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1 Introduction

Let Y be smooth variety defined over the field k. In many situations, one
needs to know, if some class of rational equivalence of cycles on Y|y is defined
over the base field k. In particular, this happens when one computes so-
called “generic discrete invariant of a quadric” - see Introduction of [10]. It
occurs, that often it is sufficient to check this property not over k, but over
some bigger field k(Q)/k, where everything could be much simpler. The
case of zero cycles modulo some prime [ is already quite classical. It is a
standard application of the Rost degree formula that if ) is a v,-variety, and
dim(Y) < dim(Q) = ["~! — 1, then the 0-cycle of degree prime to [ exists on
Y if and only if it exists on Y|y (see [7],[8]). For the case, where Q is a
quadric, this gives: if dim(Q) > 2" —1 > dim(Y"), then the existence of zero
cycle of odd degree on Y is equivalent to the existence of such cycle on Y|y q).
If Y is quadric as well, we get the well-known Theorem of D.Hoffmann ([2]).
Finally, if one knows more about the quadric ), not just it’s dimension, there
is stronger result of N.Karpenko-A.Merkurjev (see [3]), saying that the same
holds if dim(Q) — i1(Q) > dim(Y).

In the current article we address mentioned question for cycles of arbitrary
dimension, [ = 2, @) - quadric. The principal result (Corollary 3.5) says that
for class y € CH™(Y|3)/2, for m < [dim(Q)+ 1/2], ¥ is defined over k if and
only if Yl;qy is defined over k£(Q). If one does not impose any restrictions
on () and Y, the above condition on m can not be improved (Statement
3.7). The stronger result (Theorem 3.1) claims that if ¥[;5y is defined over

k(Q), and m — [dim(Q) + 1/2] < j, then S7(y) is defined over k, where S*



is a Steenrod operation (see [1], [14]). This statement is very useful for the
computation of the generic discrete invariant of quadrics. The proof is based
on the so-called “symmetric operations” - see [9].

In the end we formulate the Conjecture which is an analogue of the
Karpenko-Merkurjev Theorem for cycles of positive dimension.

The methods and results of the current paper serve as a main tool in the
uniform construction of fields with all known u-invariants. This construction
gives the new values of the u-invariant: 2" + 1, r > 3 - see [12].

This research was done while I was visiting Institute des Hautes Etudes
Scientifiques, and I would like to thank this institution for the support, ex-
cellent working conditions and very warm atmosphere.

2 Symmetric operations

Everywhere below we will assume that all our fields have characteristic zero.
For a smooth variety X, M.Levine and F.Morel have defined the ring of
algebraic cobordisms 2*(X) with a natural surjective map pr : Q*(X) —
CH*(X). It is an analogue of the complex-oriented cobordisms in topology.
In particular, one has the action of the Landweber-Novikov operations there
([6]). In [9, 11] the author constructed some new cohomological operations
on Algebraic Cobordisms, so-called, symmetric operations. In the questions
related to 2-torsion these operations behave in a more subtle way than the
Landweber-Novikov operations. This article could serve as a demonstration
of this feature. Symmetric operations ®' : Q4(X) — Q¥+7(X), for r > 0 are
defined in the following way. For a smooth morphism W — U, let ﬁ(W/ U)
denotes the blow-up of W xy W at the diagonal W. For a smooth variety
W denote: TI(W) := O(W/ Spec(k)). Denote as C*(W) and C*(W/U) the
quotient variety of (W), respectively, (W/U) by the natural Z/2-action.
These are smooth varieties. Notice that they have natural line bundle £,
which lifted to O becomes O(1) - see [7]. Let p := c; (L) € Q(C?).

If [v] € Q4(X) is represented by v : V — X, then v can be decomposed as
veiwlx , where ¢ is a regular embedding, and f is smooth projective.
One gets natural maps:

C2v) <& 2wy L erawyx) 2 X.



Now, ® ([v]) := 7. 3*a.(p"). Denote as ¢ ([v]) the composition pro ®' ([v]).
As was proven in [11, Theorem 2.24], ®' gives a well-defined operation
Q4(X) — Q¥ (X).

It was proven in [9] that the Chow-trace of ® is the half of the Chow-trace
of certain Landweber-Novikov operation.

Proposition 2.1 ([9, Propositions 3.8, 3.9], [11, Proposition 3.14])
(1) 20" ([o]) = pr((=1)"' S =N (), for v > 0;

0
(2) 20" ([v]) = pr(B = SE_n([v])),
where ST _, s the Landweber-Novikov operation corresponding to the char-
acteristic number c,.

