ON THE NON-TRIVIALITY OF G(D) AND THE
EXISTENCE OF MAXIMAL SUBGROUPS OF GL,(D)
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ABSTRACT. Let D be an F-central division algebra of index n.
Here we investigate a conjecture posed in [4] that if D is not a
quaternion algebra, then the group Go(D) = D*/F*D’ is non-
trivial. Assume that either D is cyclic or F' contains a primitive
p-th root of unity for some prime p|n. Using Merkurjev-Suslin The-
orem, it is essentially shown that if none of the primary components
of D is a quaternion algebra, then G(D) = D*/RNpp(D*)D’ # 1.
In this direction, we also study a conjecture posed in [1] or also
[7] on the existence of maximal subgroups of D*. It is shown that
if D is not a quaternion algebra with (D) = p°, then D* has a
maximal subgroup if either of the following conditions holds: (i)
F has characteristic zero, or (ii) F' has characteristic p, or (iii) F'
contains a primitive p-th root of unity.

Let D be an F-central division algebra of index n. Denote by D’
the commutator subgroup of the multiplicative group D*. Given a
subgroup G of D*, we shall say that G is mazimal in D* if for any
subgroup H of D* with G C H, one concludes that H = D*. We know,
by Corollary 1 of [8], that G(D) := D*/RN(D*)D', where RN (D*) is
the image of D* under the reduced norm of D to F, is an abelian
torsion group of a bounded exponent dividing the index of D over
F. This group is not trivial in general. For instance, if D is the
algebra of real quaternions, then G(D) is trivial whereas for rational
quaternions G(D) is isomorphic to a direct product of copies of Z,, as
it is easily checked. Assume that G(D) is not trivial, then by Prifer-
Baer Theorem (cf. [14], p. 105), we conclude that G(D) is isomorphic
to a direct product of Z,,, where r; divides the index of D over F. In
this way, one may obtain normal maximal subgroups of finite index in
D*. So, if G(D) is not trivial, then D* contains maximal subgroups.
For some examples of non-normal maximal subgroups of D*, see [9].
It is shown in [9] that even for the case G(D) = 1, we may obtain
maximal subgroups in D*. But, the question of whether D* contains
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a maximal subgroup for any noncommutative division ring D, is still
open. In this note, we concentrate on the case where D is of finite
dimension over its centre such that G(D) is trivial. When (D) = p©,
p a prime, and G(D) = 1, it is shown in Theorem 1 and Theorem 3
that if either D is an F-central cyclic division algebra or F' contains a
primitive p-th root of unity, then D is a quaternion algebra. Also, in
Proposition 1, it is proved that if one of the primary components of D
is a p-algebra for some prime p|n, then G(D) # 1. We then proceed
to explore suitable conditions on D such that D* contains a maximal
subgroup for an arbitrary division algebra of index n. It is essentially
shown that when D is not a quaternion algebra with i(D) = p°, then
D* contains a maximal subgroup if either of the following conditions
holds: (i) F' has characteristic zero, or (ii) F' has characteristic p, or (iii)
F has a primitive p-th root of unity. We shall use the conventions and
notations of [2] throughout. We begin our study with the following:

Lemma 1. Let A be an F-central cyclic algebra of odd index n such
that the skew field component of A is noncommutative. Then Gy(A) =
A*JF*A" # 1, where A’ is the commutator subgroup of A*.

Proof. We know that A ~ @;7;‘01}( a', where K/F is cyclic of degree n
with a™ = o € F. Thus, a is a root of the minimal polynomial " — «.
Now, we have RNy r(a) = (—1)"*'a. Assume on the contrary that
Go(A) = 1. Then there exist f € F* and ¢ € A’ such that a = fc.
Hence, RN 4 r(a) = ™ and therefore, f* = (—1)"*a. Since n is odd,
we obtain f" = a and hence o € Ng,p(K*). But this, by Theorem
14.7 of [6], contradicts the assumption A % M, (F) for any r, and so
the result follows. 0

The next result deals with F-central cyclic division algebras of degree
a power of 2 such that Go(D) is trivial. It is shown that in this case
our cyclic division algebra takes a particular simple form.

