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Abstract. Let A be a central simple algebra over the field of ratio-
nal functions in one variable over an arbitrary field of characteristic
different from 2. If the Schur index of A is not divisible by the
characteristic and its ramification locus has degree at most 3, then
A is Brauer-equivalent to the tensor product of a quaternion alge-
bra and a constant central division algebra D. The index of A is
computed in terms of D and the ramification of A. The result is
used to construct various examples of division algebras over rational
function fields.


Introduction


The Brauer group of the field of rational fractions in one variable
over an arbitrary field F of characteristic zero has been described by
D.K. Faddeev in [5]. To recall his result, we use the following notation:
for any closed point p of the projective line P1


F , let Fp denote the residue
field at p. Let X(Fp) be the character group of the absolute Galois group
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Γp of Fp, i.e. the group of continuous homomorphisms


X(Fp) = Hom(Γp, Q/Z).


For each closed point p on P1
F , there is a map ∂p : BrF (t) → X(Fp)


known as the ramification (or residue) map at p (see [6, p. 18]). Faddeev
proved that the following sequence is exact:


(0.1) 0 → Br F → BrF (t)
⊕∂p−−→


⊕


p∈P
1(1)
F


X(Fp)
∑


cor−−−→ X(F ) → 0,


where
∑


cor is the sum of the corestriction (or norm) maps X(Fp) →
X(F ) and P


1(1)
F is the set of closed points on P1


F . See also [6, Exam-
ple 9.21, p. 26], where a version in nonzero characteristic is given. If
the characteristic of F is p, Faddeev’s exact sequence still holds if the
Brauer groups and the character groups are replaced by their subgroups
of prime-to-p torsion.


Our aim is to obtain information on the index of Brauer classes in
BrF (t) from their image under the ramification map ∂ = ⊕∂p. We
achieve this goal in some very specific cases. To describe them, we use
the following terminology:


Definition. Let


R = Ker
(


∑


cor :
⊕


p∈P
1(1)
F


X(Fp) → X(F )
)


.


The elements in R are called ramification sequences. For ρ = (χp) ∈ R,
the support of ρ is


supp(ρ) = {p ∈ P
1(1)
F | χp 6= 0},


and χp is the component of ρ at p. Viewing supp(ρ) as a divisor on P1
F ,


we may consider the degree of the support of ρ:


deg supp(ρ) =
∑


p∈supp(ρ)


deg p.


If p is a rational point (i.e., Fp = F ), then cor : X(Fp) → X(F )
is the identity map. Therefore, the support of a ramification sequence
cannot consist of a single rational point,


deg supp(ρ) ≥ 2 for all ρ ∈ R.


In this work, we consider only 2-torsion ramification sequences (and
may therefore assume only char F 6= 2). Their set is denoted by 2R. For
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ρ ∈ 2R with deg supp(ρ) = 2, we determine in Corollaries 4.2 and 4.3
the quaternion F (t)-algebras Q such that ∂(Q) = ρ. If α ∈ Br F (t) has
torsion prime to charF and the same ramification sequence ρ, then by
Faddev’s exact sequence (0.1) there is a central simple F -algebra A and
a quaternion F (t)-algebra Q such that α is the Brauer class of A⊗F Q,


α = [A ⊗F Q] ∈ BrF (t).


The index of α is determined in terms of A and ρ in Theorem 4.1.
In Section 5, we obtain similar results for ρ ∈ 2R with deg supp(ρ) =


3. In this case, we show in Corollary 5.2 that there is up to isomorphism
a unique quaternion F (t)-algebra Qρ such that


∂(Qρ) = ρ.


For any central simple F -algebra A, the index of A⊗F Qρ is computed in
Theorem 5.1 in terms of A and a quartic field extension Eρ/F canonically
associated with ρ.


The existence of quaternion F (t)-algebras with given 2-torsion ram-
ification sequence ρ with support of degree at most 3 is also shown in a
recent paper of Kunyavskĭı, Rowen, Tikhonov and Yanchevskĭı [9, Corol-
lary 2.10], except in the case where the support consists of a single point
of degree 3. Ramification sequences of quaternion algebras are further
discussed in [9], which also gives (in Corollary 2.14) an example due to
Faddeev of a ramification sequence ρ ∈ 2R with deg supp(ρ) = 4 which
is not the ramification sequence of a quaternion F (t)-algebra.


The main ingredients in the proofs of our main results are a very
general observation on cochains with values in a left principal ideal do-
main (Section 1) and a reduction of 2-torsion ramification sequences ρ
with deg supp(ρ) ≤ 3 to a normal form, which is achieved in Section 3.
Although the restriction to 2-torsion elements in R is not necessary for
some of the reduction steps in Section 3, an example given in an appen-
dix to this paper shows that even for 3-torsion ramification sequences
the general principles of Section 1 lead to conditions which are much
more difficult to handle.


1. Cochains in the ring of fractions of a left PID


This section presents the basic tool that will be used in subsequent
sections to prove that certain tensor products are division algebras. As
it is very general, we cast it in the setting of left Principal Ideal Domains
(PID) although we apply it only in the case of polynomial rings in one
indeterminate over division rings.
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Let R be a left PID, with Ore ring of fractions Q,


Q = {b−1a | a, b ∈ R, b 6= 0}.
Let G be a finite group of automorphisms of R, that we extend to Q.


Lemma. Suppose (cσ)σ∈G is a family of elements in Q× such that


c−1
στ σ(cτ )cσ ∈ R for all σ, τ ∈ G.


There exists q ∈ Q× such that


σ(q)cσq−1 ∈ R for all σ ∈ G.


