the square
map S −→ S : s 7→ s2 is surjective, and V a free rank 3 S-module. Then the set of semiregular quadratic
S-forms on V forms a single GL(V )–orbit; in other words, upto isometry, ∃ only one semiregular quadratic
S-module structure on V.


Corollary 1.16 Let S be a commutative local ring that is 2-perfect. Then any two rank 4 Azumaya S-
algebras are isomorphic. If S were only semilocal, the conclusion still holds provided the identity elements
for multiplication for each of the two Azumaya S-algebras can be completed to an S-basis.


Since Witt(X) : Q
sr
3 (X) ∼= A


Azu
4 (X) is bijective, taking X = Spec(S) with S as in the Prop.1.15


proves the first assertion of the above corollary. The second may be deduced by an application of Theorem
1.11 alongwith Prop.1.15.


Let W be a rank 4 vector bundle on a scheme X, w ∈ Γ(X, W ) a nowhere-vanishing global section
and Stabw ⊂ GLW the stabiliser subgroupscheme of w. Recall that the natural inclusion Id-w-AzuW →֒
Id-w-Sp-AzuW is Stabw-equivariant (see (♣), page 6). When X = Spec(k) where k is an algebraically
closed field, there is a canonical Stabw-stratification of the k-variety underlying Id-w-Sp-AzuW as follows.


THEOREM 1.17


(1) Let k be a quadratically closed field and X = Spec(k). Then Q3(X) has 4 elements which correspond
to (a) semiregular quadratic modules; (b) rank 2 quadratic modules i.e., those that are not semiregu-
lar but which are regular on a two-dimensional subspace; (c) nonzero perfect squares and (d) the zero
form. If V is a 3-dimensional vector space over k and {e1, e2, e3} a k-basis for V , then representa-
tives for these 4 GLV -orbits in the space QuadV of quadratic forms on V can respectively be taken
to be: (a) q(1)(Σ3


i=1xiei) = x1x2 + x2
3 ; (b) q(2)(Σ3


i=1xiei) = x1x2 ; (c) q(3)(Σ3
i=1xiei) =


x2
3 ; (d) q(4) = 0.


(2) In addition to the hypotheses and notations of (1) above, assume that k is an algebraically closed


field. Then the four orbits Quad
(i)
V := GLV · q(i) for 1 ≤ i ≤ 4 form a stratification of the k-variety


QuadV in the sense that we have


Quad
(1)
V = QuadV and Quad


(i+1)
V = Quad


(i)
V \ Quad


(i)
V for 1 ≤ i ≤ 3


and further we also have


Sing(Quad
(i+1)
V ) = Quad


(i+1)
V \ Quad


(i+1)
V for 1 ≤ i ≤ 2


unless the characteristic of k is 2 in which case Quad
(3)
V is itself smooth (the notation T denotes


the orbit closure and Sing(T ) denotes the subset of singular (non-smooth) points of T , each given
the canonical reduced induced closed subscheme structure).


(3) Continuing with the notations and hypotheses of (2) above, set (W, w) := (Λeven(V ), 1). For ease
of notation denote Id-w-Sp-AzuW by SpAzu and Stabw by H. Then the four orbits SpAzu(i) :=
H · Θ(q(i), I4) for 1 ≤ i ≤ 4 form a stratification of the k-variety SpAzu in the sense that we have


SpAzu(1) = SpAzu and SpAzu(i+1) = SpAzu(i) \ SpAzu(i) for 1 ≤ i ≤ 3


and further we also have


Sing(SpAzu(i+1)) = SpAzu(i+1) \ SpAzu(i+1) for 1 ≤ i ≤ 2


unless the characteristic of k is 2 in which case SpAzu(3) is itself smooth.
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2 Reduction of Theorems 1.1 & 1.3 to the Free Case


In this section, we prove Prop.1.2 and reduce the proof of Theorem 1.1 to Theorem 1.3. Thereafter we
reduce the proof of Theorem 1.3 to the case when V is free. Our means towards this end are several
standard results which we recall below. Bourbaki’s tensor operations are described first, followed by
basic facts on tensoring quadratic bundles with discriminant bundles, and thereafter by some facts about
similitudes between quadratic bundles. On the way we justify the definitions of the functors Q


sr
3 →֒ Q3,


and the natural transformation Witt introduced in §1 above.


THEOREM 2.1 (Bourbaki’s Tensor Operations, §9, Chap.9, [4]; para.1.7, Chap.IV, [2]) In
the following, let R be a commutative ring (with 1) and V an R-module.


(1) Let q : V −→ R be a quadratic form on V and f ∈ V ∨ := HomR(V, R) be a functional on V. Then
there exists an R-linear endomorphism tf of the tensor algebra TV which is unique with respect to
the first three of the following properties it satisfies:


(a) tf (1) = 0;


(b) tf (x ⊗ y) = f(x).y − x ⊗ tf (y) for every x ∈ V and every y ∈ TV ;


(c) If J(q) is the two-sided ideal of TV generated by the set {x⊗x−q(x).1 |x ∈ V }, then tf (J(q)) ⊂
J(q);


(d) tf is homogeneous of degree -1 (for elements it does not annihilate);


(e) (Recall that the Clifford algebra of q is C(V, q) := TV/J(q)). By (c) above, tf induces a (Z/2.Z)-
antigraded endomorphism dq


f : C(V, q) −→ C(V, q);


(f) tf ◦ tf = 0;


(g) if g ∈ V ∨ is also a functional, then tf ◦ tg + tg ◦ tf = 0;


(h) if α ∈ EndR(V ), then tf ◦T (α) = T (α)◦tα∗f where α∗f ∈ EndR(V ) is defined by x 7→ f(α(x));


(i) tf ≡ 0 on the subalgebra of TV generated by kernel(f).


(2) Let q, q′ : V −→ R be two quadratic forms whose difference is the quadratic form qb induced by a
bilinear form b ∈ BilR(V ) := HomR(V ⊗R V, R) i.e., q′(x)−q(x) = qb(x) := b(x, x)∀x ∈ V. Further,
for any x ∈ V denote by bx the functional on V given by y 7→ b(x, y). Then there exists an R-linear
automorphism Ψb of TV which is unique with respect to the first three of the following properties it
satisfies:


(a) Ψb(1) = 1;


(b) Ψb(x ⊗ y) = x ⊗ Ψb(y) + tbx(Ψb(y)) for any x ∈ V and any y ∈ TV ;


(c) Ψb(J(q′)) ⊂ J(q);


(d) by the previous property, Ψb induces an isomorphism of (Z/2.Z)-graded R-modules


ψb : C(V, q′) ∼= C(V, q);


in particular, given a quadratic form q1 : V −→ R, we may take a bilinear form b1 that
induces q1 (i.e., such that q1(x) = qb1(x) := b1(x, x)∀x ∈ V ), and get a (Z/2.Z)-graded linear
isomorphism ψb1 : C(V, q1 = qb1)


∼= C(V, 0) = Λ(V );


(e) Ψb(T
2nV ) ⊂ ⊕(i≤n)T


2iV and Ψb(T
2n+1V ) ⊂ ⊕(odd i≤2n+1)T


iV ;


(f) in particular, for x, x′ ∈ V , Ψb(x ⊗ x′) = x ⊗ x′ + b(x, x′).1TV so that for ψb : C0(V, qb) ∼=
C0(V, 0) = Λeven(V ) we have ψb(x.x′) = x ∧ x′ + b(x, x′).1 where x.x′ denotes the product in
C(V, qb).


(g) if f ∈ V ∨ and tf is given by (1) above, then Ψb ◦ tf = tf ◦ Ψb;


(h) if bi are bilinear forms on V , then Ψb1+b2 = Ψb1 ◦ Ψb2 and Ψ0 = Identity on TV ;


(i) for any α ∈ EndR(V ), Ψb ◦T (α) = T (α)◦Ψ(b.α) where (b.α)(x, x′) := b(α(x), α(x′))∀x, x′ ∈ V ;


(j) by property (h), one has a homomorphism of groups (BilR(V ), +) −→ (AutR(TV ), ◦) : b 7→ Ψb;
the associative unital monoid (EndR(V ), ◦) acts on BilR(V ) on the right by b′ ; b′.α and acts
on the left (resp. on the right) of EndR(TV ) by α.Φ := T (α) ◦ Φ (resp. by Φ.α := Φ ◦ T (α)),
and the homomorphism b 7→ Ψb satisfies α.Ψ(b.α) = Ψb.α; the group AutR(V ) = GLR(V ) acts
on the left of BilR(V ) by g.b : (x, x′) 7→ b(g−1(x), g−1(x′)) and on the left of AutR(TV ) by
conjugation via the natural group homomorphism GLR(V ) −→ AutR(TV ) : g 7→ T (g) i.e.,
g.Φ := T (g)◦Φ◦T (g−1), and the homomorphism b 7→ Ψb is GLR(V )-equivariant: Ψg.b = g.Ψb.
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(3) For a commutative R-algebra S (with 1), let (q ⊗R S), (q′ ⊗R S) : (V ⊗R S =: VS) −→ S be the
quadratic S-forms induced from the quadratic forms q, q′ of (2) above and (b ⊗R S) ∈ BilS(VS) the
bilinear S-form induced from the bilinear form b of (2) above. Then as a result of the unique-
ness properties (2a)–(2c) satisfied by Ψb and Ψ(b⊗RS), the S-linear automorphisms (Ψb ⊗R S)
and Ψ(b⊗RS) may be canonically identified. In particular, the (Z/2.Z)-graded S-linear isomorphism
(ψb ⊗R S) : C(VS , (q′ ⊗R S)) ∼= C(VS , (q ⊗R S)) induced from ψb of (2d) above may be canonically
identified with ψ(b⊗RS).


Tensoring by Discriminant Bundles. We recall that a bilinear form (resp. alternating form, resp.
quadratic form) with values in OX on a vector bundle V over an open set U →֒ X of the scheme X is by
definition a section over U of the vector bundle BilV (resp. of Alt2V , resp. of QuadV ), or equivalently, an
element of Γ


(
U, BilV := (T 2


OX
(V))∨


)
(resp. of Γ


(
U, Alt2V := (Λ2


OX
(V))∨


)
, resp. of Γ (U, Quad


V
) ), where


the sheaf Quad
V
—the (coherent locally-free) sheaf of OX -modules corresponding to the bundle QuadV


of quadratic forms on V —is defined by the exactness of the following sequence:


0 −→ Alt2V −→ BilV −→ Quad
V
−→ 0.


In terms of the corresponding (geometric) vector bundles over X, the above translates into the following
sequence of morphisms of vector bundles, with the first one a closed immersion and the second one a
Zariski locally-trivial principal Alt2V -bundle:


Alt2V →֒ BilV ։ QuadV .


Given a quadratic form q ∈ Γ(U, Quad
V
), recall that the usual ‘associated’ bilinear form bq ∈ Γ(U, BilV)


is given on sections (over open subsets of U) by v ⊗ v′ 7→ q(v + v′) − q(v) − q(v′). This association
in general does not lead to a bijective correspondence between quadratic forms and symmetric bilinear
forms (which is nevertheless correct when 2 ∈ Γ(X, O∗


X) or equivalently when the residue field of each
point of X is of characteristic 6= 2). Given a (not-necessarily symmetric!) bilinear form b, we also have
the induced quadratic form qb given on sections by v 7→ b(v ⊗ v). Since a surjection of sheaves does
not necessarily imply a surjection on global sections, a global quadratic form may not be induced from
a global bilinear form (unless we assume something more, for e.g., that the scheme is affine, or more
generally that the sheaf cohomology group H1(X, Alt2V) = 0).


PROPOSITION 2.2 Let (V, q) be a quadratic bundle on X and (M, b) be a symmetric bilinear form
bundle on X (i.e., M is a vector bundle on X and b is a global symmetric bilinear form on M with values
in OX).


(1) Then we can tensor (V, q) with (M, b) to get a unique quadratic bundle (V ⊗M, q⊗ b). The quadratic
form on V ⊗ M is given on sections by v ⊗ m 7→ q(v).b(m ⊗ m) and has associated bilinear form
bq⊗b = bq ⊗ b.


(2) When the rank of M is 1 i.e., M is a line bundle, (M, b) is regular iff (M, qb) is semiregular iff
b : M ⊗ M ∼= OX is an isomorphism (i.e., iff (M, b) is a discriminant bundle).


(3) Let V be of odd rank and (M, b) a discriminant bundle. Then (V, q) is semiregular iff (V, q)⊗(M, b) =
(V ⊗ M, q ⊗ b) is semiregular.


By taking an affine open cover for X (which always exists by definition since X is a scheme), the
proof of the assertions in the above proposition may be reduced to the case when X is itself an affine
scheme. In this case we may further assume that V and M are themselves free. Then (1) follows from
para.8.4, Chap.I, [2], while (2) and (3) are easy consequences of the definition and basic properties of
semiregularity (§3, Chap.IV, [2]). Note that statments (1) and (3) above justify respectively the definition
of the functor Q3 and its subfunctor Q


sr
3 introduced in §1.


PROPOSITION 2.3 Let V and V ′ be vector bundles of the same rank on the scheme X, with associated
locally-free sheaves V and V


′ respectively. Let α : V ′ ∼= V ⊗L be an isomorphism of bundles where (L, h)
is a discriminant bundle on X.


