A purity theorem for linear algebraic groups

Ivan Panin *

01.03.2005

Abstract

Given a characteristic zero field k and a dominant morphism of affine algebraic k-groups $\mu : G \to C$ one can form a functor from k-algebras to abelian groups $R \mapsto \mathcal{F}(R) := C(R)/\mu(G(R))$. Assuming that C is commutative we prove that this functor satisfies a purity theorem for any regular local k-algebra. Few examples are considered in the very end of the preprint.

1 Introduction

Let \mathcal{F} be a covariant functor from the category of commutative rings to the category of abelian groups. For any domain R consider the sequence

$$\mathfrak{F}(R) \to \mathfrak{F}(K) \to \bigoplus_{\mathfrak{p}} \mathfrak{F}(K) / \mathfrak{F}(R_{\mathfrak{p}})$$

where p runs over the height 1 primes of R. We say that \mathcal{F} satisfies purity for R if this sequence — which is clearly a complex — is exact. The purity for R is equivalent to the following property

$$\bigcap_{\mathrm{ht}\mathfrak{p}=1} Im[\mathfrak{F}(R_{\mathfrak{p}}) \to \mathfrak{F}(K)] = Im[\mathfrak{F}(R) \to \mathfrak{F}(K)].$$

Let k be a characteristic zero field and \overline{k} be its algebraic closure. By a linear algebraic k-group we mean a reduced affine group k-scheme. In particular, a linear algebraic k-group is always k-smooth. The main results of this paper is the following purity theorem

Theorem 1.0.1 (A). Let

 $\mu: G \to C$

be a dominant morphism of linear algebraic k-groups, with C commutative. Let A be a local ring of a smooth algebraic variety X over k. The functor

$$\mathfrak{F}: R \mapsto C(R)/\mu(G(R))$$

satisfies purity for A.

^{*}The author thanks very much for the support the the Ellentuck Fund, the RTN-Network HPRN-CT-2002-00287, the RFFI-grant 03-01-00633a, the Swiss National Science Foundation and INTAS-03-51-3251.

Theorem 1.0.2 (B). Let R be a regular local ring containing the field k. Let

$$\mu: G \to C$$

be a dominant morphism of linear algebraic k-groups, with C commutative. The functor

$$\mathfrak{F}: A \mapsto C(A)/\mu(G(A))$$

satisfies purity for R. If K is the fraction field of R this statement can be restated in an explicit way as follows: given an element $c \in C(K)$ suppose that for each height 1 prime ideal \mathfrak{p} in A there exist $a_{\mathfrak{p}} \in C(R_{\mathfrak{p}})$, $g_{\mathfrak{p}} \in G(K)$ with $a = a_{\mathfrak{p}} \cdot \mu(g_{\mathfrak{p}}) \in C(K)$. Then there exist $g_{\mathfrak{m}} \in G(K)$, $a_{\mathfrak{m}} \in C(R)$ such that

$$a = a_{\mathfrak{m}} \cdot \mu(g_{\mathfrak{m}}) \in C(K).$$

After the pioneering articles [C-T/P/S] and [R] on purity theorems for algebraic groups, various versions of purity theorems were proved in [C-T/O], [PS], [Z], [Pa]. The most general result in the so called constant case was given in [Z, Exm.3.3]. This result follows now from our Theorem (A) by taking G to be a k-rational reductive group, $C = \mathbb{G}_{m,k}$ and $\mu : G \to \mathbb{G}_{m,k}$ a dominant k-group morphism. The papers [PS], [Z], [Pa]contain results for the nonconstant case. However they only consider specific examples of algebraic scheme morphisms $\mu : G \to C$.

It seems plausible to expect purity theorem in the following context. Let R be a regular local ring. Let $\mu: G \to T$ be a smooth dominant morphism of R-group schemes with an R-smooth reductive group scheme G and an R-torus T. Let \mathcal{F} be the covariant functor from the category of commutative rings to the category of abelian groups given by $S \mapsto T(S)/\mu(G(S))$. Then \mathcal{F} should satisfies purity for R provided that R contains an infinite field. It might even happen that \mathcal{F} satisfies purity for any regular local ring R.

Another functor for which one should expect purity is the following one. Let R be a regular local ring, G and G' smooth reductive R-group schemes, $\pi : G \to G'$ a smooth dominant R-group scheme morphism. Assume $Z = ker(\pi)$ is finite étale of multiplicative type over R. The boundary operator $\delta_{\pi,R} : G'(R) \to H1_{\text{ét}}(R,Z)$ makes sense and is a group homomorphism [Se, Ch.II, §5.6, Cor.2]. For an R-algebra S set

$$\mathcal{F}(S) = \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(S, Z) / \mathrm{Im}(\delta_{\pi, S}).$$
(1)

It seems plausible that the functor \mathcal{F} satisfies purity for R provided that R contains an infinite field. It may even happen that, for any regular local ring R, \mathcal{F} satisfies purity. Theorem 2.0.4 states that this is the case if R contains an infinite field k of characteristic zero and G, G' and π are already defined over k.

Note that we use transfers for the functor $R \mapsto C(R)$, but we do not use at all the norm principle for the map $\mu : G \to C$.

The preprint is organized as follows. In Section 2 we construct norm maps following a method from [SV, Sect.6]. In Section 3 we prove the main geometric Lemmas 1.2.3 and 1.2.5. In Section 4 we discuss unramified elements. A key point here is Lemma 1.3.5. In Section 5 we discuss specialization maps. A key point here is Corollary 1.4.6. In Section 6 we prove Theorem (A). In Section 7 we prove Theorem (B). In Section 8 we consider the functor (1) and prove in 2.0.4 a purity theorem for it. Finally in Section 9 we collect several examples.

Acknowledgments The author thanks very much M.Ojanguren for useful discussions on the subject of the present article.

1.1 Norms

Let $k \subset K \subset L$ be field extensions and assume that L is finite separable over K. Let K^{sep} be a separable closure of K and

$$\sigma_i: K \to K^{sep}, \ 1 \le i \le n$$

the different embeddings of K into L. As in §1, let C be a commutative algebraic group scheme defined over k. We can define a norm map

$$\mathcal{N}_{L/K}: C(L) \to C(K)$$

by

$$\mathcal{N}_{L/K}(\alpha) = \prod_{i} C(\sigma_i)(\alpha) \in C(K^{sep})^{\mathcal{G}(K)} = C(K) \; .$$

Following Suslin and Voevodsky [SV, Sect.6] we generalize this construction to finite flat ring extensions. Let $p: X \to Y$ be a finite flat morphism of affine schemes. Suppose that its rank is constant, equal to d. Denote by $S^d(X/Y)$ the d-th symmetric power of X over Y.

Lemma 1.1.1. There is a canonical section

 $\mathcal{N}_{X/Y}: Y \to S^d(X/Y)$

which satisfies the following three properties:

(1) Base change: for any map $f: Y' \to Y$ of affine schemes, putting $X' = X \times_Y Y'$ we have a commutative diagram

$$Y' \xrightarrow{\mathcal{N}_{X'/Y'}} S^d(X'/Y')$$

$$f \downarrow \qquad \qquad \downarrow S^d(Id_X \times f)$$

$$Y \xrightarrow{\mathcal{N}_{X/Y}} S^d(X/Y)$$

(2) Additivity: If $f_1 : X_1 \to Y$ and $f_2 : X_2 \to Y$ are finite flat morphisms of degree d_1 and d_2 respectively, then, putting $X = X_1 \coprod X_2$, $f = f_1 \coprod f_2$ and $d = d_1 + d_2$, we have a commutative diagram

where σ is the canonical imbedding.

(3) Normalization: If X = Y and p is the identity, then $\mathcal{N}_{X/Y}$ is the identity.

Proof. We construct a map $\mathcal{N}_{X/Y}$ and check that it has the desired properties. Let B = k[X] and A = k[Y], so that B is a locally free A-module of finite rank d. Let $B^{\otimes d} = B \otimes_A B \otimes_A \cdots \otimes_A B$ be the d-fold tensor product of B over A. The permutation group \mathfrak{S}_d acts on $B^{\otimes d}$ by permuting the factors. Let $S^d(B) \subseteq B^{\otimes d}$ be the A-algebra of all the \mathfrak{S}_d -invariant elements of $B^{\otimes d}$. We consider $B^{\otimes d}$ as an $S^d(B)$ -module through the inclusion $S^d(B) \subseteq B^{\otimes d}$ of A-algebras. Let I be the kernel of the canonical homomorphism $B^{\otimes d} \to \bigwedge^d(B)$ mapping $b_1 \otimes \cdots \otimes b_d$ to $b_1 \wedge \cdots \wedge b_d$. It is well-known (and easily checked locally on A) that I is generated by all the elements $x \in B^{\otimes d}$ such that $\tau(x) = x$ for some transposition τ . If s is in $S^d(B)$, then $\tau(sx) = \tau(s)\tau(x) = sx$, hence sx is in $S^d(B)$ too. In other words, I is an $S^d(B)$ -submodule of $B^{\otimes d}$. The induced $S^d(B)$ -module structure on $\bigwedge^d(B)$ defines an A-algebra homomorphism

$$\varphi: S^d(B) \to End_A(\bigwedge^d(B))$$

Since B is locally free of rank d over A, $\bigwedge^{d}(B)$ is an invertible A-module and we can canonically identify $End_{A}(\bigwedge^{d}(B)$ with A. Thus we have a map

$$\varphi: S^d(B) \to A$$

and we define

$$Tr_{X/Y}: Y \to S^d(X)$$

as the morphism of Y-schemes induced by φ . The verification of properties (1), (2) and (3) is straightforward.

Let now C be a commutative k-group scheme and $f: X \to C$ any morphism. We define the norm $N_{X/Y}(f)$ of f as the composite map

$$Y \xrightarrow{Tr_{X/Y}} S^d(X) \xrightarrow{S^d(f)} S^d(C) \xrightarrow{\times} C$$

$$\tag{2}$$

Here we write " \times " for the group law on C. The norm maps $N_{X/Y}$ satisfy the following conditions

(1) Base change: for any map $f: Y' \to Y$ of affine schemes, putting $X' = X \times_Y Y'$ we have a commutative diagram

(2) multiplicativity: if $X = X_1 \amalg X_2$ then the diagram commutes

$$\begin{array}{ccc} C(X) & \xrightarrow{(id \times f)^*} & C(X_1) \times C(X_2) \\ & & & & & \\ N_{X/Y} & & & & & \\ N_{X/Y} & & & & & \\ & & & & & & \\ C(Y) & \xrightarrow{id} & & & & C(Y) \end{array}$$

(3) normalization: if X = Y and the map $X \to Y$ is the identity then $N_{X/Y} = id_{C(X)}$.

1.2 Geometric lemmas

In this Section few geometric lemmas will be proved. Let k be a field of characteristic zero. The main result of this Section are the lemmas 1.2.3 and 1.2.5. Lemma 1.2.3 is a refinement of [OP, Lemma 2] and Lemma 1.2.5 is a refinement of Quillen's trick.