Lemma 2. Let D be an F'-central cyclic division algebra of index n =
2™ such that Go(D) = 1. Then we have the following:
(i) There is an element a € D* and a mazimal subfield K such that
D ~ @} Ka' witha® = —1; where K/F is cyclic, Gal(K/F) =<
o >, and ax = o(z)a, for all x € K.
(ii) The left K-space Dy generated by even powers of a, i.e., Dy :=
@?:/gflf(a% is a cyclic division algebra with maximal subfield K
and center E such that [E : F| = 2.
Furthermore, (i) is valid for any F-central cyclic algebra A with index

n=2" and Go(A) = 1.
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Proof. (i) Since D is cyclic we have the representation D ~ @' Ka’
for some a € D* with a™ = o € F. To end the proof, we claim that
it is possible to take @« = —1. It is clearly seen that a is a root of
the minimal polynomial 2" — . Therefore, RNp/p(a) = (—1)"* o
Since Go(D) = 1 we have a = fc for some f € F* and ¢ € D'. Thus
RNp,p(a) = f™and hence f™ = (—1)"*'a. Since n is even we conclude
that f* = —a and so a™ = —f", i.e, (af )" = —1. Therefore, we may
replace a by af~! to obtain the result.

(ii) Tt is easily seen that the left K-space D; is closed under addition
and multiplication and so D is a ring. We claim that D; is a division
algebra. To see this, let x € D;. Then 27! as an element of D, has
the form 27! = y + 2z where y € D; and the powers of a occurring
in z are all odd. Therefore, zz™' = z(y + 2z) = zy + vz = 1. Since
rz =1 — a2y € Dy, and the powers of a occurring in xz are odd, we
conclude that zz = 0. i.e., 27! € D; and the claim is established. It is
now clear that K is a maximal subfield of D,. For dimensional reasons
we conclude that Z(D;) = E C K such that [E : F] = 2. Therefore,
we obtain D; ~ (=1, K/E,0?). Note that our Galois group here is
['={02 0% 1. O

In the next lemma, we show that for any F-central cyclic division
algebra D of index a power of 2, the condition Go(D) = 1 implies that
D is a quaternion algebra.

Lemma 3. Let D be an F-central cyclic division algebra of index n =
2™, If Go(D) = 1, then D is a quaternion algebra.

Proof. By Lemma 2, we may assume that D ~ @?;OIK a’ with a" = —1,
where K/F is cyclic of degree n and for all x € K, ar = o(z)a with
Gal(K/F) =< o >. Thus, the characteristic of F' is different from
2. Let Dy be the division subalgebra generated by the even powers of
a. By Lemma 2, Dy is a cyclic division algebra with center E such
that [E : F] = 2. It is clear that we have D = D; & Dja. If Dy is
commutative, then we obtain Z(D;) = D; = K = F and so m = 1,
which means that D is a quaternion division algebra. We now claim
that D; = E. ie., n > 2 leads to a contradiction. To see this, set
k =n/2 # 1. Therefore, a* € D; \ E, and so E and consequently F'
contains no square root of —1. Now, since Go(D) = 1, for any x € D*
we have x = fc, for some f € F* and ¢ € D'. By Skolem-Noether
Theorem, we know that o is inner. Thus, o(z) = fo(c) = fded™" for
some d € D*. Hence, zo(x) € F*2D’ for all x € K*. Since CharF # 2
and E/F is Galois of degree 2, we have Ng/p(—1) = 1. Therefore, by
Hilbert’s ”Satz90”, there is an element b € E such that bo|g(b)~! = —1,
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where 0|y is the restriction of o to E. We also have bo(b) € F**D'.
Hence b € —F*2D), i.e., there is an element ¢ € D’ and a; € F* such
that b> = —a?c. This implies that —a;%b* = ¢ € Z(D') = F*N D’ since
b? € F*. Now, since F' contains no square root of —1 and, by a result of
[11], Z(D') is a finite group of order dividing i(D) = 2™, we conclude
that Z(D') = {—1,1}. Therefore, we have either ¢ = 1 or ¢ = —1.
If c = —1, then V> = a? and so b € F. Now, from bo(b)™! = —1 we
conclude that charF = 2 which is a contradiction. Thus, ¢ = 1 and we
obtain b* = —a?, i.e., (ba;*)? = —1. This implies that E has a square
root of -1, that is a contradiction. So we have k =1,ie, D1 =K =F
and so the result follows. O

We are now able to prove one of our main results in the form of

Theorem 1. Let D be an F-central cyclic division algebra such that
Go(D) =1, then D is a quaternion algebra.

