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Abstract. We show that the odd-indexed derived Witt groups of a semi-
local ring with trivial involution vanish. We show that this is wrong when the
involution is not trivial and we provide examples.

Introduction

Let us denote by W+
us and W−

us the usual Witt groups of symmetric and skew-
symmetric spaces respectively, which classify such spaces up to isometry and modulo
metabolic ones. Similarly, there exist Witt groups Wi for triangulated categories
with duality, see [B1], which are 4-periodic Wi ∼= Wi+4 in the index i ∈ Z. These
groups form a cohomology theory, in the sense that suitable localization long exact
sequences can be produced. These so-called triangular Witt groups Wi constitute
a very flexible and powerful device for studying quadratic forms, especially in alge-
braic geometry, see for instance [B3] and [BW].

In the special case where the considered triangulated category is the derived
category Db(E) of an exact category E with duality, like E the category of vector
bundles over a scheme, or E the category of projective modules over a ring with
involution, the Witt groups W∗(Db(E)) are called the derived Witt groups of E . The
even-indexed groups W0(Db(E)) and W2(Db(E)) are the usual Witt groups W+

us(E)
and W−

us(E) of E respectively, see [B2, Thm. 4.3], at least when we assume that 2 is
invertible, as we shall always do below. The odd-indexed groups, also known as the
shifted Witt groups, can be given by generators and relations as well, see Walter [W,
§ 8]. When moreover E is split exact, like the category of projective modules, these
W2k+1(Db(E)) are nothing but the Wall–Mischenko–Ranicki odd-indexed L-groups
of E , which are groups of formations.

In the present paper, we are interested in these odd-indexed groups W1 and
W3 when E = R−proj is the category of finitely generated projective left R-
modules over a semi-local ring R with an involution σ. We denote these groups
by W∗(Rσ−proj) or simply by W∗(R) when no confusion can arise. Let us stress
that the category R−proj is split exact and the presence of 1

2 ∈ R, so, these groups
coincide with the odd-indexed L-groups Lp

2i+1(R) of R, in the notation of [DR].
We are interested in possibly non-commutative semi-local rings, but we shall see
that the real distinction arises from the involution being trivial or non-trivial.

In [B2, Thm. 5.6], it is proven that W2k+1(R) = 0 when R is commutative local
with trivial involution σ = id. Our first goal is to generalize this result to the
semi-local situation (see Theorem 2.3 below) :

Theorem. Let R be a semi-local commutative ring containing 1
2 equipped with the

trivial involution σ = id. Then W2k+1(R) = 0.

In fact, we give here a very elementary proof, which does not rely on the con-
nections between derived Witt groups and L-theory and which does not use much
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of the triangular theory either, except for the definition and for two easy lemmas
of [B2, B3] recalled in Section 1. This settles the case of a trivial involution.

When the involution σ : R → R is non-trivial, the odd-indexed Witt groups do
not vanish. In fact, they do not vanish even if R is commutative. So, to produce
examples, we can and shall concentrate on commutative rings. (Readers looking
for non-commutative examples can replace our rings by matrix rings over them.)

As usual with semi-local rings, our ideal 3-step choreography would be :

(1) Go modulo the radical R −→ R̄ := R/Rad(R).
(2) Prove something for semi-simple rings, like R̄.
(3) Lift the information by Nakayamian arguments from R̄ to R.

At first sight, this looks hopeless because of the following result of Ranicki : Denote
by σ̄ the involution on R̄ induced by σ, then W2k+1(R̄σ̄−proj) = 0, see [R]. On
the other hand, we can as well use the split exact category E = R−free of finitely
generated free R-modules, instead of R−proj. In this case, the odd-indexed Witt
groups are the Lh

2i+1(R) in the notation of [DR]. The good news is that the lift
of information is now possible, by a result of Davis-Ranicki, see [DR, Cor. 5.2 (ii)],
which says that in the following diagram, the map on the left is a monomorphism :

W2k+1(Rσ−free)
Ä _

²²

// W2k+1(Rσ−proj)

²²
W2k+1(R̄σ̄−free) // 0 .

The problem becomes to understand the kernel and cokernel of the horizontal map.
This involves the so-called Rothenberg sequence in L-theory, which now has a trian-
gular formulation due to Hornbostel and Schlichting, recalled in Section 3. Then,
we need to compute W2k+1(R̄σ̄−free). Indeed in Sections 4 and 5 we prove :

Theorem. Let (S, σ) be a semi-simple ring with involution such that 1
2 ∈ S. Let

so(S) and let ss(S) be the numbers of simple factors of S on which the involution
is split-orthogonal, respectively split-symplectic, see Def. 5.2. Then the odd-indexed
Witt groups W2k+1(Sσ−free) are finitely generated Z/2-modules with

dimZ/2 W1(Sσ−free) = ss(S)

whereas

so(S) − 1 ≤ dimZ/2 W3(Sσ−free) ≤ so(S) .

This is Theorem 5.6, where the reader can also find a more precise description of
the rank of W3(Sσ−free) in terms of the simple factors of S with split-orthogonal
involution.

In Section 6 we assume the ring R to be commutative and semi-local. Then,
the situation is the following. First, we have W1(Rσ−proj) = 0 for any involution.
Secondly, W3(Rσ−proj) is a finite Z/2-vector space whose dimension is strictly less
than so(R̄), the number of simple factors of R̄ on which the involution σ̄ is trivial.
Simple factors of R̄ with non-trivial involution and pairs of simple factors switched
by the involution do not play any role. See Theorem 6.2. Let us stress the peculiar
situation : to produce a (big) non-zero W3(R), we need the ring R itself to carry a
non-trivial involution, but modulo the radical, we need as many factors as possible
with trivial involution.

In Section 6, we also explain the significance of the dimension of W3(R) and
show that maximal ideals of R can in fact be “detected” quite explicitly by W3(R)
if some simple properties are observable in the ring R, see Definition 6.4. Using
this method, we can produce semi-local domains R with arbitrary big W3. More
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precisely, these domains can even be chosen to be semi-localizations of rings of
integers in suitable number fields. See Theorem 6.10, which says in particular :

Theorem. Let n ∈ N be an integer. Then there exists a semi-local Dedekind
domain with non-trivial involution (R, σ) such that W3(R) ≃ (Z/2)n.

One importance of our vanishing result comes from the Gersten Conjecture for
Witt groups, see [B3, BGPW], which, combined with the Balmer-Walter spectral
sequence [BW], requires in particular W2k+1(R) = 0 for all semi-local regular rings
with trivial involution. Conversely, the vanishing of W2k+1(R) for R local has
been used in the proof of the conjecture ; namely, this vanishing facilitates the
reformulation of the conjecture in terms of Zariski cohomology with coefficients in
the Witt sheaf, see [BGPW]. In this logic, the vanishing result of the present article
allows us to extend the Gersten-Witt Conjecture to semi-local equicharacteristic
regular rings, as confirmed by Mitchell in [M].

Another consequence of our vanishing result is that the Gersten Conjecture for
Witt groups holds up to dimension 4 without assuming the existence of a ground
field, that is, [BW, Cor. 10.4] now holds for semi-local rings as well.

With these facts in mind, it is surprising, though not contradictory, that this
vanishing W2k+1(R) = 0 holds for all semi-local rings with trivial involution, but
fails when the involution is non-trivial, even for R commutative, regular and of
dimension 1.

Acknowledgment : We thank Stefan Gille for valuable comments on the first
draft of this article.
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1. Explicit classes in odd-indexed Witt groups

In this paper, R denotes a ring with unit, such that 2 is invertible in R. Let σ be
an involution on R, that is, an anti-isomorphism σ : R

∼→ R, σ(r1 r2) = σ(r2)σ(r1),
such that σ2 = idR. When A =

(
aij

)
∈ Mm,n(R) is an m × n matrix, we shall

denote by A∗ = σ(At) the n × m matrix (A∗)ij = σ(aji).
The involution σ allows us to turn a right R-module N into a left R-module via

r · n := n · σ(r). This applies in particular to the dual N = HomR(M,R) of a left
R-module M and gives : (r · f)(m) = f(m) · σ(r).

Without mention, R-modules are left R-modules. In the sequel, we shall consider
the category R−proj of finitely generated projective R-modules and its subcategory
R−free of free ones. Both are endowed with the duality (−)∗ := HomR(−, R) using

the involution as usual to identify an object and its double dual : π : Id
∼→ ∗ ◦ ∗.