(1) Over any open subset U →֒ X, given a bilinear form b ∈ Γ (U, BilV), we can define a bilinear form
b′ ∈ Γ (U, BilV′) using α and h as follows: we let b′ := b ◦ ζ(α,h) where ζ(α,h) : V


′ ⊗V
′ ∼= V⊗V is the


OX-module isomorphism given by the composition of the following natural morphisms:


V
′ ⊗ V


′ α⊗α (∼=)−→ V ⊗ L ⊗ V ⊗ L
SWAP(2,3) (≡)−→ V ⊗ V ⊗ L ⊗ L


Id⊗h (∼=)−→ V ⊗ V ⊗ OX
CANON (≡)−→ V ⊗ V.
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Then the association b 7→ b′ induces OX-linear isomorphisms shown by vertical downward arrows
in the following diagram (with exact rows) making it commutative:


0 −−−−−→ Alt2V −−−−−→ BilV −−−−−→ Quad
V


−−−−−→ 0


∼=


y ∼=


y ∼=


y


0 −−−−−→ Alt2
V′ −−−−−→ BilV′ −−−−−→ Quad


V′ −−−−−→ 0


Therefore one also has the following commutative diagram of vector bundle morphisms with the
vertical downward arrows being isomorphisms:


Alt2V
closed−−−−−−−−→


immersion
BilV


locally−−−−−→
trivial


QuadV


∼=


y ∼=


y ∼=


y


Alt2V ′


closed−−−−−−−−−→
immersion


BilV ′


locally−−−−−→
trivial


QuadV ′


(2) Let b ∈ Γ (X, BilV) be a global bilinear form and let it induce b′ ∈ Γ (X, BilV′) via α and h as
defined in (1) above. Let Ψb ∈ AutOX


(TV) (resp. Ψb′ ∈ AutOX
(TV


′)) be the (Z/2.Z)-graded linear
automorphism of the tensor algebra (with even elements given degree 0 and odd elements given degree
1) induced by b (resp. by b′) defined locally (and hence globally) as in (2e) of Theorem 2.1 above.
Let Z(α,h) : T even


OX
(V′) ∼= T even


OX
(V) be the OX-algebra isomorphism induced via the isomorphism


ζ(α,h) : T 2
OX


(V′) ∼= T 2
OX


(V) defined in (1) above. Then the following diagram commutes:


T even
OX


(V′)
Z(α,h)−−−−−→


∼=
T even


OX
(V)


Ψb′


y∼= ∼=


yΨb


T even
OX


(V′)
∼=−−−−−→


Z(α,h)


T even
OX


(V)


thereby inducing (see (2d), Theorem 2.1) the following commutative diagram of OX-linear isomor-
phisms


C0(V
′, qb′)


via Z(α,h)−−−−−−−→
∼=


C0(V, qb)


ψb′


y∼= ∼=


yψb


Λeven
OX


(V′)
∼=−−−−−−−→


via Z(α,h)


Λeven
OX


(V)


(3) Let b and b′ be as in (2) above. Then α : V ′ ∼= V ⊗ L induces an isometry of bilinear form bundles
α : (V ′, b′) ∼= (V, b) ⊗ (L, h) and also an isometry of the induced quadratic bundles α : (V ′, qb′) ∼=
(V, qb)⊗ (L, h). Moreover, if we are just given a global quadratic form q on V (resp. q′ on V ′), then
we may define the global quadratic form q′ on V ′ (resp. q on V ) via q′ := (q ⊗ h) ◦ α (resp. via


q := (q′ ⊗ (h∨)
−1


) ◦ (α ⊗ L−1)
−1


) and again α : (V ′, q′) ∼= (V, q) ⊗ (L, h) becomes an isometry of
quadratic bundles.


Similitudes. Let (V, q) and (V ′, q′) be quadratic bundles on the scheme X. We recall that a morphism
of vector bundles g : V −→ V ′ is called a similitude (or similarity) with multiplier l ∈ Γ(X, O∗


X), and we
write g : (V, q)∼=l (V ′, q′), if g is an isomorphism of vector bundles and the following diagram involving
their associated locally-free sheaves commutes (where q and q′ are considered as morphisms of sheaves
of sets):


V
g−−−−−→
∼=


V
′


q


y
yq′


OX


∼=−−−−−−−→
MULT. BY l


OX


Moreover, when the multiplier l = 1, we write g : (V, q) ∼= (V ′, q′) and call g an isometry.


PROPOSITION 2.4 Let g : (V, q)∼=l (V ′, q′) be a similarity with multiplier l ∈ Γ(X, O∗
X).
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(1) There exists a unique isomorphism of OX-algebra bundles C0(g, l) : C0(V, q) ∼= C0(V
′, q′) such that


C0(g, l)(v.v′) = l−1g(v).g(v′) on sections.


(2) There exists a unique vector bundle isomorphism C1(g, l) : C1(V, q) ∼= C1(V
′, q′) such that


(a) C1(g, l)(v.c) = g(v).C0(g, l)(c) and


(b) C1(g, l)(c.v) = C0(g, l)(c).g(v)


for any section v of V and any section c of C0(V, q). Thus C1(g, l) is C0(g, l)-semilinear.


(3) If g1 : (V ′, q′)∼=l1 (V ′′, q′′) is another similarity with multiplier l1, then the composition g1 ◦ g :
(V, q)∼=ll1 (V ′′, q′′) is also a similarity with multiplier given by the product of the multipliers. Further
Ci(g1 ◦ g, ll1) = Ci(g1, l1) ◦ Ci(g, l) for i = 0, 1.


The proof of the above follows from the case of an affine scheme which is established in Prop.7.1.1,
Chap.IV, [2]. A local computation shows that tensoring by a discriminant bundle amounts to (locally)
applying a similarity. In this case also one gets a global isomorphism of even Clifford algebras:


PROPOSITION 2.5 Let (V, q) be a quadratic bundle on a scheme X and (L, h) be a discriminant
bundle. There exists a unique isomorphism of algebra bundles γ(L,h) : C0 ((V, q) ⊗ (L, h)) ∼= C0(V, q)
given by γ(L,h) ((v ⊗ λ).(v′ ⊗ λ′)) = h(λ ⊗ λ′)v.v′ for any sections v, v′ of V and λ, λ′ of L.


The proof of the above may be reduced to the case of an affine scheme, in which case, we may further
assume that L is free, so that tensoring by (L, h) is the same as applying a similarity. In this case, the
result follows from Prop.2.4. The above result justifies the definition of the natural transformation Witt


introduced in §1.


Proof of Prop.1.2: Start with an isomorphism of algebra-bundles φ : C0(V, q) ∼= C0(V
′, q′). Let


{Ui}i∈I be an affine open covering of X (which may also be chosen so as to trivialise the rank 3 vector
bundles V and V ′ if needed). Choose bilinear forms bi ∈ Γ(Ui, BilV ) and b′i ∈ Γ(Ui, BilV ′) such that
q|Ui = qbi


and q′|Ui = qb′
i


for each i ∈ I. By (2d), Theorem 2.1, we have isomorphisms of vector bundles
ψbi


and ψb′
i
, which preserve 1 by (2a) of the same Theorem, and we define the isomorphism of vector


bundles φΛev
i


so as to make the following diagram commute:


C0(V |Ui, q|Ui)
φ|Ui−−−−−→
∼=


C0(V
′|Ui, q


′|Ui)


ψbi


y∼= ∼=


yψ
b′
i


Λeven(V |Ui)
∼=−−−−−→


φΛev
i


Λeven(V ′|Ui)


The linear isomorphism φΛev
i


preserves 1 and therefore it induces a linear isomorphism from Λ2(V |Ui) to


Λ2(V ′|Ui), which we denote by (φΛ2)i. Observe that (φΛ2)i is independent of the choice of the bilinear


forms bi and b′i. For, replacing these respectively by b̂i and b̂′i, it follows from (2f), Theorem 2.1, that
ψbi


◦(ψ
b̂i


)−1 (resp. ψb′
i
◦(ψ


b̂′
i


)−1) followed by the canonical projection onto Λ2(V |Ui) (resp. onto Λ2(V ′|Ui))


is the same as the projection itself. By this observation, it is also clear that the isomorphisms {(φΛ2)i}i∈I


agree on (any open affine subscheme of, and hence on all of) any intersection Ui ∩ Uj . Therefore they
glue to give a global isomorphism of vector bundles φΛ2 : Λ2(V ) ∼= Λ2(V ′). Q.E.D, Prop.1.2.


Reduction of Proof of Theorem 1.1 to Theorem 1.3. We start with an isomorphism of
algebra-bundles φ : C0(V, q) ∼= C0(V


′, q′), construct the isomorphism of vector bundles φΛ2 : Λ2(V ) ∼=
Λ2(V ′) and keep the notations introduced in the proof of Prop.1.2. Firstly we deduce a linear isomorphism


det((φΛ2)∨)
−1


: det((Λ2(V ))
∨
) ∼= det((Λ2(V ′))


∨
). Since V and V ′ are of rank 3, there are canonical


isomorphisms η : Λ2(V ) ≡ V ∨ ⊗ det(V ) and η′ : Λ2(V ′) ≡ (V ′)∨ ⊗ det(V ′). It follows therefore that
if we set L := det(V ′) ⊗ (det(V ))−1 then we get a discriminant line bundle (L, h) and a vector bundle
isomorphism α : V ′ ∼= V ⊗L. Now for each i ∈ I, the bilinear form bi ∈ Γ(Ui, BilV ) induces, via α|Ui and
(L|Ui, h|Ui) and (1), Prop.2.3, a bilinear form b′′i ∈ Γ(Ui, BilV ′). By (3) of the same Proposition, over
each Ui we get an isometry of bilinear form bundles α|Ui : (V ′|Ui, b


′′
i ) ∼= (V |Ui, bi)⊗ (L|Ui, h|Ui) and also


an isometry of quadratic bundles α|Ui : (V ′|Ui, qb′′
i
) ∼= (V |Ui, qbi


= q|Ui) ⊗ (L|Ui, h|Ui). On the other


hand, by an assertion in (3), Prop.2.3, we could also define the global quadratic bundle (V ′, q′′) using
(V, q), α and (L, h), so that we have an isometry of quadratic bundles α : (V ′, q′′) ∼= (V, q) ⊗ (L, h). It
follows therefore that the qb′′


i
glue to give q′′. Notice that in general the b′′i (resp. the bi) need not glue to
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give a global bilinear form b′′ (resp. b) such that qb′′ = q′′ (resp. qb = q). By (1), Prop.2.4, there exists a
unique isomorphism of OX -algebra bundles C0(α, 1) : C0(V


′, q′′) ∼= C0 ((V, q) ⊗ (L, h)) and by Prop.2.5
we have a unique isomorphism of algebra bundles γ(L,h) : C0 ((V, q) ⊗ (L, h)) ∼= C0(V, q). Therefore the
composition of the following sequence of isomorphisms of algebra bundles on X


C0(V
′, q′′)


C0(α,1) (∼=)−→ C0 ((V, q) ⊗ (L, h))
γ(L,h) (∼=)


−→ C0(V, q)
φ (∼=)−→ C0(V


′, q′)


is an element of Iso[C0(V
′, q′′), C0(V


′, q′)], which, granting Theorem 1.3, is induced by a similarity in
Sim[(V ′, q′′), (V ′, q′)]. Therefore, we would have that (V ′, q′′) and (V ′, q′) are globally similar (which
means that they differ by a discriminant bundle with underlying line bundle being trivial), and this
combined with the fact that (V, q) and (V ′, q′′) are isometric upto the discriminant bundle (L, h) (by the
construction above), we would have that (V, q) and (V ′, q′) also differ by a discriminant bundle. Therefore
the proof of Theorem 1.1 reduces to the proof of Theorem 1.3.


Reduction of Theorem 1.3 to the Free Case: For a similarity g with multiplier l, we have
C0(g, l) given by (1), Prop.2.4, so that the map Sim[(V, q), (V, q′)] −→ Iso[C0(V, q), C0(V, q′)] mentioned in
the statement is the natural g 7→ C0(g, l). We shall show (locally in the Zariski topology and hence glob-
ally) the equality det


(
(C0(g, l))Λ2


)
= l−3det2(g) so that Iso[(V, q), (V, q′)] and S-Iso[(V, q), (V, q′)] are


respectively mapped into Iso′[C0(V, q), C0(V, q′)] and S-Iso[C0(V, q), C0(V, q′)] as claimed. This equal-
ity will be verified in Lemma 3.11 following the proof of the surjectivity of Sim[(V, q), (V, q′)] −→
Iso[C0(V, q), C0(V, q′)]. We start with an isomorphism of algebra-bundles φ : C0(V, q) ∼= C0(V, q′), which
by the above discussion leads to the automorphism of vector bundles φΛ2 : Λ2(V ) ∼= Λ2(V ). Firstly, define
the global bundle automorphism g′ ∈ GL


(
V ⊗ (det(V ))−1) so that the following diagram commutes:


(Λ2(V ))
∨ ((φ


Λ2 )∨)−1


−−−−−−−−→
∼=


(Λ2(V ))
∨


(η∨)−1


y≡ ≡


y(η∨)−1


V ⊗ (det(V ))−1 ∼=−−−−−→
g′


V ⊗ (det(V ))−1


where η : Λ2(V ) ≡ V ∨ ⊗ det(V ) is the canonical isomorphism (since V is of rank 3). Now let g ∈
GL(V )


∼=←− GL(V ⊗ (det(V ))−1) be the image of g′ i.e., the image of g′ ⊗ det(V ) under the canonical
identification GL(V ⊗ (det(V ))−1 ⊗ det(V )) ≡ GL(V ). Next, let l ∈ Γ(X, O∗


X) be a global section such
that γ(l) := (l3).det(φΛ2) has a square root in Γ(X, O∗


X). For example, we have the following special
cases when this is true:


Case 1. If det(φΛ2) is itself a square, set l := 1. If further det(φΛ2) = 1, set
√


γ(l) = 1, otherwise let√
γ(l) denote any fixed square root of det(φΛ2).


Case 2. If det(φΛ2) is not a square, given an integer k, take l = (det(φΛ2))2k+1 and let
√


γ(l) denote


any fixed square root of (det(φΛ2))6k+4.


For each integer k, we now associate to φ the element gφ
l := (l−1


√
γ(l) )g with g as defined above. We


shall show the following locally for the Zariski toplogy on X (more precisely, for each open subscheme of
X over which V is free):


(1) that gφ
l is a similitude from q to q′ with multiplier l (Lemma 3.9);


(2) that gφ
l induces φ i.e., with the notations of (1), Prop.2.4, that C0(g


φ
l , l) = φ (Lemma 3.10);


(3) that det(gφ
l ) =


√
γ(l) so that det2(gφ


l ) = det(φΛ2) when det(φΛ2) is itself a square (Lemma 3.8) and


(4) that the map S-Iso[(V, q), (V, q′)] −→ S-Iso[C0(V, q), C0(V, q′)] is injective (Lemma 3.12).


It would follow then that these statements are also true globally. The maps s2k+1 : φ 7→ gφ
l with l as in


Case 2 and s′ : φ 7→ gφ
l with l as in Case 1 will then give the sections to the maps (which would imply


their surjectivities) as mentioned in Theorem 1.3. But these maps are not necessarily multiplicative since
a computation reveals that if φi ∈ Iso[C0(V, qi), C0(V, qi+1)] is associated to gφi


li
∈ Sim[(V, qi), (V, qi+1)],


and φ2 ◦ φ1 to gφ2◦φ1
l21


, then gφ2◦φ1
l21


= δgφ2
l2


◦ gφ1
l1


for δ ∈ µ2(Γ(X, O∗
X)) because of the ambiguity in the


initial global choices of square roots for γ(li) and γ(l21). However this can be remedied as follows. For
any given φ ∈ Iso[C0(V, q), C0(V, q′)], irrespective of whether or not det(φΛ2) is a square, take


l = (det(φΛ2))2k+1, γ(l) = l3det(φΛ2),
√


γ(l) := (det(φΛ2))3k+2 and s+
2k+1(φ) := gφ


l =
(
l−1


√
γ(l)


)
g.
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Then it is clear that each s+
2k+1 is multiplicative with the properties as claimed in the statement. We


thus reduce the proof of Theorem 1.3 to the case when the rank 3 vector bundle V is free. This will be
taken up next in §3.


