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Abstract. Using the theory of non-negative intersections, duality of the Schubert va-
rieties, and Pieri-type formula for a maximal orthogonal grassmannian, we get an upper
bound for the canonical dimension cd(Spinn) of the spinor group Spinn. A lower bound
is given by the canonical 2-dimension cd2(Spinn), computed in [8]. If n or n + 1 is a
power of 2, no space is left between these two bounds; therefore the precise value of
cd(Spinn) is obtained for such n.

In the appendix, we also produce an upper bound for canonical dimension of the
semi-spinor group (giving the precise value of the canonical dimension in the case when
the rank of the group is a power of 2), compute canonical dimension of the projective
orthogonal group, and show that the spinor group represents the unique difficulty when
trying to compute the canonical dimension of an arbitrary simple split group, possessing
a unique torsion prime.
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1. Introduction

Let F be an arbitrary field (of an arbitrary characteristic). Let X be a smooth algebraic
variety over F . A field L ⊃ F is called a splitting field (of X), if X(L) 6= ∅. A splitting
field L is called generic, if for any splitting field L′ there exists a place L → L′. The
canonical dimension cd(X) is defined as the minimum of transcendence degrees of generic
splitting fields of X (cf. [8, §2]).

Let G be an algebraic group over F . The canonical dimension cd(G) of G, as introduced
in [1], is the maximum of canonical dimensions of G-torsors, defined over field extensions
of F (of course, it is not the same as the canonical dimension of the underlying variety
of G, which is not an interesting invariant because is always 0). For the spinor group, it
is explained in loc.cit. that cd(Spin2n+1) = cd(Spin2n+2) (where n is an integer ≥ 1), so
that we will discuss only cd(Spin2n+1) here.

Although the canonical dimension of, say, a smooth projective variety X can be ex-
pressed in terms of algebraic cycles on X (see [8, cor. 4.7]), there are no general recipes
for computing cd(X) or cd(G). A better situation occurs with the canonical p-dimension
cdp, a p-relative version of cd, where p is a prime, defined in [8, §3]: a recipe for computing
cdp(G) of an arbitrary split simple G is obtained in loc.cit. In particular, one has

cd2(Spin2n+1) = n(n + 1)/2 − 2r + 1 ,

where r is the smallest integer such that 2r > n (while cdp(Spin2n+1) = 0 for any odd
prime p). Since cd(G) ≥ cdp(G) for any G and p, we have a lower bound for the canonical
dimension of the spinor group, given by its canonical 2-dimension:

cd(Spin2n+1) ≥
n(n + 1)

2
− 2r + 1 .

In this note we establish the following upper bound for cd(Spin2n+1):

Theorem 1.1. For any n ≥ 1, one has cd(Spin2n+1) ≤ n(n − 1)/2.

The proof is given in section 5. It makes use of the theory of non-negative intersections,
of duality between Schubert varieties, and of the Pieri formula for the split maximal
orthogonal grassmannian.

Note that the lower bound for cd(Spin2n+1) coincide with the upper one if (and only
if) n + 1 is a power of 2. Therefore, for such n, we get the precise value:

Corollary 1.2. If n + 1 is a power of 2, then cd(Spin2n+1) = n(n − 1)/2. ¤

Remark 1.3. For n up to 4, it is easy to see that cd(Spin2n+1) = cd2(Spin2n+1) (see [1]),
but for every n ≥ 5 the bound of Theorem 1.1 is new.

In the last section we explain why the question about canonical dimension of the spinor
group is of particular importance, produce an upper bound for canonical dimension of the
semi-spinor group (see Theorem 6.2 and Corollary 6.3), and compute canonical dimension
of the projective orthogonal group (see Theorem 6.1).

Acknowledgments: This work was accomplished during my stay at the Princeton Institute
for Advanced Study, a perfect place to work.
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2. Non-negativity

By scheme we mean a separated scheme of finite type over a field. Variety is an integral
scheme.

Let X be a scheme. Following [4, ch. 12], an algebraic cycle n1Y1+. . . nrYr on X (where
r is ≥ 0, Yi are closed subvarieties of X, and ni are integers) is called non-negative, if the
coefficients n1, . . . , nr are non-negative. An element α of the integral Chow group CH(X)
is called non-negative, if it can be represented by a non-negative cycle.