Proof. By Corollary 15.3 of [13], we know that a central division algebra
is cyclic if and only if its primary components are cyclic. Thus, if
D ~ ®F D, is the primary decomposition of D, then D; is cyclic
division algebra for each i. Now, by a result of [3], we know that
Go(D) ~ Go(Dy) x --- x Go(Dg). Hence, Go(D;) =1 for all 1 <i < k.

Finally, use Lemma 1 and Lemma 3 to obtain the result. U
To prove our next theorem we shall need the following:

Lemma 4. Let D be an F-central p-division algebra of index p®, p
a prime. Then D has a cyclic splitting field of degree p*¢, for some
positive integer t.

Proof. By Theorem 15.4 of [2], there are cyclic extensions Ly, ..., L, of
degrees p® over F' and also elements ay,...,a, € F* such that [D] =
Zle[ai, LZ/F, 02’]7 where Gal(Ll/F) =< 0; >. Set Al = ((Ii, Ll/F, 07;).
By Theorem 4.5.1 of [5], since the tensor product of A;’s is also a cyclic
p-algebra, we have ®!_,(a;, L;/F,0;) = (a,L/F, o) for some cyclic ex-
tension L/F. Hence, [L : F] = p® for some integer s. Therefore, L is a
cyclic splitting field for D of degree a power of p. Now, by a repeated
use of Lemma 15.2 of [2], L can be chosen as a cyclic splitting field for
D of degree p' for some positive integer ¢. 0

The next result essentially says that the multiplicative group of every
F-central division p-algebra contains a normal maximal subgroup.

Theorem 2. Let D be an F-central division p-algebra of index p®. Then
we have G(D) # 1.
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Proof. Assume on the contrary that G(D) = 1. By Lemma 4, we may
choose a cyclic splitting field E for D such that [E : F| = p' for
some integer t. By Theorem 9.7 of [2], we can find an F-central cyclic
algebra A such that F is a maximal subfield in A and also [A] = [D].
Consequently, A = M,,(D), where m = p®=1¢. Now, we claim that
G(A) = 1. To prove this, by a theorem in [10], we know that G(A) =
D*/RN(D)"D'. Now, since G(D) = 1 we have D* = RN(D*)D'.
By taking reduced norm of both sides of the last relation we obtain
RN(D*) = RN(D*)*" and hence RN(D*) = RN(D*)™, i.e., G(A) =
G(D) = 1, which establishes our claim. Thus, Go(A) = 1. Now, by
Lemma 1, we conclude that p = 2. Therefore, by Lemma 2, A can be
written in the form A = (a, E/F, —1). Since —1 = 1, by Theorem 14.7
of [6], we will obtain the contradiction A ~ M (F') and so the result
follows. O

We shall need the following two lemmas to prove our next theorem.

Lemma 5. Let D be an F'-central division algebra of index p° such
that F' contains a primitive p-th root of unity and D has no non-cyclic
Galois splitting field of degree a power of p over F. Then we have:

(i) If p =2, then either D has a cyclic splitting field E of degree 2'¢
for some integer t such that —1 € Ng,p(E*) or D has a cyclic
splitting field E such that E is the splitting field of a minimal
polynomial of the form xP¥1 +1 and F C EFF

(i) If p # 2, then D has a cyclic splitting field of degree p'® for
some positive integer t.