3 Investigation of Θ ; Proof of Theorem 1.4


In this section, we conclude the proofs of Theorems 1.1 and 1.3 which were begun in §2 and also prove
Theorem 1.4. As means to these ends, we carry out two explicit computations. Firstly we compute the
isomorphism Θ of Theorem 1.11. This provides us with the multiplication table of every specialised
algebra structure on any fixed free rank 4 vector bundle with fixed unit which is part of a global basis
(Theorem 3.1 below). This result will also be used in §4 in the proof of Theorem 1.12. It turns out that Θ is
not equivariant with respect to GLV , but nevertheless satisfies a ‘twisted’ form of equivariance (Theorem
3.4). Secondly, we explicitly compute the algebra bundle isomorphism C0(g, l) : C0(V, q) ∼= C0(V, q′) of
(1), Prop.2.4 induced by a similarity g : (V, q)∼=l (V, q′) with multiplier l ∈ Γ(X, O∗


X) in the case when V
is free of rank 3 (Theorem 3.5).


The Action of GLV . Let V be a vector bundle over a scheme X with associated locally-free sheaf
V. The X-smooth X-groupscheme GLV acts naturally on the left on the sheaves Alt2V , BilV and Quad


V


of alternating, bilinear and quadratic forms on V. Namely, for U →֒ X an open subscheme, and for
b ∈ Γ(U, BilV) (resp. a ∈ Γ(U, Alt2V), resp. q ∈ Γ(U, Quad


V
)), and for g ∈ Γ(U, GLV ) = GL(V |U), the


corresponding form of the same type g.b (resp. g.a, resp. g.q) is defined on sections (over open subsets of U)
by (g.b)(v, v′) := b(g−1(v), g−1(v′)) (resp.(g.a)(v, v′) := a(g−1(v), g−1(v′)), resp. (g.q)(v) := q(g−1(v))).
It is immediate that the following short-exact-sequence of sheaves, indicated in the discussion before
Prop.2.2, is equivariant with respect to this action:


(♠) 0 −→ Alt2V −→ BilV −→ Quad
V
−→ 0.


Equivalently, the X-groupscheme GLV acts on the corresponding geometric vector bundles such that
both of the X-morphisms of X-vector bundles in the following sequence are GLV -equivariant:


Alt2V →֒ BilV ։ QuadV .


Notice that it is one and the same thing to require that GL(V |U) ∋ g : (V |U, q)∼=l (V |U, q′) be a similitude
with multiplier l ∈ Γ(U, OX), and to require that g.q = l−1q′.


Definition of the isomorphism Θ. We briefly recall the definition of Θ from Part A of [3]. We
keep the notations introduced just before Theorem 1.11; for ease of notation, the pullback of a section s
(of a vector bundle or its associated sheaf) is denoted by s◦. Since V is free of rank 3 on X, we choose
an identification V ≡ OX .e1 ⊕ OX .e2 ⊕ OX .e3. This gives the identification of the dual bundle as V


∨ ≡
OX .f1⊕OX .f2⊕OX .f3 (defined uniquely by fi(ej) = δij , the Kronecker delta). Therefore the dual of the


sheaf of quadratic forms on V , which is (Quad
V
)∨ := (BilV/Alt2V)


∨
= ((T 2


V)
∨
/(Λ2


V)
∨
)
∨


has global OX -
basis given by {ei⊗ei; (ei⊗ej+ej⊗ei)}. This leads to an identification of the associated sheaf of symmetric
algebras Sym


OX
(Quad∨


V
) ≡ OX [Y1, Y2, Y3, Y12, Y13, Y23], where ei ⊗ ei ≡ Yi and ei ⊗ ej + ej ⊗ ei ≡ Yij ,


and therefore QuadV := Spec
(
Sym


OX
(Quad∨


V
)
)
≡ Spec(OX [Y1, Y2, Y3, Y12, Y13, Y23]) = A


6
X . Consider


the universal quadratic bundle (V,q) where V is the pullback of V by QuadV −→ X. The universal
quadratic form q is given by (x1, x2, x3) 7→ ΣiYi.(xi)


2 + Σi<jYij .xi.xj and moreover the global bilinear
form on V given by


b(q) :
(
(x1, x2, x3), (x


′
1, x


′
2, x


′
3)


)
7→ ΣiYi.xi.x


′
i + Y12.x2.x


′
1 + Y23.x3.x


′
2 + Y13.x1.x


′
3


induces q (the bilinear form ‘associated in the usual sense’ to q, viz. bq is not b(q) but in fact its
symmetrisation). Therefore, by (2d), Theorem 2.1, we get an isomorphism of vector bundles ψb(q) :
C0(V,q = qb(q)) ∼= Λeven(V) =: W which, according to (2a) and (2f) of the same Theorem, carries the
ordered Poincaré-Birkhoff-Witt basis {1; e◦1.e


◦
2, e


◦
2.e


◦
3, e


◦
3.e


◦
1} onto the corresponding ordered basis of the


even exterior algebra (=even Clifford algebra of the zero quadratic form on V) given by {w◦ = 1◦ =
1; e◦1∧e◦2, e


◦
2∧e◦3, e


◦
3∧e◦1}. The choices e◦3.e


◦
1 and e◦3∧e◦1 instead of the usual e◦1.e


◦
3 and e◦1∧e◦3 are deliberate—


for example, ψb(q) would carry {1; e◦1.e
◦
2, e


◦
2.e


◦
3, e


◦
1.e


◦
3} onto {w◦ = 1◦ = 1; e◦1 ∧e◦2, e


◦
2 ∧e◦3, e


◦
1 ∧e◦3 +Y13.w


◦}
which depends on Y13. Thus the even Clifford algebra bundle C0(V,q = qb(q)) induces via ψb(q) a
w◦-unital algebra structure on the pullback bundle W of W := Λeven(V ) (where w corresponds to
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1 in Λeven(V )). But by definition, this algebra structure corresponds precisely to an X-morphism θ :
QuadV −→ Id-w-Sp-AzuW . The isomorphism Θ is now given by the composition of the following X-
morphisms (cf. Def.5.2, Part A, [3]):


QuadV ×X Lw
θ×ID−→ Id-w-Sp-AzuW ×X Lw


SWAP (∼=)−→ Lw ×X Id-w-Sp-AzuW


ACTION−→ Id-w-Sp-AzuW .


The association of q with b(q) also defines a splitting of the exact sequence (♠) above, so that more
generally, given a valued point q ∈ (QuadV )(T ), we may associate uniquely a valued point b(q) ∈
(BilV )(T ) which induces it. That this association is not GLV -equivariant is reflected in the lack of
equivariance of the isomorphism Θ (Theorem 3.4).


THEOREM 3.1 Let T be an X-scheme. Let q be a T -valued point of QuadV ≡ A
6
X which is identi-


fied uniquely with a 6-tuple (λ1, λ2, λ3, λ12, λ13, λ23) corresponding to the quadratic form (x1, x2, x3) 7→
Σiλix


2
i + Σi<jλijxixj . Let t be a T -valued point of Lw ≡ (A3


X , +) which is identified uniquely with a
3-tuple (t1, t2, t3) that corresponds to the T -valued point of Stabw given by the (4 × 4)-matrix


(
1 t1 t2 t3
0 I3


)


where I3 is the (3× 3)-identity matrix. Then the multiplication table for the specialised algebra structure
Θ(q, t) = t.θ(q) on the pullback bundle WT with unit w◦ = wT is given as follows (in terms of the global
basis {w◦ = 1◦ = 1 ; ǫ◦1 := e◦1 ∧ e◦2 , ǫ◦2 := e◦2 ∧ e◦3 , ǫ◦3 := e◦3 ∧ e◦1} induced from that of W = Λeven(V ) :)


• ǫ◦1.ǫ
◦
1 = (t1λ12 − λ1λ2 − t21).w


◦ + (λ12 − 2t1).ǫ
◦
1 ;


• ǫ◦2.ǫ
◦
2 = (t2λ23 − λ2λ3 − t22).w


◦ + (λ23 − 2t2).ǫ
◦
2 ;


• ǫ◦3.ǫ
◦
3 = (t3λ13 − λ1λ3 − t23).w


◦ + (λ13 − 2t3).ǫ
◦
3 ;


• ǫ◦1.ǫ
◦
2 = (λ2λ13 − λ2t3 − t1t2).w


◦ − t2ǫ
◦
1 − t1ǫ


◦
2 − λ2ǫ


◦
3 ;


• ǫ◦2.ǫ
◦
3 = (λ3λ12 − λ3t1 − t2t3).w


◦ − λ3ǫ
◦
1 − t3ǫ


◦
2 − t2ǫ


◦
3 ;


• ǫ◦3.ǫ
◦
1 = (λ1λ23 − λ1t2 − t1t3).w


◦ − t3ǫ
◦
1 − λ1ǫ


◦
2 − t1ǫ


◦
3 ;


• ǫ◦2.ǫ
◦
1 = (λ2t3 − (λ12 − t1)(λ23 − t2)).w


◦ + (λ23 − t2)ǫ
◦
1 + (λ12 − t1)ǫ


◦
2 + λ2ǫ


◦
3 ;


• ǫ◦3.ǫ
◦
2 = (λ3t1 − (λ13 − t3)(λ23 − t2)).w


◦ + λ3ǫ
◦
1 + (λ13 − t3)ǫ


◦
2 + (λ23 − t2)ǫ


◦
3 ;


• ǫ◦1.ǫ
◦
3 = (λ1t2 − (λ12 − t1)(λ13 − t3)).w


◦ + (λ13 − t3)ǫ
◦
1 + λ1ǫ


◦
2 + (λ12 − t1)ǫ


◦
3.


Proof of Theorem 3.1: For clarity, let ∗q denote the multiplication in C0(VT , q), and for uniformity,
let ǫ0 := w. Since q = qb(q), we have by (2d), Theorem 2.1, the isomorphism ψb(q) : C0(VT , q) ∼=
Λeven(VT ) = WT . Let ∗b(q) denote the product in the algebra structure θ(q) thus induced on WT . Since
the ǫ◦i are a basis for WT , it is enough to compute the products ǫ◦i ∗b(q) ǫ◦j for 1 ≤ i, j ≤ 3. For example,
consider the product ǫ◦2 ∗b(q) ǫ◦1. Using the properties of the multiplication in C(VT , q), and the properties
of the isomorphism ψb(q) from (2), Theorem 2.1, we get the following:


ǫ◦2 ∗b(q) ǫ◦1 = ψb(q)


(
{ψ−1


b(q)(e
◦
2 ∧ e◦3)} ∗q {ψ−1


b(q)(e
◦
1 ∧ e◦2)}


)


= ψb(q) ((e◦2 ∗q e◦3) ∗q (e◦1 ∗q e◦2))


= ψb(q) ((λ23(1
◦) − e◦3 ∗q e◦2) ∗q (λ12(1


◦) − e◦2 ∗q e◦1))


= ψb(q) (λ23λ12(1
◦) − λ23e


◦
2 ∗q e◦1 − λ12e


◦
3 ∗q e◦2 + (e◦3 ∗q e◦2) ∗q (e◦2 ∗q e◦1))


= ψb(q) (λ23λ12(1
◦) − λ23(λ12(1


◦) − e◦1 ∗q e◦2) − λ12(λ23(1
◦) − e◦2 ∗q e◦3) + e◦3 ∗q (e◦2 ∗q e◦2) ∗q e◦1)


= (−λ12λ23)w
◦ + λ23ǫ


◦
1 + λ12ǫ


◦
2 + λ2ǫ


◦
3.


In a similar fashion, the other products may be computed; this amounts to computing θ on T -valued
points. The following result is needed to compute Θ from θ.


Lemma 3.2 Let ∗(b(q),t) denote the multiplication in the algebra Θ(q, t) = t.θ(q) and as before, ∗b(q)


denote the multiplication in θ(q). Then we have


1. t(ǫ◦i ) = tiw
◦ + ǫ◦i for 1 ≤ i ≤ 3;


2. (t)−1(ǫ◦i ) = −tiw
◦ + ǫ◦i for 1 ≤ i ≤ 3;


3. ǫ◦i ∗(b(q),t) ǫ◦j = t(ǫ◦i ∗b(q) ǫ◦j ) − tjǫ
◦
i − tiǫ


◦
j − titjw


◦.
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While the first two of the above formulae follow easily by direct computation, the third follows by using
the first two alongwith the following:


ǫ◦i ∗(b(q),t) ǫ◦j = t
(


(t−1(ǫ◦i )) ∗b(q) (t−1(ǫ◦j ))
)
.


We may now compute the multiplication in the algebra Θ(q, t) = t.θ(q) by making use of the formulas
listed in the above lemma and the expressions for the products of the form ǫ◦i ∗b(q) ǫ◦j whose computation
had already been illustrated before the lemma. Q. E. D., Theorem 3.1.


Computation of C0(g, l) in the free case. We continue with the notations introduced above. In
the following we study the lack of equivariance of the isomorphism Θ relative to GLV and show that it
satisfies a curious ‘twisted’ version of equivariance. Firstly we consider the morphism of X-groupschemes
Λeven : GLV −→ Stabw given on valued points by g 7→ Λeven(g). Recall that Λeven(V ) =: A0 ∈
Id-w-Sp-AzuW (X) is the even graded part of the Clifford algebra of the zero quadratic form on V. A
simple computation reveals the following result.


Lemma 3.3 For each X-scheme T , define the map


GL(VT ) −→ Stab((A0)T ) : g 7→
(


1 0
0 B(g)


)
∈ Stab(wT )


where B(g) := det(g)
(
E12E23(g


−1)tE23E12


)
with


E12 =






0 1 0
1 0 0
0 0 1



 and E23 =






1 0 0
0 0 1
0 1 0



 .


Then the above maps define a morphism of X-groupschemes which in fact is none other than Λeven :
GLV −→ Stabw; in other words: B(g) = Λ2(g).


Recall from Lemma 5.1, Part A, [3], that Stabw is the semidirect product of StabA0 and Lw, so that
StabA0 naturally acts on Lw by “outer conjugation”. Let GLV act on Lw via the homomorphism Λeven


i.e., for g ∈ GL(VT ) and t ∈ Lw(T ),


g.t := Λeven(g).t := Λeven(g) t Λeven(g−1).