Explicitly, the isomorphism πM : M → M∗∗ is defined on an element m ∈ M to be
πM (m) : f 7→ σ(f(m)) for all f ∈ M∗.
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We study the derived Witt groups of these categories, that is, the W∗ of their de-
rived categories. In both cases, the derived categories are nothing but the homotopy
categories Kb(R−proj) and Kb(R−free), i.e. the categories of bounded complexes
with morphisms up to homotopy. We denote by (−)# the duality induced on them
by (−)∗ and which turns them into triangulated categories with duality in the sense
of Balmer [B1]. Their Witt groups Wk are defined using k-shifted dualities, i.e. the
functors (−)#[k]. In addition to [B1, § 2], the reader can find in [B2, § 5] a specific
discussion of odd-indexed Witt groups. These references apply in particular to the
sign conventions, which are so that for the 1-shifted duality (−)#[1], the identifica-
tion ̟ between an object and its double dual is −π in each degree, whereas it is π
in each degree for the 3-shifted duality (−)#[3].

We want to construct some explicit classes in W1 and W3. For this, we use short
complexes, in the terminology of [W], namely complexes of length one.

Definition 1.1. Let n ≥ 0 be an integer and let A,B ∈ Mn(R) be two n × n
matrices such that the following

0 // Rn


A

B




// Rn ⊕ Rn

(
−B∗ A∗

)

// Rn // 0 (1)

is an exact sequence. (In particular, A∗ · B − B∗ · A = 0.) Equivalently, one can
say that the following is a symmetric 1-space (P

•
, ϕ) in Kb(R−free), that is, a

symmetric space for the 1-shifted duality :

P
•

:=

ϕ:=
²²

· · · 0 // 0 //

²²

Rn A //

B

²²

Rn //

−B∗

²²

0 //

²²

0 · · ·

(P
•
)#[1] = · · · 0 // 0 // Rn

−A∗

// Rn // 0 // 0 · · ·
Here, R∗ is canonically identified with R as usual. The complex P

•
has non-zero

modules in homological degree 1 and 0. The vertical map ϕ is an isomorphism in
Kb(R−free) ; indeed ϕ is a homotopy equivalence by condition (1). The Witt class
of this symmetric 1-space will be denoted by

[n , A , B ](1) ∈ W1(Rσ−free).

Similarly, we define explicit classes in W3 as follows.

Definition 1.2. Let n ≥ 0 and A,B ∈ Mn(R) such that

0 // Rn


A

B




// Rn ⊕ Rn

(
B∗ A∗

)

// Rn // 0 (2)

is an exact sequence. Then we have the following symmetric 3-space (Q
•
, ψ) :

Q
•

:=

ψ:=
²²

· · · 0 // 0 //

²²

Rn A //

B

²²

Rn //

B∗

²²

0 //

²²

0 · · ·

(Q
•
)#[3] = · · · 0 // 0 // Rn

−A∗

// Rn // 0 // 0 · · ·
where the complex Q

•
has non-zero modules in homological degree 2 and 1. The

Witt class of this 3-space will be denoted by

[n , A , B ](3) ∈ W3(Rσ−free).

Remark 1.3. For k = 1 or 3, we might again denote by

[n , A , B ](k) ∈ Wk(Rσ−proj),
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the image of the class [ n , A , B ](k) defined above, under the natural homomor-
phism Wk(Rσ−free) → Wk(Rσ−proj), although the latter needs not be injective
in general.

We now collect some results which are used in the proof of the main theorem.
The following proposition is easily deduced from TWG, namely from [B2].

Proposition 1.4. Suppose that Rm ≃ Rn implies m = n (for instance, R com-
mutative or R semi-local). Let k = 1 or 3. Then, any class in Wk(Rσ−free) is
represented by an element of the form [n , A , B ](k) as in Definitions 1.1 and 1.2.

Proof. From [B2, Prop. 5.2], we know that any symmetric k-space is Witt-equivalent
to a symmetric k-space (P

•
, ϕ) where P

•
is a short complex, i.e. vanishes except for

two consecutive indices, as above. A priori, the complex P
•

is of the form

P
•

= · · · 0 → 0 → Rm → Rn → 0 → 0 → · · ·

and we have to prove that m = n. The symmetric form ϕ : P
•
→ (P

•
)#[k] being a

homotopy equivalence means that its cone is a split exact complex of the form

0 → Rm → Rn ⊕ Rn → Rm → 0 .

It implies in particular that R2m ≃ R2n and in turn m = n. ¤

Remark 1.5. Walter has given a general description of the odd-indexed triangular
Witt groups W1(E) and W3(E) by generators and relations, for any exact category
with duality E , see [W, § 8].

Lemma 1.6. The following hold true :

(a) If [n , A , B ](1) ∈ W1(Rσ−free) and if F ∈ Mn(R) is such that F = F ∗

then [n , A , B + FA ](1) is defined and we have

[n , A , B ](1) = [n , A , B + FA ](1)

in W1(Rσ−free).

(b) If [n , A , B ](3) ∈ W3(Rσ−free) and if F ∈ Mn(R) is such that F = −F ∗

then [n , A , B + FA ](3) is defined and we have

[n , A , B ](3) = [n , A , B + FA ](3)

in W3(Rσ−free).

Proof. For (a), it is easy to check that the matrix F provides a homotopy between
the two morphisms ϕ of Definition 1.1, once using B and once using B + FA. This
means that they define the same morphism P

•
→ (P

•
)#[1] in Kb(R−free). The two

Witt classes coincide because the two symmetric spaces defining them are equal.
The proof for (b) is the same, mutatis mutandis ¤

Lemma 1.7. Let k = 1 or 3. Let U, V ∈ GLn(R) be two invertible matrices.
For any class [n , A , B ](k) ∈ Wk(Rσ−free), the class [n , V −1AU , V ∗BU ](k) is
defined and we have

[n , A , B ](k) = [n , V −1AU , V ∗BU ](k)

in Wk(Rσ−free).

Proof. The classes coincide because the spaces are isometric via (U, V ). ¤

More generally, we have :
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Lemma 1.8. Let k = 1 or 3 and let [n , A , B ](k) be a class in Wk(Rσ−free). Let
m ≥ 0 and let A′ ∈ Mm(R) and U, V ∈ Mn,m(R) be matrices such that the following

0 // Rm


A′

U




// Rm ⊕ Rn

(
V −A

)

// Rn // 0

is an exact sequence. Then the class [m, A′ , V ∗BU ](k) is defined and we have

[n , A , B ](k) = [m, A′ , V ∗BU ](k)

in Wk(Rσ−free).

Proof. The classes coincide because the spaces are isometric in Kb(R−free) via

· · · 0 // 0 //

²²

Rm A′

//

U
²²

Rm //

V
²²

0 //

²²

0 · · ·

· · · 0 // 0 // Rn A // Rn // 0 // 0 · · ·
which is a homotopy equivalence by assumption. ¤

The following Interchange Lemma is proven in TWG. We restate it here for
the convenience of the reader. We stress that Proposition 1.4 and Lemma 1.9 are
essentially the only facts on Triangular Witt groups that are used in the proof of
the vanishing result, Theorem 2.3.

Lemma 1.9. Let k = 1 or 3. In Wk(Rσ−free), we have

[n , A , B ](k) = −[n , B , A ](k) .

Proof. This follows from [B3, Lemma 3.2 (2)] and also appears in [W, 7.2 (c)]. ¤

Lemma 1.10. The following hold true :

(a) If [n , A , B ](1) ∈ W1(Rσ−free) and if E ∈ Mn(R) is such that E = E∗

then [n , A + EB , B ](1) is defined and we have

[n , A , B ](1) = [n , A + EB , B ](1)

in W1(Rσ−free).

(b) If [n , A , B ](3) ∈ W3(Rσ−free) and if E ∈ Mn(R) is such that E = −E∗

then [n , A + EB , B ](3) is defined and we have

[n , A , B ](3) = [n , A + EB , B ](3)

in W3(Rσ−free).

Proof. This is Lemma 1.6 conjugated with the Interchange Lemma 1.9. ¤

Lemma 1.11. Let k = 1 or 3 and a class [n , A , B ](k) ∈ Wk(Rσ−free). If either
of A or B is an invertible matrix then [n , A , B ](k) = 0 in Wk(Rσ−free).