Proof. From the definition of Q, it follows that for each σ ∈ G the
left ideal


Iσ = {g ∈ R | σ(g)cσ ∈ R}
is nonzero. As R is left Ore (as it is a left PID) and G is finite, the
intersection


I =
⋂


σ∈G


Iσ = {g ∈ R | σ(g)cσ ∈ R for all σ ∈ G}


is a nonzero left ideal. Let q ∈ R be such that


I = Rq,


hence q 6= 0. For all τ ∈ G we have τ(q)cτ ∈ R since q ∈ I. Moreover,
for σ ∈ G,


σ
(


τ(q)cτ


)


cσ = στ(q)σ(cτ )cσ =
(


στ(q)cστ


)(


c−1
στ σ(cτ )cσ


)


.


The first factor on the right side lies in R because q ∈ I, and the second
factor lies in R by hypothesis. Therefore,


σ
(


τ(q)cτ


)


cσ ∈ R for all σ, τ ∈ G,


hence
τ(q)cτ ∈ I for all τ ∈ G,


and therefore τ(q)cτ ∈ Rq for all τ ∈ G. ¤


The only application of this lemma in the present paper is the fol-
lowing: Let E be a (finite-dimensional) central division algebra over
an arbitrary field K, and let x be an indeterminate over K. The ring
E[x] = E ⊗K K[x] is a left (and right) PID with Ore ring of fractions
E(x) = E⊗K K(x). Let α be an automorphism of finite order n of E[x],
and let g ∈ K[x]. Consider the algebra


(1.1) ∆(E(x), α, g) = E(x) ⊕ E(x)y ⊕ · · · ⊕ E(x)yn−1
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where multiplication is defined by


yn = g and yf = α(f)y for f ∈ E(x).


This algebra may be viewed as the factor ring of the skew-polynomial
ring E(x)[y; α] by the ideal generated by yn − g.


Theorem 1.1. Suppose n is a prime and α does not restrict to the
identity on K(x). The algebra ∆(E(x), α, g) is a division algebra if and
only if there is no f ∈ E[x] such that


(1.2) αn−1(f) . . . α(f)f = g.


Proof. By [7, Theorem 1.3.16, p. 17] (see also [1, Theorem 11.12,
p. 184]), the algebra ∆(E(x), α, g) is not division if and only if there
exists f ∈ E(x) for which (1.2) holds. Therefore, it suffices to show that
if (1.2) holds for some f ∈ E(x), then it also holds for some f ∈ E[x].


Suppose f ∈ E(x)× satisfies (1.2), and let


cαi = αi−1(f) . . . α(f)f for i = 0, . . . , n − 1.


Then, for i, j = 0, . . . , n − 1,


c−1
αi+jα


i(cαj )cαi =


{


1 if i + j < n,


g if i + j ≥ n.


We may therefore apply the lemma to find q ∈ E(x)× such that


α(q)cαq−1 ∈ E[x].


Let f ′ = α(q)cαq−1 = α(q)fq−1. We have


αn−1(f ′) . . . α(f ′)f ′ = qgq−1 = g,


hence f ′ ∈ E[x] satisfies (1.2). ¤


We consider two types of examples, where ∆(E(x), α, g) turns out to
be the tensor product of a “constant” division algebra and a quaternion
algebra. One more example is discussed in the Appendix.


1.1. Quaternion algebras with a constant slot. Let D be a
central division algebra over a field F of characteristic different from 2,
and let a ∈ F× be such that D does not contain a square root of a.
Then E = D ⊗F F (


√
a) is a central division algebra over K = F (


√
a),


and the nontrivial automorphism of K/F extends to an automorphism
α of E which is the identity on D. Let t be an indeterminate over F
and g ∈ F [t]. The algebra ∆(E(t), α, g) of (1.1) is a tensor product:


∆(E(t), α, g) = D ⊗F (a, g)F (t).
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Theorem 1.1 shows that this tensor product has zero divisors if and only
if there exists f ∈ E[t] such that


α(f)f = g.


Since the degree of the left side is even, the following result is clear:


Corollary 1.2. Let D be a central division F -algebra which does
not contain a square root of a. For every g ∈ F [t] of odd degree, the
tensor product D ⊗F (a, g)F (t) is a division algebra.


We now consider a case where deg g = 2.


Proposition 1.3. Let D be a central division F -algebra which does
not contain a square root of a, and let b ∈ F×. The tensor product
D ⊗F (a, t2 − b)F (t) is not a division algebra if and only if D contains


an element s such that s2 = ab.


Proof. As observed in the beginning of this subsection, the tensor
product D ⊗F (a, t2 − b)F (t) is not a division algebra if and only if there
exists f ∈ E[t] such that


(1.3) α(f)f = t2 − b.


Comparing degrees, we see that if f exists it must be of the form


f = ut + v for some u, v ∈ E.


Substituting in (1.3), we obtain


(1.4) α(u)u = 1, α(u)v + α(v)u = 0, α(v)v = −b.


Letting x =
√


aα(u)v, computation shows that the existence of u, v ∈ E
satisfying (1.4) is equivalent to the existence of u, x ∈ E satisfying


(1.5) α(u)u = 1, α(x) = uxu−1, x2 = ab.


If D contains s such that s2 = ab, then (1.5) holds with u = 1 and
x = s.


Conversely, suppose (1.5) holds for some u, x ∈ E. If u = 1, then
α(x) = x hence x ∈ D and we may set s = x. If u 6= 1, then letting
w = u − 1 ∈ E× we have


α(w)u = 1 − u = −w.


For s = wxw−1, it follows that


α(s) = α(w)α(x)α(w)−1 = α(w)uxu−1α(w)−1 = wxw−1 = s,


so s ∈ D, and s2 = ab. ¤
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1.2. Quaternion algebras with an indeterminate slot. Let D
be a central division algebra over a field F of characteristic different
from 2 and let t be an indeterminate over F . For g ∈ F [t], we may
consider the tensor product D ⊗F (t, g)F (t) as a special case of the con-
struction in (1.1):


D ⊗F (t, g)F (t) = ∆
(


D(x), α, g(x2)
)


where x2 = t and α is the automorphism of D(x) defined by


α(x) = −x and α(d) = d for d ∈ D.


Therefore, Theorem 1.1 shows that this tensor product is not a division
algebra if and only if there exists f ∈ D[x] such that


(1.6) α(f)f = g(x2).