Proof. Since F' has a primitive p-th root of unity we have (p, charF’) =
1. Set L := F(&), where £ is a primitive p®-th root of unity and consider
the L-algebra D ®p L. By Theorem 17.1 of [2] which is a consequence
of the Merkurjev-Suslin Theorem, D ®p L has an abelian splitting field
of the form Ky := L(~/ay,..., %/a), for some a; € L. View L as a
maximal subfield in M,,(F'), where m := [L : F|. If 0; € Gal(L/F), by
Skolem-Noether Theorem, there is an element A; € GL,,(F) such that
oi(z) = AjxA; " for all z € L. Now, put E := L( %/ Aja; A7 :1<j <
t,1 <i<m). Since Ky C E, we conclude that E is a splitting field for
D, and by Theorem 11.4 of [12], E//L is an abelian extension. We claim
that |Gal(E/F)| = [E : F], i.e., E/F is also a Galois extension. To
see this, for each i we may extend o; to E by the rule &;(x) = Az A; !,
for each # € E, where A;'s and E may be viewed in Mg.p(F). We
first show that &;(F) C E, which proves that ; is well defined. To see
this, let o be a root of the polynomial 2** — Aya;A;" in L[z]. Then,



6 T. KESHAVARZIPOUR & M. MAHDAVI-HEZAVEHI
7i(a) = A;aA;7! is also a root of 2?7 — AiAi/ain_,lAi_l. Now, we have
1 4-1 -1
AiAi/ain, Az = UiUi/(aj) = 0k<aj) = AkCLjAk s

for some Ay € GL,,(F). This shows that 7;(a) € F, and hence a; €
Aut(E). Now, set G = {6,7; : 0, € Gal(L/F),7; € Gal(E/L)}. 1t is
clear that o,7; € Gal(E/F) for all i,j. We claim that | G |= [E : F].
To see this, if for some 4,4, j, 7 we have 6;7; = 0,7, then 7; |,= 64 |1
since 7; |p= 7 |1. Hence, by Theorem 7.3 of [2], we obtain 4;A4;"' €
Zu,. 7y (L) = L. Therefore, 5; = 7y and hence 7; = 7, i.e, every
two elements of GG are distinct, and so the claim is established. Thus,
E/F is a Galois extension of degree a power of p which is also cyclic
by our assumption. We now show that F' C EF¥ To see this, we
first claim that ' C EP. If b € F'\ EP, since F' contains a primitive
p-th oot of unity, then K = F(b*/?) is a cyclic extension of degree p
such that K ¢ E. Therefore, E ®r K is a non-cyclic Galois splitting
field of degree a power of p over F' that contradicts our assumption. So
the claim is established. Now, consider the unique chain of all cyclic
subfields in F: Ey = F C By C Ey C --- C E, = E. Because
F C FEP, for each x € F there exists y € E such that z = y”. From
the uniqueness of the above chain we obtain F(y) = E; or F(y) = F.
This implies that ¥ C EY. Again, consider the skew field component
of the Ei-central simple algebra D ®p E; with the same splitting field
E. By taking b € E; \ E? and using the same argument as above, we
obtain E; C EP and hence F; C EX. Therefore, the repeated use of the
argument implies that £; C EF,; and hence F C EF1 as required.
Now, set @ ={\ € F: \ = 1,r € N}. We have 7 € Q, where 7 is a
primitive p-th root of unity. Hence, {2 is a nontrivial group. If €2 is an
infinite group, then 7 € Ng,p(£). Hence, by repeated use of Exercise
15.3 in [2], F can be extended to a cyclic extension of degree p* for
some t € N such that 7 € Ng/p(E) and the result follows. So assume
that €2 is a finite cyclic group and consider ( # 1 as a generator of
Q. Since F C EFF there exists n € E such that nl# = ¢, If p°
is the minimum positive integer such that n?"lFF1 = (»* = 7 then n
is a primitive p*™'[E : F]-th root of unity. If not, we conclude that
7 = 1, a contradiction. Now, we prove that F is a splitting field of
the minimal polynomial zF¥) — ¢ over F. To see this, take ny = ¢
and assume, by induction on 7, that n;, as a primitive p*T'*%-th root of
unity, be chosen such that E; = E;_;(n;). Since E; C E? ,, there exists
Ni+1 € Ei+1 such that 7721-)_,’_1 = N;. Hence, Ez’+1 = Ei(ni+1>, where Ni+1
is a primitive p*T*"2-th root of unity. Therefore, from our construction
n, as a primitive p*™![E : F|-th root of unity, is not contained in Ej_1,
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ie, F(n) = E. So, E is a splitting field of the minimal polynomial
2PFl — ¢ over F. Now consider the following cases:

(i) If p # 2, then Ng/p(n) = ¢ and hence 7 € Ng/p(E). By
Exercise 15.3 in [2], E can be extended to a cyclic extension £’
of degree p[E : F|. Now, by the repeated use of the construction
above for £’ in place of E and using the fact that D has no non-
cyclic Galois splitting field of degree a power of p, we obtain a
cyclic extension E of degree p'® for some integer ¢ such that
F C EIET],

(ii) If p = 2, suppose that ¢ # —1. Since —¢ = Ng/p(n) we have
—1 € Ng/p(FE), and this is reduced to the above case. But,
if ( = —1, then we have a cyclic extension which is also the
splitting field of the minimal polynomial z!®#1 + 1 = 0, and
also F C EEF],

O

Lemma 6. Let G be a finite non-cyclic p-group. Then G has at least
two distinct normal subgroups of index p.

Proof. If G is an abelian group, then the conclusion is clear. So assume
that G # Z(G) and consider the group G/Z(G). From group theory
we know that G/Z(G) is also a non-cyclic p-group. Now, use induction
on the order of GG to obtain the result. 0

Now, we are able to prove the following interesting result.

Theorem 3. Let D be an F-central division algebra of index p® such
that F' contains a primitive p-th root of unity and G(D) = 1. Then D
1S a quaternion algebra.

Proof. First assume that D has a non-cyclic Galois splitting field E of
degree a power of p. Since G(D) = 1, by corollary 4.19 of [10], we have
N(D*) = RN(D*), i.c., F**" = F**_ By Lemma 6, G := Gal(E/F)
has at least 2 distinct normal subgroups Hi, Hy of index p in G. If
M, My are the fixed fields of Hy, Hy in F , respectively, then from
Galois theory both M;, M, are cyclic extensions of degree p in E over
F'. Therefore, by Hilbert’s ”"Satz90”, for ¢ = 1,2 there is b; € M;
such that b 'o;(b;) = 7, where Gal(M;/F) =< o; >, and 7 here is a
primitive p-th root of unity in F. From the relation F**" = F *pze, since
VY € F*, there are also c¢1,cy € F* such that (07)"" = . and hence

)

(W2 (c; 1P )P = 1. Let Q denote the group of p®-th roots of unity in F.

Since b; € F, then b7(c; )P for i = 1,2 are generators of Q. But, this
is not possible since M; # M, and both M;, M, lie in E. Thus, we
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may assume that D has no non-cyclic Galois splitting field of degree a
power of p. Now, by Lemma 5, we consider two following cases:

(i) If p # 2, by Lemma 5, D has a cyclic splitting field F of degree
pt¢ for some integer t. From the proof of Theorem 2 with m =
p~Ye, E can be embedded in the cyclic algebra A = M,,(D) as
a maximal subfield such that G(A) = 1. But, by Lemma 1, we
obtain M,, (D) = M,(F') for some r € N, which is not possible.

(ii)) If p = 2, by Lemma 5, suppose that D has a cyclic split-
ting field £ of degree 2 such that —1 € Ng/p(E), then the
cyclic algebra defined in (i), by Lemma 2, can be written in
the form M,,(D) = @ZF1™ Eq' such that a/®F) = —1. But,
—1 € Ng/p(E). Therefore, by the proof of Lemma 14.7 of [6],
we obtain M,,(D) = M,(F) for some r € N, that contradicts
our assumption. So, D has a cyclic splitting field £ in which
the minimal polynomial z!#*! + 1 splits. If 7 is an element in
E such that its minimal polynomial over F' is x4 1, then
—n? = Ng/r(n) =1, where [E : F] = 2%, On the other hand,
since 1+ Ng/p(n) = Ngjp(n +1) = RNag,pyyr(n + 1) € F?,
it follows that v/2 € F. Thus, if & > 1, then n?" + 1 =
(" +1)2 — 2" can be decomposed further which leads
to a contradiction that the minimal polynomial of  has degree
less than [E : F]. Therefore, we have k = 1 which means that
D is a quaternion algebra.