I thank I. Panin for pointing me out the following fact:

Lemma 2.1. Let L be a line vector bundle over a smooth variety X. The first Chern
class c1(L) ∈ CH1(X) is non-negative if and only if L has a non-zero global section.

Proof. Fixing an imbedding of L into the constant OX-module F (X)∗, we get a 1-
codimensional cycle C on X, representing c1(L), such that a function f ∈ F (X)∗ is a
global section of L if and only if the cycle div(f)+C is non-negative, [5]. Since C is ratio-
nally equivalent to a non-negative cycle if and only if the cycle div(f)+C is non-negative
for some f ∈ F (X)∗, we are done. ¤

Corollary 2.2. Let X be a smooth absolutely irreducible variety over a field F , α an
element of CH1(X), E/F a field extension. If αE ∈ CH(XE) is non-negative, then α
itself is non-negative.

Proof. Let L be a line vector bundle over X such that c1(X) = α. Assume that αE is
non-negative. Then the E-vector space Γ(XE, LE) of global sections of LE is non-zero
by Lemma 2.1. Since Γ(XE, LE) = Γ(X,L) ⊗F E, it follows that Γ(X,L) 6= 0; therefore,
once again by Lemma 2.1, α is non-negative. ¤

We are going to use the following

Theorem 2.3 ([4, §12.2]). Let X be a smooth variety such that its tangent bundle is
generated by the global sections. Then the product of non-negative elements in CH(X) is
non-negative. Moreover, if α ∈ CH(X) is represented by a non-negative cycle with support
A ⊂ X, while β ∈ CH(X) is represented by a non-negative cycle with support B ⊂ X,
then the product αβ ∈ CH(X) can be represented by a non-negative cycle with support on
the intersection A ∩ B.

Remark 2.4. If X is a projective homogeneous variety under an action of an algebraic
group, then the tangent bundle of X is generated by the global sections. Indeed, there
exists a field extension E/F such that the variety XE is isomorphic to the quotient G/P of
a semisimple algebraic group G over E modulo a parabolic subgroup P ⊂ G. Therefore
the tangent bundle of the variety XE is generated by the global sections. Since the
property of being generated by global sections is not changed under extension of the base
field, the tangent bundle of the variety X is also generated by the global sections.

3. Dual Schubert varieties

Let G be a split semisimple algebraic group, T ⊂ B ⊂ G a maximal split torus and
a Borel subgroup of G. Let W be the Weyl group of G, and let S ⊂ W be the set of
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reflections with respect to the simple roots. We fix a subset θ ⊂ S, take the subgroup
Wθ, generated by θ, and consider the parabolic subgroup P = Pθ = BWθB ⊂ G.

Using the length function l : W → Z≥0, induced by the set S of generators of the group
W , we take in each coset of W/Wθ the unique smallest length element and write W θ ⊂ W
for the set of representatives thus obtained.

The variety X = G/P is cellular, the cells BwP/P are indexed by w ∈ W θ. We
write Xw for the closure in G/P of the corresponding cell. The varieties Xw are called
(generalized) Schubert varieties; their classes [Xw] ∈ CH(X), called (generalized) Schubert
classes, form a basis of the group CH(X). Moreover, dim Xw = l(w).

Sometimes the upper indexation of the Schubert varieties, which respects their codi-
mension, is more convenient. To define it, let us take the (unique) largest length element
w0 ∈ W and set Xw = Xw′ , where w′ is the smallest length element in the coset w0wWθ

(so that w′ = w0w
′′, where w′′ is the largest length element of the coset wWθ). Now we

have codim Xw = dim Xw = l(w).

Proposition 3.1 ([10, prop. 1.4]). Let deg : CH(X) → Z be the degree homomorphism.
Then for any w,w′ ∈ W θ one has:

deg([Xw] · [Xw′ ]) =

{

1, if w′ = w;

0, otherwise.

Because of this property, we refer to the varieties Xw and Xw (as well as to their classes)
as mutually dual.