We just consider one example where deg g = 3.


Proposition 1.4. Let D be a central division F -algebra and a, b,
c ∈ F . The tensor product


D ⊗F (t, a2 − bt + ct2 − t3)F (t)


is not a division algebra if and only if D contains an element s such that


(1.7) s4 − 2cs2 − 8as + (c2 − 4b) = 0.


Proof. Let g = a2 − bt + ct2 − t3 ∈ F [t]. If s ∈ D satisfies (1.7),
then the polynomial


f = a + 1
2(s2 − c)x + sx2 + x3


satisfies α(f)f = g(x2), hence, by the observations at the beginning of
this subsection, the tensor product D⊗(t, g)F (t) is not a division algebra.


Conversely, if D⊗(t, g)F (t) is not a division algebra, then (1.6) holds
for some f ∈ D[x], which is necessarily of the form


f = rx3 + sx2 + ux + v for some r, s, u, v ∈ D.


Comparing the leading coefficients and the constant terms in (1.6) yields


r2 = 1 and v2 = a2.


Changing the sign of f and/or changing f into α(f) if necessary, we
may assume r = 1 and v = a. Expanding (1.6) then yields the following
relations between s and u:


s2 − 2u = c, u2 − 2as = b.


Eliminating u, we obtain (1.7). ¤
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Remark. The cubic resolvent of the quartic equation (1.7) is g(t) =
0. The conceptual relation between g and the quartic polynomial in
(1.7) will be made explicit in Section 5.


2. Transformations of the projective line


A choice of projective coordinates in the projective line P1
F over an


arbitrary field F is an identification


P1
F = Proj(F [u, v])


where u, v are indeterminates of degree 1 over F . When projective
coordinates are chosen, the rational points of P1


F are identified with
F ∪ {∞} in such a way that a ∈ F corresponds to the homogeneous
ideal (u − av)F [u, v], and ∞ to vF [u, v]. We then identify the field of
rational functions on P1


F with F (t), where t = uv−1, and P1
F \ {∞} =


A1
F = Spec(F [t]).


It is well-known that the group of transformations of P1
F is simply


transitive on the triples of rational points, see for instance [2, § III.3].
In this section, we prove an analogous result for divisors consisting of a
single point of degree 3, and for divisors consisting of a rational point
and a point of degree 2.


For clarity, we treat separately the various cases, although a uniform
proof should be possible.


Proposition 2.1. Let p, p′ be rational points on P1
F and q, q′ be


closed points of degree 2. The projective transformations of P1
F which


map p to p′ and q to q′ are in one-to-one correspondence with the F -
isomorphisms Fq


∼→Fq′.


Proof. After a projective transformation, we may assume p = p′


and choose projective coordinates such that p is the point at infinity. The
projective transformations which leave p invariant then are the transfor-
mations of the affine line A1


F .
Viewing q and q′ as closed points on A1


F = Spec(F [t]), consider
monic irreducible polynomials π, π′ ∈ F [t] of degree 2 such that


q = πF [t] and q′ = π′F [t].


The affine transformation t 7→ at + b (with a, b ∈ F , a 6= 0) maps q to
q′ if and only if


(2.1) π(at + b)F [t] = π′(t)F [t].
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Let τ ′ ∈ Fq′ be the image of t under the canonical epimorphism F [t] →
F [t]/(π′) = Fq′ . Equation (2.1) holds if and only if π is the minimal
polynomial of aτ ′ + b over F . Since every element in Fq′ has the form
aτ ′ + b for some a, b ∈ F , affine transformations which map q to q′ are
in one-to-one correspondence with the elements in Fq′ whose minimal


polynomial is π, hence also with the F -isomorphisms Fq
∼→Fq′ . ¤


Proposition 2.2. Let r, r′ be closed points of degree 3 on P1
F . The


projective transformations of P1
F which map r to r′ are in one-to-one


correspondence with the F -isomorphisms Fr
∼→Fr′.


Proof. Choose coordinates to represent P1
F as Proj(F [u, v]), where


u, v are indeterminates of degree 1. We may then find homogeneous
irreducible polynomials π, π′ ∈ F [u, v] of degree 3 such that


r = πF [u, v] and r′ = π′F [u, v].


After scaling, we may assume the coefficients of u3 in π and π′ are 1.
The projective transformation u 7→ au + bv, v 7→ cu + dv (where a, b, c,
d ∈ F and ad − bc 6= 0) maps r to r′ if and only if


π(au + bv, cu + dv)F [u, v] = π′(u, v)F [u, v]


or, equivalently (after de-homogeneizing),


(2.2) π(at + b, ct + d)F [t] = π′(t, 1)F [t].


Let τ ′ ∈ Fr′ be the image of t under the canonical epimorphism F [t] →
F [t]/


(


π′(t, 1)
)


= Fr′ . Equation (2.2) holds if and only if π(aτ ′ + b, cτ ′ +


d) = 0, which means that π(t, 1) is the minimal polynomial of aτ ′+b
cτ ′+d . As


in the proof of Proposition 2.1, it now suffices to establish the following
result:


Claim: For every x ∈ Fr′ , x /∈ F , there exist a, b, c, d ∈ F , uniquely
determined up to a scalar factor, such that x = aτ ′+b


cτ ′+d and ad − bc 6= 0.


Since τ ′ /∈ F and x 6= 0, we have


dimF (Fτ ′ + F ) = dimF x(Fτ ′ + F ) = 2,


hence, since dimF Fr′ = 3,


dimF


(


(Fτ ′ + F ) ∩ x(Fτ ′ + F )
)


≥ 1.


If the inequality is strict, then


(2.3) x(Fτ ′ + F ) = Fτ ′ + F,







10 L.H. ROWEN, A.S. SIVATSKI, AND J.-P. TIGNOL


hence x ∈ Fτ ′ + F . Since x /∈ F , it follows that Fx + F = Fτ ′ + F ,
hence τ ′ ∈ Fx+F and (2.3) implies that Fτ ′ +F is a subalgebra of Fr′ .
This is a contradiction since τ ′ has degree 3. Therefore,


dimF


(


(Fτ ′ + F ) ∩ x(Fτ ′ + F )
)


= 1.