Proof. If A is an isomorphism, the complex supporting the form is acyclic, i.e. it is
zero in Kb(R−free). Hence the space is necessarily trivial. If B is an isomorphism,
the result follows from the above case and the Interchange Lemma 1.9. ¤

Lemma 1.12. Let k = 1 or 3 and a class [n , A , B ](k) ∈ Wk(Rσ−free) for n ≥ 2.
Assume that the (1, 1)-entry of the matrix A is invertible, that is, a11 ∈ R×. Then
there exist (n − 1) × (n − 1) matrices A′ and B′ such that [n , A , B ](k) = [n −
1 , A′ , B′ ](k) in Wk(Rσ−free).
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Proof. By elementary operations on rows and columns, i.e. replacing A by V −1AU
for suitable elementary matrices U , V ∈ GLn(R) and using Lemma 1.7, we can
assume that A is of the following type




a11 0 · · · 0
0
... A′

0


 .

where A′ is an (n − 1) × (n − 1) matrix over R. Consider the n × (n − 1) matrix
T corresponding to the inclusion Rn−1 →֒ Rn in the last n − 1 factors. Then the
result follows from Lemma 1.8 applied to m = n − 1 and U = V = T . ¤

Example 1.13. Let R be a ring. Consider the ring R̃ = (R × Rop) with the switch

involution sw, i.e. sw(r, sop) = (s, rop). We now show that Wk(R̃sw−free) = 0 and

Wk(R̃sw−proj) = 0 for every integer k. This is a particular case of the following
more general set-up.

Given an additive category F , consider the additive category E = F ×Fop. Let
sw : Eop → E be the obvious switch duality : (A,Bop)sw = (B,Aop). We consider
the additive category with duality, (E , sw, π) where π : id → sw ◦ sw is the obvious
identification. It is easy to see that any symmetric space over (E , sw, π) is of the

form (P, φ) where P = (A,Bop) and φ = (φ1, φ
op
1 ) for an isomorphism φ1 : A

∼→ B
in F . Using this isomorphism to replace B by A, we see that any symmetric
space is isometric to a symmetric space of the form

(
(A, 0) ⊕ (A, 0)sw , H

)
where

H =

(
0 1
1 0

)
. Hence every symmetric space (P, φ) over (E , sw, π) is the hyperbolic

space. A similar argument works for skew-symmetric forms.
Applying the above to Witt groups, and a fortiori when F is an exact category

or a triangulated category, we see that the usual Witt groups and the shifted Witt
groups all vanish for such categories with duality (F × Fop, sw, π).

For the ring R̃ = (R×Rop) with the switch involution sw as above, both the de-
rived categories Kb(R−proj) and Kb(R−free) are examples of such categories with

duality and hence Wk(R̃sw−free) = 0 and Wk(R̃sw−proj) = 0 for every integer k.

2. Trivial involution : the vanishing theorem

Let R be a ring with unit and such that 2 is invertible in R. Recall that R is
called semi-local if the ring R̄ := R/Rad(R) is semi-simple, that is, a product of
simple rings, where Rad(R) is the Jacobson radical of R, that is, the intersection
of all the maximal left ideals in R. See more in [L, §20]. We shall use the following
result :

Theorem 2.1 (Bass [Bs, 6.4]). Let R be a semi-local ring. If b ∈ R and a is a left
ideal in R such that R · b + a = R then b + a contains a unit.

Remark 2.2. Let R be a commutative semi-local ring. Then, we have :

(a) Any finitely generated projective R-module of constant rank is free [L, §20].
(b) The Witt group of skew-symmetric forms over R with the trivial involution

vanishes, W2(R) = W−
us(R) = 0. This can be proven very easily (i.e. as over

a field) using Theorem 2.1.

In this section we consider a commutative semi-local ring R with identity as the
involution and study its k-indexed Witt groups with k odd.
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Theorem 2.3. Let R be a commutative semi-local ring containing 1
2 , with the

trivial involution. Then, its odd-indexed Witt groups vanish : Wk(R id−proj) = 0
for k = 1 or 3.

Beginning of the proof. If Spec(R) is not connected then R ∼= R1 ×R2 for commu-
tative semi-local rings R1 and R2. We have W∗(Rid−proj) = W∗((R1)id−proj) ⊕
W∗((R2)id−proj). Hence, we can assume from now on that R is commutative semi-
local and Spec(R) is connected. In this situation, any finitely generated projective
module is free and we shall simply write

W∗(R) := W∗(Rid−proj) = W∗(Rid−free)

for the Witt groups of R. Recall from Proposition 1.4 that any class in Wk(R) is
of the form [n , A , B ](k) ∈ Wk(R), for n × n matrices A = (aij) and B = (bij) as
in Definitions 1.1 or 1.2. Before distinguishing the case W1 from the case W3, we
regroup the common parts of the two proofs in the following auxiliary lemma.

For elements r1, · · · , rn ∈ R, we denote by 〈 r1, · · · , rn 〉 the ideal they generate.

Lemma 2.4. With the above hypotheses and notation, any class [n , A , B ](k) in

Wk(R) is equal to a class of the form [n , Ã , B̃ ](k), with same integer n and with

matrices Ã = (ãij) and B̃ = (b̃ij) such that 〈 ã11, b̃11 〉 = R.

Proof. We treat simultaneously the cases k = 1 and k = 3. Set ǫ = 1 for k = 1
and ǫ = −1 for k = 3. By equations (1) or (2) of Section 1, we know that the first

column of the matrix

(
A
B

)
is unimodular, i.e. the ideal it generates is the whole

ring :

〈 a11, a21, · · · , an1, b11, b21, · · · , bn1 〉 = R.

Hence for n = 1 the lemma is clear. Suppose now that n ≥ 2. By Bass 2.1, there
exist αi ∈ R, for 2 ≤ i ≤ n and βj ∈ R, for 1 ≤ j ≤ n such that a11 +

∑n
i=2 αiai1 +∑n

j=1 βjbj1 is a unit in R. Let us rewrite this fact :

(a11 +
n∑

j=2

βj bj1) +
n∑

i=2

αi ai1 + β1b11 is a unit in R . (3)

Consider the ǫ-symmetric n × n matrix

E :=




0 β2 · · · βn

ǫ β2

... 0
ǫ βn


 = ǫEt .

Note that the (1, 1)-entry of the matrix A+EB is a11+
∑n

j=2 βj bj1. By Lemma 1.10,

we know that [n , A , B ](k) = [n , A + EB , B ](k), so we can replace A by A + EB
and assume, because of (3) above, that :

〈 a11, a21, . . . , an1, b11 〉 = R .

We proceed dually to get rid of a21, . . . , an1. Namely, by Bass 2.1, there exist
elements γ1, . . . , γn ∈ R such that

∑n
i=1 γi ai1 + b11 is a unit in R, that is :

γ1 a11 + (b11 +
n∑

i=2

γi ai1) is a unit in R . (4)



SHIFTED WITT GROUPS OF SEMI-LOCAL RINGS 9

Consider the ǫ-symmetric n × n matrix

F :=




0 γ2 · · · γn

ǫ γ2

... 0
ǫ γn


 = ǫ F t .

Note that the (1, 1)-entry of the matrix B+FA is b11+
∑n

i=2 γi ai1. By Lemma 1.6,
we know that [n , A , B ](k) = [n , A , B + FA ](k), so we can replace B by B + FA
and assume, because of (4) above, that 〈 a11, b11 〉 = R. This was precisely the
claim of the Lemma. ¤

In the case of W1, we have the following improvement :

Lemma 2.5. With the above hypotheses and notation, any class [n , A , B ](1) in

W1(R) is equal to a class of the form [n , Ã , B̃ ](1), with same integer n, and with

matrices Ã = (ãij) and B̃ = (b̃ij) such that ã11 is a unit in R.

Proof. We continue from Lemma 2.4, that is, we can consider a class [ n , A , B ](1)

for matrices A = (aij) and B = (bij) such that 〈 a11, b11 〉 = R. By Bass 2.1, there
exists r ∈ R such that a11 + rb11 is a unit in R. Consider the symmetric n × n
matrix

E :=




r 0 · · · 0
0
... 0
0


 = Et .