The additive properties of ¢ are given by the following:

Proposition 2.2 ([11, Proposition 2.8])
(1)  Operation ¢ is additive for r > 0;

(2) ¢ (z+y) =o' (x)+ o' (y) +pr(z-y).

Let [v] € Q*(X) be some cobordism class, and [u] € IL be class of some
smooth projective variety U over k of positive dimension. We will use the

standard notation 7,(U) for the Rost invariant 7deg(cdim2(v)(7TU)) € Z (see [7]).

Proposition 2.3 ([11, Proposition 3.15]) In the above notations, let r =
(codim(v) — 2dim(w)). Then, for any i > max(r;0),

" ([o] - [u]) = (=1)" "ma(U) - (pr o Sp_w)([0]).

The following proposition describes the behavior of & with respect to
pull-backs and regular push-forwards. For ¢(t) € CH*(X)[[t] let us define
1) = > iz @i¢" . For a vector bundle V denote ¢(V)(t) := [[,(t+\i), where
\; € CH! are the roots of V.

Proposition 2.4 ([11, Propositions 3.1, 3.4]) Let f : X — Y be some mor-
phism of smooth quasiprojective varieties.

(1) froO([v]) = ¢ (f*[v]);

(2) If f is a reqular embedding, then ¢ (f.([w])) = f.(¢?®NIO ([w)])),
where Ny is a normal bundle of the embedding.



3 Results

We say that an element of CH*(Y|#)/2 is defined over F', if it belongs to the
image of the restriction map ac: CH*(Y|p)/2 — CH*(Y|z)/2.

Theorem 3.1 Let k be a field of characteristic 0. LetY be a smooth quasipro-
jective variety, () be a smooth projective quadric of dimension n, and y €
CH™(Y[g)/2 be some element. Suppose that Ylggy is defined over k(Q).
Then:

(1) Forallj >m —[n+1/2], S7(y) is defined over k;

(2) Forj=m—[n+1/2], S(y) +z -7 is defined over k, for some Z €
im(aco (my). o (- : CH™Q x Y)/2 — CHI(Y];)/2).

Proof: Since Y5y is defined over k£(Q), there exists x € CH™(Q xY)/2
such that Y[;gy = 7*(x) (mod2), where i : Spec(k(Q)) X Y — @ x Y is the
embedding of the generic fiber.

Over k, quadric ) becomes a cellular variety, with the basis in Chow ring
given by the classes {h", ; }o<i<[n/2) Of plane sections and projective subspaces.
Hence,

CH(Qx Vi) = & (m(h) - w5 CH(V[p) @ m(h) - 3 CHY (V).

and
O V)
T=> WT+> LT,
=0 =0

for certain unique 7 € CH™ *(Y|;)/2 and T; € CH™ " (Y|;)/2.
Lemma 3.2 7° =7.

Proof: Clearly, fo\m = Ylggy- But for any field extension E/F with
F algebraically closed, the restriction homomorphism on Chow groups (with
any coefficients) is injective by the specialization arguments. ]

Proposition 3.3 Let z € CH™(Q xY)/2 be some element, and T, T; be it’s
coordinates as above. Then



(1) Forj>m—[n+1/2], S%(z°) is defined over k.
2) Forj=m—[n+1/2], S%(x°) +2° - T}, 9 is defined over k.
(/2]

Proof:

We have the natural map pr : Q* — CH* which is surjective by the
result of M.Levine-F.Morel (see [6, Theorem 14.1]). Thus, there exists v €
Q™(Q x Y') such that pr(v) = z.

Again, since over k, quadric () becomes a cellular variety,
V(Q@xYp) = & mo(fs) - my (Y[R,

where {f3}gep can be any set of elements such that {pr(fs)}seps form a Z-
basis of CH*(Q|z) - see Section 2 of [13]. In particular, we can take the set
{h*,1;}o<i<in/2, where h is a (cobordism-) class of a hyperplane section, and
l; is a class of a projective plane of dimension ¢ on (). Thus,

[n/2] [n/2]
Z Rt v+ Z l; - v,
1=0 1=0

for certain v* € Q™ (Y|) and v; € Q™" (Y'|;), which satisfy: pr(v’) = 7,
pr(v;) = ;.

Let n =2"—1+ s, where 0 < s < 2". Let us denote n —s = 2" — 1
as d. Let emb : P C @ be a (smooth) subquadric of codimension s, and
emb, : P C P, be embedding of codimension g into any (smooth) quadric.

Con51der ug = (emby).(emb)*(v) € Q™9(P, x Y). Then

[n/2] [n/2]—

ZhHg —Z+ Z l; - Dits.