We may thus find a, b, c, d ∈ F , uniquely determined up to a scalar,
such that aτ ′ + b = x(cτ ′ + d) 6= 0, hence


x =
aτ ′ + b


cτ ′ + d
.


If ad − bc = 0, then x ∈ F , a contradiction. ¤


Viewing projective transformations as changes of projective coordi-
nates, we readily deduce from Propositions 2.1 and 2.2 (and from the
“second fundamental theorem of projective geometry” [2, § III.3]):


Corollary 2.3. (1) Let p1, p2, p3 ∈ P
1(1)
F be distinct rational


points and let λ1, λ2, λ3 ∈ F [u, v] be homogeneous polynomials
of degree 1 which are pairwise distinct up to scalars. There is
a choice of projective coordinates P1


F = Proj(F [u, v]) such that


p1 = λ1F [u, v], p2 = λ2F [u, v], p3 = λ3F [u, v].


(2) Let p ∈ P
1(1)
F be a rational point and q ∈ P


1(1)
F be a point of


degree 2. Let λ ∈ F [u, v] be a homogeneous polynomial of de-
gree 1 and π ∈ F [u, v] be a homogeneous polynomial of degree 2
such that Fq ' F [t]/


(


π(t, 1)
)


. There is a choice of projective


coordinates P1
F = Proj(F [u, v]) such that


p = λF [u, v], q = πF [u, v].


(3) Let r ∈ P
1(1)
F be a point of degree 3 and π ∈ F [u, v] be a homo-


geneous polynomial of degree 3 such that Fr ' F [t]/
(


π(t, 1)
)


.


There is a choice of projective coordinates P1
F = Proj(F [u, v])


such that


r = πF [u, v].


3. 2-torsion ramification sequences


In this section, we assume that the characteristic of the base field F
is different from 2. We use projective transformations to set 2-torsion
ramification sequences with support of degree at most 3 into a standard
form.
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Let Γ be the absolute Galois group of F and µ2 = {±1} ⊂ F×. Since
char F 6= 2, we may identify the 2-torsion characters of Γ with square
classes of F , via the isomorphisms


2X(F ) = Hom(Γ, Z/2Z) = H1(Γ, µ2) = F×/F×2.


A ramification sequence ρ ∈ 2R can therefore be viewed as an element
in the kernel of the norm map


(3.1)
⊕


p∈P
1(1)
F


F×


p /F×2
p → F×/F×2.


Suppose first deg supp(ρ) = 2.


Proposition 3.1. Let ρ ∈ 2R be a 2-torsion ramification sequence
with deg supp(ρ) = 2.


(1) If supp(ρ) = {p1, p2} (two distinct rational points), there is a
nonsquare a ∈ F× and a choice of projective coordinates P1


F =
Proj(F [u, v]) such that


p1 = (u − av)F [u, v], p2 = (u + av)F [u, v],


and the nontrivial components of ρ are


aF×2 at p1, aF×2 at p2.


(2) If supp(ρ) = {q} with deg q = 2, there are nonsquares a, b ∈ F×


in different square classes and a choice of projective coordinates
P1


F = Proj(F [u, v]) such that


q = (u2 − bv2)F [u, v]


and the component of ρ at q is aF×2
q .


Proof. (1) The nontrivial components of ρ are square classes in
Fp1 = F and Fp2 = F . These square classes coincide, since ρ is in the
kernel of the norm map (3.1). We may therefore find a ∈ F× such that
the nontrivial components of ρ are aF×2 at p1 and p2. By Corollary 2.3,
we may choose projective coordinates such that p1 = (u−av)F [u, v] and
p2 = (u + av)F [u, v]. This completes the proof of (1).


(2) We may find a nonsquare b ∈ F× such that Fq ' F (
√


b), hence,
by Corollary 2.3, there are projective coordinates such that q = (u2 −
bv2)F [u, v]. The component of ρ at q is a square class in the kernel of
the norm-induced map


F×


q /F×2
q → F×/F×2.
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As an application of Hilbert’s Theorem 90, it is easily seen that the
kernel of this map is the image of the map F×/F×2 → F×


q /F×2
q induced


by the inclusion F ⊂ Fq. (See [10, p. 202].) Therefore, there is a
nonsquare a ∈ F× such that the component of ρ at q is aF×2


q . ¤


We now turn to the case where the support of ρ has degree 3. Three
cases arise:


(I) supp(ρ) = {p1, p2, p3} where p1, p2, p3 are three distinct ratio-
nal points;


(II) supp(ρ) = {p, q} where p is a rational point and q is a point of
degree 2;


(III) supp(ρ) = {r}, a single point of degree 3.


In case (I), let aiF
×2 be the component of ρ at pi, for i = 1, 2,


3. Since these components are nontrivial, ai /∈ F×2 for all i. However,
a1a2a3 ∈ F×2 since ρ is in the kernel of the norm map (3.1), hence we
may substitute a1a2 for a3. Therefore, discarding the trivial components
of ρ, we may write


ρ = (a1F
×2
p1


, a2F
×2
p2


, a1a2F
×2
p3


).


Applying Corollary 2.3, we may choose projective coordinates so that
∞ 6= p1, p2, p3, and in fact we may assume


p1 = (t − a1)F [t], p2 = (t − a2)F [t], p3 = (t − a1a2)F [t].


In case (II), let y ∈ F×
q be such that the component of ρ at q is


yF×2
q . Since ρ is in the kernel of the norm map (3.1), the component of


ρ at p is
NFq/F (y)F×2 ∈ F×/F×2.


Since this component is not trivial, we have y /∈ F . Let X2 − mX + a
be the minimal polynomial of y over F , so a = NFq/F (y) and


ρ = (aF×2
p , yF×2


q ).