Lemma 1.2.1. Let F be a field of characteristic zero and let S be an F-smooth algebra which is a domain of dimension 1. Let \mathfrak{m}_0 be a maximal ideal with $S/\mathfrak{m}_0 = F$. Let $\mathfrak{m}_1, \mathfrak{m}_2, \ldots, \mathfrak{m}_n$ be different maximal ideals of S (it might be that $\mathfrak{m}_0 = \mathfrak{m}_i$ for an index i). Then there exists an element $\beta \in S$ such that S is finite over $F[\beta]$ and

- (1) the ideals $\mathbf{n}_i := \mathbf{m}_i \cap F[t]$ (i = 1, 2, ..., n) are all different from each other and different from $\mathbf{n}_0 := \mathbf{m}_0 \cap F[t]$ provided that \mathbf{m}_0 is different from \mathbf{m}_i 's;
- (2) the extension S/F[t] is étale at each \mathfrak{m}_i 's and at \mathfrak{m}_0 ;
- (3) $F[\beta]/\mathfrak{n}_i = S/\mathfrak{m}_i \text{ for each } i = 1, 2, ..., n;$
- (4) $\mathfrak{n}_0 = \beta F[\beta].$

Proof. Consider a closed imbedding $\operatorname{Spec}(S) \hookrightarrow \mathbf{A}_F^n$ and use a generic linear projection to \mathbf{A}_F^1 .

Lemma 1.2.2. Under the hypotheses of Lemma 1.2.1 let $0 \neq f \in S$ be an element that does not belong to a maximal ideal different of $\mathfrak{m}_0, \mathfrak{m}_1, \ldots, \mathfrak{m}_n$. Let $N(f) = N_{S/F[\beta]}$ be the norm of f. Then for an element $\beta \in S$ satisfying (1) to (4) of Lemma 1.2.1 one has

(a) N(f) = fg for an element $g \in S$;

- (b) fS + gS = S;
- (c) the map $F[\beta]/(N(f)) \to S/(f)$ is an isomorphism.

Proof. It is straightforward.

Lemma 1.2.3. Let A be a local essentially smooth k-algebra with a maximal ideal \mathfrak{m} . Let $A[t] \subset R$ be an A[t]-algebra which is essentially smooth as a k-algebra and is finite over the polynomial algebra A[t]. Assume $R/\mathfrak{m}R$ is a domain and assume there exists an element $h \in R \setminus \mathfrak{m}R$ such that R_h is A-smooth. Let $\epsilon : R \to A$ be an A-augmentation and $I = \ker(\epsilon)$. Given an $f \in R$ with $0 \neq \epsilon(f) \in A$ one can find an $s \in R$ satisfying the following conditions

- (1) R is finite over A[s];
- (2) $R/sR = R/I \times R/J$ for certain ideal J;
- (3) J + fR = R;
- (4) (s-1)R + fR = R;
- (5) if $N(f) = N_{R/A[s]}(f)$ then $N(f) = fg \in R$ for certain $g \in R$ (R/A[t] is a projective module since R and A[t] are regular and R is finite over A[t]);

$$(6) fR + gR = R;$$

(7) the composition map $A[s]/(N(f)) \to R/(N(f)) \to R/(f)$ is an isomorphism.

Proof. Replacing t by $t - \epsilon(t)$ we may assume that $\epsilon(t) = 0$. Since R is finite over A[t] and R/fR is finite over A we conclude that A[t]/(N(f)) is finite over A, hence A/(tN(f)) is finite over R too. So setting u = tN(f) we get an integral extension A[t]/A[u]. Consider the characteristic polynomial of the operator $R \xrightarrow{tf} R$ as an A[u]-module operator. This polynomial vanishes on tf and its free coefficient is N(tf) up to a sing. Thus N(tf) = tfg for an element $g \in R$. Now replacing t by u we may assume that R/A[t] is still integral, $\epsilon(t) = 0$ and $t \in fR$. In fact, u = N(ft) = ftg and whence $\epsilon(u) = \epsilon(t)\epsilon(fg) = 0$ and $u \in fR$.

We use below "bar" to denote the reduction modulo the ideal $\mathfrak{m}R$. Let $F = \overline{A} = A/\mathfrak{m}$. By the assumption of the lemma the *F*-algebra \overline{R} is an *F*-smooth domain of dimension 1. Let $\mathfrak{m}_1, \mathfrak{m}_2, \ldots, \mathfrak{m}_n$ be different maximal ideals of \overline{R} dividing \overline{f} and let $\mathfrak{m}_0 = ker(\overline{\epsilon})$. Let $\beta \in \overline{R}$ be such that the extension $\overline{R}/F[\beta]$ satisfies the conditions (1) to (4) of Lemma 1.2.1.

Let $\alpha \in R$ be a lift of β , that is $\bar{\alpha} = \beta$ in \bar{R} . Replacing α by $\alpha - \epsilon(\alpha)$ we may assume that $\epsilon(\alpha) = 0$ and still $\bar{\alpha} = \beta$.

Let $\alpha^n + p_1(t)\alpha^{n-1} + \cdots + p_n(t) = 0$ be an integral dependence equation for α . Let N be an integer large than the $max\{2, deg(p_i(t))\}$, where $i = 1, 2, \ldots, n$. Then for any

 $r \in k^{\times}$ the element $s = \alpha - rt^N$ is such that t is integral over A[s]. Thus for any $r \in k^{\times}$ the ring R is integral over A[s].

On the other hand the element $\bar{s} = \bar{\alpha} - r\bar{t}^N$ still satisfies the conditions (1) to (4) of Lemma 1.2.1 because for any i = 1, 2, ..., n one has $\bar{t} \in \mathfrak{m}_i$.

We claim that the element $s \in R$ is the required element (for almost all $r \in k^{\times}$).

In fact, for almost all $r \in k^{\times}$ the element s satisfies the conditions (1) to (4) of Lemma [OP, Lemma 2]. It remains to show that the conditions (5) to (7) are satisfied for all $r \in k^{\times}$.

To prove (5) consider the characteristic polynomial of the operator $R \xrightarrow{J} R$ as an A[s]module operator. This polynomial vanishes on f and its free coefficient is $\pm N(f)$ (the norm of f). Thus $f^n - a_1 f^{n-1} + \cdots \pm N(f) = 0$ and N(f) = fg for an element $g \in R$.

To prove (6) one has to check that this g is a unit modulo the ideal fR. It suffices to check that $\bar{g} \in \bar{R}$ is a unit modulo the ideal $\bar{f}R$. The field $F = A/\mathfrak{m}$, the F-algebra $S = \bar{R}$, its maximal ideals $\mathfrak{m}_0, \mathfrak{m}_1, \ldots, \mathfrak{m}_n$ and the element satisfy the hypotheses of Lemma 1.2.2 with β replaced by \bar{s} . Now \bar{g} is a unit modulo the ideal $\bar{f}R$ by the item (b) of Lemma 1.2.2.

To prove (7) note that R/fR and A[s]/(N(f)) are finite A-modules. So it remains to check that the map $\varphi : A[s]/(N(f)) \to R/fR$ is an isomorphism modulo the maximal ideal \mathfrak{m} . For that it suffices to verify that the map $\overline{\varphi} : F[\overline{s}]/(N(\overline{f})) \to \overline{R}/\overline{fR}$ is an isomorphism where $N(\overline{f}) := N_{\overline{R}/F[\overline{s}]}$. Now $\overline{\varphi}$ is an isomorphism by the item (c) of Lemma 1.2.2. The lemma follows.

Corollary 1.2.4. Under the hypotheses of Lemma 1.2.3 let K be the quotient field of A, $R_K = R \otimes_A K$ and $\epsilon_K = \epsilon \otimes_A id : R_K \to K$. Consider the inclusion $K[s] \subset R_K$. Then the norm $N(f) \in K[s]$ does not vanish at the points 1 and 0 of the affine line A1_K.

Proof. The condition (4) of 1.2.3 implies that N(f) does not vanish at the point 1. Since $\epsilon_K(f) \neq 0 \in K$ the conditions (2) and (3) imply that N(f) does not vanish at 0 either.

Lemma 1.2.5. Let X be a geometrically irreducible k-smooth affine variety of dimension d. Let $x \in X$ be a closed point, $0 \neq f \in k[X]$ and Z be the vanishing locus of f. Then there exists a commutative diagram

with a linear projection pr such that

- (1) there exists a principle open set $X_h \subset X$ containing the fibre $q^{-1}q(x)$ such that the map $q: X_h \to \mathbf{A}^{d-1}$ is smooth;
- (2) the fibre $q^{-1}q(x)$ is geometrically irreducible;

- (3) the map ρ is finite;
- (4) the map $q|_Z : Z \to \mathbf{A}^{d-1}$ is finite;
- (5) k(x) = k(q(x)).

Proof. Bertini plus generic projection. Consider a closed imbedding $X \hookrightarrow \mathbf{A}_k^n$, the closure \overline{X} of X in the projective space \mathbf{P}_k^n and the complement X_{∞} of X in \overline{X} . Let \overline{Z} be the closure of Z in \mathbf{P}_k^n and Z_{∞} be the complement of Z in \overline{Z} . Since dim X = d one has $dim X_{\infty} = d - 1$. Set $\mathbf{P}_k^{n-1} = \mathbf{P}_k^n - \mathbf{A}_k^n$. Now extend the scalars to an algebraic closure \overline{k} of k. Let $x_1, x_2, \ldots, x_n \in X(\overline{k})$ be the points of $x \otimes_k \overline{k}$. Let $\Pi \subset \mathbf{P}_{\overline{k}}^{n-1}$ be a linear subspace of dimension n - d which is general in the sense that

- (i) $\Pi \cap X_{\infty, \bar{k}}$ consists of finitely many points;
- (ii) $\Pi \cap Z_{\infty, \bar{k}} = \emptyset;$
- (iii) if $\langle \Pi, x_i \rangle$ is the space generated by Π and by an x_i then the $\langle \Pi, x_i \rangle \cap X_{\bar{k}}$ is \bar{k} -smooth and irreducible for each i = 1, 2, ..., n;
- (iv) $\langle \Pi, x_i \rangle \neq \langle \Pi, x_j \rangle$ for $i \neq j$. The requirement (*iii*) can be satisfied by a Bertini type theorem for a hyperplane section crossing a given rational point because we are in characteristic zero.

Since the set of linear spaces Π satisfying conditions (i) to (iii) is an open set of a Grassmannian we may choose a Π which is already defined over the ground field k. We may then choose a hyperplaneplane $\pi \subset \Pi$ of dimension n - d - 1, defined over k and such that

$$\pi \cap X_{\infty, \ \bar{k}} \neq \emptyset. \tag{4}$$

Now consider the linear projection $\mathbf{P}_k^n \setminus \pi \to \mathbf{P}_d^n$. Its restriction to \bar{X} defines a finite morphism $\bar{\rho} : \bar{X} \to \mathbf{P}_k^d$. And its restriction to X defines a finite morphism $\rho : X \to \mathbf{A}_k^d$, because it is a base change of $\bar{\rho}$ by means of the open imbedding $\mathbf{A}_k^d \hookrightarrow \mathbf{P}_k^d$.