The matrix A + EB has the (1, 1)-entry equal to a11 + rb11 and so is a unit in R.
We conclude via Lemma 1.10 (a). ¤

End of the proof of Theorem 2.3. The proof of W1(R) = 0 is now finished by

induction on the integer n for the class [n , Ã , B̃ ](1) as in Lemma 2.5. Indeed, for

n = 1, such a matrix Ã is invertible and Lemma 1.11 tells us that [n , Ã , B̃ ](1) = 0.
For n ≥ 2, we can reduce to n − 1 by means of Lemma 1.12 and of Lemma 2.5
again. We now turn to the other case.

The case of W3.

By Proposition 1.4, it is enough to establish the vanishing of any element of the
form [n , A , B ](3) ∈ W3(R). We proceed by induction on n. By Lemma 2.4, we
can assume further that 〈 a11, b11 〉 = R.

Let n = 1. We have from Definition 1.2 that a11 · b11 = −b11 · a11. Hence
a11 · b11 = 0 as R is commutative and contains 1

2 . For any r ∈ R, consider the
principal open D(r) := {p ∈ Spec(R) | r 6∈ p} of Spec(R) defined by r. From
a11 · b11 = 0 we have D(a11) ∩ D(b11) = ∅ and from 〈 a11, b11 〉 = R we have
D(a11)∪D(b11) = Spec(R). Since Spec(R) is connected, we deduce that D(a11) =
Spec(R) or D(b11) = Spec(R), meaning that a11 or b11 is a unit in R. We conclude
that [ 1 , a11 , b11 ](3) = 0 from Lemma 1.11.

Let now n ≥ 2 and assume by induction that [n − 1 , A′ , B′ ](3) = 0 for all
(n − 1) × (n − 1) matrices A′, B′. Consider a class [n , A , B ](3) ∈ W3(R) with
A = (aij) and B = (bij) such that 〈 a11, b11 〉 = R. By the Chinese Remainder
Theorem, we can define an element of R by choosing its images under the various
maps R → R/m for m ∈ Max(R). Let us choose an r ∈ R such that

r 7−→
{

0 ∈ R/m if a11 /∈ m or a21 /∈ m

1 ∈ R/m if a11 ∈ m and a21 ∈ m
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for every maximal ideal m ∈ Max(R). We claim that

〈 a11 − r · b21 , a21 + r · b11 〉 = R . (5)

To see this, one checks directly from the construction of r that there is no maximal
ideal m which contains this ideal 〈 a11−r ·b21 , a21 +r ·b11 〉 . (Suppose the contrary
and go modulo m to find a contradiction, using that 1 ∈ 〈 a11, b11 〉 .)

Using this element r, we define an n × n skew-symmetric matrix by

E :=




0 −r 0 · · · 0
r 0
0
... 0
0




= −Et .

Observe that the (1, 1)- and (2, 1)-entries of A + EB are respectively a11 − r · b21

and a21 + r · b11. Since by Lemma 1.10, [n , A , B ](3) = [n , A + EB , B ](3) we can
replace A by A + EB and the choice of r, see (5) means that we can assume that

〈 a11, a21 〉 = R .

By Bass 2.1, there exists s ∈ R such that a11 + s · a21 is a unit in R. Consider the
elementary matrix C ∈ GLn(R) whose only non-zero entry outside the diagonal is
s in the (1, 2)-entry. Then the (1, 1)-entry of C ·A is our unit a11 +s ·a21. Applying
Lemma 1.7 to U = id and V = C−1, we know that [n , A , B ](3) = [n , CA , V tB ](3)

so we can assume that a11 is a unit. Using Lemma 1.12, we conclude by induction
hypothesis that [n , A , B ](3) = [n − 1 , A′ , B′ ](3) = 0. ¤

3. Recalling cofinality and Tate cohomology

In this section we recall a 12-term periodic exact sequence due to Hornbostel and
Schlichting relating the shifted Witt groups and some associated Tate cohomology
groups. Let (B,#,̟, δ) be a triangulated Z[ 12 ]-category with δ-duality. Let A ⊂ B
be a full triangulated subcategory invariant under the duality functor. Recall that
A is said to be cofinal in B if every object of B is a direct summand of an object
of A. Let K0(A) and K0(B) be the 0-th K-theory groups. The duality # induces
a Z/2-action τ on K0(B) which coincides with the similar Z/2-action on K0(A).
Hence τ induces a Z/2-action on K0(B)/K0(A) which we denote by τ̃ .

Theorem 3.1 (Hornbostel-Schlichting [HS, App. A]). Let B be a triangulated Z[ 12 ]-
category with δ-duality and A a full triangulated subcategory of B invariant under
the duality and cofinal in B. Then, there is a natural long exact sequence

· · · → Wn(A) → Wn(B) → Ĥn
(
Z/2,K0(B)/K0(A)

)
→ Wn+1(A) → · · ·

Let R be a semi-local ring (not necessarily commutative) with an involution σ and
such that 1

2 ∈ R. We apply the above result with Kb(R−proj) as B and Kb(R−free)
as A. We have K0(B) = K0(R−proj) = K0(R) and K0(A) = K0(R−free) = Z. We

denote by K̃0(R) the group K0(B)/K0(A) which is the usual K̃0(R) = coker( Z →
K0(R)). With this notation, the above theorem gives us the following 12-term
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periodic exact sequence :

W0(Rσ−free) // W0(Rσ−proj) // Ĥ0(Z/2, K̃0(R))

´´
Ĥ1(Z/2, K̃0(R))

11

W1(Rσ−free)

²²
W3(Rσ−proj)

OO

W1(Rσ−proj)

²²
W3(Rσ−free)

OO

Ĥ1(Z/2, K̃0(R))

qqĤ0(Z/2, K̃0(R))

QQ

W2(Rσ−proj)oo W2(Rσ−free)oo

(6)

Consider the natural exact sequence of complexes

· · · // Z
0 //

²²

²²

Z
2 //

²²

²²

Z
0 //

²²

²²

· · ·

· · · // K0(R)
1−τ //

²²²²

K0(R)
1+τ //

²²²²

K0(R) //

²²²²

· · ·

· · · // K̃0(R)
1−τ̃ // K̃0(R)

1+τ̃ // K̃0(R) // · · ·

(7)

The homology of the second and third rows is Tate cohomology, see [S, §VIII.4].
Hence (7) induces the following 5-term exact sequence :

0 // Ĥ1(Z/2,K0(R)) // Ĥ1(Z/2, K̃0(R))
234

076
ÂÂ
Z/2 // Ĥ0(Z/2,K0(R)) // Ĥ0(Z/2, K̃0(R)) // 0 .

(8)

Remark 3.2. We recall from [HS, App. A] the definition of the map

α : W2k(Rσ−proj) −→ Ĥ0(Z/2, K̃0(R))

which appears in the above sequence (6) for k = 0 or 1. Consider a Witt class

[P, φ] ∈ W2k(Rσ−proj). By definition, we have an isomorphism φ : P
∼→ P#[2k]

and hence the class [P ] ∈ K0(R) satisfies τ([P ]) = [P ]. So this class [P ] defines

an element in Ĥ0(Z/2,K0(R)). This assignment (P, φ) 7→ [P ] defines a map α′ :

W2k(Rσ−proj) → Ĥ0(Z/2,K0(R)). The map α is obtained by composition with

the obvious map q : Ĥ0(Z/2,K0(R)) −→ Ĥ0(Z/2, K̃0(R)) :

W2k(Rσ−proj)

α′ ''OOOOOOOOOOOO

α // Ĥ0(Z/2, K̃0(R)) .

Ĥ0(Z/2,K0(R))

q

77nnnnnnnnnnnn

(9)

Let us also recall from [HS, App. A] the definition of the map

β : Ĥ0(Z/2, K̃0(R)) −→ W2k+1(Rσ−free) .
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Take a class [P ] ∈ K0(R) such that τ̃([P ]) = [P ] in K̃0(R). Then the image in
W2k+1(Rσ−free) is the class of the space over P ⊕ P#[2k + 1] with the hyper-
bolic form. Note that it is really a hyperbolic space in Kb(R−proj) but not in
Kb(R−free), since the lagrangian does not exist in this subcategory. So its Witt
class only becomes zero in W2k+1(Rσ−proj), as predicted by the cofinality exact
sequence (6).