We may apply Corollary 2.3 to choose coordinates such that


p = (t − a)F [t], q = (t2 − mt + a)F [t].


In case (III), let x ∈ F×
r be a nonsquare such that the component of


ρ at r is xF×2
r ,


ρ = (xF×2
r ).


Since ρ is in the kernel of the norm map (3.1), we have


NFr/F (x) = a2 for some a ∈ F×.
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If x ∈ F or if Fr/F is not separable, then a2 = x3, and we get a
contradiction since x /∈ F×2


r . Let X3 − cX2 + bX − a2 be the minimal
polynomial of x over F . This is an irreducible separable polynomial in
F [X]. By Corollary 2.3, we may assume


r = (t3 − ct2 + bt − a2)F [t].


We summarize the special choice of coordinates as follows:


Proposition 3.2. In all the cases (I), (II), (III), we may choose
projective coordinates in P1


F so that ∞ /∈ supp(ρ) and for each p ∈
supp(ρ) the nontrivial component of ρ at p is τF×2


p , where τ is the
image of t under the canonical map F [t] → F [t]/p.


Proof. Corollary 2.3 yields projective coordinates for which the
ramification points have the required form. In case (II), the element y ∈
F×


q is thus identified with one of the roots of X2−mX+a in F [t]/q. If it is
not identified with τ , Proposition 2.1 still allows a change of coordinates
which leaves p and q invariant and maps y to τ . Similarly, in case (III)
we may assume x ∈ F×


r is identified with τ by Proposition 2.2. ¤


4. Algebras with 2-torsion ramification sequence of degree 2


In this section, the base field F is assumed to be of characteristic
different from 2. Let ρ ∈ 2R be a 2-torsion ramification sequence whose
support has degree 2. Proposition 3.1 shows that, after a change of
projective coordinates, we may assume that either


(I) there exists a nonsquare a ∈ F× such that supp(ρ) = {a,−a}
and the nontrivial components of ρ are aF×2, or


(II) there exist nonsquares a, b ∈ F× in different square classes
such that supp(ρ) = {q = (u2 − bv2)F [u, v]} and the nontrivial
component of ρ is aF×2


q .


In each case, it is not difficult to find a quaternion F (t)-algebra Q with
ramification ∂(Q) = ρ, as we proceed to show.


Recall that for any closed point p ∈ P
1(1)
F , the image of a quaternion


algebra (f, g)F (t) under the ramification map ∂p is given as follows:


(4.1) ∂p(f, g)F (t) = (−1)v(f)v(g)fv(g)g−v(f)F×2
p ∈ F×


p /F×2
p ,


where v is the discrete valuation of F (t) corresponding to p and denotes
the residue map from the valuation ring of v to its residue field Fp. This
follows from the description of the residue map (tame map) in Milnor’s
K-theory and the functoriality of the norm residue homomorphism, see
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[3, Theorem 2.3]. Using this description, it is easily verified that ∂(a, t2−
a2)F (t) is as in (I) above, and that ∂(a, t2−b)F (t) is as in (II). Therefore,
if α ∈ Br F (t) has torsion prime to charF and a ramification sequence
∂(α) as in (I) (resp. (II)), then by Faddeev’s exact sequence (0.1), there
exists a central simple F -algebra A such that


α = [A ⊗F (a, t2 − a2)F (t)]
(


resp. α = [A ⊗F (a, t2 − b)F (t)]
)


.


We first compute the index indα in both cases simultaneously by con-
sidering quaternion algebras of the type (a, t2 − b)F (t) where a, b ∈ F×


satisfy a /∈ F×2 and ab /∈ F×2 (thus allowing b = a2). The specific
features of each case will be discussed next.


Theorem 4.1. For every central simple F -algebra A and a, b ∈ F×


such that a /∈ F×2 and ab /∈ F×2,


ind(A ⊗F (a, t2 − b)F (t)) = 2 gcd
{


ind
(


A ⊗ F (
√


a)
)


, ind
(


A ⊗ F (
√


ab)
)}


.


Note that if a ∈ F×2 or ab ∈ F×2, then (a, t2−b)F (t) = (ab, t2−b)F (t)


is split, hence obviously


ind(A ⊗F (a, t2 − b)F (t)) = indA.


Proof. By general principles (see for instance [4, p. 68]), for any
quaternion F (t)-algebra Q we have


ind(A ⊗F Q) divides 2 ind(A)


and, similarly, substituting A ⊗F Q for A,


ind(A) = ind(A ⊗F Q ⊗F (t) Q) divides 2 ind(A ⊗F Q).


Therefore,


(4.2) ind(A ⊗F Q) ∈
{


1
2 indA, indA, 2 indA


}


.


Moreover, if ind(A ⊗F Q) = 1
2 indA, then letting D (resp. D′) be


a division algebra Brauer-equivalent to A (resp. A ⊗F Q), we have
deg D(t) = indA and deg D′ = 1


2 indA, hence


deg D(t) = deg(D′ ⊗F (t) Q).


Since D(t) and D′ ⊗F (t) Q are Brauer-equivalent, it follows that


D(t) ' D′ ⊗F (t) Q,


hence D(t) contains a subalgebra isomorphic to Q.
In the case where Q = (a, t2 − b)F (t), the last condition implies that


D(t) contains elements f , g such that fg = −gf and g2 = t2 − b. Since
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D(t) = D⊗F F (t), we may find f0, g0 ∈ F [t] and f1, g1 ∈ D[t] such that
f = f1f


−1
0 and g = g1g


−1
0 . Then, clearing denominators,


f1g1 = −g1f1 and g2
1 = (t2 − b)g2


0.