The linear projection with the center Π defines a morphism $q: X \to \mathbf{A}_k^{n-1}$ which clearly fits in the commutative diagram (3) with a linear projection $pr: \mathbf{A}_k^d \to \mathbf{A}_k^{d-1}$. We claim that these ρ , q and pr are the required morphisms.

To prove this recall that ρ is finite. The morphism $q|_Z : Z \to \mathbf{A}_k^{d-1}$ is finite too, because $\Pi \cap Z_{\infty} = \emptyset$. Condition (5) is satisfied because $p \otimes_k \bar{k}$ separates the closed points x_i 's of the scheme $x \otimes_k \bar{k}$. The fibre of the morphism $p \otimes_k \bar{k}$ over the point x_i coincides with the intersection $\langle \Pi, x_i \rangle \cap X_{\bar{k}}$ for each $i = 1, 2, \ldots, n$. After the scalar extension k to \bar{k} the scheme theoretic fibre of q over q(x) becomes a disjoint union of the fibres of $q \otimes_k \bar{k}$ over the points $(q \otimes_k \bar{k})(x_i)$. Since k(q(x)) = k(x) and for each i the intersection $\langle \Pi, x_i \rangle \cap X_{\bar{k}}$ is irreducible we conclude that the fibre $q^{-1}q(x)$ is irreducible too, and thus condition (2) is verified. Since for each i the intersection $\langle \Pi, x_i \rangle \cap X_{\bar{k}}$ is smooth we conclude that the scheme theoretic fibre of q over q(x) is smooth too. Thus condition (1) is satisfied. The lemma is proved.

1.3 Unramified elements

Let k be the characteristic zero field. We work in this section with the category of commutative k-algebras. Let \mathcal{F} be a covariant functor from the category of commutative k-algebras to the category of abelian groups. Let K be a field containing k and $R \subset K$ be a k-subalgebra whose field of fractions is K. We define the subgroup of R-unramified elements of K as

$$\mathfrak{F}_{nr,R}(K) = \bigcap_{\mathfrak{p} \in Spec(R)^{(1)}} Im[\mathfrak{F}(R_{\mathfrak{p}}) \to \mathfrak{F}(K)],$$

where $Spec(R)^{(1)}$ is the set of hight 1 prime ideals in R. Obviously the image of $\mathcal{F}(R)$ in $\mathcal{F}(K)$ is contained in $\mathcal{F}_{nr,R}(K)$. In most cases $\mathcal{F}(R_p)$ injects into $\mathcal{F}(K)$ and $\mathcal{F}_{nr,R}(K)$ is simply the intersection of all $\mathcal{F}(R_p)$.

A basic functor we are interested in is the following one. Let $\mu : G \to C$ be the morphism of linear algebraic k-groups from Theorem 1.0.1. For a commutative k-algebra R set

$$\mathfrak{F}(R) = C(R)/\mu(G(R)). \tag{5}$$

For an element $\alpha \in C(R)$ we will write $\bar{\alpha}$ for its image in $\mathcal{F}(R)$. In this section we will write \mathcal{F} for the functor (5), the only exception being Lemma 1.3.6. We will repeatedly use the following result

Theorem 1.3.1 ([C-T/O]). Let H be a linear algebraic group over the field k. Let R be a discrete valuation ring with a fraction field K. Then the map of pointed sets

$$H^1_{\acute{e}t}(R,H) \to H^1_{\acute{e}t}(K,H)$$

induced by the inclusion $R \subset K$ has the trivial kernel.

Corollary 1.3.2 ([Ni]). Let R be a discrete valuation ring with fraction field K. The map $\mathcal{F}(R) \to \mathcal{F}(K)$ is injective.

Proof. Let H be the kernel of μ . Then the boundary map $\partial : C(R) \to H^1_{\text{\acute{e}t}}(R, H)$ fits in a commutative diagram

in which the vertical arrows have trivial kernels. The bottom arrow has trivial kernel by Theorem 1.3.1. Thus the top arrow has trivial kernel too.

Lemma 1.3.3. Let $\mu : G \to C$ be the morphism of linear algebraic groups. Let $H = \ker(\mu)$. Then for any field K the boundary map $\partial : C(K)/\mu(G(K)) \to H^1_{\acute{e}t}(K,H)$ is injective.

Proof. For a K-rational point $t \in C$ set $H_t = \mu^{-1}(t)$. The action by left multiplication of H on H_t makes H_t into a left principal homogeneous H-space and moreover $\partial(t) \in$ $\mathrm{H}^1_{\mathrm{\acute{e}t}}(K,H)$ coincides with the isomorphism class of H_t . Now suppose that $s, t \in C(K)$ are such that $\partial(s) = \partial(t)$. This means that H_t and H_s are isomorphic as principal homogeneous H-spaces. We must check that for certain $g \in G(K)$ one has t = sg.

Let K^{sep} be a separable closure of K. Let $\psi : H_s \to H_t$ be an isomorphism of left H-spaces. For any $r \in H_s(K^{sep})$ and $h \in H_s(K^{sep})$ one has

$$(hr)^{-1}\psi(hr) = r^{-1}h^{-1}h\psi(r) = r^{-1}\psi(r).$$

Thus for any $\sigma \in Gal(K^{sep}/K)$ and any $r \in H_s(K^{sep})$ one has

$$r^{-1}\psi(r) = (r^{\sigma})^{-1}\psi(r^{\sigma}) = (r^{-1}\psi(r))^{\sigma}$$

which means that the point $u = r^{-1}\psi(r)$ is a $Gal(K^{sep}/K)$ -invariant point of $G(K^{sep})$. So $u \in G(K)$. The following relation shows that the ψ coincides with the right multiplication by u. In fact, for any $r \in H_s(K^{sep})$ one has $\psi(r) = rr^{-1}\psi(r) = ru$. Since ψ is the right multiplication by u one has $t = s\mu(u)$, which proves the lemma.

Let K be a field and $x: K^* \to \mathbb{Z}$ be a discrete valuation vanishing on k. Let A_x be the valuation ring of x. Let \hat{A}_x and \hat{K}_x be the completions of A_x and K with respect to x. Let $i: K \hookrightarrow \hat{K}_x$ be the inclusion. By Lemma 1.3.2 the map $\mathcal{F}(\hat{A}_x) \to \mathcal{F}(\hat{K}_x)$ is injective. We will identify $\mathcal{F}(\hat{A}_x)$ with its image under this map. Set

$$\mathcal{F}_x(K) = i_*^{-1}(\mathcal{F}(\hat{A}_x)).$$

The inclusion $A_x \hookrightarrow K$ induces a map $\mathcal{F}(A_x) \to \mathcal{F}(K)$ which is injective by Lemma 1.3.2. So both groups $\mathcal{F}(A)$ and $\mathcal{F}_x(K)$ are subgroups of $\mathcal{F}(K)$. The following lemma shows that $\mathcal{F}_x(K)$ coincides with the subgroup of $\mathcal{F}(K)$ consisting of all elements *unramified* at x.

Lemma 1.3.4. $\mathfrak{F}(A_x) = \mathfrak{F}_x(K)$.

Proof. We only have to check the inclusion $\mathcal{F}_x(K) \subseteq \mathcal{F}(A_x)$. Let $a_x \in \mathcal{F}_x(K)$ be an element. It determines the elements $a \in \mathcal{F}(K)$ and $\hat{a} \in \mathcal{F}(\hat{A}_x)$ which coincide when regarded as elements of $\mathcal{F}(\hat{K}_x)$. We denote this common element in $\mathcal{F}(\hat{K}_x)$ by \hat{a}_x . Let $H = \ker(\mu)$ and let $\partial : C(-) \to \mathrm{H}^1_{\mathrm{\acute{e}t}}(-, H)$ be the boundary map.

Let $\xi = \partial(a) \in \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(K, H)$, $\hat{\xi} = \partial(\hat{a}) \in \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(\hat{A}_{x}, H)$ and $\hat{\xi}_{x} = \partial(\hat{a}_{x}) \in \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(\hat{K}_{x}, H)$. Clearly, $\hat{\xi}$ and ξ both coincide with $\hat{\xi}_{x}$ when regarded as elements of $\mathrm{H}^{1}_{\mathrm{\acute{e}t}}(\hat{K}_{x}, H)$. Thus one can glue ξ and $\hat{\xi}$ to get a $\xi_{x} \in \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(A_{x}, H)$ which maps to ξ under the map induced by the inclusion $A_{x} \hookrightarrow K$ and maps to $\hat{\xi}$ under the map induced by the inclusion $A_{x} \hookrightarrow \hat{A}_{x}$.

We now show that ξ_x has the form $\partial(a'_x)$ for a certain $a'_x \in \mathcal{F}(A_x)$. In fact, observe that the image ζ of ξ in $\mathrm{H}^1_{\mathrm{\acute{e}t}}(K, G)$ is trivial. By Theorem 1.3.1 the map

$$\mathrm{H}^{1}_{\mathrm{\acute{e}t}}(A_{x},G) \to \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(K,G)$$

has trivial kernel. Therefore the image ζ_x of ξ_x in $\mathrm{H}^1_{\mathrm{\acute{e}t}}(A_x, G)$ is trivial. Thus there exists an element $a'_x \in \mathcal{F}(A_x)$ with $\partial(a'_x) = \xi_x \in \mathrm{H}^1_{\mathrm{\acute{e}t}}(A_x, H)$.

We now prove that a'_x coincides with a_x in $\mathcal{F}_x(K)$. Since $\mathcal{F}(A_x)$ and $\mathcal{F}_x(K)$ are both subgroups of $\mathcal{F}(K)$, it suffices to show that a'_x coincides with the element a in $\mathcal{F}(K)$. By Lemma 1.3.3 the map

$$\mathfrak{F}(K) \xrightarrow{\partial} \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(K, H)$$

is <u>injective</u>. Thus it suffices to check that $\partial(a'_x) = \partial(a)$ in $\mathrm{H}^1_{\mathrm{\acute{e}t}}(K, H)$. This is indeed the case because $\partial(a'_x) = \xi_x$ and $\partial(a) = \xi$, and ξ_x coincides with ξ when regarded over K. We have proved that $a'_x \in \mathcal{F}(A_x)$ coincides with a_x in $\mathcal{F}_x(K)$. Thus the inclusion $\mathcal{F}_x(K) \subseteq \mathcal{F}(A_x)$ is proved, whence the lemma.

Lemma 1.3.5. Let $A \subset B$ be a finite extension of Dedekind k-algebras. Let $0 \neq f \in B$ be such that B/fB is reduced.

Suppose $N_{B/A}(f) = fg \in B$ for a certain $g \in B$ coprime with f. Suppose the composite map $A/N(f)A \to B/N(f)B \to B/fB$ is an isomorphism. Let F and E be the quotient fields of A and B respectively. Let $\beta \in C(B_f)$ be such that $\bar{\beta} \in \mathfrak{F}(E)$ is B-unramified. Then, for $\alpha = N_{E/F}(\beta)$, the class $\bar{\alpha} \in \mathfrak{F}(F)$ is A-unramified.