Let us now specify the situation: take as G the special orthogonal group SO(φ) of a
split quadratic form φ : V → F , where V is a (2n+1)-dimensional vector space over a field
F . Saying split, we mean existence in V of an n-dimensional totally isotropic subspace.
Let us choose a complete flag

F = (0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn) , dimFi = i

of totally isotropic subspaces of (V, φ) and a subspace Di in each Fi such that Fi =
Fi−1 ⊕ Di. Then we take as B ⊂ G the stabilizer of F , as P the stabilizer of Fn, and
as T the stabilizer of all Di. The variety X = G/P is therefore the maximal orthogonal
grassmannian of φ.

Now the Schubert varieties on X are indexed by the strictly decreasing sequences i1 >
i2 > · · · > is of positive integers, satisfying n ≥ i1. The (i1 . . . is)-th Schubert variety
X i1...is is the closed subvariety of the subspaces W ∈ X such that dim(W ∩ Fn+1−it) ≥ t
for t = 1, 2, . . . , s; the variety X i1...is has codimension i1 + · · ·+ is, and we write ei1...is for
its class in CH(X). The Schubert classes ei (i = 1, 2, . . . , n) are called special.

As a specific case of Proposition 3.1 we get

Corollary 3.2. For any ei1...is there exists ei′
1
...i′

s′
such that for any ei′′

1
...i′′

s′′

deg(ei′′
1
...i′′

s′′
· ei′

1
...i′

s′
) =

{

1, if ei′′
1
...i′′

s′′
= ei1...is;

0, otherwise.

¤
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4. Pieri formula

The classical Pieri formula expresses the product of a special Schubert class by an
arbitrary Schubert class as a linear combination of Schubert classes in the case of a usual
grassmannian.

We are going to use an analogues formula for a split maximal orthogonal grassmanian:

Theorem 4.1 ([6], see also [13]). Let n be a positive integer, X the maximal orthogonal
grassmannian of a split (2n+1)-dimensional quadratic form. The following multiplication
formula holds for the Schubert classes in CH(X): for any strictly decreasing sequence of
positive integers x = (x1, . . . , xk), satisfying x1 ≤ n, and any positive integer p ≤ n, one
has

ep · ex =
∑

y

2m
x,p
y ey ,

where the sum runs over all strictly decreasing sequences of integers y = (y1, . . . , yk+1),
satisfying

n ≥ y1 ≥ x1 ≥ y2 ≥ · · · ≥ yk ≥ xk ≥ yk+1 ≥ 0

and y1 + · · · + yk+1 = p + x1 + · · · + xk (in the case of yk+1 = 0, we define ey as ey1...yk
).

The exponent mx,p
y of the coefficient of ey is determined as follows:

mx,p
y =

{

the quantity of i ∈ [1, k] such that yi > xi > yi+1, if yk+1 6= 0;

the above quantity minus 1, if yk+1 = 0.

Remark 4.2. Theorem 4.1 is proved in [6] under the assumption that the base field is
algebraically closed; it is proved in [13] under the assumption that the base field is C.
However, as shown in [3], the multiplication table for the Schubert classes in CH(G/B),
where G is a split semisimple algebraic group and B is its Borel subgroup, depends only
on the type of G and does not depend on the base field. Now if P ⊂ G is a parabolic
subgroup, containing B, the pull-back with respect to the projection G/B → G/P is
an injective ring homomorphism, mapping each Schubert class [Xw] ∈ CH(G/P ) (the
notation is introduced in §3) to the “same” Schubert class [Xw] ∈ CH(G/B) (see [10,
lemma 1.2(b)] and [3, §3.3]).1 Therefore the multiplication table for the Schubert classes
in CH(G/P ) depends only on the type of the pair (G,P ) and does not depend on the
base field either.

Corollary 4.3. Under condition of Theorem 4.1, one has en
1 = en + . . . , where dots stand

for a linear combination of Schubert classes different from en.

Proof. Let x and y be two strictly decreasing sequences of positive integers ≤ n. Let us
say that y is a deformation of x (and write x Ã y), if ey appears in the formula for e1 · ex,
given by Theorem 4.1, in which case we refer to the number mx,1

y as the exponent of the
deformation.