From these equations, it follows that the leading coefficient of g1 is in F
and that it anticommutes with the leading coefficient of f1, a contradic-
tion. Therefore, the choices in (4.2) restrict to


(4.3) ind(A ⊗F (a, t2 − b)F (t)) ∈ {indA, 2 indA}.
Clearly, ind(A ⊗F (a, t2 − b)F (t)) = 2 indA holds if and only if D ⊗F


(a, t2 − b)F (t) is a division algebra, which occurs if and only if D does


not contain a copy of F (
√


a) nor of F (
√


ab), by Proposition 1.3. Now,
by [4, p. 67], we have


ind
(


A ⊗ F (
√


a)
)


=


{


indA if F (
√


a) 6↪→ D,
1
2 indA if F (


√
a) ↪→ D.


Similarly,


ind
(


A ⊗ F (
√


ab)
)


=


{


indA if F (
√


ab) 6↪→ D,
1
2 indA if F (


√
ab) ↪→ D.


Summing up, we have ind(A ⊗ (a, t2 − b)F (t)) = 2 indA if and only if


ind
(


A ⊗ F (
√


a)
)


= indA = ind
(


A ⊗ F (
√


ab)
)


.


Therefore, by (4.3), ind(A ⊗ (a, t2 − b)F (t)) = indA if and only if


ind
(


A ⊗ F (
√


a)
)


= 1
2 indA or ind


(


A ⊗ F (
√


ab)
)


= 1
2 indA.


¤


We now consider separately the two cases for the support of the
ramification sequence.


4.1. Two rational points. Suppose ρ ∈ 2R is a ramification se-
quence whose support consists of two rational points. Let aF×2 be the
component of ρ at these two points.


Corollary 4.2. The quaternion algebras Q over F (t) with ∂(Q) =
ρ form a 1-parameter family. For any quaternion algebra Q in this
family and any central simple F -algebra A,


ind(A ⊗F Q) = 2 ind
(


A ⊗F F (
√


a)
)


.
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Proof. By Proposition 3.1, we may assume the two rational points
in the support of ρ are a and −a, so that


∂(a, t2 − a2)F (t) = ρ.


Now, assume Q is a quaternion F (t)-algebra such that ∂(Q) = ρ. By
Faddeev’s exact sequence (0.1), there is a central simple F -algebra B
such that


[Q] = [B ⊗F (a, t2 − a2)F (t)] in BrF (t).


Then ind(B ⊗F (a, t2 − a2)F (t)) = 2, and Theorem 4.1 implies that B


is split by F (
√


a). Therefore, B is Brauer-equivalent to a quaternion
algebra (a, λ)F for some λ ∈ F×, and


Q '
(


a, λ(t2 − a2)
)


F (t)
.


For any central simple F -algebra A, the index of A ⊗F Q is computed
by Theorem 4.1:


ind(A ⊗F Q) = ind(A ⊗F (a, λ)F ⊗F (a, t2 − a2)F (t)) =


2 ind
(


A ⊗F (a, λ)F ⊗ F (
√


a)
)


.


¤


Remark. If the two rational points in the support of ρ are chosen
to be 0 and ∞, the family of quaternion algebras with ∂(Q) = ρ is


{(a, λt)F (t) | λ ∈ F×}.
The formula ind(A⊗F (a, λt)F (t)) = 2 ind


(


A⊗ F (
√


a)
)


was obtained by
a different proof in [11, Proposition 2.4].


4.2. Single point of degree 2. Suppose ρ ∈ 2R is a ramification
sequence whose support consists of a single point q of degree 2.


Corollary 4.3. The quaternion F (t)-algebras Q with ∂(Q) = ρ
form two 1-parameter families.


Proof. As observed in Proposition 3.1, we may find nonsquares a,
b ∈ F× in different square classes such that q = (u2 − bv2)F [u, v], hence


Fq = F (
√


b), and the nontrivial component of ρ is aF×2
q . Then,


∂(a, t2 − b)F (t) = ρ.


If Q is a quaternion F (t)-algebra with ∂(Q) = ρ, then by Faddeev’s
exact sequence (0.1) there exists a central simple F -algebra B such that


[Q] = [B ⊗F (a, t2 − b)F (t)] in BrF (t).
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By Theorem 4.1, the equation ind(B⊗F (a, t2−b)F (t)) = 2 implies that B


is split by F (
√


a) or by F (
√


ab), hence B is Brauer-equivalent to (a, λ)F


or to (ab, λ)F for some λ ∈ F×. Therefore, we have either


Q '
(


a, λ(t2 − b)
)


F (t)
or Q '


(


ab, λ(t2 − b)
)


F (t)
.


¤


Remark. Of course, the two families in the corollary above are not
disjoint. For λ ∈ F× there exists µ ∈ F× such that


(


ab, λ(t2 − b)
)


F (t)
=


(


a, µ(t2 − b)
)


F (t)


if and only if (b, λ)F is split by F (
√


a). The easy proof is omitted.


Remark. As in Corollary 4.2, we may use Theorem 4.1 to determine
the index of A⊗F


(


a, λ(t2−b)
)


F (t)
for any λ ∈ F×, but the result depends


on the parameter λ:


ind
(


A ⊗F


(


a, λ(t2 − b)
)


F (t)


)


=


2 gcd
{


ind
(


A ⊗ F (
√


a)
)


, ind
(


A ⊗ (a, λ)F ⊗ F (
√


ab)
)}


.


Similarly,


ind
(


A ⊗F


(


ab, λ(t2 − b)
)


F (t)


)


=


2 gcd
{


ind
(


A ⊗ (ab, λ)F ⊗ F (
√


a)
)


, ind
(


A ⊗ F (
√


ab)
)}


.


5. Algebras with 2-torsion ramification sequence of degree 3


As in the preceding section, the base field F is assumed to be of
characteristic different from 2. Let ρ ∈ 2R be a 2-torsion ramification
sequence with support of degree 3. We use the same notation as in
Section 3, and assume projective coordinates have been chosen as in
Proposition 3.2. For each p ∈ supp(ρ), let Pρ ∈ F [t] be the monic
irreducible polynomial such that p = PpF [t]. Let also


Pρ =
∏


p∈supp(ρ)


Pp, Fρ = F [t]/PρF [t] =
∏


p∈supp(ρ)


Fp,


and let xρ ∈ Fρ be the image of t in Fρ. By Proposition 3.2, we have
ρ = xρF


×2
ρ . Moreover, as observed in Section 3, Fρ is an étale F -algebra.