4. Simple rings

In this section we describe the Tate cohomology groups Ĥi(Z/2, K̃0(S)) for i =
0, 1, of a simple ring S with an involution σ and such that 1

2 ∈ S. We also compute
the shifted Witt groups of S with respect to the involution σ. Let S = Mℓ(D), for
a positive integer ℓ and a division algebra D. Then K0(S) ∼= Z and diagram (7)
becomes :

· · · // Z
0 //

·ℓ
²²

Z
2 //

·ℓ
²²

Z
0 //

·ℓ
²²

· · ·

· · · // Z
0 //

²²

Z
2 //

²²

Z
0 //

²²

· · ·

· · · // K̃0(S)
1−τ̃ // K̃0(S)

1+τ̃ // K̃0(S) // · · ·

(10)

So, we have Ĥ0(Z/2,K0(S)) = Z/2 and Ĥ1(Z/2,K0(S)) = 0. Therefore, the Tate
cohomology long exact sequence (8) takes the following shape :

0 → Ĥ1(Z/2, K̃0(S)) → Z/2 → Z/2 → Ĥ0(Z/2, K̃0(S)) → 0 (11)

where the map Z/2 → Z/2 is given by multiplication by ℓ. Hence :

Proposition 4.1. Let S ≃ Mℓ(D) be a simple ring with involution, for a division

algebra D. The Tate cohomology groups Ĥ0(Z/2, K̃0(S)) and Ĥ1(Z/2, K̃0(S)) are
both zero for ℓ odd, and both isomorphic to Z/2 for ℓ even. ¤

The following theorem due to Ranicki holds for semi-simple rings as well.

Theorem 4.2 (Ranicki [R]). Let (S, σ) be a semi-simple ring with involution. Then

W2k+1(Sσ−proj) = 0 .

Corollary 4.3. Let (S, σ) be a semi-simple ring with involution. Then

W2k+1(Sσ−free) = coker
(
W2k(Sσ−proj)

α−→ Ĥ0(Z/2, K̃0(S))
)
.

Proof. Immediate from Thm. 4.2 and from the cofinality exact sequence (6). ¤

We now want to explicitly compute the groups W1(Sσ−free) and W3(Sσ−free).

For any left S-module P , recall that πP : P → P ∗ ∗ is the natural isomorphism
of S-modules defined by (πP (x))(f) = σ(f(x)) for all x ∈ P and all f ∈ P ∗.

Notation 4.4. Let P , Q be left S-modules. For a homomorphism f : P → Q∗, it
is convenient to abbreviate by f t the transpose of f . This morphism f t : Q → P ∗

is defined by

f t := f∗ ◦ πQ .

It is not difficult to see that f t t = f . In particular, when Q = P , we obtain a map
f 7→ f t which is an automorphism t : HomS(P, P ∗) → HomS(P, P ∗) .
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Let N be a simple left module over S and N∗ be its dual considered as a left
S-module via the involution σ on S. Note that N being simple forces N∗ to be
simple as well. Since S is a simple ring, these two modules are isomorphic.

Proposition 4.5. Let (S, σ) be a simple ring with involution and N be a simple

left S-module. Then, there exists an isomorphism f : N
∼→ N∗ such that f = ǫf t,

for ǫ = 1 or −1.

Proof. Since 1
2 ∈ S, any f ∈ HomS(N,N∗) can be written as f = f+ft

2 + f−ft

2 .
There exists an isomorphism f ∈ HomS(N,N∗), so in particular f 6= 0. This

implies that one of f+ft

2 or f−ft

2 is non-zero and is in turn an isomorphism. ¤

Since N is a simple left S-module, our division algebra D such that S ≃ Mℓ(D)
can be taken to be EndS(N).

Definition 4.6. Choose a simple S-module N and choose f : N
∼→ N∗ as in

Proposition 4.5. Set D := EndS(N) and define on it an involution σf : D → D by

σf (α) = f−1 ◦ α∗ ◦ f

for all α ∈ EndS(N) = D. It is an involution because f t = ±f .

Lemma 4.7. With this notation, exactly one of the two following cases can occur :

(a) For all simple S-modules N and for all isomorphisms f : N
∼→ N∗ with

f = ±f t, we have σf = idD on the division algebra D = EndS(N).

(b) For all simple S-modules N and for all isomorphisms f : N
∼→ N∗ with

f = ±f t, we have σf 6= idD on the division algebra D = EndS(N).

Moreover, in case (a), D must be a field and for all isomorphisms S ≃ Mℓ(D), the
involution induced by σ on Mℓ(D) restricts to the identity on D.

Proof. For i = 1, 2, let fi : N
∼→ N∗ be such that fi = ǫif

t
i . Consider the unit

u := f−1
1 ◦ f2 ∈ D. For every α ∈ D we have σf2

(α) = u−1 · σf1
(α) · u. If now the

involution σf1
is the identity on D then D is commutative and hence σf2

= σf1
by

the above equation, that is, σf2
= id as claimed in (a). This shows that σf = id

independently of the choice of f . To see independence of this property with respect
to the simple module, first note that two such simple modules are isomorphic, then
transport one f from one module to the other and finally use what we just proved.
This establishes the dichotomy between (a) and (b).

For the “moreover part”, it therefore suffices to prove the following claim :
Consider a field D and some involution σ0 on S0 := Mℓ(D). Let N0 := Dℓ, so

that D ∼= HomS0
(N0, N0), via the identification sending d ∈ D to multiplication

by d. Suppose that for some (and hence any) isomorphism f : N0
∼→ N∗

0 as in 4.5
we have σf = idD. Then, we claim that σ0 is also the identity on D →֒ Mℓ(D).

To see this, first note that D being the center of S0, we must have σ0(D) ⊂ D.
Consider an element α ∈ D = HomS0

(N0, N0) and its dual α∗ ∈ HomS0
(N∗

0 , N∗
0 ).

For any h ∈ N∗
0 and any y ∈ N0, we have by definition, α∗(h)(y) = h(α(y)) =

h(α · y) = α · h(y). Since α ∈ D belongs to the center of S0, we have further that
α · h(y) = h(y) · α = (σ0(α) · h)(y) by definition of the action of S0 on h ∈ N∗

0 .
Since the above holds for any y ∈ N0, we have proved for all h ∈ N∗

0 that :

α∗(h) = σ0(α) · h (12)

We apply this equation to h = f(z) for z ∈ N0 where f is our S0-isomorphism

f : N0
∼→ N∗

0 . Since by assumption α = σf (α), we have :

α · z = σf (α)(z)
def
= f−1(α∗(f(z)))

(12)
= f−1(σ0(α) · f(z)) = σ0(α) · z

for any z ∈ N0. Hence α = σ0(α), for all α ∈ D, which is the claim. ¤
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We recall the following well-known result, see for instance [KMRT, 2.19].

Theorem 4.8 (Skolem-Noether). Let k be a field and ℓ be a positive integer. For
any involution σ on Mℓ(k) such that σ is identity on k, there exists u ∈ GLℓ(k) such
that ut = ±u and σ(a) = u−1 ·at ·u for a ∈ Mℓ(k). Furthermore, such a matrix u is
uniquely determined up to multiplication by invertible elements of k. (In particular,
symmetry or skew-symmetry of u does not depend on the choice of u.)

Definition 4.9. We summarize the various cases as follows.

(a) Suppose that there exists a field k and an isomorphism of rings with in-
volution S ≃ Mℓ(k) where the latter is equipped with the involution a 7→
u−1 · at · u for some u = ±ut ∈ GLℓ(k). Then we say that σ is central.
Furthermore, central involutions are of the following two types :

(a.1) the involution σ on S is split-orthogonal if u = ut ;

(a.2) the involution σ on S is split-symplectic if u = −ut.

By Skolem-Noether, this does not depend on the choice of the isomorphism
S ≃ Mℓ(k), if such an isomorphism exists. Since 1

2 ∈ S, both cases (a.1)
and (a.2) cannot occur simultaneously.

(b) We say that an involution σ on S is non-central if it is not central.

Remark 4.10. By definition, an involution σ on a simple ring S ≃ Mℓ(D) is exactly
one of split-orthogonal, split-symplectic or non-central. When σ is split-orthogonal
or split-symplectic, D is a field. Note that the converse need not be true, as the
example of S = C with complex conjugation immediately shows. In Lemma 4.7,
the involution is split-orthogonal or split-symplectic exactly if we are in case (a)
and it is non-central exactly if we are in case (b).

Lemma 4.11. Let σ be a non-central involution on S. Let N be a simple S-module
and ǫ = ±1. Then there exists an isomorphism f : N

∼→ N∗ such that f = ǫf t.

