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Abstract. The aim of this note is to give a complete answer to the hyper-


bolicity of nonsingular quadratic forms over purely inseparable multiquadratic
extensions in characteristic 2. This completes partial computations in [MM].


1. Introduction


Let F denote a field of characteristic 2, and let Wq(F ) denote the Witt group
of nonsingular quadratic forms over F [B2]. For a field extension K/F , there exists
a group homomorphism Wq(F ) −→ Wq(K) induced by the inclusion F ⊂ K. An
important problem in the algebraic theory of quadratic forms is to compute the
kernel Wq(K/F ) of this homomorphism.


Let us recall some examples of field extensions K/F where Wq(K/F ) was com-
puted. It is well-known that Wq(K/F ) is trivial for K purely transcendental over
F . Recently in [L2] some general results have been proved on Wq(K/F ) when K
is given by the function field of a quadratic form. Moreover, very few results are
known for K/F algebraic of finite degree, and the case of multiquadratic exten-
sions aroused a lot of interest. In characteristic 2, it is well-known that a quadratic
extension K/F is either separable and thus it is given by K = F (℘−1(α)) where
℘ : K −→ K is the homomorphism defined by ℘(x) = x2 + x, or inseparable and
thus it is given by K = F (


√
α) for some α ∈ F .


For α1, α2 ∈ F , we know the kernels for bi-quadratic extensions:


(1) Wq


(
F (℘−1(α1), ℘


−1(α2))/F
)


= W (F ) ⊗ [1, α1] + W (F ) ⊗ [1, α2]


(2) Wq


(
F (℘−1(α1),


√
α2)/F


)
= W (F ) ⊗ [1, α1] + 〈1, α2〉 ⊗ Wq(F )


(3) Wq (F (
√


α1,
√


α2)/F ) = 〈1, α1〉 ⊗ Wq(F ) + 〈1, α2〉 ⊗ Wq(F )
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where [α, β] denotes the quadratic form αx2 + xy + βy2; W (F ) is the Witt ring of
regular symmetric bilinear forms over F ; ⊗ is the action of W (F ) on Wq(F ) [B2];
and 〈α1, · · · , αn〉 is the bilinear form


∑n


i=1 αixiyi for α1, · · · , αn ∈ F ∗.
The kernel (1) is due to Baeza [B2, Cor. 4.16, Page 128]. The “mixed” kernel


(2) is due to Ahmad [A]. The kernel (3) is also due to Baeza in the case of
quadratic extensions [B2, Lem. 4.3, Page 182], and due to Mammone and Moresi
in the case of bi-quadratic extensions [MM, Th. 2(i)]. Moreover, Mammone and
Moresi proved that, in general, the kernel (1) does not generalize to separable
tri-quadratic extensions [MM, Proposition 1], and the kernel (3) generalizes to
inseparable multiquadratic extensions provided that the W (F )-submodule I3Wq(F )
of Wq(F ) is trivial [MM, Th. 2(ii)] (see below for the definition of this submodule).


Our aim in this note is to prove that the kernel (3) generalizes to inseparable
multiquadratic extensions without additional hypothesis on the ground field F .
More precisely, we will prove the following theorem:


Theorem 1. Let F be a field of characteristic 2. Then for any scalars
α1, · · · , αn ∈ F (n ≥ 1), we have:


Wq (F (
√


α1, · · · ,
√


αn)/F ) = 〈1, α1〉 ⊗ Wq(F ) + · · · + 〈1, αn〉 ⊗ Wq(F ).


Let us make a comment on the situation when the characteristic is different
from 2. Obviously, in this case a quadratic extension is of the form F (


√
α) for some


α ∈ F ∗. An analogue result of the kernel (1) has been proved by Elman, Lam and
Wadsworth [ELW, Th. 2.10, page 137]. Still in this case, Elman, Lam, Tignol
and Wadsworth constructed an example of a field for which the kernel (1) does not
generalize to the case of tri-quadratic extensions [ELTW, § 5, Page 1142].