Any element h ∈ Stab(wT ) can be uniquely written as h = hshl = h′
lhs where hs ∈ Stab((A0)T ) and


hl, h′
l ∈ Lw(T ). Then the relation between hl and h′


l can be written as h′
l = hs.hl or hl = h−1


s .h′
l where


“.” stands for the action of StabA0 on Lw. Thus one has a GLV -action on QuadV ×X Lw induced by


the diagonal embedding GLV


∆→֒ GLV ×X GLV . Since Id-w-Sp-AzuW comes with a canonical action
of Stabw on it, we let GLV act on Id-w-Sp-AzuW via Λeven. The following result describes the lack of
GLV -equivariance of the isomorphism Θ.


THEOREM 3.4 Let T be an X-scheme. For T -valued points g, q, t respectively of GLV , QuadV , and
Lw, there exists a unique T -valued point of Lw given by an isomorphism h′


l(g, q) of OT -algebra bundles


h′
l(g, q) : g.Θ(q, t)


∼=−→ Θ(g.q, g.t).


Further, h′
l(g, q) satisfies the formula


h′
l(gg′, q) = h′


l(g, g′.q)(g.h′
l(g


′, q)).


Therefore Θ satisfies a ‘twisted’ version of GLV -equivariance. The next theorem, which was originally
motivated by the proof of this ‘twisted equivariance’, will be of central importance to us for the rest of
this section.


THEOREM 3.5 Given a similarity g : (VT , q) ∼=l (VT , q′) with multiplier l ∈ Γ(T, O∗
T ), let h(g, l, q, q′)


be the automorphism of (WT , wT ) given by the composition of the following isomorphisms:


WT


(ψb(q))
−1 (∼=)


−→ C0(VT , q)
C0(g,l) (∼=)−→ C0(VT , q′)


ψb(q′) (∼=)


−→ WT


where the algebra bundle isomorphism C0(g, l) comes from (1), Prop.2.4 and the linear isomorphisms ψb(q)


and ψb(q′) come from (2d), Theorem 2.1. In terms of actions, this means that h(g, l, q, q′).θ(q) = θ(q′).
Write h(g, l, q, q′) ∈ Stab(wT ) uniquely as a product


h(g, l, q, q′) = hs(g, l, q, q′)hl(g, l, q, q′)
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with the first factor in StabA0(T ) and the second in Lw(T ) as explained earlier. Then hs(g, l, q, q′) depends
only on g and l and not on q or q′. In fact, one has


hs(g, l, q1, q2) = hs(g, l) :=


(
1 0
0 l−1Λ2(g)


)
∀q1, q2 ∈ Quad(VT ).


Proof: We directly compute the OT -linear automorphism h(g, l, q, q′) of WT as follows. Of course,
this automorphism fixes w◦ = wT . So we need to only compute the images of the three remain-
ing basis elements ǫ◦1 = e◦1 ∧ e◦2, ǫ◦2 = e◦2 ∧ e◦3 and ǫ◦3 = e◦3 ∧ e◦1 in terms of the basis elements w◦


and ǫ◦i . Let q and l(g.q) = q′ respectively correspond to the 6-tuples (µ1, µ2, µ3, µ12, µ13, µ23) and
(µ′


1, µ
′
2, µ


′
3, µ


′
12, µ


′
13, µ


′
23) ∈ Γ(T, OT


⊕6). (We caution the reader that l(g.q) 6= (lg).q = l−2(g.q)!) Let
g ∈ GL(VT ) ≡ GL3(Γ(T, OT )) be given by the matrix (gij). Observe that the µ′ are polynomials in the
µ and gij . In the following computation, for the sake of clarity, we denote the product in C(VT , q) by ∗q.
For example, we have


h(g, l, q, q′)ǫ1 = ψb(q′) ◦ C0(g, l)
(
(ψb(q))


−1(e◦1 ∧ e◦2)
)


= ψb(q′) (C0(g, l) (e◦1 ∗q e◦2)) (by (2f), Theorem 2.1)


= ψb(q′)


(
l−1(g(e◦1) ∗q′ g(e◦2))


)
(by (1), Prop.2.4)


= l−1ψb(q′) ((g11e
◦
1 + g21e


◦
2 + g31e


◦
3) ∗q′ (g12e


◦
1 + g22e


◦
2 + g32e


◦
3))


= l−1ψb(q′) ( (g11g12µ
′
1 + g21g22µ


′
2 + g31g32µ


′
3 + g21g12µ


′
12 + g31g22µ


′
23 + g11g32µ


′
13)w


◦+


+ (g11g22 − g21g12)e
◦
1 ∗q′ e◦2 + (g21g32 − g31g22)e


◦
2 ∗q′ e◦3 + (g31g12 − g11g32)e


◦
3 ∗q′ e◦1 )


= l−1 (
P1(g, l, q, q′)w◦ + C33(g)ǫ◦1 + C13(g)ǫ◦2 + C23(g)ǫ◦3


)
(by (2f), Theorem 2.1)


where P1(g, l, q, q′) is the polynomial in the µ′ and gij (as computed in the previous step) and where
Cij(g) represents the cofactor determinant of the element gij of the matrix g = (gij). Similarly one
computes the values of h(g, l, q, q′)ǫ2 and h(g, l, q, q′)ǫ3. Then the matrix of h(g, l, q, q′) is given by


h(g, l, q, q′) =






1 l−1P1(g, l, q, q′) l−1P2(g, l, q, q′) l−1P3(g, l, q, q′)
0 l−1C33(g) l−1C31(g) l−1C32(g)
0 l−1C13(g) l−1C11(g) l−1C12(g)
0 l−1C23(g) l−1C21(g) l−1C22(g)






which implies that


hs(g, l, q, q′) =






1 0 0 0
0 l−1C33(g) l−1C31(g) l−1C32(g)
0 l−1C13(g) l−1C11(g) l−1C12(g)
0 l−1C23(g) l−1C21(g) l−1C22(g)



 depends only on g and l.


Next define the matrix


ĝ =






g33 g13 g23


g31 g11 g21


g32 g12 g22



 so that hs(g, l, q, q′) =


[
1 0


0 l−1C(ĝ)t


]


where C(ĝ) is the cofactor matrix of ĝ. Now if E12 and E23 are the matrices defined in Lemma 3.3 above,
premultiplying by Eij has the effect of interchanging the ith and jth rows, while postmultiplying has a
similar effect on the columns. Thus we get ĝ = E12E23(g


t)E23E12 from which it follows that


C(ĝ)t = Adjoint (ĝ) = det (ĝ).(ĝ)−1 = det (g).
(
E12E23(g


−1)
t
E23E12


)
,


showing that C(ĝ)t = Λ2(g) by Lemma 3.3. Q.E.D., Theorem 3.5.


Proof of Theorem 3.4. Note that g is an isometry from (VT , q) to (VT , g.q) and hence according
to (1), Prop.2.4, induces the algebra isomorphism C0(g, l = 1) : C0(VT , q) ∼= C0(VT , g.q). Let h(g, q) :=
h(g, 1, q, g.q) where h(g, l, q, q′) was defined in Theorem 3.5 above. As explained in page 17, there are two
canonical decompositions of Stab(wT ), one leading to the unique (ordered) decomposition of h(g, q) as
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h′
l(g, q)hs(g, q), and the other leading to the unique ordered decomposition hs(g, q)hl(g, q). By Theorem


3.5 above, hs(g, q1) = hs(g, q2) = hs(g, 1) = Λeven(g) =: hs(g) ∀q1, q2 ∈ Quad(VT ) and hence we get:


Θ(g.q, g.t) := (g.t).θ(g.q)


= (Λeven(g)tΛeven(g−1)).(h(g, 1, q, g.q).θ(q))


= (hs(g)th−1
s (g)).(h(g, q).θ(q))


= ((hs(g)th−1
s (g))(hs(g, q)hl(g, q))).θ(q)


= (hs(g)thl(g, q)).θ(q)


= (hs(g)hl(g, q)).(t.θ(q))


= (hs(g, q)hl(g, q)).(Θ(q, t))


= (h′
l(g, q)hs(g, q)).(Θ(q, t))


= h′
l(g, q).(hs(g, q).Θ(q, t))


= h′
l(g, q).(g.Θ(q, t)).


Note that hl(g, q) was explicitly computed in the proof of Theorem 3.5 above to be


hl(g, q) =


[
1 P1(g, 1, q, g.q) P2(g, 1, q, g.q) P3(g, 1, q, g.q)
0 I3


]
∈ Lw(T ).


The formula for h′
l(g1g2, q) stated in the theorem is gotten thus:


h′
l(g1g2, q) = (h′


l(g1g2, q)hs(g1g2))h
−1
s (g1g2)


= h(g1g2, q)h
−1
s (g1g2).


Now by (3) of Prop.2.4 it follows that


h′
l(g1g2, q) = (h(g1, g2.q)h(g2, q))h


−1
s (g1g2)


= h′
l(g1, g2.q)hs(g1, g2.q)hs(g2, q)hl(g2, q)h


−1
s (g1g2)


= h′
l(g1, g2.q)hs(g1)hs(g2)hl(g2, q)h


−1
s (g1g2)


= h′
l(g1, g2.q)hs(g1g2)hl(g2, q)h


−1
s (g1g2)


= h′
l(g1, g2.q)((g1g2).hl(g2, q)).


But g−1
2 .h′


l(g2, q) = h−1
s (g2)(h


′
l(g2, q)hs(g2)) = h−1


s (g2)(hs(g2)hl(g2, q)) = hl(g2, q) and therefore


h′
l(g1g2, q) = h′


l(g1, g2.q).((g1g2).(g
−1
2 .h′


l(g2, q)))


= h′
l(g1, g2.q).(g1.h


′
l(g2, q)).


Finally, one has to show the uniqueness of h′
l(g, q) ∈ Lw(T ). Suppose hl ∈ Lw(T ) is also an algebra


isomorphism hl : g.Θ(q, t)
∼=−→ Θ(g.q, g.t), i.e., hl.(g.Θ(q, t)) = Θ(g.q, g.t). Notice that while showing the


‘twisted’ equivariance of Θ above, we have also proved that Θ(g.q, g.t) = h(g, q)Θ(q, t). Therefore we get


(hlhs(g)).(t.θ(q)) = h(g, q).Θ(q, t)


⇒ (hlhs(g)).(t.θ(q)) = (hs(g)hl(g, q)).Θ(q, t)


⇒ (h−1
s (g)hlhs(g)).(t.θ(q)) = (hl(g, q)t).θ(q)


⇒ Θ(q, (g−1.hl)t) = Θ(q, hl(g, q)t).


But since Θ is an isomorphism by Theorem 1.11, this implies that (g−1.hl)t = hl(g, q)t which gives


hl = hs(g)hl(g, q)h−1
s (g) = h′


l(g, q).


Q.E.D., Theorem 3.4.
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Proofs of Theorems 1.3 and 1.1: We remind the reader that towards the end of §2, we had
reduced the proof of Theorem 1.1 to that of Theorem 1.3, and had indicated in page 14 that it would
be enough to prove the latter in the case when V is free—which has been the case in this section so
far. Starting with an isomorphism of algebra bundles φ : C0(V, q) ∼= C0(V, q′) we arrive at the element
gφ


l ∈ GL(V ) as defined in page 14; to briefly recall this, firstly g ∈ GL(V ) was defined by the following
commuting diagram:


(C0(V, q))∨
((ψb(q))


∨)−1


−−−−−−−−→
∼=


(Λeven(V ))∨
surjection−−−−−−→ (Λ2(V ))


∨ (η∨)−1


−−−−−→
≡


V ⊗ (det(V ))−1 ⊗det(V )−−−−−−→
≡


V


φ∨


x∼= (φΛev )∨
x∼= (φ


Λ2 )∨
x∼= (g′)−1


x∼= g−1


x∼=


(C0(V, q′))
∨


((ψb(q′))
∨)−1


−−−−−−−−−→
∼=


(Λeven(V ))∨
inclusion←−−−−− (Λ2(V ))


∨ (η∨)−1


−−−−−→
≡


V ⊗ (det(V ))−1 ⊗det(V )−−−−−−→
≡


V


Secondly, we had defined gφ
l := (l−1


√
γ(l) )g. Our current special choices of bilinear forms b(q) and


b(q′) that induce q and q′ respectively do not affect the generality, as was observed in the proof of
Prop.1.2. We shall now show that gφ


l is a similitude from (V, q) to (V, q′) with multiplier l and that this


similitude induces φ i.e., with the notations of (1), Prop. 2.4, that C0(g
φ
l , l) = φ. We shall also check that


det2(gφ
l ) = det(φΛ2) when det(φΛ2) is itself a square. We proceed with the proof which will follow from


several lemmas.


Lemma 3.6 Write the element h := φΛev ∈ (Stabw)(X) uniquely as an ordered product h = hshl = h′
lhs


where hl, h
′
l ∈ (Lw)(X) and hs ∈ (StabA0)(X) as explained in page 17; let B be the matrix corresponding


to φΛ2 , and let the matrices Eij be as defined in Lemma 3.3. Then we have matrix representations:


hs =


(
1 0
0 B


)
and gφ


l =
(
l−1


√
γ(l)


)
E23E12((B)t)


−1
E12E23


The proof of the above lemma follows from the fact that the matrix of the canonical isomorphism
η : Λ2(V ) ≡ V ∨ ⊗ det(V ) is given by E23E12, which can be verified by a simple computation.


Lemma 3.7 hs(Identity, l−1, q′, l−1q′) =


(
1 0
0 l × I3


)
and hs(Identity, l−1, q′, l−1q′).θ(q′) = θ(l−1q′).


The identity map on V is obviously a similarity with multiplier l−1 from (V, q′) to (V, l−1q′). Hence the
above lemma follows by taking T = X, g = Identity, and the l−1 and the q′ at hand for the l and the q of
Theorem 3.5 (caution: the q′ there would have to be replaced by l−1q′ !). This can also be seen directly
from the multiplication tables for θ(l−1q′) = Θ(l−1q′, I4) and θ(q′) = Θ(q′, I4) written out in Theorem
3.1, where we must take T = X and t = I4 i.e., ti = 0∀ i. We observe from the multiplication table that
each of the coefficients of ǫi for 1 ≤ i ≤ 3 is a single λ, whereas each coefficient of w = 1 = ǫ0 is a product
of two λ s, and this observation implies the lemma above. As the reader might have noticed, there are two
crucial facts about the identifications in this section; namely, firstly, for any X-scheme T , each of the maps
ψb(q) (for different q) identify (C0(VT , q), 1) with the same (WT , wT ) and secondly, relative to the bases
chosen, all these identifying maps have trivial determinant. The latter is also true of the identification
η, since it is given by the matrix E23E12 (as was noted after Lemma 3.6). It therefore follows that
det(φ) = det(φΛev ) = det(φΛ2) = det(g′) = det(g) = det(B−1). But we had chosen l ∈ Γ(X, O∗


X) such
that γ(l) := (l3).det(φΛ2) = l3det(B). Using these facts alongwith Lemma 3.6 above, a straightforward
computation gives the following.