Proof. Note that an involution satisfying (a) of Lemma 4.7 is central. So our non-

central involution must satisfy case (b). Consider any isomorphism f : N
∼→ N∗

such that f = ±f t, see Prop. 4.5. Then σf 6= idD where D = EndS(N) by the above
discussion. If f = ǫf t we are done. Assume that f = −ǫf t. Then, using 1

2 , since

σf 6= id, there exists a non-zero α ∈ D with σf (α) = −α. Set g := α∗◦f : N
∼→ N∗.

Then gt = f t α = −ǫ f α = ǫ f σf (α) = ǫ f f−1 α∗ f = ǫ g. So g is an ǫ-symmetric

isomorphism N
∼→ N∗ as wanted. ¤

Lemma 4.12. Let (S, σ) be a simple ring with involution and let k = 0 or 1. Then

the homomorphism α′ : W2k(Sσ−proj) → Ĥ0(Z/2,K0(S)) = Z/2 of diagram (9)
is surjective in any of the following cases :

(a) if the involution is non-central;
(b) if k = 0 and the involution is split-orthogonal;
(c) if k = 1 and the involution is split-symplectic.

In particular, the homomorphism α : W2k(Sσ−proj) → Ĥ0(Z/2, K̃0(S)) is also
surjective in these cases.

Proof. By the description of α′ : W2k(Sσ−proj) → Ĥ0(Z/2,K0(S)) as essentially
being [P,ϕ] 7→ [P ], see 3.2, and since K0(S) ≃ Z is generated by the class of the
simple S-module N , to prove surjectivity of α′ it suffices to prove that there exists
an ǫ-symmetric space (N,ϕ) over N for ǫ = (−1)k. This is done as follows.

Part (a). By Lemma 4.11 there exist two isomorphisms fk : N → N∗ for k = 0, 1
such that fk

t = (−1)k fk, and we can simply choose ϕ := fk .
Parts (b) and (c). Let S = Mℓ(k) for some field k and some positive inte-

ger ℓ. Then N := k
ℓ is the simple S-module. (Elements of N are thought of
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as column-vectors in the matrix notation below.) By Definition 4.9, there ex-
ists u ∈ Mℓ(k) with u = ǫ ut for ǫ = (−1)k such that σ(x) = u−1xtu for every
x ∈ Mℓ(k). Define the homomorphism ϕ : N → N∗ by w 7→ (v 7→ vwtu).
It is easy to check that ϕ is well-defined, non-zero and S-linear. Under ϕt, we
have w 7→

(
v 7→ ϕ∗(πN (w))(v)

)
. For any v, w ∈ N , we have ϕ∗(πN (w))(v) =

πN (w)(ϕ(v)) = σ(ϕ(v)(w)) = σ(wvtu) = u−1utvwtu = ǫ vwtu = ǫ ϕ(w)(v). Hence

ϕt = ǫ ϕ is a (−1)k-symmetric isomorphism N
∼→ N∗ as wanted.

The final claim follows from α = q ◦ α′, see (9), and from the surjectivity of

q : Ĥ0(Z/2,K0(S)) → Ĥ0(Z/2, K̃0(S)), see (11). ¤

Lemma 4.13. Let k be a field and σ be an involution on S := Mℓ(k).

(a) If σ is split-orthogonal, then W2(Sσ−proj) = 0.
(b) If σ is split-symplectic, then W0(Sσ−proj) = 0.

Proof. This is a result about classical Witt groups and we only recall the proof for
the reader’s convenience. Let σ(−) = u−1 · (−)t · u for u ∈ S a unit such that
u = ǫ ·ut with ǫ = ±1, see 4.8. Denote by t : S → S the involution given by matrix
transposition. Then by “scaling”, see [Kn, Rem I.5.8.2, p. 28], for δ = ±1, we have

Wδ
us(S, σ)

∼→ Wǫ·δ
us (S, t).

On the other hand, by Morita equivalence, see [Kn, Thm. I.9.3.5, p. 56], we have

W−
us(S, t)

∼→ W−
us(k) = 0 .

Hence for ǫ = 1, that is, if σ is split-orthogonal on S, we have for δ = −1

W2(Sσ−proj) = W−
us(S, σ)

∼→ W−
us(S, t) = 0

and for ǫ = −1, that is, if σ is split-symplectic on S, we have for δ = +1

W0(Sσ−proj) = W+
us(S, σ)

∼→ W−
us(S, t) = 0 .

This proves the Lemma. ¤

Theorem 4.14. Let S = Mℓ(D) be a simple ring with an involution σ. Then

(a) If σ is split-orthogonal, W1(Sσ−free) = 0 whereas

W3(Sσ−free) ≃
{

0 if ℓ is odd

Z/2 if ℓ is even.

(b) If σ is split-symplectic, W1(Sσ−free) ∼= Z/2 and W3(Sσ−free) = 0.

(c) If σ is non-central, W1(Sσ−free) = 0 and W3(Sσ−free) = 0.

For “split-orthogonal”, “split-symplectic” and “non-central” see Definition 4.9.

Proof. By 4.3, we know that for k = 0 or 1, the Witt group W2k+1(Sσ−free) that
we want to determine is the cokernel of the following map :

α : W2k(Sσ−proj) −→ Ĥ0
(
Z/2, K̃0(S)

)
, (13)

where, by Proposition 4.1, the right-hand group Ĥ0(Z/2, K̃0(S)) is zero or Z/2. By
Lemma 4.12, we know that this map is surjective in some cases and this immediately
gives us (c) as well as the vanishing of W1 in (a) and of W3 in (b). We are left
with W3(Sσ−free) when σ is split-orthogonal and W1(Sσ−free) when σ is split-
symplectic. In these cases, Lemma 4.13 tells us that the left-hand group of (13) is

zero and therefore the cokernel of α is simply Ĥ0
(
Z/2, K̃0(S)

)
. Then, the result

follows from Proposition 4.1 : this group is zero for ℓ odd and Z/2 for ℓ even. Note
that in case (b) a split-symplectic involution can only exist on Mℓ(D) for ℓ even. ¤
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5. Semi-simple rings

In this section we start by computing the Tate cohomology groups Ĥi(Z/2, K̃0(S))
for i = 0, 1, of a semi-simple ring S with an involution σ and such that 1

2 ∈ S. We
then describe the shifted Witt groups of S with respect to the involution σ.

Notation 5.1. Any semi-simple ring with involution decomposes as

S =

n∏

i=1

Ai ×
m∏

j=1

Bj × Bop
j

where, for 1 ≤ i ≤ n and 1 ≤ j ≤ m, Ai and Bj are simple rings such that σ maps
Ai to itself and is the switch involution on Bj × Bop

j . The factors Bj × Bop
j will

turn out to play no significant role in the sequel. For 1 ≤ i ≤ n, we write

Ai = Mℓi
(Di)

for integers ℓi ≥ 1 and division algebras Di.

Definition 5.2. Let S and σ be as above. We respectively denote by so(S), ss(S)
and nc(S) the number of indices i, 1 ≤ i ≤ n such that σ is a split-orthogonal, a
split-symplectic or a non-central involution on Ai as defined in 4.9.

Remark 5.3. We start by describing diagram (7) in our situation. Since K0(S) ∼=
Z

n ⊕ Z
2m, this diagram becomes :

· · · // Z
0 //

φ
²²

Z
2 //

φ
²²

Z //

φ
²²

· · ·

· · · //
Z

n ⊕ Z
2m

1−τ //

²²

Z
n ⊕ Z

2m
1+τ //

²²

Z
n ⊕ Z

2m //

²²

· · ·

· · · // K̃0(S)
1−τ̃ // K̃0(S)

1+τ̃ // K̃0(S) // · · ·

where we can describe τ and φ explicitly as follows. For each 1 ≤ j ≤ m, write the
simple rings Bj as Bj = Mℓ′

j
(Ej) for division algebras Ej . Then :

τ =

(
Idn 0
0 Jm

)
where Jm =




0 1
1 0 0

. . .

0 0 1
1 0




∈ M2m(Z) and φ =




ℓ1
...

ℓn

ℓ′1
ℓ′1
...

ℓ′m
ℓ′m




.