Proof. The only primes at which $\bar{\alpha}$ could be ramified are those which divide N(f). Let \mathfrak{p} be one of them. Check that $\bar{\alpha}$ is unramified at \mathfrak{p} .

To do this we consider all primes $\mathfrak{q}_1, \mathfrak{q}_2, \ldots, \mathfrak{q}_n$ in *B* lying over \mathfrak{p} . Let \mathfrak{q}_1 be the unique prime dividing f and lying over \mathfrak{p} . Then

$$\hat{B}_{\mathfrak{p}} = \hat{B}_{\mathfrak{q}_1} \times \prod_{i \neq 1} \hat{B}_{\mathfrak{q}_i}$$

with $\hat{B}_{q_1} = \hat{A}_{\mathfrak{p}}$. If F, E are the fields of fractions of A and B then

$$E \otimes \hat{F}_{\mathfrak{p}} = \hat{E}_{\mathfrak{q}_1} \times \cdots \times \hat{E}_{\mathfrak{q}_n}$$

and $\hat{E}_{\mathfrak{q}_1} = \hat{F}_{\mathfrak{p}}$. We will write \hat{E}_i for $\hat{E}_{\mathfrak{q}_i}$ and \hat{B}_i for $\hat{B}_{\mathfrak{q}_i}$. Let $\beta \otimes 1 = (\beta_1, \ldots, \beta_n) \in C(\hat{E}_1) \times \cdots \times C(\hat{E}_n)$. Clearly for $i \geq 2$ $\beta_i \in C(\hat{B}_i)$ and $\beta_1 = \mu(\gamma_1)\beta'_1$ with $\beta'_1 \in C(\hat{B}_1) = C(\hat{A}_{\mathfrak{p}})$ and $\gamma_1 \in G(\hat{E}_1) = G(\hat{F}_{\mathfrak{p}})$. Now $\alpha \otimes 1 \in C(\hat{F}_{\mathfrak{p}})$ coincides with the product

$$\beta_1 N_{\hat{L}_2/\hat{K}_{\mathfrak{p}}}(\beta_2) \cdots N_{\hat{L}_n/\hat{K}_{\mathfrak{p}}}(\beta_n) = \mu(\gamma_1) [\beta_1' N_{\hat{L}_2/\hat{K}_{\mathfrak{p}}}(\beta_2) \cdots N_{\hat{L}_n/\hat{K}_{\mathfrak{p}}}(\beta_n)].$$

Thus $\overline{\alpha \otimes 1} = \overline{\beta}'_1 \overline{N_{\hat{L}_2/\hat{K}_{\mathfrak{p}}}(\beta_2)} \cdots \overline{N_{\hat{L}_n/\hat{K}_{\mathfrak{p}}}(\beta_n)} \in \mathfrak{F}(\hat{A}_{\mathfrak{p}})$. Let $i: F \hookrightarrow \hat{F}_{\mathfrak{p}}$ be the inclusion and $i_*: \mathfrak{F}(F) \to \mathfrak{F}(\hat{F}_{\mathfrak{p}})$ be the induced map. Clearly $i_*(\bar{\alpha}) = \overline{\alpha \otimes 1}$ in $\mathfrak{F}(\hat{F}_{\mathfrak{p}})$. Now Lemma 1.3.4 shows that the element $\bar{\alpha} \in \mathfrak{F}(F)$ belongs to $\mathfrak{F}(A_{\mathfrak{p}})$. Hence $\bar{\alpha}$ is A-unramified.

Lemma 1.3.6 (Unramifiedness Lemma). Let \mathcal{F} be a covariant functor from the category of commutative k-algebras to the category of abelian groups. Let S and R be noetherian domains with quotient fields K and L respectively. Let $S \xrightarrow{i} R$ be an injective flat homomorphism of finite type and let $j: K \to L$ be the induced inclusion of the quotient fields. Then for each localization $R' \supset R$ of R the map

$$j_*: \mathfrak{F}(K) \to \mathfrak{F}(L)$$

takes S-unramified elements to R'-unramified elements.

Proof. Let $v \in K^*$ and let \mathfrak{r} be height 1 primes of R'. Then $\mathfrak{q} = R \cap \mathfrak{r}$ is a height 1 prime of R. Let $\mathfrak{p} = S \cap \mathfrak{q}$. Since the S-algebra R is flat of finite type one has $ht(\mathfrak{q}) \ge ht(\mathfrak{p})$. Thus $ht(\mathfrak{p})$ is 1 or 0. The commutative diagram

$$\begin{array}{cccc} \mathfrak{F}(K) & \longrightarrow & \mathfrak{F}(L) \\ & \uparrow & & \uparrow \\ \mathfrak{F}(S_{\mathfrak{p}}) & \longrightarrow & \mathfrak{F}(R'_{\mathfrak{r}}) \end{array}$$

shows that the class $j_*(v)$ is in the image of $\mathcal{F}(R'_r)$ and hence the class $j_*(v) \in \mathcal{F}(L)$ is R'-unramified.

1.4 Specialization maps

In this Section we consider the functor $R \mapsto \mathcal{F}(R)$ defined by (5). For a regular ring R containing k and each height one prime \mathfrak{p} in R we construct specialization maps $s_{\mathfrak{p}}$: $\mathcal{F}_{nr,R}(K) \to \mathcal{F}(k(\mathfrak{p}))$, where K is the quotient field of R and $k(\mathfrak{p})$ is the residue field of R at the prime \mathfrak{p} .

Definition 1.4.1. Let $Ev_{\mathfrak{p}} : C(R_{\mathfrak{p}}) \to C(k(\mathfrak{p}))$ and $ev_{\mathfrak{p}} : \mathfrak{F}(R_{\mathfrak{p}}) \to \mathfrak{F}(k(\mathfrak{p}))$ be the maps induced by $R_{\mathfrak{p}} \to k(\mathfrak{p})$. Define a homomorphism $s_{\mathfrak{p}} : \mathfrak{F}_{nr,R}(K) \to \mathfrak{F}(k(\mathfrak{p}))$ by $s_{\mathfrak{p}}(\alpha) = ev_{\mathfrak{p}}(\tilde{\alpha})$ where $\tilde{\alpha}$ is a lift of α in $\mathfrak{F}(R_{\mathfrak{p}})$. Corollary 1.3.2 shows that the map $s_{\mathfrak{p}}$ is well-defined. It is called the specialization map. The map $ev_{\mathfrak{p}}$ is called the evaluation map at the prime \mathfrak{p} .

Obviously for $\alpha \in C(R_{\mathfrak{p}})$ one has $s_{\mathfrak{p}}(\bar{\alpha}) = \overline{Ev_{\mathfrak{p}}(\alpha)} \in \mathfrak{F}(k(\mathfrak{p})).$

Lemma 1.4.2 ([H]). Let H be a linear algebraic group over the field k. Let R be a k-algebra which is a Dedekind domain with quotient field K. If $\xi \in H^1_{\acute{e}t}(K, H)$ is an R-unramified element for the functor $H^1_{\acute{e}t}(-, H)$ then ξ can be lifted to an element of $H^1_{\acute{e}t}(R, H)$.

Proof. Patching.

Theorem 1.4.3. Let K be a field of characteristic zero and let H be a linear algebraic group over K. Then the canonical map $H^1_{\acute{e}t}(K,H) \to H^1_{\acute{e}t}(K[t],H)$ is bijective.

Proof. Let $i : \{0\} \hookrightarrow \mathbf{A}_{1_K}$ be the origin of the affine line. Let $i^* : \mathrm{H}^1_{\mathrm{\acute{e}t}}(K[t], H) \to \mathrm{H}^1_{\mathrm{\acute{e}t}}(K, H)$ be the pull-back map. To prove the theorem we need the following

Claim 1.4.4. The following two statements are equivalent.

- (1) For any linear algebraic group H over K the map i^* is injective.
- (2) For any linear algebraic group H over K the map i^* has the trivial kernel.

Clearly the first statement implies the second one. Now suppose the second statement holds and prove the first one. For that consider $\xi, \xi' \in \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(K[t], H)$ and set $\xi_{0} = i^{*}(\xi), \xi'_{0} = i^{*}(\xi')$. Let H_{0} be the inner form of the group H with respect to the H-torsor \mathcal{H}_{0} . For any K-scheme S there is a well-known bijection $\phi_{S} : \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(S, H) \to \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(S, H_{0})$ between non-pointed sets. It takes the H-torsor $\mathcal{H}_{0} \times_{K} S$ to the trivial H_{0} -torsor $H_{0} \times_{K} S$, where \mathcal{H}_{0} is an H-torsor over K representing the class ξ_{0} . These bijections respect K-scheme morphisms. Suppose $\xi_{0} = \xi'_{0}$, then

$$i^*(\phi_{\mathbf{A}1}(\xi)) = \phi_K(\xi_0) = * = \phi_K(\xi'_0) = i^*(\phi_{\mathbf{A}1}(\xi')) \in \mathrm{H}^1_{\mathrm{\acute{e}t}}(K, H_0)$$

So $\phi_{\mathbf{A}1}(\xi) = * = \phi_{\mathbf{A}1}(\xi') \in \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(K[t], H_{0})$. Whence $\xi = \xi'$ and the injectivity follows. With this Claim in hand prove the theorem as follows.

The surjectivity of the map i^* is obvious. To prove its injectivity just use the Claim and mimic the proof of [C-T/O, Thm.2.1, Property P2]. Let $p : \mathbf{A}_{1_K} \to \operatorname{Spec}(K)$ be the structural morphism. Since $p \circ i = id$ and i^* is bijective p^* is bijective.

We need the following theorem.

Theorem 1.4.5 (Homotopy invariance). Let k be the field and $\mu : G \to C$ be the algebraic group morphism from Theorem 1.0.1. Let $k \subset K$ be a field extension and K(t) be the rational function field in one variable. Let $R \mapsto \mathfrak{F}(R)$ be the functor defined in 5. Then one has

$$\mathfrak{F}(K) = \mathfrak{F}_{nr,K[t]}(K(t)).$$

Proof. Injectivity is clear, because the composition

$$\mathfrak{F}(K) \to \mathfrak{F}_{un}(K(t)) \xrightarrow{s_0} \mathfrak{F}(K)$$

coincides with the identity (here s_0 is the specialization map at the point zero defined in 4.6).