With the notation and choice of coordinates above, it is readily ver-
ified that the quaternion algebra


(5.1) Q = (t,−Pρ)F (t)
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satisfies ∂Q = ρ in each case (I), (II), and (III). Therefore, if α ∈ Br F (t)
has torsion prime to charF and satisfies ∂α = ρ, then Faddeev’s exact
sequence (0.1) yields a central simple F -algebra A such that


α = [A ⊗F (t,−Pρ)F (t)].


In order to determine the index indα, we use a quartic étale F -
algebra Eρ canonically associated with ρ, viewed as the quadratic ex-
tension Fρ(


√
xρ)/Fρ. The construction of a quartic étale F -algebra from


a quadratic étale extension of a cubic étale F -algebra is discussed at
length in [8, §5]. We briefly recall the cohomological version of this
construction.


For any integer n, let Sn be the symmetric group on n elements.
The conjugation action of the wreath product S3 oS2 on its four Sylow
3-subgroups yields a map


s : S3 o S2 → S4.


Let Γ be the absolute Galois group of F . The Galois cohomology set
H1(Γ, S3 oS2) (for the trivial Γ-action) classifies the isomorphism classes
of quadratic extensions of cubic étale F -algebras, so ρ defines an element
in this set (corresponding to the extension Fρ(


√
xρ)/Fρ). Consider the


map induced by s,


s∗ : H1(Γ, S3 o S2) → H1(Γ, S4).


Since H1(Γ, S4) classifies quartic étale F -algebras up to isomorphism,
the image of ρ under this map defines a quartic étale F -algebra Eρ.


An explicit description of Eρ is given in [8, §5.4]. Note that in
each case (I, II or III), xρ generates Fρ as an F -algebra, with minimal
polynomial Pρ of the form


Pρ = t3 − ct2 + bt − a2 ∈ F [t].


(The norm NFρ/F (xρ) is a square because ρ lies in the kernel of the sum
of corestriction maps


⊕


p X(Fp) → X(F ).) Applying [8, Corollary 5.22],
we may describe Eρ as the quartic F -algebra generated by an element
with minimal polynomial


(5.2) X4 − 2cX2 − 8aX + (c2 − 4b).


Remarkably, the classification in [8, §6.3] shows that the F -algebra
Eρ is a field in each case (I, II, or III). In case (I), we have


Pρ = (t − a1)(t − a2)(t − a1a2), Eρ ' F (
√


a1,
√


a2),
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and (5.2) is the minimal polynomial of
√


a1 +
√


a2 +
√


a1a2. In case (II),
Eρ/F is a quartic 2-extension, with intermediate quadratic extension
F (


√
a). In case (III), Eρ/F is a quartic extension whose Galois closure


has Galois group S4 or the alternating group A4.


Remark. The table in [8, §6.3] is set up from the perspective of the
quartic algebra. The correspondence with the notation used here is the
following: Q = Eρ, R(Q) = Fρ, Λ2(Q) = Fρ(


√
xρ).


Theorem 5.1. For every central simple F -algebra A and Pρ ∈ F [t]
as above,


ind(A ⊗F (t,−Pρ)F (t)) =


{


indA if ind(A ⊗F Eρ) = 1
4 indA,


2 indA otherwise.


Proof. Let D be a central division F -algebra Brauer-equivalent to
A. As observed in the beginning of the proof of Theorem 4.1 (see (4.2)),


ind(A ⊗F (t,−Pρ)F (t)) = 1
2 indA, indA or 2 indA.


Moreover, the first case occurs only if D(t) contains a subalgebra iso-
morphic to (t,−Pρ)F (t). In particular, it must contain a square root of


t, hence D(t) does not remain a division algebra over F (t)(
√


t). This
is impossible, since F (t)(


√
t) is a purely transcendental extension of F .


Therefore, only two possibilities remain:


ind(A ⊗F (t,−Pρ)F (t)) = indA or 2 indA.


The first case occurs if and only if D ⊗ (t,−Pρ)F (t) is not a division
algebra. By Proposition 1.4, this condition is equivalent to the existence
of a subalgebra isomorphic to Eρ in D, hence also, by [4, Theorem 12,
p. 67], to


ind(D ⊗F Eρ) = 1
4 indD.


¤


Corollary 5.2. For any ramification sequence ρ ∈ 2R whose sup-
port has degree 3, there is (up to isomorphism) a unique quaternion
F (t)-algebra Qρ such that


∂Qρ = ρ.


Proof. By a suitable choice of projective coordinates, we may as-
sume ρ has the special form of Proposition 3.2. As observed above (see
(5.1)), the quaternion algebra


Q = (t,−Pρ)F (t)
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satisfies ∂Q = ρ. If Q′ is a quaternion F (t)-algebra such that ∂Q′ = ρ,
then by Faddeev’s exact sequence (0.1), there is a central division F -
algebra D such that Q′ is Brauer-equivalent to D⊗F Q. By Theorem 5.1,
the equality ind(D ⊗F Q) = 2 leads to indD = 1 (hence Q′ ' Q), or
indD = 2. The latter case occurs only if


ind(D ⊗ Eρ) = 1
4 indD = 1


2 ,


which is impossible. ¤


Thus, if ρ is in the special form of Proposition 3.2,


Qρ = (t,−Pρ)F (t).


The index of any Brauer class α such that ∂α = ρ is determined by
Theorem 5.1.


Corollary 5.3. If a, b ∈ F× are nonsquares in different square
classes and D is a quaternion division F -algebra, the tensor product


D ⊗F


(


t, a(b − t)
)


F (t)


is a division algebra.