Lemma 3.8 det(gφ
l ) =


√
γ(l) from which it follows that B(gφ


l ) = l × B where B(gφ
l ) and B are as


defined in Lemmas 3.3 and 3.6 respectively. In particular, det2(gφ
l ) = det(φΛ2) when det(φΛ2) is itself a


square, since in this case we had chosen l := 1.


Lemma 3.9 gφ
l is a similitude from (V, q) to (V, q′) with multiplier l.


The hypothesis φ : C0(V, q) ∼= C0(V, q′) is an algebra isomorphism translates in terms of actions into
h.θ(q) = θ(q′) where h = φΛev ∈ (Stabw)(X). Let h(gφ


l , q) := h(gφ
l , 1, q, gφ


l .q) where h(g, l, q, q′) was







Degenerations of Rank 3 Quadratic Bundles and Rank 4 Azumaya Bundles over Schemes 21


defined in Theorem 3.5 above. Then we have


Θ(gφ
l .q, I4) := θ(gφ


l .q) = h(gφ
l , q).θ(q) = h(gφ


l , q).(h−1.θ(q′)) =
(
h′


l(g
φ
l , q)hs(g


φ
l , q)hs


−1(h′
l)


−1
)


.θ(q′)


=


(
h′


l(g
φ
l , q)


(
1 0


0 B(gφ
l )


) (
1 0
0 B−1


)
(h′


l)
−1


)
.θ(q′) (by Theorem 3.5; Lemmas 3.3 & 3.6)


=


(
h′


l(g
φ
l , q)


(
1 0
0 l × I3


)
(h′


l)
−1


)
.θ(q′) (by Lemma 3.8)


=
(
h′


l(g
φ
l , q) hs(Identity, l−1, q′, l−1q′) (h′


l)
−1


)
.θ(q′) (by Lemma 3.7)


= (h′
l(g


φ
l , q)h′′


l ).
(
hs(Identity, l−1, q′, l−1q′).θ(q′)


)
(since Stabw is a semidirect product)


= (h′
l(g


φ
l , q)h′′


l ).θ(l−1q′)) (by Lemma 3.7)


=: Θ(l−1q′, (h′
l(g


φ
l , q)h′′


l ))


But since Θ is an isomorphism, this implies the claim of the above Lemma i.e., that gφ
l .q = l−1q′ (and


further that h′
l(g


φ
l , q) = (h′′


l )
−1


).


Lemma 3.10 gφ
l : (V, q)∼=l(V, q′) induces φ i.e., with the notations of (1), Prop.2.4, C0(g


φ
l , l) = φ.


We have C0(g
φ
l , l) = φ ⇐⇒ h(gφ


l , l, q, q′) := ψb(q′) ◦ C0(g
φ
l , l) ◦ ψ−1


b(q) = ψb(q′) ◦ φ ◦ ψ−1
b(q) =: φΛev =: h.


Now using successively Theorem 3.5, Lemma 3.3, Lemma 3.8 and Lemma 3.6, we get the following
sequence of equalities:


hs(g
φ
l , l, q, q′) =


(
1 0


0 l−1 × Λ2(gφ
l )


)
=


(
1 0


0 l−1 × B(gφ
l )


)
=


(
1 0
0 B


)
= hs


Therefore the present hypotheses translated in terms of actions give


h(gφ
l , l, q, q′).θ(q) = θ(q′) = h.θ(q)


⇒ hs(g
φ
l , l, q, q′).(hl(g


φ
l , l, q, q′).θ(q)) = hs.(hl.θ(q))


⇒ Θ(q, hl(g
φ
l , l, q, q′)) = Θ(q, hl).


But Θ being an isomorphism, the last equality implies that hl(g
φ
l , l, q, q′) = hl which gives h(gφ


l , l, q, q′) =
h as wanted.


Lemma 3.11


(1) For a similarity g ∈ Sim[(V, q), (V, q′)] with multiplier l and the induced isomorphism C0(g, l) ∈
Iso[C0(V, q), C0(V, q′)] given by (1), Prop.2.4, we have the equality det((C0(g, l))Λ2) = l−3det2(g).
Therefore the map


Sim[(V, q), (V, q′)] −→ Iso[C0(V, q), C0(V, q′)] : g 7→ C0(g, l)


maps the subset Iso[(V, q), (V, q′)] into the subset Iso′[C0(V, q), C0(V, q′)] and S-Iso[(V, q), (V, q′)] into
S-Iso[C0(V, q), C0(V, q′)].


(2) In the case q′ = q, if C0(g, l) is the identity on C0(V, q), then g = l−1det(g) × IdV , and further if
g ∈ O(V, q) then g = det(g) × IdV with det2(g) = 1.


By definition, (C0(g, l))Λev = ψb(q′) ◦ C0(g, l) ◦ ψ−1
b(q), and the latter isomorphism is h(g, l, q, q′) from


Theorem 3.5 which further gives a formula for hs(g, l, q, q′). Now using the facts that ψb(q) and ψb(q′)


have trivial determinant (as noted before Lemma 3.8) we get assertion (1):


det
(
(C0(g, l))Λ2


)
= det


(
(C0(g, l))Λev


)
= det(h(g, l, q, q′)) = det(hs(g, l, q, q′)) = l−3det2(g).


If q = q′ and C0(g, l) is the identity, then the same argument in fact shows that l−1Λ2(g) = I3 and
by using the formula in Lemma 3.3 for B(g) = Λ2(g), we get g = l−1det(g)I3; taking determinants in
the last equality gives det2(g) = l3, so that when g ∈ O(V, q) i.e., l = 1, det2(g) ∈ µ2(Γ(X, OX)) and
assertion (2) follows.


Lemma 3.12 The map S-Iso[(V, q), (V, q′)] −→ S-Iso[C0(V, q), C0(V, q′)] : g 7→ C0(g, 1, q, q′) is a bijec-
tion.
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Given φ ∈ S-Iso[C0(V, q), C0(V, q′)], by the definition in Prop.1.2 we have det(φΛ2) = 1, so by Lemma 3.8
det(gφ


l ) =
√


γ(l) := 1 by our earlier choice (see Case 1 on page 14). Therefore gφ
l ∈ S-Iso[(V, q), (V, q′)]


and is, according to Lemma 3.10, such that C0(g
φ
l , l = 1, q, q′) = φ which gives the surjectivity. As for


the injectivity, if g1, g2 : (V, q)∼=1(V, q′) are isometries with determinant 1 such that C0(g1, 1, q, q′) =
C0(g2, 1, q, q′), then we have h(g1, 1, q, q′) = h(g2, 1, q, q′) so that hs(g1, 1, q, q′) = hs(g2, 1, q, q′) whence
by Theorem 3.5 and Lemma 3.3 B(g1) = B(g2) ⇒ g1 = g2.


To sum up the above discussion: Let now V be a not-necessarily globally-trivial rank 3 vec-
tor bundle on the scheme X, and given φ, we define l, γ(l),


√
γ(l) and gφ


l globally as before. Then
the statements of Lemmas 3.9, 3.10, 3.11 and 3.12 are again valid, for the objects involved are de-
fined globally, but the assertions are of a local nature. Given an isomorphism of algebra bundles φ ∈
Iso[C0(V, q), C0(V, q′)], when det(φΛ2) 6∈ (Γ(X, O∗


X))2, we have thus lifted φ to a family of similarities
s2k+1(φ) := gφ


l ∈ Sim[(V, q), (V, q′)] with multipliers l := (det(φΛ2))2k+1 parametrised by integers k;
when 1 6= det(φΛ2) ∈ (Γ(X, O∗


X))2, we have lifted φ to a similarity with multiplier l = 1 i.e., to an
isometry s′(φ) := gφ


l ∈ Iso[(V, q), (V, q′)] such that det(φΛ2) = det2(gφ
l ), and moreover, when φΛ2 has


determinant 1, we have lifted it to a unique isometry gφ
l with determinant 1. Of course, s2k+1 and s′ are


multiplicative only upto an element of µ2(Γ(X, O∗
X)), but this can be remedied by considering s+


2k+1 as
noted at the end of section 2. Q.E.D., Theorems 1.3 & 1.1.


Proof of Theorem 1.4. Taking q′ = q in Theorem 1.3 gives the commutative diagram of groups and
homomorphisms as asserted in the statement of the theorem. We continue with the notations used in the
proof of Theorem 1.3. For g ∈ GO(V, q) with multiplier l, the equality det(C0(g, l)) = det ((C0(g, l))Λ2) =
l−3det2(g) was proved in (1), Lemma 3.11. Assertion (2) of the same Lemma gives exactness at GO(V, q)
and at O(V, q).


We proceed to prove assertion (b). Let φ ∈ Aut(C0(V, q)), and consider the self-similarity s+
2k+1(φ) =


gφ
l with multiplier l = det(φ)2k+1. For the moment, assume that V is trivial over X with global basis


{e1, e2, e3}, and set e′i = gφ
l (ei). It follows from Kneser’s definition of the half-discriminant d0—see


formula (3.1.4), Chap.IV, [2]—that d0(q, {ei}) = d0(q, {e′i}) det2(gφ
l ). Since we have gφ


l .q = l−1q, a
simple computation shows that d0(q, {e′i}) = l3d0(q, {ei}). The hypothesis that q ⊗ κ(x) is semiregular
means that the image of the element d0(q, {ei}) ∈ Γ(X, OX) in κ(x) is nonzero. Since X is integral, we
therefore deduce that det2(gφ


l ) = l−3. On the other hand, we know that det2(gφ
l )l−3 = det(φ). It follows


that det12k+7(φ) = 1 ∀ k ∈ Z, which forces det(φ) = 1 as claimed. Q.E.D., Theorem 1.4.


4 Specialisations as Bilinear Forms: Theorems 1.9–1.12


In this section we reduce the proof of Theorem 1.9 to Theorem 1.10. We prove the latter and using it
alongwith Theorem 3.1, deduce Theorem 1.12.


Preliminaries on the notion of Schematic Image.


Definition 4.1 (Defs.6.10.1-2, Chap.I, EGA I [6]) Let f : X −→ Y be a morphism of schemes.
If there exists a smallest closed subscheme Y ′ →֒ Y such that the inverse image scheme f−1(Y ′) :=
Y ′ ×Y (fX) is equal to X, one calls Y ′ the schematic image of f (or of X in Y under f). If X were a


subscheme of Y and f the canonical immersion, and if f has a schematic image Y ′, then Y ′ is called the


schematic limit or the limiting scheme of the subscheme X
f→֒ Y.


PROPOSITION 4.2 (Prop.6.10.5, Chap.I, EGA I) The schematic image Y ′ of X by a morphism
f : X −→ Y exists in the following two cases: (1) f∗(OX) is a quasi-coherent OY -module, which is for
example the case when f is quasi-compact and quasi-separated; (2) X is reduced.


PROPOSITION 4.3 In each of the following statements whenever a schematic image is mentioned,
we assume that one of the two hypotheses of the above Prop. is true so that the schematic image does
exist.


1. Let Y ′ be the schematic image of X under a morphism f : X −→ Y and let f factor as X
g−→ Y ′ j→֒ Y.


Then Y ′ is topologically the closure of f(X) in Y , the morphism g is schematically dominant (i.e.,
g# : OY ′ −→ g∗(OX) is injective) and the schematic image of X in Y ′ (under g) is Y ′ itself. If X
is reduced (respectively integral) then the same is true of Y ′.
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2. The schematic image of a closed subscheme under its canonical closed immersion is itself.


3. (Transitivity of Schematic Image) Let there be given morphisms X
f−→ Y


g−→ Z, such that the
schematic image Y ′ of X under f exists, and further such that if g′ is the restriction of g to Y ′,
the schematic image Z′ of Y ′ by g′ exists. Then the schematic image of X under g ◦ f exists and
equals Z′.


4. Let f : X −→ Y be a morphism which factors through a closed subscheme Y1 of Y by a morphism
f1 : X −→ Y1. Then the scheme-theoretic image Y ′ of X in Y is the same as the scheme-theoretic
image Y ′


1 of X in Y1 considered canonically as closed subscheme of Y.


5. If f : X −→ Y has a schematic image Y ′ then f is schematically dominant iff Y ′ = Y.


6. The formation of schematic image commutes with flat base change: i.e., if f : X −→ Y is a morphism
of S-schemes which has a schematic image Y ′ then for a flat morphism S′ −→ S, one has that
the induced S′-morphism f ×S S′ : X ×S S′ −→ Y ×S S′ has a schematic image and it may be
canonically identified with Y ′×S S′. In particular this means that the formation of schematic image
is local over the base.


Assertions (1) and (3) are respectively Prop.6.10.5 and Prop.6.10.3 in EGA I. The defining property
of schematic image gives (2), while (4) can be deduced from the first three. As for (5), from (1) it follows
that Y ′ = Y implies f = g is schematically dominant. For the other way around, one uses the following
characterisation of a schematically dominant morphism in Prop.5.4.1 of EGA I: if f : X −→ Y is a
morphism of schemes, then f is schematically dominant iff for every open subscheme U of Y and every


closed subscheme Y1 of U such that there exists a factorisation f−1(U)
g1−→ Y1


j1→֒ U , of the restriction
f−1(U) −→ U of f (where j1 is the canonical closed immersion), one has Y1 = U—given f is schematically
dominant, one just has to take U = Y , Y1 = Y ′ and g1 = g. Assertion (6) follows from statement (ii) (a)
of Theorem 11.10.5 of EGA IV [7].


Preliminaries from Part A of [3]. Until further notice we assume that W is a vector bundle of
fixed positive rank on the scheme X. Given any X-scheme T , by a T -algebra structure on WT := W ×X T
(also referred to as T -algebra bundle), we mean a morphism WT ×T WT −→ WT of vector bundles on
T arising from a morphism of the associated locally-free sheaves. Given such a T -algebra structure and
T ′ −→ T an X-morphism, it is clear that one gets by pullback (i.e., by base-change) a canonical T ′-
algebra structure on WT ′ . Thus one has a contravariant “functor of algebra structures on W” from
{X − Schemes} to {Sets} denoted AlgW whose set of T -valued points is the set of T -algebra structures
on WT viz. HomOT


(WT ⊗ WT , WT ) . By Prop.9.6.1, Chap.I of EGA I [6], it follows that the functor
AlgW is represented by the X-scheme


AlgW := Spec
(
SymX


[(
WX


∨ ⊗X WX
∨ ⊗X WX


)∨])
.