For the proof of Theorem 1, we will begin by a generalization to the case of
purely inseparable multiquadratic extensions of a recent result by Aravire and Baeza
[AB] concerning the behaviour of differential forms under inseparable quadratic
extensions (Proposition 1). We also use a result by Kato [K] which establishes the
connection between nonsingular quadratic forms and differential forms of F over
F 2. We first reduce the proof of Theorem 1 to the case of a field which admits a
finite 2-basis, and then give a proof in this case.


We suppose that the reader is familiar with the algebraic theory of quadratic
forms in characteristic 2. For any unexplained notation and terminology we refer to
[B2] or [HL]. However, some definitions used here are taken from [HL], and some
of them differ from those introduced in [B2]. For this reason, we fix again some
rappels: A nonsingular quadratic form over F is just an orthogonal sum of binary
quadratic forms of type [a, b] with a, b ∈ F . The hyperbolic plane, denoted by H, is
the quadratic form [0, 0]. For n ≥ 1, an n-fold Pfister form is a nonsingular quadratic
form of type 〈1, a1〉 ⊗ · · · ⊗ 〈1, an−1〉 ⊗ [1, an] for a1 6= 0, · · · , an−1 6= 0, an ∈ F .
We denote it by 〈〈a1, · · · , an]]. Let PnF (resp. GPnF ) denote the set of n-fold
Pfister forms up to isometry (resp. the set {απ | α ∈ F ∗, π ∈ PnF}). We denote
by InWq(F ) the W (F )-submodule of Wq(F ) generated by GPnF .


Let Ωn
F denote the vector space of n-differential forms of F over F 2 (with


Ω0
F = F ), and let d : Ωn


F −→ Ωn+1
F denote the differential operator defined by:


d (αda1 ∧ da2 ∧ · · · ∧ dan) = dα ∧ da1 ∧ da2 ∧ · · · ∧ dan.
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For {bi | i ∈ I} a 2-basis of F , and after choosing an ordering on the set I, we


get that
{


dbi1


bi1


∧ · · · ∧ dbin


bin


| i1 < · · · < in


}
is an F -basis of Ωn


F . A result by Cartier


[C] asserts the existence of a homomorphism ℘n : Ωn
F −→ Ωn


F /dΩn−1
F given on


generators by:


℘n


(
x


dbi1


bi1


∧ · · · ∧ dbin


bin


)
= (x2 − x)


dbi1


bi1


∧ · · · ∧ dbin


bin


.


We denote by HnF (resp. Qn(F )) the cokernel of ℘n (resp. the quotient
InWq(F )/In+1Wq(F )).


An important result that we will use in this note is due to Kato [K], and asserts
that for any integer n ≥ 1, there exists an isomorphism kn : Qn(F ) −→ Hn−1F
given on generators by:


kn


(
〈〈a1, · · · , an]]


)
= an


da1


a1
∧ · · · ∧ dan−1


an−1
.


2. A preliminary result


To prepare the proof of Theorem 1, we begin by a generalization of [AB, Lem.
2.18] to the case of purely inseparable multiquadratic extensions:


Proposition 1. Let F be a field of characteristic 2 and α1, · · · , αm ∈ F ∗


(m ≥ 1). Then we have:


Ker (HnF −→ HnF (
√


α1, · · · ,
√


αm)) =
m∑


i=1


Ωn−1
F ∧ dαi.


Proof. Without loss of generality we may suppose that [F (
√


α1, · · · ,
√


αm) :
F ] = 2m. We proceed by induction on m. The case m = 1 has been proved
by Aravire and Baeza [AB, Lem. 2.18]. Suppose m ≥ 2 and that the propo-
sition is true as soon as we have a purely inseparable multiquadratic extension
of degree < 2m over a field of characteristic 2. Let ω ∈ Ωn


F be such that
ω ∈ Ker(HnF −→ HnF (


√
α1, · · · ,


√
αm)). Since ωF (


√
α1) ∈ Ker(HnF (


√
α1) −→


HnF (
√


α1, · · · ,
√


αm)), it follows from induction hypothesis that


(4) ωF (
√


α1) =


m∑


i=2


ωi ∧ dαi


for suitable ω2, · · · , ωm ∈ Ωn−1
F (


√
α1)


.