It remains to check the surjectivity. Let $a \in \mathcal{F}_{un}(K(t))$ and let $H = ker(\mu)$. Then by Lemma 1.3.2 the element $\partial(a) \in H^1_{et}(K(t), H)$ is a class which for every $x \in A_K 1$ belongs to the image of $H^1_{et}(\mathcal{O}_x, H)$. Thus by Lemma 1.4.2, $\partial(a)$ can be represented by an element $\xi \in H^1_{et}(K[t], H)$, where K[t] is the polynomial ring. By Theorem 1.4.3, the map

$$H^1_{et}(K,H) \to H^1_{et}(K[t],H)$$

is an isomorphism. Then $\xi = \rho(\xi_0)$ for an element $\xi_0 \in H^1_{et}(K, H)$. Consider the diagram

$$\begin{aligned} a \longmapsto & \xi \longmapsto \ast \\ 1 \longrightarrow \mathcal{F}(K(t)) \xrightarrow{\partial} H^{1}_{et}(K(t), H) \longrightarrow H^{1}_{et}(K(t), G) \\ & \uparrow^{\epsilon} & \uparrow^{\rho} & \uparrow^{\eta} \\ 1 \longrightarrow \mathcal{F}(K) \xrightarrow{\partial} H^{1}_{et}(K, H) \longrightarrow H^{1}_{et}(K, G) \\ & a_{0} \longmapsto \xi_{0} , \end{aligned}$$

in which all the maps are canonical and all the vertical arrows have trivial kernels. Since ξ goes to the trivial element in $H^1_{et}(K(t), G)$, one concludes that ξ_0 goes to the trivial element in $H^1_{et}(K, G)$. Thus there exists an element $a_0 \in \mathcal{F}(K)$ such that $\partial(a_0) = \xi_0$. The map $\mathcal{F}(K(t)) \to H^1_{et}(K(t), H)$ is injective by Lemma 1.3.3. Thus $\epsilon(a_0) = a$.

Corollary 1.4.6. Let $R \mapsto \mathfrak{F}(R)$ be the functor defined in (5). Let

$$s_0, s_1 : \mathfrak{F}_{un}(K(t)) \to \mathfrak{F}(K)$$

be the specialization maps at zero and at one (at the primes (t) and (t-1)). Then $s_0 = s_1$.

Proof. It is an obvious consequence of Theorem 1.4.5.

1.5 Proof of Theorem (A)

Proof. By assumption there exists a smooth d-dimensional k-algebra $S = k[t_1, t_2, \ldots, t_n]$ and a prime ideal \mathfrak{p} in R such that $A = S_{\mathfrak{p}}$. We first reduce the proof to the case in which \mathfrak{p} is maximal. To do this, choose a maximal ideal m containing p. Since k is of characteristic zero it is infinite. By a standard general position argument we can find d algebraically independent elements X_1, \ldots, X_d such that S is finite over $k[X_1, \ldots, X_d]$ and étale at m. After a linear change of coordinates we may assume that S/p is finite over $B = k[X_1, \ldots, X_m]$, where m is the dimension of S/p. Clearly S is smooth over Bat m and thus, for some $h \in S \setminus m$, the localization S_h is smooth over B. Let S be the set of nonzero elements of $B, k' = S^{-1}B$ the field of fractions of B and $S' = S^{-1}S_h$. The prime ideal $p' = S^{-1}p_h$ is maximal in S', the k'-algebra S' is smooth and $S = S'_{p'}$.

From now on and till the end of this proof we assume that $A = \mathcal{O}_{X,x}$ is the local ring of a closed point x of a smooth d-dimensional irreducible affine variety X over k. Replacing k by its algebraic closure in k[X] we may assume furthermore that this X is a k-smooth geometrically irreducible affine variety over k.

Let $\xi \in C(K)$ be such that the $\overline{\xi} \in \mathcal{F}(K)$ is A-unramified. We may assume that $\xi \in C(k[X]_{\mathbf{f}})$ for an appropriative non-zero $\mathbf{f} \in k[X]$ with a reduced k-algebra $k[X]/(\mathbf{f})$. Shrinking X we may assume that $\overline{\xi} \in \mathcal{F}(k[X]_{\mathbf{f}})$ is k[X]-unramified. By Lemma 1.2.5 we can find a commutative diagram

with a linear projection pr and a function $h \in k[X]$ such that the conditions (1) to (5) of are satisfied. Let U = Spec(A) the point $x \in X$ is the closed point of U. Consider the Cartesian square of schemes

where $r = q|_U$, $\mathfrak{X} = U \times_{\mathbf{A}^{d-1}} X$, p is the first projection and δ is the diagonal map.

Applying base change by means of r to the diagram (6) we get a commutative triangle

with a finite surjective λ . Set $f = p_X^*(f)$ and $h = p_X^*(h)$, where h is from the condition (1) of Lemma 1.2.5.

Now check that the field k, the k-algebra A with the maximal ideal $\mathfrak{m} := \mathfrak{m}_x$, the ring R of regular functions on the affine scheme X, the inclusion $\lambda^* : A[t] \hookrightarrow R$ induced by λ , the function h, the A-augmentation $\epsilon := \Delta^* : R \to A$ and the function f satisfy the assumption of Lemma 1.2.3.

As a local ring of a k-smooth variety A is essentially k-smooth. Since r is essentially smooth and X is k-smooth, \mathfrak{X} is essentially k-smooth and so is R. Since ϱ is finite R is finite over A[t] too. Since k(q(x)) = k(x) and the fibre of q over q(x) is geometrically irreducible so is the fibre of p over $x \in U$. This implies that R/\mathfrak{m} is a domain. By base change, the open subscheme \mathfrak{X}_h contains the closed fibre of p and the restriction of p to \mathfrak{X}_h is smooth. The assumptions are satisfied.

Now we can find an $s \in R$ satisfying the conditions (1) to (7) of Lemma 1.2.3. The function s defines a finite morphism $\pi : \mathfrak{X} \to U \times \mathbf{A}1$. Since \mathfrak{X} and $\mathfrak{Y} := U \times \mathbf{A}1$ are regular schemes and π is finite surjective it is finite and flat by a theorem of Grothendieck [E, Cor.18.17]. So for any map $f : \mathfrak{Y}' \to \mathfrak{Y}$ of affine schemes, putting $\mathfrak{X}' = \mathfrak{X} \times_{\mathfrak{Y}} \mathfrak{Y}'$ we have the norm map given by (2)

$$C(\mathfrak{X}') \to C(\mathfrak{Y}').$$

Set $\mathcal{D} = \operatorname{Spec}(R/J)$ and $\mathcal{D}_1 = \operatorname{Spec}(R/(s-1)R)$. Clearly \mathcal{D}_1 is the scheme theoretic pre-image of $U \times \{1\}$ and the disjoint union $\mathcal{D}_0 := \mathcal{D} \coprod \delta(U)$ is the scheme theoretic

pre-image of $U \times \{0\}$ under the morphism π . In particular \mathcal{D} is finite flat over U. We will write Δ for $\delta(U)$. Recall that $\xi \in C(k[X]_f)$ and set $\zeta = p_X^*(\xi) \in C(R_f)$. Since the function $f \in R$ is co-prime to the ideals J and (s-1)R one can form the following element

$$\xi' = N_{\mathcal{D}_1/U}(\zeta|_{\mathcal{D}_1}) N_{\mathcal{D}/U}(\zeta|_{\mathcal{D}})^{-1} \in C(U) := C(A).$$
(8)

Claim 1.5.1 (Main). One has $\bar{\xi}'_K = \bar{\xi}_K$ in $\mathfrak{F}(K)$, where K is the fraction field of both k[X] and k[U] = A.

To complete the proof, it remains to prove the claim. To do this it is convenient to fix some notations. For an A-module M set $M_K = M \otimes_A K$, for an \mathcal{Y} -scheme \mathcal{Z} set $\mathcal{Z}_K = \operatorname{Spec}(K) \times_{\mathcal{Y}} \mathcal{Z}$, for a \mathcal{Y} -morphism $\varphi : \mathcal{Z} \to \mathcal{W}$ set $\varphi_K = \operatorname{Spec}(K) \times_{\mathcal{Y}} \varphi$. Clearly one has $A_K = K$, $U_K = \operatorname{Spec}(K)$, $\mathcal{X}_K = \operatorname{Spec}(R_K)$ and $(\mathbf{A} 1 \times U_K)_K$ is just the affine line $\mathbf{A} 1_K$. Its closed subschemes $U_K \times \{1\}$ and $U_K \times \{0\}$ coincide with the points 1 and 0 of $\mathbf{A} 1_K$. The morphism $p_K : \mathcal{X}_K \to \operatorname{Spec}(K)$ is smooth by the condition (1) of Lemma 1.2.3. The morphism π_K is finite flat and fits in the commutative triangle

One has $\mathcal{D}_K = \operatorname{Spec}(R_K/J_K)$, $\mathcal{D}_{1,K} = \operatorname{Spec}(R_K/(s-1)R_K)$. Clearly $\mathcal{D}_{1,K}$ is the scheme theoretic pre-image of the point $\{1\} \in \mathbf{A}\mathbf{1}_K$ and the disjoint union $\mathcal{D}_{0,K} := \mathcal{D}_K \coprod \Delta_K$ is the scheme theoretic pre-image of the point $\{0\} \in \mathbf{A}\mathbf{1}_K$ under the morphism π_K . Let

$$\zeta_s := N_{K(\mathfrak{X}_K)/K(\mathbf{A}_1)}(\zeta) \in C(K(\mathbf{A}_1)) = C(K(s)).$$

To prove Claim 1.5.1 we need the following one:

Claim 1.5.2. The class $\overline{\zeta}_s \in \mathfrak{F}(K(s))$ is K[s]-unramified.

Assuming this claim we complete the proof of Claim 1.5.1. By Claim 1.5.2 we can apply the specialization maps to $\bar{\zeta}_s$. By Corollary 1.4.6 the specializations at 0 and 1 of the element $\bar{\zeta}_s$ coincide, that is

$$s_1(\bar{\zeta}_s) = s_0(\bar{\zeta}_s) \in \mathcal{F}(K). \tag{10}$$

By Corollary 1.2.4 the function $N_{R_K/K[s]}(f) \in K[s]$ does not vanishes as at 1, so at 0 and by the condition (5) of Lemma 1.2.3 one has $\zeta_s \in C(K[s]_{N(f)})$. Using the relation between specialization and evaluation maps described in Definition 1.4.1 one has a chain of relations

$$\overline{Ev_1(\zeta_s)} = s_1(\overline{\zeta_s}) = s_0(\overline{\zeta_s}) = \overline{Ev_0(\zeta_s)} \in \mathcal{F}(K).$$
(11)

Base change and the multiplicativity properties of the norm map (2) imply relations

$$Ev_1(\zeta_s) = N_{\mathcal{D}_{1,K}/U_K}(\zeta|_{\mathcal{D}_{1,K}}) \tag{12}$$

and

$$Ev_0(\zeta_s) = N_{\mathcal{D}_K \coprod \Delta_K/U_K}(\zeta|_{\mathcal{D}_K \coprod \Delta_K}) = N_{\mathcal{D}_K/U_K}(\zeta|_{\mathcal{D}_K})N_{\Delta_K/U_K}(\zeta|_{\Delta_K})$$
(13)

So we have a chain of relations in $\mathcal{F}(K)$

$$\overline{N_{\mathcal{D}_{1,K}/U_K}(\zeta|_{\mathcal{D}_{1,K}})} = \overline{Ev_1(\zeta_s)} = \overline{Ev_0(\zeta_s)} = \overline{N_{\mathcal{D}_K/U_K}(\zeta|_{\mathcal{D}_K})} \cdot \overline{N_{\Delta_K/U_K}(\zeta|_{\Delta_K})}$$

By the normalization property of the norm map (2) one has $N_{\Delta_K/U_K}(\zeta|_{\Delta_K}) = \delta_K^*(\zeta)$. Since $\delta_K^*(\zeta) = \xi_K \in C(K)$ we have a chain of relations in $\mathcal{F}(K)$

$$\bar{\xi}_K = \overline{\delta_K^*(\zeta)} = \overline{N_{\Delta_K/U_K}(\zeta|_{\Delta_K})} = \overline{N_{\mathcal{D}_{1,K}/U_K}(\zeta|_{\mathcal{D}_{1,K}})} \cdot (\overline{N_{\mathcal{D}_K/U_K}(\zeta|_{\mathcal{D}_K})})^{-1}$$

By the base change property of the norm map (2) one has

$$\xi'_{K} = N_{\mathcal{D}_{1,K}/U_{K}}(\zeta|_{\mathcal{D}_{1,K}}) N_{\mathcal{D}_{K}/U_{K}}(\zeta|_{\mathcal{D}_{K}})^{-1} \in C(U_{K}) := C(K).$$
(14)

So $\bar{\xi}'_K = \bar{\xi}_K$. Claim 1.5.1 follows.