Proof. Inspection shows that
(


t, a(b− t)
)


F (t)
ramifies only at 0, b,


and ∞, with respective ramification abF×2, bF×2, and aF×2. Therefore,
for a suitable change of variables,


(


t, a(b − t)
)


F (t)
=


(


t′, (a − t′)(b − t′)(ab − t′)
)


F (t′)
.


Theorem 5.1 shows that D ⊗F


(


t, a(b − t)
)


F (t)
is not a division algebra


if and only if


ind
(


D ⊗F F (
√


a,
√


b)
)


= 1
4 indD = 1


2 ,


which is absurd. ¤


As a particular case, one may take F = Qp (the field of p-adic
numbers) with p 6= 2, a ∈ Zp a nonsquare unit, b = p and D = (a, p)Qp


.
Corollary 5.3 shows that the tensor product


(a, p)Qp
⊗Qp


(


t, a(p − t)
)


Qp(t)


is a division algebra over Qp(t). Note that by a theorem of Saltman [14,
Theorem 3.4], division algebras of exponent 2 over Qp(t) have index 2
or 4. The Jacob–Tignol example of a biquaternion division algebra over
Qp(t) given in the appendix of [14] is not essentially different from the
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example above, but the arguments used to prove it to be a division
algebra are quite different.


Appendix: Tensor product with a symbol of degree 3


Theorem 1.1 has been used so far to investigate tensor products with
quaternion algebras only. In this appendix, we give another application,
where the prime n in the statement of Theorem 1.1 is 3 instead of 2.
This will illustrate the fact that Theorem 1.1 leads to more complex
conditions for n > 2.


Let F be a field of characteristic different from 3, containing a prim-
itive cube root of unity ζ. For a, b ∈ F×, we denote by (a, b)ζ,F the
symbol algebra of degree 3 generated by two elements i, j subject to


i3 = a, ji = ζij, j3 = b.


(See [4, §11], where this type of algebra is called power norm residue
algebra.)


Proposition 5.4. Let D be a central division F -algebra, let a, b ∈
F× and let t be an indeterminate over F . The tensor product


(5.3) D ⊗F (t, at + b)ζ,F (t)


is not a division algebra if and only if D contains elements u, v satisfying


u3 = a, u(uv − vu) = ζ(uv − vu)u,


v3 = b, v(uv − vu) = ζ2(uv − vu)v.
(5.4)


Proof. The tensor product (5.3) can be viewed as a special case of
the ∆-construction in (1.1),


D ⊗F (t, at + b)ζ,F (t) = ∆(D(x), α, ax3 + b)


where x3 = t and α is the automorphism of D(x) defined by


α(x) = ζx, α(d) = d for d ∈ D.


(Compare Section 1.2.) By Theorem 1.1, this algebra is not a division
algebra if and only if there exists f ∈ D[x] such that


(5.5) α2(f)α(f)f = ax3 + b.


Comparing degrees, it is clear that f must be of the form f = ux + v
for some u, v ∈ D if it exists. Comparing coefficients of like powers of x
in (5.5) (and using ζ2 = −1 − ζ) yields (5.4). ¤
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For instance, the tensor product (5.3) is not a division algebra if


D ⊃ F ( 3
√


a, 3
√


b), since then (5.4) has a solution where u and v commute.
This is not the only case, however:


Corollary 5.5. The tensor product


(b, a)ζ,F ⊗F (t, at + b)ζ,F (t)


is not a division algebra.


Proof. The elements u, v ∈ (b, a)ζ,F such that


v3 = b, uv = ζvu, u3 = a


satisfy (5.4). ¤


A sharp contrast is given by the following positive result:


Corollary 5.6. Suppose a, b are indeterminates over a field k con-
taining a primitive cube root of unity, and let F = k(a, b). The tensor
product


(a, b)ζ,F ⊗F (t, at + b)ζ,F (t)


is a division algebra.


Proof. Embedding F into the field of iterated Laurent series F̂ =
k((a))((b)), we show the stronger result that


(a, b)ζ,F̂ ⊗F̂ (t, at + b)ζ,F̂ (t)


is a division algebra.
Observe that the canonical (a, b)-adic valuation on F̂ (with values


in Z × Z) extends to a totally ramified valuation ν on (a, b)ζ,F̂ . The


standard generators i, j of (a, b)ζ,F̂ satisfy


ν(i) =
(


1
3 , 0


)


, ν(j) =
(


0, 1
3


)


.


Suppose u, v ∈ (a, b)ζ,F̂ satisfy (5.4). Then


ν(u) =
(


1
3 , 0


)


= ν(i), ν(v) =
(


0, 1
3


)


= ν(j),


hence, by [12, §3], letting denote the residue map,


v−1u−1vu = j−1i−1ji = ζ


and
v−1u−2vu2 = j−1i−2ji2 = ζ2.


On the other hand, from the equation


u(uv − vu) = ζ(uv − vu)u
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it follows that


u2v + ζ2uvu + ζvu2 = 0


hence, dividing by u2v,


1 + ζ2v−1u−1vu + ζv−1u−2vu2 = 0.


Taking the residue of each side yields 3 = 0. ¤


Remark. Letting K = k(a, b, t) = F (t) and


D1 = (a, b)ζ,K , D2 = (t, at + b)ζ,K ,


Corollaries 5.5 and 5.6 show that D1 ⊗K D2 is a division algebra while
Dop


1 ⊗K D2 is not a division algebra. The first examples of this type are
in [12, §5]. The example above is essentially the same as the Tignol–
Wadsworth example in degree 3.


Remark. Suppose D is a central division F -algebra of degree 3. If
u, v ∈ D satisfy (5.4) and uv − vu 6= 0, then


(v, uv − vu, u)


is a chain of length 2 of Kummer elements, in the sense of Rost [13].
The example in [13, Appendix] of a division algebra containing two
Kummer elements which cannot be related by a chain of length 2 yields,
by Proposition 5.4, a division algebra of exponent 3 and degree 9 over
the field of rational fractions in two indeterminates F7(t1, t2).
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