Using this, it is easy to see that Ĥ0(Z/2,K0(S)) = (Z/2)n and Ĥ1(Z/2,K0(S)) = 0.
So, the factors Bj × Bop

j do not contribute to these Tate cohomology groups. The

above diagram also induces a long exact cohomology sequence as in (8) :

0 → Ĥ1(Z/2, K̃0(S)) → Z/2 → (Z/2)n → Ĥ0(Z/2, K̃0(S)) → 0 (14)

where the map Z/2 → (Z/2)n sends 1 to the vector (ℓ1 , . . . , ℓn). Hence we have

Ĥ0(Z/2, K̃0(S)) = (Z/2)n−1 or (Z/2)n and Ĥ1(Z/2, K̃0(S)) = 0 or Z/2 depending
on the existence of an odd ℓi . So, we have proved :
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Proposition 5.4. Let S be a semi-simple ring with an involution σ, written as
S =

∏n
1 Ai ×

∏m
1 (Bj × Bop

j ) with Ai = Mℓi
(Di) as in 5.1 above. Then the Tate

cohomology groups are

Ĥ0(Z/2, K̃0(S)) =
(Z/2)n

(ℓ1, . . . , ℓn)
=





(Z/2)n−1 if ℓi is odd for some i

(Z/2)n if ℓi is even for all i

and

Ĥ1(Z/2, K̃0(S)) =





0 if ℓi is odd for some i

Z/2 if ℓi is even for all i .
¤

Remark 5.5. Regarding the Witt groups of projective modules, recall that the
odd-indexed ones vanish by Thm. 4.2 and that all of them vanish for the switch
involutions, that is, for 1 ≤ j ≤ m, by 1.13, the group W∗((Bj × Bj)σ−proj) is zero.
Hence decomposition 5.1 gives (for ∗ even) W∗(Sσ−proj) =

⊕n
i=1 W∗((Ai)σ−proj).

We now want to collect some results on the shifted Witt groups of free modules
over (S, σ).

Theorem 5.6. Let (S, σ) be a semi-simple ring with involution such that 1
2 ∈ S.

Using the decomposition 5.1 of S as S =
∏n

1 Ai×
∏m

1 (Bj×Bop
j ) with Ai = Mℓi

(Di)

and the notation for the numbers so(S) and ss(S) of split-orthogonal and split-
symplectic involutions from 5.2, we have

W1(Sσ−free) ≃ (Z/2)ss(S)

whereas

W3(Sσ−free) ≃
{

(Z/2)so(S) if ℓi is even whenever σ is split-orthogonal on Ai

(Z/2)so(S)−1 if ∃ i with ℓi odd and σ split-orthogonal on Ai .

Proof. From Cor. 4.3, the group W2k+1(Sσ−free) is the cokernel of the homomor-

phism α : W2k(Sσ−proj) → Ĥ0
(
Z/2, K̃0(S)

)
. Let us contemplate this in the

following commutative diagram, see (9) for the commutative triangle on the left :

W2k(Sσ−proj)
α //

α′

&&MMMMMMMMMMM
Ĥ0

(
Z/2, K̃0(S)

) β // // W2k+1(Sσ−free) .

(Z/2)n ≃ Ĥ0
(
Z/2,K0(S)

)
q

88 88qqqqqqqqqqq

(15)

The isomorphism (Z/2)n ≃ Ĥ0
(
Z/2,K0(S)

)
is established in Rem. 5.3 and it is also

shown in (14) that q is surjective with kernel generated by the element (ℓ1, . . . , ℓn) ∈
(Z/2)n. It follows that W2k+1(Sσ−free) is a quotient of (Z/2)n, more precisely :

W2k+1(Sσ−free) ≃ (Z/2)n
/

Mk

where Mk ⊂ (Z/2)n is the subspace generated by (ℓ1, . . . , ℓn) and by the image
im(α′) of the map α′. Hence, killing im(α′) first and then (ℓ1, . . . , ℓn), we have :

W2k+1(Sσ−free) ≃ coker(α′)
/

(ℓ1, . . . , ℓn) (16)

where (ℓ1, . . . , ℓn) is the image of (ℓ1, . . . , ℓn) via the surjection (Z/2)n → coker(α′).
Now, this coker(α′) is easy to describe from the following commutative diagram
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obtained by projecting S to the product
∏n

i=1 Ai :

W2k(Sσ−proj)

≃

²²

α′

// Ĥ0
(
Z/2,K0(S)

)

²²

(Z/2)n≃oo

n⊕

i=1

W2k((Ai)σ−proj) ⊕
α′

i

//
n⊕

i=1

Ĥ0
(
Z/2,K0(Ai)

)
(Z/2)n≃oo

where the notation α′
i of course means : α′ for the ring Ai. This diagram commutes

by naturality, both of the construction of α′ in 3.2 and of the computation of
Ĥ0

(
Z/2,K0(−)

)
in 5.3. The isomorphism on the left comes from Rem. 5.5. So,

the image im(α′) is the sum ⊕n
i=1 im(α′

i), that is, it sits “diagonally” in (Z/2)n.

Now, the ith map α′
i : W2k((Ai)σ−proj) → Ĥ0

(
Z/2,K0(Ai)

)
is zero when σ is

split-orthogonal on Ai and k = 1, or, when σ is split-symplectic on Ai and k = 0
(Lemma 4.13) ; the map α′

i is surjective in all other cases (Lemma 4.12). In other
words,

coker(α′) ≃
{

(Z/2)ss(S) for k = 0

(Z/2)so(S) for k = 1

and the vector (ℓ1, . . . , ℓn) ∈ (Z/2)n is sent to its obvious image in coker(α′) ob-
tained by keeping only those ℓi for the indices 1 ≤ i ≤ n such that σ is either split-
symplectic or split-orthogonal on Ai for k = 0 or 1 respectively. But in the split-
symplectic cases, ℓi is necessarily even. The result follows from this and (16). ¤

Corollary 5.7. With notation as above, suppose furthermore that S is commuta-
tive. Then

W1(Sσ−free) = 0 and W3(Sσ−free) =

{
0 if so(S) = 0

(Z/2)so(S)−1 if so(S) ≥ 1 .

where so(S) reduces here to the number of simple factors of S on which the invo-
lution is trivial.

Proof. Since S is commutative, so are its simple factors Ai = Mℓi
(Di) and so

ℓi = 1 for each 1 ≤ i ≤ n. In particular, there do not exist split-symplectic
involutions : ss(S) = 0 and split-orthogonal involutions are trivial. Hence the
result by Thm. 5.6. ¤

6. Commutative case : maximal ideals detected by W3

We import the following result from L-theory :

Theorem 6.1 (Davis-Ranicki [DR, Cor. 5.2 (ii)]). Let (R, σ) be a semi-local ring
with involution. Then the natural homomorphism

W2k+1(Rσ−free) −→ W2k+1(R̄σ̄−free)

is injective.

Using our computations of Section 5, we deduce from the above the following
result in the commutative case :

Theorem 6.2. Let R be a commutative semi-local ring with an involution. Let
as before so(R̄) be the number of simple factors of R̄ = R/Rad(R) on which the
involution is trivial, see 5.2. Then

(a) W1(Rσ−proj) = 0.
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(b) If so(R̄) ≤ 1 then W3(Rσ−proj) = 0 as well.
(c) If so(R̄) > 1 then W3(Rσ−proj) is a finitely generated Z/2-module of rank

at most so(R̄) − 1.

In particular, the rank of W3(Rσ−proj) is strictly less than #Max(R), the number
of maximal ideals in R.

Proof. We first prove the theorem for R a commutative semi-local ring with Spec(R)
connected. In this case, all finitely generated projective modules are free. Hence

Ĥ0(Z/2, K̃0(R)) = Ĥ1(Z/2, K̃0(R)) = 0 and W2k+1(Rσ−free) = W2k+1(Rσ−proj).
So, by Theorem 6.1, it is enough to consider the image of W2k+1(Rσ−proj) in
W2k+1(R̄σ̄−free). The result then follows by Corollary 5.7. The non-connected
case follows easily from the above and the next Remark. ¤

Remark 6.3. For any two semi-local rings with involution (R1, σ1) and (R2, σ2)

W∗((R1 × R2)(σ1×σ2)
−proj) = W∗((R1)σ1

−proj) ⊕ W∗((R2)σ2
−proj) .

A commutative semi-local ring with involution is a product of “connected” semi-
local rings with involution and of switch-involutions. The Witt groups do not see
the latter (see Example 1.13).

For the rest of this section, we assume that (R, σ) is a commutative semi-local
ring with involution such that Spec(R) is connected, that is, R is not decompos-
able as a product R = R1 × R2. It is easy to reduce general considerations for
commutative semi-local rings to connected ones as explained above. So, we have
R−proj = R−free and we can use the notation

W∗(R) := W∗(Rσ−proj) = W∗(Rσ−free) .