O
Finally, we shall need the following lemmas to prove our last result.

Lemma 7. Let D be an F'-central division algebra of index pi* - - - pi*.
Suppose that D = Dy Qp ... Qp Dy, is the primary decomposition of D
with i(D;) = pi*. If G(D) =1, then G(D;) =1 for all 1 <1i <k.

Proof. Tt is enough to prove the result for the case D = A ®p B, where
A, B are two division algebras such that (i(A),i(B)) = 1 and also
G(A®p B) = 1. Consider the following embeddings:

AL A®r B A®p Bop B® 2 A@p My (F) 2 M, (A),
where m = i(B), and set ¢ = j 01y 07;. Thanks to Dieudonne deter-
minent, we then obtain the following homomorphisms

A ®F B dei))sg A
(A®p B) RNy p(A*)A
By Corollary 2.4 of [3], since the exponent of G(A) divides i(A) and
(i(A),i(B)) = 1, we conclude that the image of A under det o ¢ is

A— = G(A)
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G(A). Now, we claim that for each y € RNag,p/r(A ®p B), we have
detop(y) = 1. By the Reduced Tower formula [2], for each z € A®pr B
we have

RN a/rp(det(z)) = RN, a)/r(x) = RNag,5/r(z)™.
Ify = RNA@pB/F($> € F, then
detop(y) = detop(RN ag,p/r(x)) = RNagpp/p(x)™ = RNa/p(det(z)),

i.e, the image of det o p(y) in G(A) is identity, and so the claim is
established. Hence, we obtain the following embeddings

A—G(A @p B) "5* G(A).

Therefore, since the domain of det op is identity, and also det o ¢ is
surjective, we obtain G(A) = 1, and similarly G(B) = 1. O

Proposition 1. Let D be an F'-central division algebra of index p§* - - - pi*.
If either of the following conditions holds, then we have G(D) # 1.

(i) One of the primary components of D is a p;-algebra.
(ii) F' contains a primitive p;-th root of unity for at least one i, and
none of the primary components of D is a quaternion algebra.

Proof. Assume on the contrary that G(D) = 1. If D; is an i-th primary
component of D that satisfies (i) or (i), then by Lemma 7, we have
G(D;) = 1. By Theorem 2, D; is not a p;-algebra, i.e., D; does not sat-
isfy (i). Therefore, by Theorem 3, we conclude that D; is a quaternion
division algebra which contradicts our assumption. U

Corollary 1. Let D be an F-central division algebra that satisfies the
conditions of Proposition 1. Then D* has a maximal subgroup.

Proof. Since G(D) # 1 the result follows. O

Corollary 2. Let D be an F'-central division algebra of index p® such
that D is not a quaternion algebra. Then D* has a mazximal subgroup
if either of the following conditions holds.

(i) F has characteristic zero.
(ii) F' has characteristic p.
(iii) F' has a primitive p-th root of unity.

Proof. (i) Assume that F' has characteristic zero. If G(D) # 1,
then the result follows. So, assume that G(D) = 1. If Z(D') #
1, then D’ contains a primitive p-th root of unity. Therefore, the
proof is reduced to (iii). But, when Z(D') = 1 we have D* =
F*x D'. Hence, by Theorem 6 of [1], F* has a normal maximal
subgroup. So, D* has also a normal maximal subgroup.
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(ii) If F' has characteristic p, then by Theorem 2, we have G(D) # 1
and so the result follows.

(iii) Assume that F' has a primitive p-th root of unity. If G(D) # 1,
the result follows. So, assume that G(D) = 1. By Theorem 3,
D is a quaternion algebra that is a contradiction.

O
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