There is a unique chain of deformations, transforming (1) to (n), namely, the chain
(1) Ã (2) Ã . . . Ã (n). Since the exponent of each deformation in the chain is 0, the
statement follows. ¤

1and, as follows from [10, lemma 1.2(c)], under the push-forward homomorphism, [Xw] is mapped to
[Xw] for w ∈ W θ, and [Xw] is mapped to 0 for w 6∈ W θ.
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Remark 4.4. Unfortunately none of the Schubert classes appears with coefficient 1 in
the decomposition of en+1.

5. Proof of Theorem 1.1

Let V be a (2n + 1)-dimensional vector space over F equipped with a non-degenerate
quadratic form φ : V → F . Let X be the orthogonal grassmannian of n-dimensional
(maximal) totally isotropic subspaces in V .

By [8, cor. 4.7], the canonical dimension cd(X) is the minimum of dim Y , where Y runs
over all closed subvarieties of X such that Y (F (X)) 6= ∅. As explained in [1], cd(Spin2n+1)
is the maximum of cd(X), taken over all φ such that the even Clifford algebra C0(φ) is
split. Therefore, in order to prove Theorem 1.1, it suffices to prove the following

Proposition 5.1. Let X be the maximal orthogonal grassmannian of a (2n+1)-dimensional
quadratic form φ such that [C0(φ)] = 0. Then there exists a closed subvariety Y ⊂ X of
dimension n(n − 1)/2 such that Y (F (X)) 6= ∅.

Proof. Since over the function field F (X) the quadratic form φ is split, we may speak
about Schubert classes in CH(X̄), where X̄ stands for XF (X). We write C̄H(X) for the
image of the restriction homomorphism CH(X) → CH(X̄).

Let us take the Schubert class e1 ∈ CH1(X̄). By our assumption on C0(φ), we have

C̄H
1
(X) = CH1(X̄) (see, e.g., [8, §8.2] or [14, proof of lemma 3.1]; cf. proof of Theorem

6.2); therefore e1 ∈ C̄H
1
(X). Moreover, by Corollary 2.2, e1 is non-negative. It follows

by Theorem 2.3 with Remark 2.4 that the n-th power of e1 is also non-negative, so that
we can write

en
1 = n1[Y1] + · · · + nr[Yr]

with some non-negative integers ni and some closed subvarieties Yi ⊂ X. Note that
dim Yi = dim X − n = n(n − 1)/2 for all i.

By Corollary 4.3, we have en
1 = en + · · · ∈ CH(X̄), where dots stand for a linear com-

bination of Schubert classes different from en. Using Corollary 3.2, we find the Schubert
class e ∈ CH(X̄) dual to en, that is, such that deg(ene) = 1 while deg(e′e) = 0 for any
Schubert class e′ different from en. For this e we have deg(en

1e) = 1. Since the product
en
1e is non-negative (by Theorem 2.3 with Remark 2.4), it follows that deg([Ȳi] · e) = 1

(and ni = 1) for some i ∈ [1, r], where Ȳi = (Yi)F (X)

Let Z be the Schubert variety, representing e. Since the product [Ȳi] · [Z] is a 0-cycle
class of degree 1 and can be represented by a non-negative cycle on the intersection
Ȳi ∩ Z (see Theorem 2.3 with Remark 2.4), the scheme Ȳi has a rational point, that is,
Yi(F (X)) 6= ∅. ¤

6. Appendix: Split simple algebraic groups of arbitrary type

In this section we show that the spinor group represents the only difficulty when trying
to answer the following question: let G be a split simple algebraic group, having a unique
torsion prime p; is it true that cd(G) = cdp(G)?

To explain the assumption about the uniqueness of torsion prime, made in this question,
let us notice that it is not clear what to expect from cd(G) in the case when G has more
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than one torsion prime (recall that cdp(G) > 0 if and only if p is a torsion prime of G, [8,
rem. 6.10]).

Requiring the uniqueness of torsion prime p, we are in the situation where cdp(G) is
known (see below), so that one may expect to be able to get some interesting information
also on cd(G).

Let us consider all split simple algebraic groups, having a unique torsion prime, type by
type. All cited results on canonical dimension are from [1] and on canonical p-dimension
from [8]. In each subsection we assume without repeating it, that G is a split simple
group of the type under consideration.