Claim: In the equality (4), we may suppose ω2, · · · , ωm in Ωn−1
F , and thus


again by induction hypothesis applied to the field F (
√


α1) we may conclude.
Hence, it suffices to justify the claim. Since α1 6∈ F ∗2, we may choose a 2-basis


B of F such that B ∪ {√α1} is a 2-basis of F (
√


α1).
Let us now fix i ∈ {2, · · · ,m}. We have ωi =


∑
finite


xi
jω


i
j with xi


j ∈ F (
√


α1)
∗,


and


ωi
j = dci


j1
∧ · · · ∧ dci


jn−1


not zero with ci
j1


, · · · , ci
jn−1


∈ B ∪ {√α1} (j1 < · · · < jn−1).


• On the one hand, since the equality (4) is taken modulo ℘n(Ωn
F (


√
α1)


), we


may suppose, after changing if necessary xi
jω


i
j by (xi


j)
2ωi


j , that xi
j ∈ F ∗.
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• One the other hand, if there exists an indice jk such that in the expression
of ωi


j (see above) we have ci
jk


=
√


α1, says jk = j1, then ci
j2


, · · · , ci
jn−1


∈ B since


ωi
j is not zero. But by using the differential operator d we get:


d
[(


xi
j


√
α1


)
dci


j2
∧ · · · ∧ dci


jn−1
∧ dαi


]
= xi


jω
i
j ∧ dαi +


√
α1


(
dxi


j ∧ dci
j2
∧ · · · ∧ dci


jn−1
∧ dαi


)
.


Hence, in HnF (
√


α1) we get


xi
jω


i
j ∧ dαi


(1)
= (


√
α1)


(
dxi


j ∧ dci
j2
∧ · · · ∧ dci


jn−1
∧ dαi


)


(2)
= α1


(
dxi


j ∧ dci
j2
∧ · · · ∧ dci


jn−1
∧ dαi


)


where for (1) (resp. for (2)) we proceed modulo dΩn−1
F (


√
α1)


(resp. modulo


℘n(Ωn
F (


√
α1)


)). Hence the claim. ¤


As a corollary of Kato’s result (cited before) and Proposition 1 we get the
following:


Corollary 1. With the same notation as in Proposition 1, we have:


Ker (Qn(F ) −→ Qn (F (
√


α1, · · · ,
√


αm))) =
m∑


i=1


〈1, αi〉 In−1Wq(F ).


Proof. Set L = F (
√


α1, · · · ,
√


αm). We have a commutative diagram


Qn(F ) −→ Qn(L)
↓ ↓


Hn−1(F ) −→ Hn−1(L)


where the vertical arrows are given by the isomorphism kn (kn as before), and the
horizontal arrows are induced by the inclusion F ⊂ L. Hence, x ∈ Ker(Qn(F ) −→
Qn(L)) implies that kn(x) ∈ Ker(Hn−1F −→ Hn−1L). By Proposition 1 we de-


duce that kn(x) ∈
m∑


i=1


Ωn−2
F ∧ dαi, and by the isomorphism kn it is clear that


x ∈
m∑


i=1


〈1, αi〉 In−1Wq(F ). Obviously,
m∑


i=1


〈1, αi〉 In−1Wq(F ) ⊂ Ker(Qn(F ) −→
Qn(L)). ¤


3. Proof of Theorem 1


With the same notation as in the theorem, let ϕ ∈ Wq


(
F (


√
α1, · · · ,


√
αn)/F


)
.


Set L = F (
√


α1, · · · ,
√


αn) and ϕ = [a1, b1] ⊥ · · · ⊥ [am, bm]. We will give the proof
in two steps.


1) Reduction to the case of a field with a finite 2-basis: Let F2 be
the finite field with two elements and F0 = F2(α1, · · · , αn; a1, b1, · · · , am, bm).
The quadratic form ϕ is defined over the subfield F0 of F . Since ϕL is hyper-
bolic, and after viewing L2m as the underlying vector space of ϕL, there exist
vectors v1, · · · , vm ∈ L2m, linearly independent over L, such that ϕL(vi) = 0
and BϕL


(vi, vj) = 0 where BϕL
is the symmetric bilinear form associated to
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ϕL. Set vi = (wi
1, · · · , wi


2m) with wi
1, · · · , wi


2m ∈ L (1 ≤ i ≤ m). For any
(i, k) ∈ {1, · · · ,m} × {1, · · · , 2m} set


wi
k =


∑


finite


ci,k
i1,··· ,in


(
√


α1)
i1 . . . (


√
αn)in


with ij ∈ {0, 1} and ci,k
i1,··· ,in


∈ F . Now let


K = F0


(
ci,k
i1,··· ,in


| i = 1, · · · ,m; k = 1, · · · , 2m
)


and
K ′ = K(


√
α1, · · · ,


√
αn).