It remains to prove Claim 1.5.2. Recall that the class $\bar{\xi} \in \mathcal{F}(k[X]_f)$ is k[X]-unramified. Since $q|_{X_h} : X_h \to \mathbf{A}^{d-1}$ is flat (it is smooth) so is $r : U \hookrightarrow X_h \to \mathbf{A}^{d-1}$. Since the $p_X : \mathfrak{X} \to X$ is the base change of r it coincides with a composition map $\mathfrak{X} \hookrightarrow X_h \times_{\mathbf{A}^{d-1}} X \xrightarrow{q \times id} X$ where $q \times id$ is a flat morphism of finite type. By Lemma 1.3.6 the class $\bar{\zeta} \in \mathcal{F}(R_f)$ is R-unramified. Thus the same class $\bar{\zeta}$ when regarded in $\mathcal{F}(K[\mathfrak{X}_K]_f)$ is $K[\mathfrak{X}_K]$ -unramified.

Now check that the inclusion of K-algebras $K[s] \subset R_K = K[\mathfrak{X}_K]$ and the function $f \in R$ satisfy the hypotheses of Lemma 1.3.5. We first check that the K-algebra R_K/fR_K is reduced. Recall that the ring k[X]/(f) is reduced. As we mentioned above, the morphism $p_X : \mathfrak{X} \to X$ is essentially smooth, hence the ring R/(f) is reduced too and thus its localization R_K/fR_K is reduced. Since the extension $K[s] \subset R_K = K[\mathfrak{X}_K]$ and the functions $f \in R$ satisfy the conditions (5) to (7) of Lemma 1.2.3 they also satisfy the hypotheses of Lemma 1.3.5. Thus by Lemma 1.3.5 the class $\overline{\zeta}_s$ is K[s]-unramified. This implies Claim 1.5.2. The proof of the theorem is completed.

1.6 Proof of Theorem (B)

Proof. To prove Theorem (B) we now recall a celebrated result of Dorin Popescu (see [P] or, for a self-contained proof, [Sw]).

Let k be a field and R a local k-algebra. We say that R is geometrically regular if $k' \otimes_k R$ is regular for any finite extension k' of k. A ring homomorphism $A \to R$ is called geometrically regular if it is flat and for each prime ideal q of R lying over \mathfrak{p} , $R_{\mathfrak{q}}/\mathfrak{p}R_{\mathfrak{q}} = k(\mathfrak{p}) \otimes_A R_{\mathfrak{q}}$ is geometrically regular over $k(\mathfrak{p}) = A_{\mathfrak{p}}/\mathfrak{p}_{\mathfrak{p}}$.

Observe that any regular local ring containing a field k is geometrically regular over the prime field of k.

Theorem 1.6.1 (Popescu's theorem). A homomorphism $A \to R$ of noetherian rings is geometrically regular if and only if R is a filtered direct limit of smooth A-algebras.

Proof of Theorem B. Let R be a regular local ring containing the field k. Since k is of characteristic zero one can apply Popescu's theorem. So R can be presented as a filtered direct limit of smooth k-algebras A_{α} , We first observe that we may replace the direct system of the A_{α} 's by a system of essentially smooth local k-algebras. In fact, if \mathfrak{m} is the maximal ideal of R, we can replace each A_{α} by $(A_{\alpha})_{\mathfrak{p}_{\alpha}}$, where $\mathfrak{p}_{\alpha} = \mathfrak{m} \cap A_{\alpha}$. Note that in this case the canonical morphisms $\varphi_{\alpha} : A_{\alpha} \to R$ are local and every A_{α} is a regular local ring, in particular a factorial ring.

Let now L be the field of fractions of R and, for each α , let K_{α} be the field of fractions of A_{α} . For each index α let \mathfrak{a}_{α} be the kernel of the map $\varphi_{\alpha} : A_{\alpha} \to R$ and $B_{\alpha} = (A_{\alpha})_{\mathfrak{a}_{\alpha}}$. Clearly, for each α , K_{α} is the field of fractions of B_{α} . The composition map $A_{\alpha} \to R \to L$ factors through B_{α} and hence it also factors through the residue field k_{α} of B_{α} . Since Ris a filtering direct limit of the A_{α} 's we see that L is a filtering direct limit of the B_{α} 's.

Let $\xi \in C(L)$ be such that the class $\overline{\xi} \in \mathcal{F}(L)$ is *R*-unramified. We need the following two lemmas.

Lemma 1.6.2. Let $B = \mathcal{O}_{X,x}$ be the local ring of a k-smooth variety at a point x. Let k(x) be its residue field and K be its field of fractions. Let $\eta, \rho \in \mathfrak{F}(B)$ be such that $\eta_K = \rho_K \in \mathfrak{F}(K)$. Then $\eta(x) = \rho(x) \in \mathfrak{F}(k(x))$.

Lemma 1.6.3. There exists an index α and an element $\xi_{\alpha} \in C(B_{\alpha})$ such that the class $\bar{\xi}_{\alpha} \in \mathcal{F}(K_{\alpha})$ is A_{α} -unramified.

Assuming these two claims we complete the proof as follows. Consider a commutative diagram

By Lemma 1.6.3 the class $\bar{\xi}_{\alpha} \in \mathcal{F}(K_{\alpha})$ is A_{α} -unramified. Hence by Theorem A there exists an element $\eta \in C(A_{\alpha})$ such that $\bar{\xi}_{\alpha} = \bar{\eta} \in \mathcal{F}(K_{\alpha})$. By Lemma 1.6.2 the elements $\bar{\xi}_{\alpha}$ and $\bar{\eta}$ have the same image in $\mathcal{F}(k_{\alpha})$. Hence $\bar{\xi} \in \mathcal{F}(L)$ coincides with the image of the element $\varphi_{\alpha}(\bar{\eta})$ in $\mathcal{F}(L)$. It remains to prove the two Lemmas.

Proof of Lemma 1.6.2. Induction on $\dim(B)$. The case of dimension 1 follows from Theorem 1.3.1. To prove the general case choose an $f \in B$ such that $\eta = \rho \in \mathcal{F}(B_f)$. Let π be a regular parameter in B without common factors with f and let $\overline{B} = B/\pi B$. Then for the image $\overline{\eta - \rho}$ of $\eta - \rho$ in $\mathcal{F}(\overline{B})$ we have $(\overline{\eta - \rho})_f = (\overline{\eta - \rho})_f = 0 \in \mathcal{F}(\overline{B}_f)$. By the inductive hypotheses one has $\overline{\eta - \rho} = 0 \in \mathcal{F}(\overline{B})$. Thus $\eta(x) = \rho(x) \in \mathcal{F}(k(x))$.

Proof of Lemma 1.6.3. Choose an $f \in R$ such that ξ is defined over R_f . Then ξ is ramified at most at those hight one primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ which contains f. Since the class $\bar{\xi} \in \mathfrak{F}(L)$ is R-unramified there exists, for any \mathfrak{p}_i , an element $\sigma_i \in G(L)$ and an element $\xi_i \in C(R_{\mathfrak{p}_i})$ such that $\xi = \mu(\sigma_i)\xi_i \in C(L)$. We may assume that ξ_i is defined over R_{h_i} for some $h_i \in R - \mathfrak{p}_i$ and that σ_i is defined over R_{g_i} for some $g_i \in R$. We can find an index α such that A_{α} contains lifts $f_{\alpha}, h_{1,\alpha}, \ldots, h_{r,\alpha}, g_{1\alpha}, \ldots, g_{r,\alpha}$ and moreover

- (1) $C(A_{\alpha,f_{\alpha}})$ contains a lift ξ_{α} of ξ ,
- (2) $C(A_{\alpha,h_{i,\alpha}})$ contains a lift of $\xi_{i,\alpha}$ of ξ_i ,
- (3) $G(A_{\alpha,g_{i,\alpha}})$ contains a lift of $\sigma_{i,\alpha}$ of σ_i .

Since none of the $f_{\alpha}, h_{1,\alpha}, \ldots, h_{r,\alpha}, g_{1\alpha}, \ldots, g_{r,\alpha}$ vanishes in R, the elements $\xi_{\alpha}, \xi_{1,\alpha}, \ldots, \xi_{ir,\alpha}$ and $\sigma_{1,\alpha}, \ldots, \sigma_{r,\alpha}$ may be regarded as elements of $C(B_{\alpha})$ and $G(B_{\alpha})$ respectively.