6.1. An, n ≥ 1. We have G ≃ SLn+1 /µl, where l is a positive integer, dividing n + 1.
The group G has a unique torsion prime p if and only if l is a positive power of p. In this
case it is known that cd(G) = cdp(G) = pk − 1, where k is the largest integer such that
pk divides n + 1.

6.2. Cn, n ≥ 2. If G is simply connected, then cd(G) = 0.
If G is not simply connected, then 2 is its unique torsion prime and cd(G) = cd2(G) =

2k+1 − 1, where k is the largest integer such that 2k divides n.

6.3. Bn, n ≥ 3. The prime 2 is the unique torsion prime here.
If G is simply connected, then G ≃ Spin2n+1.
If G is not simply connected, then G ≃ SO2n+1. In this case it is known that cd(G) =

cd2(G) = n(n + 1)/2 (originally proved in [7]).

6.4. Dn, n ≥ 4. The prime 2 is the unique torsion prime here.
If G is simply connected, then G ≃ Spin2n.
If G is not simply connected, then either G ≃ SO2n or G ≃ PGO+

2n. If n is odd, there
are no other possibilities. If n is even, then one more possibility is added: G ≃ Spin∼

2n

(the semi-spinor group).
For G = SO2n, we know that cd(G) = cd2(G) = n(n − 1)/2.
In the case when G = PGO+

2n, we know that cd2(G) = n(n − 1)/2 + 2k − 1, where k is
the largest integer such that 2k divides n. We compute cd(G) now:

Theorem 6.1. For G = PGO+
2n, one has cd(G) = cd2(G).

Proof. We only need to show that cd(G) ≤ cd2(G).
The set of isomorphism classes of G-torsors is mapped surjectively and with trivial

kernel onto the set of isomorphism classes of central simple algebras of degree 2n with an
orthogonal pair of trivial discriminant, [9, §29F].

Let A be such an algebra. The scheme of rank n isotropic ideals in A has two (possibly
non-isomorphic) components; let X be a component of this scheme. Note that dim X =
n(n − 1)/2. Furthermore, let Y be the Severi-Brauer variety of A. The algebra with
orthogonal pair A is split (i.e., its class is the distinguished point of the set of isomorphism
classes) if and only if the variety Y ×X has a rational point. Therefore, to get the required
bound for cd(G), it suffices to get the same bound for cd(Y × X) (see [8, rem. 3.7]).

The index of the algebra AF (X) divides n and the index of A itself is a power of 2.
Therefore, ind AF (X) divides 2k, and we may write A as the tensor product of a degree 2k

central simple algebra D and a matrix algebra M . Let Zo be the Severi-Brauer variety
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of D; the Severi-Brauer variety of M is a projective space P. Tensor product of ideals
gives rise to a closed imbedding Zo × P →֒ YF (X) (which becomes a Segre imbedding over
F (Y ×X)). Choosing a closed rational point on P, we identify Zo with a closed subvariety
of YF (X). Let Z be the closure of Zo in Y × X.

The constructed closed subvariety Z ⊂ Y × X has the dimension

dim X + dim Zo =
n(n − 1)

2
+ 2k − 1 ,

which coincides with the bound we want for cd(Y × X). To show that this number is
really a bound for cd(Y × X), it suffices to show that Z(F (Y × X)) 6= ∅, [8, cor. 4.7].

Let us write Z̄, X̄, and Ȳ for Z, X, and Y over the field F (Y × X). The variety Ȳ is
isomorphic to a projective space; let H ⊂ Ȳ be a hyperplane. Let x ∈ X̄ be a rational
point. The degree of the product [Z̄] · ([H]2

k−1 × [x]) is 1. Moreover, this product can be
represented by a non-negative cycle with support on Z̄ (Theorem 2.3 with Remark 2.4).
Therefore, the scheme Z̄ has indeed a rational point. ¤

For the semi-spinor group G = Spin∼
2n, we know that cd2(G) = n(n − 1)/2 + 2k − 2r,

where k is the same as above, while r is the smallest integer such that 2r ≥ n. We show
now, how the bound for cd(Spin2n) = cd(Spin2n−1), established in this paper (Theorem
1.1), produces a bound for cd(Spin∼

2n).