Hence AlgW is affine (hence separated), of finite presentation over X and in fact smooth of relative
dimension rankX(W )3. If X ′ −→ X is an extension of base, then the construction AlgW base-changes
well i.e., one may canonically identify AlgW ×X X ′ with AlgW ′ where W ′ = W ×X X ′ (cf. Prop.9.4.11,
Chap.I, EGA I [6]). We remark that an algebra structure may fail to be associative and may fail to have
a (two-sided) identity element for multiplication. However, a multiplicative identity for an associative
algebra structure must be a nowhere vanishing section (Lemma 2.3, and (2)⇒(4) of Lemma 2.4, Part A,
[3]).


The general linear groupscheme associated to W viz GLW naturally acts on AlgW on the left, so that
for each X-scheme T , AlgW (T ) mod GLW (T ) is the set of isomorphism classes of T -algebra structures
on W ×X T .


Let w ∈ Γ(X, W) be a nowhere vanishing section. For any X-scheme T , let Id-w-AssocW (T ) denote the
subset of AlgW (T ) consisting of associative algebra structures with multiplicative identity the nowhere
vanishing section wT over T induced from w. Thus we obtain a contravariant subfunctor Id-w-AssocW of
AlgW . Let Stabw(T ) ⊂ GLW (T ) denote the stabiliser subgroup of wT , so that one gets a subfunctor in
subgroups Stabw ⊂ GLW . It is in fact represented by a closed subgroupscheme (also denoted by) Stabw


and further behaves well under base change relative to X i.e., Stabw ×X T can be canonically identified
with StabwT


for any X-scheme T. These follow from para 9.6.6 of Chap.I, EGA I [6]. It is clear that the
natural action of GLW on AlgW induces one of Stabw on Id-w-AssocW . It is easy to check (p.489, Part A,
[3]) that the functor Id-w-AssocW is a sheaf in the big Zariski site over X and further that this functor
is represented by a natural closed subscheme Id-w-AssocW →֒ AlgW which is Stabw-invariant. Further
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the construction Id-w-AssocW behaves well with respect to base-change (relative to X). Consider the
subfunctor Id-w-AzuW →֒ Id-w-AssocW corresponding to Azumaya algebras.


THEOREM 4.4 (Theorem 3.4, Part A, [3])


(1) Id-w-AzuW is represented by a Stabw-stable open subscheme Id-w-AzuW →֒ Id-w-AssocW and the
canonical open immersion is an affine morphism.


(2) Id-w-AzuW is affine (hence separated) and of finite presentation over X, and the construction
Id-w-AzuW behaves well with respect to base-change (relative to X).


(3) Further, Id-w-AzuW is smooth of relative dimension (m2−1)2 and geometrically irreducible over X,
where m2 := rankX(W).


THEOREM 4.5 (Theorem 3.8, Part A, [3])


(1) The open immersion Id-w-AzuW →֒ Id-w-AssocW has a schematic image denoted Id-w-Sp-AzuW


which is affine (hence separated) and of finite type over X and is naturally a Stabw-stable closed
subscheme of Id-w-AssocW , the action extending the natural one on the open subscheme Id-w-AzuW .


(2) When the rank of W over X is 4, Id-w-Sp-AzuW is locally (over X) isomorphic to relative 9-
dimensional affine space; in fact over every open affine subscheme U of X where W becomes trivial
and w becomes part of a global basis, Id-w-Sp-AzuW |U ∼= A


9
U . Thus Id-w-Sp-AzuW is smooth of


relative dimension 9 and geometrically irreducible over X. In particular, it is of finite presentation
over X.


(3) When rankX(W ) = 4, the construction Id-w-Sp-AzuW −→ X base changes well.


Definition of the Morphism Υ′. We adopt the notations of Theorem 1.9. Let T be an X-
scheme. Given a bilinear form b ∈ BilV (T ) = Bil(VT ), consider the linear isomorphism ψb : C0(VT , qb) ∼=
Λeven(VT ) = WT of (2d), Theorem 2.1. Let Ab denote the algebra bundle structure on WT with unit
wT = 1 induced via ψb from the even Clifford algebra C0(VT , qb). By definition, Ab ∈ Id-w-AssocW (T )
and we get a map of T -valued points


Υ′(T ) : BilV (T ) −→ Id-w-AssocW (T ) : b 7→ Ab.


This is functorial in T because of (3), Theorem 2.1, and hence defines an X-morphism Υ′ : BilV −→
Id-w-AssocW . The morphism Υ′ is GLV -equivariant due to (2j), Theorem 2.1.


Semiregular Bilinear forms. Fundamental problems in dealing with quadratic forms over arbitrary
base schemes arise essentially from two abnormalities in characteristic two: firstly, the mapping that
associates a quadratic form to its symmetric bilinear form is not bijective and secondly, there do not
exist regular quadratic forms on any odd-rank bundle. The remedy for this is to consider semiregular
quadratic forms, a concept due to M.Kneser [1] and elaborated upon by Knus in [2], which in fact works
over an arbitrary base scheme (and hence in a characteristic-free way) and further reduces to the usual
notion of regular form in characteristics 6= 2. Let Spec(R) = U →֒ X be an open affine subscheme of X
such that V |U is trivial. Consider a quadratic form q ∈ Γ(U, QuadV ) on V |U and its associated symmetric
bilinear form bq. The matrix of this bilinear form relative to any fixed basis is a symmetric matrix of
odd rank and in particular, if U is of pure characteristic two (i.e., the residue field of any point of U is
of characteristic two), then this matrix is also alternating and is hence singular, immediately implying
that q cannot be regular. However, computing the the determinant of such a matrix in formal variables
{ζi, ζij} shows that it is twice the following polynomial


P3(ζi, ζij) = 4ζ1ζ2ζ3 + ζ12ζ13ζ23 − (ζ1ζ
2
23 + ζ2ζ


2
13 + ζ3ζ


2
12).


The value P3(q(ei), bq(ei, ej)) corresponding to a basis {e1, e2, e3} is called the half-discriminant of q
relative to that basis, and q is said to be semiregular if its half-discriminant is a unit. It turns out that
this definition is independent of the basis chosen (§3, Chap.IV, [2]). Even if V |U were only projective
(i.e., locally-free but not free), the semiregularity of q may be defined as the semiregularity of q ⊗R Rm


for each maximal ideal m ⊂ R, and it turns out that with this definition, the notion of a quadratic
form being semiregular is local and is well-behaved under base-change (Prop.3.1.5, Chap.IV, [2]). We
may thus define the subfunctor of QuadV of semiregular quadratic forms. This subfunctor is represented
by a GLV -invariant open subscheme i : Quadsr


V →֒ QuadV because, over each affine open subscheme
U →֒ X which trivialises V , it corresponds to localisation by the non-zerodivisor P3. Note that this
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canonical open immersion is affine and schematically dominant as well. We next turn to semiregular
bilinear forms. Recall that we had defined a bilinear form b to be semiregular iff its induced quadratic
form qb is semiregular. Thus by definition, Bilsr


V is the fiber product:


BilV
p−−−−−→ QuadV


i′


x
xi


Bilsr
V −−−−−→


p′


Quadsr
V


Since p is a Zariski-locally-trivial principal Alt2V -bundle, it is smooth and surjective (in particular faith-
fully flat). It therefore follows that the affineness and schematic dominance of i imply those of i′. We
record these facts below.


PROPOSITION 4.6 The open immersion Bilsr
V →֒ BilV is a GLV -equivariant schematically dominant


affine morphism. Further this open immersion behaves well under base-change (relative to X).


Reduction of Proof of Theorem 1.9 to Theorem 1.10. We first recall the following crucial
fact (see (1), Prop.3.2.4, Chap.IV [2]): The even Clifford algebra of a semiregular quadratic form is an
Azumaya algebra. Using this fact and the definition of Υ′, we see that the morphism Υ′ restricted to
Bilsr


V factors through Id-w-AzuW by a morphism Υsr such that the following diagram is commutative


BilV
Υ′


−−−−−→ Id-w-AssocW


x
x


Bilsr
V −−−−−→


Υsr
Id-w-AzuW


where the vertical arrows are the canonical open immersions. The above diagram base changes well in
view of (2), Theorem 4.4, Prop.4.6 and (3), Theorem 2.1. Notice that since the structure morphism
BilV −→ X is an affine morphism, and since the same is true of Id-w-AssocW −→ X, it is also true of
Υ′. In particular, Υ′ is quasi-compact and separated, and therefore has a schematic image by case (1)
of Prop.4.2. The same is true of each of the two vertical arrows and of Υsr in view of Prop.4.6 and (1)
of Theorem 4.4. Further, as noted in Prop.4.6, Bilsr


V →֒ BilV is schematically dominant and therefore by
(5), Prop.4.3, the limiting scheme of the former in the latter is the latter itself. So using the commutative
diagram above, the transitivity of the schematic image (assertion (3), Prop.4.3), and the definition of
Id-w-Sp-AzuW (assertion (1), Theorem 4.5), we see that in order to prove (1), Theorem 1.9, it is enough
to show that


(*) Υsr is schematically dominant and surjective, and Υ′ is a closed immersion.


We now claim that the above properties are equivalent to


(**) Υsr is proper and Υ′ is a closed immersion.


Suppose (**) holds. To show (*), we only need to show that Υsr is surjective and schematically dominant.
From (**) it follows that Υsr


K := Υsr ⊗X K is functorially injective and proper for each algebraically
closed field K with an X-morphism Spec(K) −→ X.


That both the K-schemes Bilsr
V ⊗X K and Id-w-AzuW ⊗X K are integral and smooth of the same


dimension follows from the smoothness of relative dimension 9 and geometric irreducibility /X of Bilsr
V


(which is obvious), and of Id-w-AzuW from (3), Theorem 4.4. Since Υsr
K is differentially injective at each


closed point, it has to be a smooth morphism by Theorem 17.11.1 of EGA IV [7] and thus has to be an
open map. But by (**) it is also proper and hence a closed map. Thus Υsr


K is bijective etale, and hence
an isomorphism. This also gives that Υsr is surjective. Now from Cor.11.3.11 of EGA IV and from the
flatness of Bilsr


V over X, it follows that Υsr is itself flat, and hence schematically dominant since it is
faithfully flat (being already surjective). Therefore (**) =⇒ (*).


The property of a morphism being proper is local on the target (see for e.g., (f), Cor.4.8, Chap.IV,
[9]) and the same is true of the property of being a closed immersion. Therefore, in verifying (**), we
may assume that V is free over X (so that W = Λeven(V ) is also free over X and and w is part of
a global basis). We are now in the situation of Theorem 1.10. Granting it, we see immediately from
the multiplication table that (**) holds. For the table shows that the composition of the following
X-morphisms


BilV
Υ′


−→ Id-w-AssocW


CLOSED→֒ AlgW
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is a closed immersion, which implies that Υ′ is also a closed immersion. Further, the multiplication
table also shows that both Υ′ and Υsr satisfy the valuative criterion for properness, and are therefore
proper. Thus the conditions (**) are verified. So we have reduced the proof of (1), Theorem 1.9 to
Theorem 1.10. As for statement (2) of Theorem 1.9, firstly, the involution Σ of Id-w-Assoc-AlgW defines
a unique involution (also denoted by Σ) on the scheme of specialisations Id-w-Sp-AzuW (leaving the open
subscheme Id-w-AzuW invariant) because of the defining property of the schematic image involved; for we
may verify that an automorphism of a scheme T which leaves an open subscheme U stable will also leave
stable the limiting scheme of U in T (of course we assume here that the canonical open immersion U →֒ T
is a quasi-compact open immersion, which ensures the existence of the limiting scheme). Secondly, a glance
at the multiplication table of Theorem 1.10 keeping in view the definition of opposite algebra shows that
indeed the induced Σ ∈ AutX (BilV ) takes the T -valued point B = (bij) to transpose(−B) = (−bji).
Finally, assertion (3) of Theorem 1.9 is a consequence of (1) taking into account (3), Theorem 4.5.


Proof of Theorem 1.10. Given B = (bij) ∈ BilV (T ), by our definition above, (Υ′(T ))(B) = AB is
the algebra structure induced from the linear isomorphism ψB : C0(VT , qB) ∼= Λeven(VT ) of (2d), Theorem
2.1. The stated multiplication table for A = AB is a consequence of straightforward calculation, keeping
in mind (2f), Theorem 2.1 and the standard properties of the multiplication in the even Clifford algebra
C0(VT , qB). Q.E.D., Theorems 1.10 & 1.9.


Proof of Theorem 1.12. The proof follows by comparing the multiplication table relative to Θ as
computed in Theorem 3.1 with the multiplication table relative to Υ of Theorem 1.10 computed above.
Q.E.D., Theorem 1.12.


5 Properties of Specialisations/Self-duality: 1.5–1.8


In this section, we prove Theorem 1.5 and use it alongwith Theorem 1.9 to prove Theorem 1.6. Thereafter
we investigate the specialised algebras when the underlying bundle is self-dual and prove Theorems 1.7
and 1.8.