Since K ′ ⊂ L, the vectors v1, · · · , vm are linearly independent over K ′, and thus ϕK′


is hyperbolic since v1, · · · , vm ∈ (K ′)2m. Clearly, K has a finite 2-basis since it is
finitely generated over F2. Moreover, we may suppose that ϕ is not hyperbolic over
F , and thus it is not hyperbolic over K. Since an element of


∑n


i=1 〈1, αi〉Wq(K)
can be considered as an element of


∑n


i=1 〈1, αi〉Wq(F ) after extending scalars to
F , we see that the proof can be reduced to the case of a field with a finite 2-basis.


2) Case where F has a finite 2-basis: If n0 is the number of elements of a
2-basis, we deduce that the space Ωi


F is trivial for i > n0. By Kato’s result and the
Hauptsatz of Arason and Pfister [B1, Satz 4.1], the group IiWq(F ) is also trivial
for i > n0 + 1. Let r ≥ 1 be such that ϕ ∈ IrWq(F ). Since ϕL is hyperbolic,
we deduce that ϕ ∈ Ker(Qr(F ) −→ Qr(L)). It follows from Corollary 1 that


ϕ ∈
n∑


i=1


〈1, αi〉 Ir−1Wq(F ). Let ρ1, · · · , ρn ∈ Ir−1Wq(F ) be such that


(5) ϕ ⊥
n∑


i=1


〈1, αi〉 ⊗ ρi ∈ Ir+1Wq(F )


It is clear that the form ϕ′ := ϕ ⊥
n∑


i=1


〈1, αi〉 ⊗ ρi is hyperbolic over L. If ϕ′ is


hyperbolic over F , then we are done. If not, we reproduce the same argument as


above for ϕ′ to get ϕ′ ⊥
n∑


i=1


〈1, αi〉 ⊗ ρ′i ∈ Ir+2Wq(F ) for some quadratic forms


ρ′1, · · · , ρ′n ∈ IrWq(F ), i.e. ϕ′′ := ϕ ⊥
n∑


i=1


〈1, αi〉 ⊗ (ρ′i ⊥ ρi) ∈ Ir+2Wq(F ). If


ϕ′′ is hyperbolic over F , then ϕ ∈
n∑


i=1


〈1, αi〉 ⊗ Wq(F ) and we are done. If not, we


continue the process in order to get a quadratic form ϕ ⊥
n∑


i=1


〈1, αi〉⊗δi ∈ IkWq(F )


for some δ1, · · · , δn ∈ Wq(F ) and k > n0+1, and thus to get a hyperbolic quadratic
form. ¤


4. A question


Before we formulate a general question, let us recall that the function field of a
symmetric bilinear form B, denoted by F (B), is the function field of the quadratic


form B̃ defined by B̃(v) = B(v, v) for v ∈ V , where V denotes the underlying vector


space of B (B̃ is uniquely determined by the isometry class of B). In particular,
the function field of the bilinear form 〈1, α〉, α ∈ F ∗, is the field F (x)(


√
α) for x


a variable over F . Hence, Theorem 1 describes the kernels Wq (F (B1) · · · (Bn)/F )
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for Bi = 〈1, αi〉 (1 ≤ i ≤ n). So in view of this it is natural to ask the following
question:


Question 1. Let F be a field of characteristic 2, and let B1, · · · , Bn be sym-
metric bilinear Pfister forms of dimension ≥ 2 (n ≥ 1). Is it true that the kernel
Wq(F (B1) · · · (Bn)/F ) equals B1 ⊗ Wq(F ) + · · · + Bn ⊗ Wq(F )?


Acknowledgment. I am grateful to Pasquale Mammone who drew my at-
tention on the problem studied in this note, and for some discussions that I have
had with him during the preparation of this work.
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