Theorem 6.2. For k being the largest integer such that 2k divides n, one has

cd(Spin∼
2n) ≤

(n − 1)(n − 2)

2
+ 2k − 1 .

Proof. The set of isomorphism classes of G-torsors for G = Spin∼
2n+2 is mapped surjectively

and with trivial kernel onto the set of isomorphism classes of degree 2n central simple
algebras with an orthogonal pair of trivial discriminant and trivial component of the
Clifford algebra.

Let A be such an algebra. For a component X of the scheme of rank n isotropic ideals
of A, let us consider the homomorphism CH1(X) → CH1(XF̄ ), where F̄ is an algebraic
closure of F . Since the absolute Galois group of F acts trivially on CH1(XF̄ ) = Z · e1, the
cokernel of this homomorphism is identified with the relative Brauer group

Br(F (X)/F ) = Ker
(

Br(F ) → Br(F (X))
)

of the function field of X (see, e.g., [2, proof of th. 3.1]), which is trivial, if the correspond-
ing to X component of the Clifford algebra of A is trivial, [11, appendix] (see [12, rem
9.2] for the characteristic 2 case). Therefore the homomorphism CH1(X) → CH1(XF̄ )
is surjective for an appropriate choice of X. Note that if the second component of the
Clifford algebra is not trivial (what happens if and only if the algebra A is not trivial
[9, (9.14)]), the component of the scheme of the ideals is uniquely determined by this
condition; in particular, X can not be chosen arbitrary in this proof.

Let Y be the Severi-Brauer variety of A. The algebra A is split if and only if the variety
Y ×X has a rational point. Therefore, to get the required bound for cd(G), it suffices to
get the same bound for cd(Y × X).

Let us agree to write T̄ for the scheme TF (Y ×X), if T is a scheme over F . The variety
X̄ is isomorphic to a component of the maximal orthogonal grassmannian of a hyperbolic
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2n-dimensional quadratic form and therefore is isomorphic to the maximal orthogonal
grassmannian of a split (2n− 1)-dimensional quadratic form, considered in the main part

of the paper. In particular, dim X = n(n − 1)/2. Moreover, C̄H
1
(X) = CH1(X̄) (where

C̄H(X) stands for the image of CH(X) → CH(X̄)), so that the first special Schubert class
e1 ∈ CH(X̄) lies in C̄H(X). Acting as in the proof of Theorem 1.1, we find a component
T of the support of a non-negative cycle, representing en−1

1 , such that deg([T̄ ] · e) = 1,
where e ∈ CH(X̄) is the Schubert class dual to en−1. Note that dim T = (n− 1)(n− 2)/2.

Since the variety XF (T ) has a rational point, the index of the algebra AF (T ) divides n.
Since the index of A itself is a power of 2, ind AF (T ) divides 2k, and we may write A as
the tensor product of a degree 2k central simple algebra D and a matrix algebra M . Let
Zo be the Severi-Brauer variety of D. Acting as in the proof of Theorem 6.1, we identify
Zo with a closed subvariety of YF (T ). Let Z be the closure of Zo in Y × T ⊂ Y × X.

The constructed closed subvariety Z ⊂ Y × X has the dimension

dim T + dim Zo =
(n − 1)(n − 2)

2
+ 2k − 1 ,

which coincides with the bound we want for cd(Y × X). To show that this number is
really a bound for cd(Y ×X), it suffices to show that Z(F (Y ×X)) 6= ∅, i.e., that Z̄ has
a rational point.

The variety Ȳ is isomorphic to a projective space; let H ⊂ Ȳ be a hyperplane. The
degree of the product [Z̄] ·([H2k−1]×e) is 1. Moreover, this product can be represented by
a non-negative cycle with support on Z̄. Therefore, the scheme Z̄ has indeed a rational
point. ¤

Note that the upper bound of Theorem 6.2 coincides with the lower bound, given by
cd2, if (and only if) n is a power of 2. Therefore, in this case, we get the precise value:

Corollary 6.3. If n is a power of 2, then cd(Spin∼
2n) = n(n − 1)/2. ¤

6.5. G2. The prime 2 is the unique torsion prime here, and one knows that

cd(G) = cd2(G) = 3 .

6.6. F4 and En, n = 6, 7, 8. We have multiple torsion primes here.
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