We know that $\xi_{i,\alpha}\mu(\sigma_{i,\alpha})$ and ξ_{α} map to the same element in C(L). Hence replacing α by a larger index, we may assume that $\xi_{\alpha} = \xi_{i,\alpha}\mu(\sigma_{i,\alpha}) \in C(B_{\alpha})$. We claim that the class $\bar{\xi}_{\alpha} \in \mathcal{F}(K_{\alpha})$ is A_{α} -unramified. To prove this note that the only primes at which $\bar{\xi}_{\alpha}$ could be ramified are those which divide f_{α} . Let \mathfrak{q}_{α} be one of them. Check that $\bar{\xi}_{\alpha}$ is unramified at \mathfrak{q}_{α} . Let $q_{\alpha} \in A_{\alpha}$ be a prime element such that $q_{\alpha}A_{\alpha} = \mathfrak{q}_{\alpha}$. Then $q_{\alpha}r_{\alpha} = f_{\alpha}$ for an element r_{α} . Thus $qr = f \in R$ for the images of q_{α} and r_{α} in R. Since the homomorphism $\varphi_{\alpha} : A_{\alpha} \to R$ is local, $q \in \mathfrak{m}_{R}$. The relation qr = f shows that $q \in \mathfrak{p}_{i}$ for some index i. Thus $q_{\alpha} \in \varphi_{\alpha}^{-1}(\mathfrak{p}_{i})$ and $\mathfrak{q}_{\alpha} \subset \varphi_{\alpha}^{-1}(\mathfrak{p}_{i})$. On the other hand $h_{i,\alpha} \in A_{\alpha} - \varphi_{\alpha}^{-1}(\mathfrak{p}_{i})$, because $h_{i} \in R - \mathfrak{p}_{i}$. Thus $h_{i,\alpha} \in A_{\alpha} - \mathfrak{q}_{\alpha}$. Now the relation $\xi_{\alpha} = \xi_{i,\alpha}\mu(\sigma_{i,\alpha}) \in C(B_{\alpha})$ with $\xi_{i,\alpha} \in C(A_{\alpha,h_{i,\alpha}})$ shows that $\bar{\xi}_{\alpha}$ is unramified at \mathfrak{q}_{α} . Thus $\bar{\xi}_{\alpha}$ is unramified. The lemma follows. The theorem is proved.

2 Applications

In this Section we prove a purity theorem for reductive groups. Let G be a reductive group over the characteristic zero field k and $Z \xrightarrow{i} G$ a closed central subgroup of G. Let G' = G/Z be the factor group, $\pi : G \to G'$ be the projection. For any k-algebra R consider the boundary operator $\delta_{\pi,R} : G'(R) \to \operatorname{H}^{1}_{\operatorname{\acute{e}t}}(R,Z)$. It is a group homomorphism [Se, Ch.II, §5.6, Cor.2]. Set

$$\mathfrak{F}(R) = \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(R, Z) / Im(\delta_{\pi,R}).$$

Theorem 2.0.4. Let R be a regular local ring containing the field k. The functor \mathfrak{F} satisfies purity for R. If K is the fraction field of R this statement can be restated in an explicit way as follows:

given an element $\xi \in H^1_{\acute{e}t}(K, Z)$ suppose that for each height 1 prime ideal \mathfrak{p} in R there exist $\xi_{\mathfrak{p}} \in H^1_{\acute{e}t}(R_{\mathfrak{p}}, Z), g_{\mathfrak{p}} \in G'(K)$ with $\xi = \xi_{\mathfrak{p}} + \delta_{\pi}(g_{\mathfrak{p}}) \in H^1_{\acute{e}t}(K, Z)$. Then there exist $\xi_{\mathfrak{m}} \in H^1_{\acute{e}t}(R, Z), g_{\mathfrak{m}} \in G'(K)$, such that

$$\xi = \xi_{\mathfrak{m}} + \delta_{\pi}(g_{\mathfrak{m}}) \in H^{1}_{\acute{e}t}(K, Z).$$

Proof. Since G is reductive the group Z is of multiplicative type. So we can find a commutative separable k algebra l and a closed embedding $Z \hookrightarrow R_{l/k}(\mathbb{G}_{m, l})$ into the permutation torus $T^+ = R_{l/k}(\mathbb{G}_{m, l})$. Let $G^+ = (G \times T^+)/Z$ and $T = T^+/Z$, where Z is embedded in $G \times T^+$ diagonally. Clearly $G^+/G = T$. Consider a commutative diagram

with exact rows and columns. For a local k-algebra A one has $H^1_{\text{ét}}(A, T^+) = \{*\}$ by Hilbert 90 and this diagram gives rise to a commutative diagram of pointed sets

$$\begin{array}{c} \operatorname{H}^{1}_{\mathrm{\acute{e}t}}(A,G') \xrightarrow{id} \operatorname{H}^{1}_{\mathrm{\acute{e}t}}(A,G') \\ & \pi_{*} \uparrow & \pi_{*}^{+} \uparrow \\ G^{+}(A) \xrightarrow{\mu_{A}^{+}} T(A) \xrightarrow{\delta_{A}^{+}} \operatorname{H}^{1}_{\mathrm{\acute{e}t}}(A,G) \xrightarrow{j_{*}^{+}} \operatorname{H}^{1}_{\mathrm{\acute{e}t}}(A,G^{+}) \\ & i_{*}^{+} \uparrow & id \uparrow & i_{*} \uparrow & i_{*}^{+} \uparrow \\ T^{+}(A) \xrightarrow{\mu_{A}} T(A) \xrightarrow{\delta_{A}} \operatorname{H}^{1}_{\mathrm{\acute{e}t}}(A,Z) \xrightarrow{\mu} \{*\} \\ & \delta_{\pi} \uparrow \\ & G'(A) \end{array}$$

with exact rows and columns. It follows that π^+_* has trivial kernel and one has a chain of group isomorphisms

$$\mathrm{H}^{1}_{\mathrm{\acute{e}t}}(A,Z)/Im(\delta_{\pi,A}) = ker(\pi_{*}) = ker(j^{+}_{*}) = T(A)/\mu^{+}(G^{+}(A)).$$

Clearly these isomorphisms respect k-homomorphisms of local k-algebras. The functor $A \mapsto T(A)/\mu^+(G^+(A))$ satisfies purity for the regular local k-algebra R by Theorem (B). Hence the functor $A \mapsto \operatorname{H}^1_{\operatorname{\acute{e}t}}(A, Z)/Im(\delta_{\pi,A})$ satisfies purity for R.

3 Examples

We follow here the notation of The Book of Involutions [KMRT]. The field k is a characteristic zero field. The functors (15) to (29) satisfy purity for regular local rings containing k as follows either from Theorem 2.0.4 or from Theorem (B).

(1) Let G be a simple algebraic group over the field k, Z a central subgroup, G' = G/Z, $\pi : G \to G'$ the canonical morphism. For any k-algebra A let $\delta_{\pi,R} : G'(R) \to H^1_{\text{ét}}(R,Z)$ be the boundary operator. One has a functor

$$R \mapsto \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(R, Z) / \mathrm{Im}(\delta_{\pi, R}).$$
(15)

(2) Let (A, σ) be a finite separable k-algebra with an orthogonal involution. Let π : Spin $(A, \sigma) \to \text{PGO}^+(A, \sigma)$ be the canonical morphism of the spinor k-group scheme to the projective orthogonal k-group scheme. Let $Z = ker(\pi)$. For a k-algebra R let $\delta_R : \text{PGO}^+(A, \sigma)(R) \to \text{H}^1_{\text{ét}}(R, Z)$ be the boundary operator. One has a functor

$$R \mapsto \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(R, Z) / Im(\delta_{R}).$$
(16)

In (2a) and (2b) below we describe this functor somewhat more explicitly following [KMRT].

(2a) Let $C(A, \sigma)$ be the Clifford algebra. Its center l is an étale quadratic k-algebra. Assume that deg(A) is divisible by 4. Let $\Omega(A, \sigma)$ be the extended Clifford group [KMRT, Definition given just below (13.19)]. Let $\underline{\sigma}$ be the canonical involution of $C(A, \sigma)$ as it is described in [KMRT, just above (8.11)]. Then $\underline{\sigma}$ is either orthogonal or symplectic by [KMRT, Prop.8.12]. Let $\underline{\mu} : \Omega(A, \sigma) \to R_{l/k}(\mathbb{G}_{m,l})$ be the multiplier map defined in [KMRT, just above (13.25)] by $\underline{\mu}(\omega) = \underline{\sigma}(\omega) \cdot \omega$. Set $R_l = R \otimes_k l$. For a field or a local ring R one has $\mathrm{H}^1_{\mathrm{\acute{e}t}}(R, Z)/Im(\delta_R) = R_l^{\times}/\underline{\mu}(\Omega(A, \sigma)(R))$ by [KMRT, the diagram in (13.32)]. Consider the functor

$$R \mapsto R_l^{\times} / \mu(\Omega(A, \sigma)(R)).$$
(17)

It coincides with the functor $R \mapsto \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(R, \mathbb{Z})/Im(\delta_{R})$ on local rings containing k.

(2b) Now let deg(A) = 2m with odd m. Let $\tau : l \to l$ be the involution of l/k. The kernel of the morphism $R_{l/k}(\mathbb{G}_{m,l}) \xrightarrow{id-\tau} R_{l/k}(\mathbb{G}_{m,l})$ coincides with $\mathbb{G}_{m,k}$. Thus $id-\tau$ induces a k-group scheme morphism which we denote $\overline{id-\tau} : R_{l/k}(\mathbb{G}_{m,l})/\mathbb{G}_{m,k} \hookrightarrow R_{l/k}(\mathbb{G}_{m,l})$. Let $\underline{\mu} : \Omega(A, \sigma) \to R_{l/k}(\mathbb{G}_{m,l})$ be the multiplier map defined in [KMRT, just above (13.25)] by $\underline{\mu}(\omega) = \underline{\sigma}(\omega) \cdot \omega$. Let $\kappa : \Omega(A, \sigma) \to R_{l/k}(\mathbb{G}_{m,l})/\mathbb{G}_{m,k}$ be the k-group scheme morphism described in [KMRT, Prop.13.21]. The composition $(id-\tau) \circ \kappa$ lands in $R_{l/k}(\mathbb{G}_{m,l})$. Let $U \subset \mathbb{G}_{m,k} \times R_{l/k}(\mathbb{G}_{m,l})$ be a closed k-subgroup consisting of all (α, z) such that $\alpha^4 = N_{l/k}(z)$.

Set $\mu_* = (\mu, [\overline{(id - \tau)} \circ \kappa] \cdot \mu^2) : \Omega(A, \sigma) \to \mathbb{G}_{m,k} \times R_{l/k}(\mathbb{G}_{m,l})$. This k-group scheme morphism lands in U. So we get a k-group scheme morphism $\mu_* : \Omega(A, \sigma) \to U$. On the level of k-rational points it coincides with the one described in [KMRT, just above (13.35)]. For a field or a local ring one has

$$\mathrm{H}^{1}_{\mathrm{\acute{e}t}}(R,Z)/Im(\delta_{R}) = \mathrm{U}(R)/[\{(N_{l/k}(\alpha),\alpha^{4}) | \alpha \in R_{l}^{\times}\} \cdot \mu_{*}(\Omega(A,\sigma)(R))].$$

Consider the functor

$$R \mapsto \mathrm{U}(R) / [\{ (N_{l/k}(\alpha), \alpha^4) | \alpha \in R_l^{\times} \} \cdot \mu_*(\Omega(A, \sigma)(R))].$$
(18)

It coincides with the functor $R \mapsto \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(R, \mathbb{Z})/Im(\delta_{R})$ on local rings containing k.

(3) Let $\Gamma(A, \sigma)$ be the Clifford group k-scheme of (A, σ) . Let $\operatorname{Sn} : \Gamma(A, \sigma) \to \mathbb{G}_{m,k}$ be the spinor norm map. It is dominant. Consider the functor

$$R \mapsto R^{\times} / \operatorname{Sn}(\Gamma(A, \sigma)(R)).$$
(19)

Purity for this functor was originally proved in [Z, Thm.3.1]. In fact, $\Gamma(A, \sigma)$ is k-rational.