We now want to produce non-zero elements in W3(R). We first define explicit Witt
classes and then check their non-vanishing, as well as other relations between them,
in the group W3(R̄σ̄−free), via the injection of Theorem 6.1 :

W3(R) = W3(Rσ−free) →֒ W3(R̄σ̄−free) .

Definition 6.4. Let m ∈ Max(R) be a maximal ideal of R. We say that m is
detected by a pair of elements a, b ∈ R if the following hold :

(a) σ is the identity on R/m,
(b) σ(a) · b + σ(b) · a = 0 in R,
(c) a ∈ m and a /∈ m′ for all m′ ∈ Max(R) \ {m},
(d) b /∈ m and b ∈ m′ for all m′ ∈ Max(R) \ {m}.

Lemma 6.5. If m is detected by a, b ∈ R then the following :

0 // R


a

b




// R2

(
σ(b) σ(a)

)

// R // 0

is an exact sequence. In other words, we can construct the class [ 1 , a , b ](3) ∈
W3(R) as in Definition 1.2.

Proof. Composition is zero by condition (b) of 6.4. Exactness follows by localization
at each maximal ideal, where either a or b is a unit. ¤

Notation 6.6. The set {m ∈ Max(R)
∣∣ the involution is trivial on R/m} has so(R̄)

elements by definition. Let us identify (Z/2)so(R̄) with the free Z/2-module over

this set and let us denote by em the basis element of (Z/2)so(R̄) corresponding to m.

We denote further by em the class of em in the quotient (Z/2)so(R̄)
/
(1, . . . , 1).
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Proposition 6.7. The isomorphism of Theorem 5.6 reads

W3(R̄σ̄−free) ≃ (Z/2)so(R̄)

(1, . . . , 1)
. (17)

Use notation 6.6. Suppose that m ∈ Max(R) is detected by a, b ∈ R and consider
the Witt class [ 1 , a , b ](3) ∈ W3(R) and its image in W3(R̄σ̄−free). The above
isomorphism (17) maps the image of [ 1 , a , b ](3) to the class em.

Proof. The description of W3(R̄σ̄−free) simply comes from Theorem 5.6 and the
fact that ℓi = 1 for all i in the commutative case.

Consider the 3-space (Q
•
, ψ) whose Witt class defines [ 1 , a , b ](3), see Defini-

tion 1.2. We have

Q
•

= · · · 0 // 0 // R1

(
a

)

// R1 // 0 // 0 · · ·
By the very choice of the element a ∈ R, see 6.4 (c), this complex becomes over R̄

Q̄
•

:= Q• ⊗R R̄ = · · · 0 // 0 // R/m
0 // R/m // 0 // 0 · · ·

since for all other factors R/m′ the class of a ∈ R/m′ is invertible, that is, the corre-
sponding complex is zero. With this, it is easy to check that (Q̄

•
, ψ̄) simply becomes

over R̄ a hyperbolic space P ⊕P#[3] over the object P = (R/m)[1], in the sense of
the 3-shifted duality of course. We now have to refer to the proof of Theorem 5.6,
indeed to diagram (15) which is the source of the identification of W3(R̄σ̄−free)
as a quotient of (Z/2)so(S). The claim is that the image in W3(R̄σ̄−free) of the

element em of (Z/2)so(R̄) ⊂ (Z/2)n = Ĥ0
(
Z/2,K0(R̄)

)
is the above 3-space (Q̄

•
, ψ̄).

This follows immediately from the description of β given in [HS], see 3.2. ¤

Corollary and Definition 6.8. Assume that a maximal ideal m is detected by
a, b ∈ R. Then the class [ 1 , a , b ](3) in W3(R) is independent of the choice of
a, b ∈ R which detect m. We shall therefore denote it by

ω(m) := [ 1 , a , b ](3) ∈ W3(R)

and simply say that the maximal ideal m is detected by W3.

Proof. This is immediate from Proposition 6.7 and from the injectivity of W3(R) =
W3(Rσ−free) →֒ W3(R̄σ̄−free), see Theorem 6.1, since the element em is indepen-
dent of the choice of a and b and em a fortiori. ¤

Corollary 6.9. Suppose that all maximal ideals m ∈ Max(R) are detected by W3.
Then W3(R) ≃ (Z/2)# Max(R)−1 and the classes {ω(m)}m∈M generate W3(R) with

∑

m∈Max(R)

ω(m) = 0 in W3(R) .

Proof. This is again a direct consequence of Proposition 6.7 and of the similar
properties for the elements em ∈ (Z/2)so(R̄)

/
(1, . . . , 1), see 6.6. ¤

Theorem 6.10. For any positive integer n ≥ 1. Consider n+1 distinct odd primes
p0, . . . , pn and let d = p0 · . . . · pn. For each i = 0, . . . , n let pi ∈ Spec

(
Z[
√

d]
)

be

a prime ideal above piZ. Let the ring R be the semi-localization of Z[
√

d] around
the primes p0, . . . , pn. Define an involution σ on R by localization of the obvious
involution on Z[

√
d], which sends

√
d to −

√
d.

Then, R is a Dedekind domain with non-trivial involution in which all maximal
ideals are detected by W3. So in particular,

W3(Rσ−proj) ∼= (Z/2)n .
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Proof. Since p0, . . . , pn are distinct odd primes and R is the semi-localization of
Z[
√

d] around p0, . . . , pn, we note that 1
2 ∈ R. The set of maximal ideals of R

is Max(R) = {pi}0≤i≤n. Let 0 ≤ i ≤ n. It is easy to see that pi = 〈 pi,
√

d 〉 .

Consider the elements ai = pi +
√

d and bi = p0 · · · pi−1 · pi+1 · · · pn +
√

d in R. We
claim that the pair (ai, bi) detects the maximal ideal pi for each i = 0, . . . , n.

It is easy to see that σ is the identity on R/pi
∼= Z/pi. Now a direct computation

shows that σ(ai) ·bi +σ(bi) ·ai = 0 in R. Since p0, . . . , pn are distinct odd primes, it
is clear that ai ∈ pi and ai 6∈ pj , for j 6= i. Again, bi 6∈ pi and bi ∈ pj for every j 6= i.
Hence by 6.4 the pair (ai, bi) ∈ R2 detects the maximal ideal pi, for each 0 ≤ i ≤ n.
Since all maximal ideals of R are detected by W3, we have by Corollary 6.9 that
W3(Rσ−proj) ∼= (Z/2)# Max(R)−1 = (Z/2)n. Hence the result. ¤

We can also illustrate the non-vanishing of W3(R) by a more geometric example :

Example 6.11. Consider the ring R[X,Y ]/(X2 + Y 2 − 1). Let m−1 and m1 denote
the maximal ideals in the above ring corresponding to the points (−1, 0) and (1, 0)
respectively. So m−1 = 〈x + 1, y 〉 and m1 = 〈x− 1, y 〉 . Let R = (R[X,Y ]/(X2 +
Y 2−1))((−1,0),(1,0)), the ring semi-localized at m−1 and m1. Consider the involution
σ : R → R generated by x 7→ x and y 7→ −y. Then σ is the identity on R/m−1

∼= R

and also on R/m1. Consider the elements r = y + (1− x) and s = y + (1 + x) in R.
It is easy to see that they satisfy the following relation : σ(r) · s+σ(s) · r = 0. Now
r ∈ m1 and r 6∈ m−1. Similarly, s ∈ m−1 and s 6∈ m1. Hence by 6.4 m1 is detected
by the pair (r, s) and m−1 is detected by the pair (s, r). Since both the maximal
ideals of R are detected by W3, by Corollary 6.9, we have

W3(R) ∼= (Z/2)# Max(R)−1 ∼= Z/2.

References

[B1] Paul Balmer, Triangular Witt Groups Part I : The 12-term localization exact sequence,
K-Theory 19 (2000), 311–363.

[B2] Paul Balmer, Triangular Witt Groups Part II : From usual to derived, Math. Z. 236

(2001), 351–382.
[B3] Paul Balmer, Witt cohomology, Mayer-Vietoris, homotopy invariance and the Gersten

Conjecture, K-Theory 23 (2001), 15–30.
[BW] P. Balmer, C. Walter, A Gersten-Witt spectral sequence for regular schemes, Ann. Scient.
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