Proof of Theorem 1.5. Let W be the rank 4 vector bundle underlying the specialised algebra A
and w ∈ Γ(X, W ) be the global section corresponding to 1A . We choose an affine open covering {Ui}i∈I


of X such that W |Ui is trivial and w|Ui is part of a global basis ∀ i. Therefore on the one hand, for
each i ∈ I, we can find a linear isomorphism ζi : Λeven


(
O


⊕3
X |Ui


) ∼= W |Ui taking 1Λeven onto w|Ui.
The (w|Ui)-unital algebra structure A|Ui induces via ζi an algebra structure Ai on Λeven


(
O


⊕3
X |Ui


)
(so


that ζi becomes an algebra isomorphism). Since Ai is also a specialised algebra structure ((3), Theorem
4.5), by Theorem 1.9 we can on the other hand also find a quadratic form qi on O


⊕3
X |Ui induced from a


bilinear form bi so that the algebra structure Ai is precisely the one induced by the linear isomorphism
ψbi


: C0


(
O


⊕3
X |Ui, qi


) ∼= Λeven
(
O


⊕3
X |Ui


)
given by (2d) of Theorem 2.1. For each pair of indices (i, j) ∈ I×I,


let ζij and φij be defined so that the following diagram commutes:


C0(O
⊕3
X |Uij , qi|Uij)


ψbi
|Uij−−−−−→
∼=


Λev(O⊕3
X |Uij)


ζi|Uij−−−−−→
∼=


A|Uij


φij


y∼= ζij


y∼= =


y


C0(O
⊕3
X |Uij , qj |Uij)


∼=−−−−−→
ψbj


|Uij


Λev(O⊕3
X |Uij)


∼=−−−−−→
ζj |Uij


A|Uij


The above diagram means that the algebras Ai glue along Uij := Ui∩Uj via ζij to give (an algebra bundle
isomorphic to) A, and in the same vein, the even Clifford algebras C0(O


⊕3
X |Ui, qi) glue along the Uij via φij


to give A as well. Now consider the similarity g
φij


lij
= s+


−1(φij) : (O⊕3
X |Uij , qi|Uij) ∼=lij


(O⊕3
X |Uij , qj |Uij)


with multiplier lij := det(φij)
−1 given by (c), Theorem 1.3. Since s+


−1 is multiplicative, and since φij


satisfy the cocycle condition, it follows that s+
−1(φij) also satisfy the cocycle condition and therefore glue


the O
⊕3
X |Ui along the Uij to give a rank 3 vector bundle V on X. (Observe that unfortunately the qi do


not glue !) We shall now revert to the notations of Section 3. By Theorem 3.5, we have


hs(g
φij


lij
, lij , qi|Uij , qj |Uij) =


(
1 0


0 l−1
ij Λ2(g


φij


lij
)


)
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which means that (φij)Λ2 = det(φij) × Λ2(g
φij


lij
). This immediately implies part (1) of assertion (a) of


Theorem 1.5, from which parts (2)—(4) can be deduced using the standard properties of the determinant
and the perfect pairings between suitable exterior powers of a bundle. To prove (b), let A = C0(V, q). Us-
ing a trivialisation {Ui}i∈I for the quadratic bundle (V, q) with transition functions gij , and remembering
that by definition the gij are isometries, we have the following commutative diagram on the intersections
Uij :


C0(O
⊕3
X |Uij , qi|Uij)


ψb(qi)
|Uij−−−−−−−→


∼=
Λev(O⊕3


X |Uij)


C0(gij ,1,qi|Uij ,qj |Uij)


y∼= ∼=


yh(gij ,1,qi|Uij ,qj |Uij)


C0(O
⊕3
X |Uij , qj |Uij)


∼=−−−−−−−→
ψb(qj)|Uij


Λev(O⊕3
X |Uij)


But by the formula in Theorem 3.5, we have


hs(gij , 1, qi|Uij , qj |Uij) =


(
1 0
0 Λ2(gij)


)


which immediately implies that C0(V, q)/OX .1C0
∼= Λ2(V ). Q.E.D., Theorem 1.5.


Proof of ‘if ’ part of Theorem 1.6. Suppose that the hypotheses hold; by (1) ∃L ∈ Pic(X) such
that det(A) ∼= L⊗2 and by (2), we may choose a splitting A ∼= OX .1A ⊕ (A/OX .1A). Using assertion (1)
of (a), Theorem 1.5, we see that there exists a rank 3 vector bundle V ′ on X such that


A ∼= OX .1A ⊕ (A/OX .1A) ∼= OX .1A ⊕ (L⊗2 ⊗ Λ2(V ′)) ∼= OX .1A ⊕ Λ2(V ′ ⊗ L) ∼= Λeven(V )


where V := V ′ ⊗ L and the last isomorphism is chosen so as to map OX .1A isomorphically onto
OX .1Λev(V ). Therefore if (W, w) := (Λeven(V ), 1), then by the above identification A induces an ele-
ment of Id-w-Sp-AzuW (X), and since Υ : BilV ∼= Id-w-Sp-AzuW is an X-isomorphism by (1), Theorem
1.9, it follows that there exists a global quadratic form q = qb induced from a bilinear form b such that
the algebra structure Υ(b) ∼= A. To finish the proof, we only have to remember that Υ(b) is the algebra
structure induced from the linear isomorphism ψb : C0(V, q = qb) ∼= Λeven(V ) =: W of (2d), Theorem
2.1, which preserves 1 by (2a) of the same Theorem.


Proof of ‘only if ’ part of Theorem 1.6. Suppose ∃ (V, q) such that C0(V, q) ∼= A, and that q is
induced from a bilinear form b. Then by (2d), Theorem 2.1, we have a linear isomorphism ψb : C0(V, q =
qb) ∼= Λeven(V ). Since ψb preserves 1 by (2a) of the same Theorem, we get (2). Further (1) follows from
assertion (b) of Theorem 1.5.


Proofs of assertions on validity of hypotheses (1) & (2). If (i) holds, the validity of (2) is
a simple exercise in commutative algebra. Since A is a quaternion algebra bundle by Prop.1.13, we have
the associated trace map trσA


: A −→ A
1
X . Since (ii) is equivalent to 2 ∈ Γ(X, O∗


X), when (ii) holds, the
map 2−1trσA


splits the canonical inclusion OX .1A →֒ A, showing that (2) holds. If A is Azumaya, then
as we saw in the discussion following Theorem 1.14, A ∼= C0(V, q) with (V, q) semiregular. So (1) follows
from (b), Theorem 1.5. Q.E.D., Theorem 1.6.


Relations with Self-Duality. In the following we let X be a scheme and W a rank 4 vector bundle
over X. We recall the following result:


PROPOSITION 5.1 (Prop.3.3, Part A, [3])


1. Let T be an X-scheme and A an associative unital algebra structure on WT := W ⊗X T. Then the
subset


U(T, A) := {t ∈ T | At is an Azumaya OT,t − algebra}
is an open (possibly empty) subset. When U(T, A) is nonempty, denote by the same symbol the
canonical open subscheme structure. Then if f : T ′ −→ T is an X-morphism such that the topological
image intersects U(T, A), then U(T ′, f∗(A) = A⊗T T ′) ∼= U(T, A)×T T ′ as open subschemes of T ′.
Further U(T, A) →֒ T is an affine morphism.


2. U(T, A) is the maximal open subset restricted to which A is Azumaya.


3. Further let f : T ′ −→ T be a morphism of X-schemes such that f∗(A) is Azumaya. Then f factors
through the open subscheme U(T, A) defined above.
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Proof of Theorem 1.7. We first make certain observations when X is any reduced scheme and
W is a rank n2 vector bundle over X with nowhere-vanishing global section w. It is not hard to see
that the structure morphism Id-w-AzuW −→ X is in fact a morphism of finite presentation. Hence, in
view of Prop.17.5.7, EGA IV [7], assertion (3) of Theorem 4.4 implies that Id-w-AzuW is reduced. Since
Id-w-Sp-AzuW is the schematic image of Id-w-AzuW , it follows from (1), Prop.4.3 that Id-w-Sp-AzuW


is reduced as well. When X is integral, it is easy to see that Id-w-AzuW is integral as well. Consider any
affine open subscheme U = Spec(R) →֒ X such that W |U is trivial and w|U is part of a global basis.
There are (w|U)-unital Azumaya algebra structures on W |U which are isomorphic to the (n×n)-matrix
algebra over R. Consider the orbit morphism Stabw|U −→ Id-(w|U)-AzuW |U corresponding to one such
algebra structure. Assertions (2) and (3) of Theorem 4.4 show that the topological image of this morphism
is dense. Further, Stabw|U is integral since it is ∼= A


12
U and since U is integral. Thus Id-(w|U)-AzuW |U is


integral. Recall (e.g., Prop.2.1.6 & Cor.2.1.7, Chap.0.2, EGA I [6]) that a nonempty topological space—
whose set of irreducible components is locally finite—is locally irreducible iff each irreducible component
is open; further it is irreducible iff it is locally irreducible and connected. Now since Id-w-AzuW can be
covered by irreducible open subschemes which pairwise intersect (as X is irreducible), it follows that
Id-w-AzuW is integral as well. Therefore (1), Prop.4.3 implies that Id-w-Sp-AzuW is also integral in the
case when X is integral. Using again the facts that Id-w-AzuW behaves well under base change and that
the schematic image of an irreducible scheme is irreducible (by (1), Prop.4.3), we may infer from the
foregoing that X is irreducible iff Id-w-AzuW is irreducible iff Id-w-Sp-AzuW is irreducible.


We next observe that assertion (b) follows from (a) and from the following result: The vector bundle
underlying a rank 4 Azumaya algebra bundle A is self-dual. To see this, first remember from Prop.1.13
that A comes with a standard involution σ = σA. The associated norm nσ : x 7→ x.σ(x) is a (global)
quadratic form with values in O and its associated bilinear form bnσ may be given in terms of the
associated trace trσ as bnσ (x, x′) = trσ(xσ(x′)) = xσ(x′) + x′σ(x). Now nσ is nonsingular (=regular), as
may be verified locally over affine open subschemes—for details see para 7.3.5, Chap.I, [2].


As for assertion (a), we begin with a general remark: if X ′ −→ X is a surjective k-morphism, k
being the algebraically closed base field, and if (a) holds for the pair (X ′, A′ := A ⊗X X ′), then it
also holds for the pair (X, A) where A is an associative unital algebra structure on W. For, by (3),
Prop.5.1, U(X ′, A′) = X ′ =⇒ U(X, A) = X. Since the canonical morphism XRED →֒ X is a surjective
closed immersion, we may therefore assume that X is reduced. Let x ∈ U(X, A) ∩ Xα where Xα is
an irreducible component of X given the canonical reduced induced closed subscheme structure. If (a)
holds for (Xα, A ⊗X Xα), then by (1), Prop.5.1, we have that A ⊗X Xα is Azumaya, and hence by (3)
of the same Proposition, the canonical closed immersion Xα →֒ X factors through U(X, A). Now as
X is connected, we observe that (a) holds for X if it holds for each irreducible component given the
reduced induced closed subscheme structure (which is also a proper scheme of finite type over k); thus
we may as well assume that X is irreducible. By Chow’s Lemma (Theorem 5.6.1, EGA II [8]) there
exists an integral projective scheme X ′ of finite type over k alongwith a surjective projective k-morphism
X ′ −→ X. Therefore we may further assume that X is projective. Finally, we may also assume that X is
normal, for if X̃ is the normalisation of X, then the canonical morphism X̃ −→ X is finite and surjective,
hence also projective. So we have reduced to the case when X is an integral normal projective scheme
over k. However, the following proof works with the hypothesis of X being regular in codimension 1,
which is satisfied when X is normal.


Now given an associative w-unital algebra structure A on W such that the open subset U(X, A) of
Prop.5.1 is nonempty, the restriction to the dense open subset U(X, A) of the section over X correspond-
ing to A factors through Id-w-AzuW as a morphism (and not just topologically); further, since both X
and Id-w-Sp-AzuW are reduced, this section factors through Id-w-Sp-AzuW itself. Thus any A such that
U(X, A) 6= ∅ corresponds to a specialised algebra structure. Let there be given an isomorphism of vector
bundles φ : W ∼= W∨ and an A such that U(X, A) 6= ∅. To prove (a), we must show that U(X, A) = X.
We proceed by contradiction: suppose D(X, A) := X\U(X, A) is nonempty. Consider the composition of
the following morphisms of vector bundles:


W ⊗X W ≡ A ⊗X Aop (a⊗b) 7→(x 7→axb)−→ End Linear (A) ≡ W∨ ⊗X W
φ×Id−→ W ⊗X W


The above composite gives an endomorphism of the vector bundle W ⊗ W which is an isomorphism
precisely at the local rings of the points of U(X, A). Therefore, the induced element s(φ) ∈ Γ(X, OX) ≡
H0(X, End(det(W ⊗ W ))) goes into the maximal ideal of the local ring at each point of D(X, A) and to
a unit of the local ring at each point of U(X, A). It follows that if D(X, A) is the irredundant union of
divisors {Di|1 ≤ i ≤ n}, then the divisor defined by (s(φ), OX) namely ΣiniDi is principal. Under the
present hypotheses on X, every principal divisor has degree zero (see for e.g., (d), Ex.6.2, Chap.II, [9]),
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so that we get 0 = Σini.(degree(Di)). This is a contradiction, since ni ≥ 1 as it is the order of vanishing
of s(φ) on Di for each i, and since the degree of each Di is positive (see for e.g., (a), Prop.7.6, Chap.I,
[9]). Q.E.D., Theorem 1.7.


Proof of assertions (a)—(d) of Theorem 1.8. The proofs follow essentially from the properties
of Id-w-Sp-AzuW −→ X and Id-w-AzuW −→ X as mentioned in Theorems 4.5 and 4.4. In this regard see
also the first paragraph of the proof of Theorem 1.7. We indicate proofs for the not-so-obvious assertions,
especially (c) and for the implication (X irreducible ⇒ DX irreducible) of (a). The converse implication
would follow from the fact that DX −→ X is topologically surjective. Since the structure morphisms
Id-w-Sp-AzuW −→ X and Id-w-AzuW −→ X are smooth, they are faithfully flat (hence surjective).
Therefore in view of (b)—which is actually the result of good base-change properties of Id-w-Sp-AzuW


and Id-w-AzuW relative to X, the irreducible components of DX and of Id-w-Sp-AzuW are induced from
those of X by pullback, provided we check the particular case when X is irreducible and reduced.