(4) We follow here the Book of Involutions [KMRT, §23]. Let A be a separable finite dimensional k-algebra with center l and k-involution σ such that k coincides with all σ -invariant elements of l, that is $k = l^{\sigma}$. Consider the k-group schemes of similitudes of (A, σ) :

$$\operatorname{Sim}(A,\sigma)(R) = \{ a \in A_R^{\times} \mid a \cdot \sigma_R(a) \in l_K^{\times} \}.$$

We have a k-group scheme morphism $\mu : Sim(A, \sigma) \to \mathbb{G}_{m,k}, a \mapsto a \cdot \sigma(a)$. It gives an exact sequence of algebraic k-groups

$$\{1\} \to \operatorname{Iso}(A, \sigma) \to \operatorname{Sim}(A, \sigma) \to \mathbb{G}_{m,k} \to \{1\}.$$

One has a the functor

$$R \mapsto R^{\times} / \mu(\operatorname{Sim}(A, \sigma)(R)).$$
(20)

Purity for this functor was originally proved in [Pa, Thm.1.2]. Various particular cases are obtained considering unitary, symplectic and orthogonal involutions.

(4a) In the case of an orthogonal involution σ the connected component $\mathrm{GO}^+(A, \sigma)$ [KMRT, (12.24)] of the similitude k-group scheme $\mathrm{GO}(A, \sigma) := \mathrm{Sim}(A, \sigma)$ has the index two in $\mathrm{GO}(A, \sigma)$. The restriction of μ to $\mathrm{GO}^+(A, \sigma)$ is still a dominant morphism to $\mathbb{G}_{m,k}$. One has a functor

$$R \mapsto R^{\times} / \mu(\mathrm{GO}^+(A, \sigma)(R)) \tag{21}$$

It seems that its purity does not follow from [Pa, Thm.1.2]. In fact we do not know whether the norm principle holds for $\mu : \mathrm{GO}^+(A, \sigma) \to \mathbb{G}_{m,k}$ or not.

(5) Let A be a central simple algebra (csa) over k and Nrd : $GL_{1,A} \to \mathbb{G}_{m,k}$ the reduced norm morphism. One has a functor

$$R \mapsto R^{\times} / \operatorname{Nrd}(\operatorname{GL}_{1,A}(R)).$$
(22)

Purity for this functor was originally proved in [C-T/O, Thm.5.2].

(6) Let (A, σ) be a finite separable k-algebra with a unitary involution such that its center l is a quadratic extension of k. Let $U(A, \sigma)$ be the unitary k-group scheme. Let $U_l(1)$ be an algebraic tori given by $N_{l/k} = 1$. One has a functor

$$R \mapsto U_l(1)(R)/\operatorname{Nrd}(U_{A,\sigma}(R)) = \{ \alpha \in R_l^{\times} | N_{l/k}(\alpha) = 1 \}/\operatorname{Nrd}(U_{A,\sigma}(R))$$
(23)

where Nrd is the reduced norm map. Purity for this functor was originally proved in [Z, Thm.3.3]. (7) With the notation of example (5) choose an integer d and consider the k-group scheme morphism $\mu : \operatorname{GL}_{1,A} \times \mathbb{G}_{m,k} \to \mathbb{G}_{m,k}$ given by $(\alpha, a) \mapsto \operatorname{Nrd}(\alpha) \cdot a^d$. One has a functor

$$R \mapsto R^{\times}/\mu[\operatorname{GL}_{1,A} \times \mathbb{G}_{m,k})(R)] = R^{\times}/\operatorname{Nrd}(A_R^{\times}) \cdot R^{\times d}$$
(24)

Purity for this functor was originally proved in [Z, Thm.3.2].

(8) With the notation of example (5) choose an integer d and consider the functor

$$R \mapsto U_l(1)(R) / [\operatorname{Nrd}(U_{A,\sigma}(R)) \cdot \{\alpha \in R_l^{\times} | N_{l/k}(\alpha) = 1\}^d]$$
(25)

Purity for this functor was originally proved in [Z, Thm.3.2].

(9) Let G_1, G_2, C be affine k-group schemes. Assume that C is commutative and let $\mu_1 : G_1 \to C, \ \mu_2 : G_2 \to C$ be k-group scheme morphisms and $\mu : G_1 \times G_2 \to C$ be given by $\mu(g_1, g_2) = \mu_1(g_1) \cdot \mu_2(g_2)$. One has a functor

$$R \mapsto C(R)/\mu[(G_1 \times G_2)(R)] = C(R)/[\mu_1(G_1(R)) \cdot \mu_2(G_2(R))]$$
(26)

In this style one could get a lot of curious examples of functors, one of which is given here.

(10) Let (A_1, σ_1) be a finite separable k-algebra with an orthogonal involution. Let A_2 be a csa over k. Let μ_1 be the multiplier map for (A_1, σ_1) and Nrd₂ be the reduced norm for A_2 . One has a functor

$$R \mapsto R^{\times} / [\mu_1(\mathrm{GO}^+(A_1, \sigma_1)(R)) \cdot \mathrm{Nrd}_2(A_{2,R}^{\times}) \cdot R^{\times a}].$$
(27)

(10) Let A be a csa of degree 3 over k, Nrd the reduced norm and Trd be the reduced trace. Consider the cubic form on the 27-dimensional k-vector space $A \times A \times A$ given by $N := \operatorname{Nrd}(x) + \operatorname{Nrd}(y) + \operatorname{Nrd}(z) - \operatorname{Trd}(xyz)$. Let $\operatorname{Iso}(A, N)$ be the k-group scheme of isometries of N and $\operatorname{Sim}(N)$ be the k-group scheme of similitudes of N. It is known that $\operatorname{Iso}(N)$ is a normal algebraic subgroup in $\operatorname{Sim}(A, N)$ and the factor group coincides with $\mathbb{G}_{m,k}$. So we have a canonical k-group morphism (the multiplier) $\mu : \operatorname{Sim}(N) \to \mathbb{G}_{m,k}$. Now one has a functor

$$R \mapsto R^{\times} / \mu(\operatorname{Sim}(N)(R)).$$
(28)

Note that the connected component of Iso(N) is a simply connected algebraic kgroup of the type E_6 .

(11) Let (A, σ) be a csa of degree 8 over k with a symplectic involution. Let $V \subset A$ be the subspace of all skew-symmetric elements. It is of dimension 28. Let Pfd be the reduced Pfaffian on V and Trd be the reduced trace on A. Consider the degree 4 form on the space $V \times V$ given by $F := Pfr(x) + Pfr(y) - 1/4Trd((xy)2) - 1/16Trd(xy)^2$. Consider the symplectic form on $V \times V$ given by $\phi((x_1, y_1), (x_2, y_2)) = Trd(x_1y_2 - x_2y_1)$. Let Iso(F) (resp. $Iso(\phi)$) be the k-group scheme of isometries of the pair F (resp. of ϕ)). Let $\operatorname{Sim}(F)$ (resp. $\operatorname{Sim}(\phi)$) be the k-group scheme of similitudes of F (resp. of ϕ). Set $G = \operatorname{Iso}(F) \cap \operatorname{Iso}(\phi)$ and $G^+ = \operatorname{Sim}(F) \cap \operatorname{Sim}(\phi)$. It is known that G is a normal algebraic subgroup in G^+ and the factor group coincides with $\mathbb{G}_{m,k}$. So we have a canonical k-group morphism $\mu: G^+ \to \mathbb{G}_{m,k}$. Now one has a functor

$$R \mapsto R^{\times} / \mu(G^+(R)). \tag{29}$$

Note that G is a simply-connected group of the type E_7 .

References

- [C-T/O] Colliot-Thélène, J.-L.; Ojanguren, M. Espaces Principaux Homogènes Localement Triviaux, Publ. Math. IHES 75, no. 2, 97–122 (1992).
- [C-T/P/S] Colliot-Thélène, J.-L.; Parimala, R.; Sridaran, R. Un théorème de pureté local, C. R. Acad. Sc. Paris 309, ser.I, 857–862 (1989).
- [E] *Eisenbud, D.* Commutative Algebra, Graduate Texts in Mathematics 150, Springer (1994).
- [KMRT] Knus, M.A.; Merkurjev, A.S.; Rost, M.; Tignol, J.-P., The Book of Involutions, Colloquium Publication, no.44, AMS, 1998.
- [H] Harder, G. Halbeinfache Gruppenschemata über Dedekindringen, Inventiones Math. 4, 165–191 (1967).
- [Ni] Nisnevich, Y. Rationally Trivial Principal Homogeneous Spaces and Arithmetic of Reductive Group Schemes Over Dedekind Rings, C. R. Acad. Sc. Paris, Série I, 299, no. 1, 5–8 (1984).
- [Oj] *Ojanguren, M.* Quadratic forms over regular rings, J. Indian Math. Soc., 44, 109–116 (1980).
- [OP] Ojanguren, M; Panin, I. A purity theorem for the Witt group. Ann. Sci. Ecole Norm. Sup. (4) 32, no. 1, 71–86 (1999).
- [PS] Panin, I.; Suslin, A. On a conjecture of Grothendieck concerning Azumaya algebras, St.Petersburg Math. J., 9, no.4, 851–858 (1998).
- [P] Popescu, D. General Néron desingularization and approximation, Nagoya Math. Journal, 104 (1986), 85–115.
- [Pa] *Panin, I.* Purity for similarity factors, www.math.uni-bielefeld.de/LAG/man/119
- [R1] Raghunathan, M.S. Principal bundles admitting a rational section. (English) Invent. Math. 116, No.1–3, 409–423 (1994).

- [R2] Raghunathan, M.S. Erratum: Principal bundles admitting a rational section. (English) Invent. Math. 121, No.1, 223 (1995).
- [RR] Raghunathan, M.S.; Ramanathan, A. Principal bundles on the affine line. (English) Proc. Indian Acad. Sci., Math. Sci. 93, 137–145 (1984).
- [R] Rost, M. Durch Normengruppen definierte birationale Invarianten. C. R. Acad. Sc. Paris 10, ser.I, 189–192 (1990).
- [Q] *Quillen, D.* Higher algebraic *K*-theory I, in Algebraic K-Theory I. Lect. Notes in Math. 341, Springer-Verlag, 1973.
- [Se] Serre, J-P. Cohomologie Galoisienne. Springer-Verlag (1964).
- [SV] Suslin, A.; Voevodsky, V. Durch Normengruppen definierte birationale Invarianten. C. R. Acad. Sc. Paris 10, ser.I, 189–192 (1990).
- [Sw] Swan, R.G. Néron-Popescu desingularization, Algebra and Geometry (Taipei, 1995), Lect. Algebra Geom. Vol. 2, Internat. Press, Cambridge, MA, 1998, pp. 135–192.
- [Z] Zainoulline, K. The Purity Problem for Functors with Transfers, K-theory, 22 (2001), no.4, 303-333.