So let X be integral and first assume that W is trivial and w is part of a global basis. Without loss
of generality, we may take (W, w) = (Λeven(V ), 1) for V a rank 3 trivial vector bundle over X. After
fixing a suitable basis for V , we may define the morphism Θ, which by Theorem 1.11 is an isomorphism
that maps the closed subset (QuadV ×X Lw)\(Quadsr


V ×X Lw) onto D0 := Id-w-Sp-AzuW \Id-w-AzuW .
Therefore the irreducibility of D0 is equivalent to that of the closed subset QuadV \Quadsr


V . Recall from
the discussion on semiregular forms (page 24, Section 4) that the open subscheme Quadsr


V corresponds to
localisation by the polynomial P3. This polynomial is irreducible as an element of R[ζi, ζij ] ∼= R[QuadV ]
when X = Spec(R) is affine, though it is not clear if it is a prime element (unless we assume something
more e.g., R a UFD). The closed subset QuadV \Quadsr


V may be given the canonical closed subscheme
structure Z(P3) corresponding to the vanishing of P3. Let q(2) be the global quadratic form on V given
by (x1, x2, x3) 7→ x1x2. It can be checked that q(2) is not semiregular, but that its restriction to the rank
two (direct summand) vector subbundle generated by {e1, e2} is regular. Therefore the X-valued point
corresponding to q(2) lands topologically inside the closed subset underlying Z(P3). Consider the orbit
morphism O(q(2)) : GLV −→ QuadV corresponding to this X-valued point which also lands topologically
inside Z(P3). It will follow from assertion (2), Theorem 1.17, that the topological image of O(q(2)) is
dense in Z(P3). On the other hand this topological image is irreducible, since GLV


∼= A
9
X . It follows that


QuadV \Quadsr
V , and hence D0, is irreducible in the case when W is trivial and w is part of a global basis


over X. Since the reduced closed subscheme structure on Z(P3) is given by the radical of the ideal (P3),
it follows that


√
(P3) is the minimal prime divisor of (P3) and by Krull’s Hauptidealsatz this prime has


height 1. Therefore, the codimension of D0 is also 1 in the present case.
Now consider the case of a general (W, w), choose an affine open covering {Ui = Spec(Ri)}i∈I of


X such that Wi := W |Ui is trivial and wi := w|Ui is part of a global basis ∀ i. The subset Di :=
Id-wi-Sp-AzuWi


\Id-wi-AzuWi is irreducible for each i by the preceding paragraph. On the other hand,
by Theorems 4.4 and 4.5, the subsets Di form an open cover of D := Id-w-Sp-AzuW \Id-w-AzuW .
Since X is irreducible, we have Di ∩ Dj 6= ∅ when i 6= j. Thus D is locally irreducible and connected,
and hence irreducible (for e.g., by Cor.2.1.7, Chap.0, EGA I [6]). Since X is integral and noetherian,
assertion (2) of Theorem 4.5 implies that Id-w-Sp-AzuW is integral and noetherian as well. Therefore
the codimension of D in Id-w-Sp-AzuW is atleast 1. On the other hand (for e.g., by Prop.14.2.3, Chap.0,
EGA IV, [7]) this codimension is bounded above by 1 = Codim (Di, Id-wi-Sp-AzuWi


) for any i, since
Id-wi-Sp-AzuWi


→֒ Id-w-Sp-AzuW is an open subset whose intersection with D is precisely Di.


Proof of assertion (e) of Theorem 1.8. Let us remind the reader that the pullbacks W ⊗X


Id-w-Sp-AzuW and W ⊗X Id-w-AzuW are naturally endowed with (w⊗X Id-w-Sp-AzuW )-unital associa-
tive OId-w-Sp-AzuW


-algebra structures with which they become respectively the universal specialisation


and universal Azumaya algebra relative to the pair (W, w)—for details see the proof of Theorem 3.4,
Part A, [3]. By (c) and (d), the natural map Pic(Id-w-Sp-AzuW ) −→ Pic(Id-w-AzuW ) is surjective and
its kernel is generated by the image of Z.(DX). Given an isomorphism φ : W ∼= W∨, we consider its
pullback to Id-w-Sp-AzuW , and proceeding along the lines of the proof of Theorem 1.7, with the triple
(Id-w-Sp-AzuW , W ⊗X Id-w-Sp-AzuW , φ⊗X Id-w-Sp-AzuW ) replacing the triple (X, A, φ) there, we infer
that n.(DX) is principal for some n ≥ 1. Now W ⊗X Id-w-AzuW is an Azumaya algebra bundle, and as
seen in the discussion following Theorem 1.14, it is isomorphic to the even Clifford algebra of a canoni-
cally obtained rank 3 quadratic bundle on Id-w-AzuW . Therefore it follows from (b), Theorem 1.5 that
det(W ⊗X Id-w-Sp-AzuW ) maps to an element of 2.Pic(Id-w-AzuW ). The remaining assertions in (e) are
now consequences of Theorem 1.6. Q.E.D., Theorem 1.8.
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6 Stratification of the Variety of Specialisations


In this section, we prove Prop.1.15 and Theorem 1.17.


Proof of Prop.1.15. Fix an S-basis {e1, e2, e3} for V , and with respect to this basis, let q1 denote
the quadratic form given by (x1e1 + x2e2 + x3e3) 7−→ x1x2 + x2


3. It is easy to see that this quadratic
form is semiregular. We show that any semiregular quadratic form q can be moved to q1 i.e., that
∃ g ∈ GL(V ) such that g · q = q1.


By Prop.3.17, Chap.IV, [2], there exists a basis {e′1, e′2, e′3} for V such that q restricted to the submod-
ule generated by e′1 and e′2 is regular and further such that q(e′3) ∈ S∗, bq(e


′
1, e


′
2) = 1 and bq(e


′
1, e


′
3) =


0 = bq(e
′
2, e


′
3). Let g′ ∈ GL(V ) be the automorphism that maps e′i onto the ei for each i and consider


the quadratic form q′ := g′ · q. Then by definition of the GL(V )-action on the set Quad(V ) of quadratic
S-forms on V we have q′(e3) ∈ S∗, bq′(e1, e2) = 1 and bq′(e1, e3) = 0 = bq′(e2, e3). So if we assume that
q′(ei) = λi (⇔ q(e′i) = λi), then q′(x1e1 + x2e2 + x3e3) = λ1x


2
1 + λ2x


2
2 + λ3x


2
3 + x1x2 ∀ xi ∈ S. Thus


it is enough to show that q′ can be moved to q1. We look for an invertible matrix g′′ = (uij) ∈ GL(V )
such that g′′ · q′ = q1. Writing this condition equivalently as q′ = (g′′)


−1 · q1 and comparing the poly-
nomials in the xi gives 6 equations in terms of the uij and the λi which are to be satisfied. We choose
the uij as follows. First set u11 = u22 = 0 and let u12 ∈ S∗ be a free parameter. Since every ele-
ment of S has square roots in S, it makes sense to choose u31 = ±


√
λ1 and u32 = ±


√
λ2. We let


α = 1 + 2u31u32, β = 1 − 2u31u32 and u21 = β/u12. Since q′ = g · q and since q is semiregular, q′ is
also semiregular. Its half-discriminant relative to the present basis of V is (remembering that λ3 ∈ S∗)
dq′(e1, e2, e3) = λ3.(4λ1λ2 − 1) ∈ S∗. This implies that αβ = 1 − 4λ1λ2 ∈ S∗ =⇒ α, β ∈ S∗. There-


fore it makes sense to define u33 = ±
√


(βλ3)/α, u13 = −2u31u33u12/β and u23 = −2u32u33/u12. Note
that u33 ∈ S∗. A computation shows that the determinant of the matrix g′′ = (uij) defined above is
−u33α ∈ S∗ and hence g′′ is invertible. It is also easily checked that g′′ · q′ = q1. Q.E.D., Prop.1.15.


Proof of assertion (2) of Theorem 1.17. (We shall not prove assertion (1) since it is well-
known). Recall from the discussion on semiregular forms (page 24, Section 4) that the open subscheme
Quadsr


V corresponds to localisation by the polynomial P3 and that this polynomial is prime as an element
of k[ζi, ζij ] ∼= k[QuadV ]. Here a quadratic form q corresponding to the point (λi, λij) ∈ A


6
k is given by


(x1, x2, x3) 7→ Σiλix
2
i + Σi<jλijxixj . For ease of readability (and typesetting !) let us denote the closure


T of a subset T (given the reduced closed subscheme structure) by 〈T 〉 in what follows. Since Quad
(1)
V


is the same as the variety underlying the open subscheme Quadsr
V of semiregular quadratic forms, that


〈Quad
(1)
V 〉 = QuadV follows from the fact that QuadV is irreducible.


By assertion (1) of the present Theorem, QuadV is the disjoint union of the Quad
(i)
V ; therefore


〈Quad
(1)
V 〉\Quad


(1)
V is the disjoint union of {Quad


(i)
V |2 ≤ i ≤ 4} and also equals the closed subset Z(P3)


defined by the vanishing of P3. An explicit computation shows that the dimension of the stabilizer of
q(2) in GL(V ) is 4. Since Quad


(2)
V is an open dense subvariety of 〈Quad


(2)
V 〉 ⊂ V (P3), its closure is thus


5-dimensional. But since P3 is an irreducible polynomial, Z(P3) is also an irreducible 5-dimensional


subvariety. It follows that 〈Quad
(2)
V 〉 = 〈Quad


(1)
V 〉\Quad


(1)
V .


Since Quad
(2)
V is smooth in its closure (= Z(P3) as seen above), the singularities of its closure are


contained in Quad
(3)
V ∪Quad


(4)
V which consists of quadratic forms that are perfect squares i.e., squares of


linear forms. These singularities may be identified with points (λi, λij) ∈ A
6
k
∼= QuadV at which all the


partial derivatives of P3 vanish. A simple computation shows that this set is the symmetric determinantal
variety given by the vanishing of the (2×2)-minors of the matrix of the symmetric bilinear form associated
to the generic quadratic form given by (x1, x2, x3) 7→ Σiζix


2
i +Σi<jζijxixj ; but it can also be shown that


this set precisely corresponds to the perfect squares. Therefore Sing (〈Quad
(2)
V 〉) = 〈Quad


(2)
V 〉\Quad


(2)
V .


That 〈Quad
(i+1)
V 〉 = 〈Quad


(i)
V 〉\Quad


(i)
V for i = 2 follows from the above and the obvious fact that


any quadratic form can be specialised to the zero quadratic form. The case i = 3 is trivial.
To see that 〈Quad


(3)
V 〉 is smooth if Char(k)=2, we first note from the above and assertion (1) of the


present Theorem that the closure of Quad
(3)
V consists of perfect squares. Since char(k)=2, under the


identification QuadV
∼= A


6
k, the perfect squares are seen to correspond to the copy of A


3
k in A


6
k given by


the vanishing of the last three coordinates λij , 1 ≤ i < j ≤ 3.


To see that the zero quadratic form is a singularity of 〈Quad
(3)
V 〉 if char(k) 6= 2, we note from the


above that 〈Quad
(3)
V 〉 is defined by the same equations that define the singularities of Z(P3) and is a


certain symmetric determinantal variety. It is a well-known fact—an application of Standard Monomial
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Theory (for e.g., see [10] or [11])—that the ideal defining these equations is itself reduced, i.e., it is the
ideal of the variety. Checking the Jacobian criterion now shows that the zero quadratic form is indeed a
singular point.


Proof of assertion (3) of Theorem 1.17. The proof will follow from a series of observations.
We remind the reader of the X-morphism θ : QuadV −→ Id-w-Sp-AzuW which was used to define the
isomorphism Θ (page 15, Section 3).


Claim 1: There are exactly 4 H-orbits in SpAzu.


By Theorem 1.11, any point of SpAzu is of the form t · θ(q). Its H-orbit is H · θ(q). There exists a unique
i, (1 ≤ i ≤ 4), and some g ∈ GL(V ) such that q = g · q(i). Consider the algebra isomorphism C0(g, 1) of
(1), Prop.2.4 and the induced isomorphism h(g, 1, q(i), q) of Prop.3.5. By definition, θ(q) = θ(g · q(i)) =
h(g, 1, q(i), q) · θ(q(i)) ⇒ H · θ(q) = H · θ(q(i)) so that there are atmost 4 orbits. To see that there are
atleast 4, we use the following result.


Claim 2. For q ∈ QuadV , we have Lw · Θ((GL(V ) · q) × {I4}) = Θ((GL(V ) · q) × Lw) = H · θ(q).
On the one hand, we have


Θ((GL(V ) · q) × Lw) = {t · θ(g · q) | t ∈ Lw and g ∈ GL(V )}
= {t · (h(g, 1, q, g · q) · θ(q)) | t ∈ Lw and g ∈ GL(V )}
⊂ H · θ(q).


Conversely take any h · θ(q) ∈ H · θ(q). By Theorem 1.11, there exists a unique t′ ∈ Lw and a unique
q′ ∈ QuadV such that h · θ(q) = t′ · θ(q′). Therefore ((t′)


−1
.h) · θ(q) = θ(q′). Since k is algebraically-


and hence quadratically closed, by (b), Theorem 1.3, there exists g ∈ GL(V ) such that q′ = g · q and
(t′)


−1
.h = h(g, 1, q, q′). Hence h · θ(q) = t′ · θ(g · q) = Θ(g · q, t′) ⇒ H · θ(q) ⊂ Θ((GL(V ) · q) × Lw).


This settles Claim 2. As for Claim 1, if q, q′ ∈ QuadV are such that their GL(V )-orbits are distinct, then
because Θ is an isomorphism, Claim 2 shows that H · θ(q) is distinct from H · θ(q′).


Claim 3. For each i, with 1 ≤ i ≤ 4, 〈Quad
(i)
V × Lw〉 = 〈Quad


(i)
V 〉 × Lw.


If f : X −→ Y is a smooth morphism and U →֒ Y is an open subset, then f−1(〈U〉) = 〈f−1(U)〉. Since


Lw −→ Spec(k) is smooth, so is the induced morphism 〈Quad
(i)
V 〉 × Lw −→ 〈Quad


(i)
V 〉. Taking f to be


this morphism and U = Quad
(i)
V gives Claim 3.


Claim 4. The GL(V )-stratification of QuadV induces a GL(V )-stratification of QuadV × Lw


(the GL(V )-action on Lw being taken to be trivial) with strata given by (QuadV × Lw)(i) :=


Quad
(i)
V × Lw, (1 ≤ i ≤ 4).


To prove Claim 4, the only thing that needs to be checked is that


〈(QuadV × Lw)(i+1)〉 = 〈(QuadV × Lw)(i)〉\(QuadV × Lw)(i).


This follows by applying Claim 3 twice:


〈(QuadV × Lw)(i+1)〉 = 〈Quad
(i+1)
V × Lw〉 = 〈Quad


(i+1)
V 〉 × Lw = (〈Quad


(i)
V 〉\Quad


(i)
V ) × Lw


= 〈Quad
(i)
V 〉 × Lw\Quad


(i)
V × Lw = 〈(QuadV × Lw)(i)〉\(QuadV × Lw)(i).


Now according to Claim 2, we have SpAzu(i) = Θ(GL(V ) · q(i) × Lw) = Θ((QuadV × Lw)(i)). This
combined with Claim 4 and the fact that Θ is an isomorphism completes the proof of assertion (3) of
Theorem 1.17. Q.E.D., Theorem 1.17.
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(1961)


[9] Robin Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, GTM 52 (Springer-
Verlag, New York)


[10] V. Lakshmibai and C. S. Seshadri, Geometry of G/P – II. Proc. Ind. Acad. Sci. 87 A, 1978, pp.
1–54.


[11] C. DeConcini and C. Procesi, A Characteristic-free approach to invariant theory. Advances in
Math. 21, 1976, pp. 330–354.