We will obtain the needed cycle S7(z°) as a linear combination of certain
symmetric operations applied to u, and (my).(u,).
For 0 < g < [n/2] — s, consider

Wy = ((WY)* © (bt]#dimig - ¢tj+2d7m © (WY)*><UQ)7

where ¢ : QY(X) — CH?**%(X) - symmetric operation defined in [11].
Remind, that operations ¢! are defined only for @ > 0. This condition
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is satisfied in our case, since (j +d) — (m —d) > (j+d) — (m+g) >
m—[n+1/2l+n—s—m—-—g=[n/2]—s—g=0.

For j > m — [n + 1/2], by Propositions 2.2, the operations we are consid-
ering are additive, and wy is the Chow-trace of

[n/2]
S ((ry)e 0 @ = @7 o () ) (WO T+
=0
[n/2]—s I i )
> ((my)od — 7 o () (s Tigs).
=0

By Proposition 2.4, the Chow-trace of (my ), 0 ¢ "’ (hi*9 . 7% is equal
to the Chow-trace of (my), 0 ¢ " /P EHM™ (2 ) 57) | which is equal to
the Chow-trace of 2(*9)¢" ™ ™ (v%) and is 0 modulo 2.

By Proposition 2.3, the Chow-trace of (¢ ™" o (my ), ) (hit9-77) is equal,

modulo 2, to the Chow-trace of (—1)7~"+1 (=22 gi*7 | (5%) and modulo

d—i
~(@72)) G+ (pr (7). By dimensional reasons, the second

2 this is equal to ( o
multiple is zero, if m —j < 2i. Otherwise, 2i < [n+1/2], and i < 2"~!. Since
(_(“;2)) is odd only for a = 2P — 1, for some p, we get: modulo 2, the only
nontrivial term corresponds to i = 0 and is equal to S7(pr(v?)).

Hence, modulo 2, the Chow trace of

[n/2] s eadm ‘ '
> ((ry)eo @ = T o (my ) ) (W9 T

=0

is equal to S7(pr(v?)).

Let now 0 < 7 < [n/2] — s. Again, it follows from Proposition 2.4 that
the Chow trace of ((my), o qthd_m_g(li - Tirs) is equal to the Chow-trace of
(mry )TN ()45 ), which is equal to the Chow-trace of
(FHHN G T (@4,). Notice, that j —m +2d —2i+1 > —[n+1/2] +
2d—2i4+1 = ([n/2] —s—i)+(d—i+1) > 0. Let us denote ¢ """ (T;,,)
as g;.

By Proposition 2.3, the Chow-trace of ¢t~ o(my)s(l;*Uirs), fori > 0, is
equal to (—l)j*m“%(*(i;rl)) pr(S9 57 (T,44)), and modulo 2 this is equal to
%(_(i;rl)) - ST~ (pr (D4 5)), which is zero, since j+n—s—i > codim(V;; ) =
m —n+1+ s. For i =0, the above Chow-trace is equal to &.
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Putting things together, we get:

wy =S (pr(@) + Y (n AR l)a.

7
0<ig[n/2]—s

Consider a := Y7o/ o (["/E]J:fl)wg. Then

§ /2 =5+ 1)) g
7o z]s( L s

0<y<[n/2

D> (n—s+ig—i+1><[n/2;;i+1).

0<ig[n/2]-s  0<y<[n/2)—s

Lemma 3.4 (a) The number Y o< cpn/a—s (["/?;18“) is odd.

(b)  The number Y ) «in/o—s ("etemh) (["/Z]J:ISH) is even.

Proof: Let d=[n/2] —s, k=g+ 1.
a) The sum is equal to Eg;l (dtl), which is 241 — 1.
b) The sum here is equal to ZE ("*ka*i) (dﬂ). Since ("7%) = (2T71*i)

i k 1
is even, the sum is equal (modulo 2) to Zié ("_Sjk_i) (d;:l). The latter
expression is equal (modulo 2) to Zié ( dfik) (njs(ﬂgl) = ( g1 f;fsfm).
Since (d—1i) > 0, and (d+14+n—s—2i)—(d—i) =n—s+1—i=2"—i> 0,
we get 0 (modulo 2). m

It follows from Lemma 3.4 that (modulo 2) @ = S7(pr(@°)) = S7(z°).
But w, and thus a are defined over the base field k. Then so is S7(z).

For j =m —[n+1/2], (j + 2d — m) is always greater than zero, and
(j +d—m— g) is greater than zero, except for the case g = [n/2] —s. Thus,
for 0 < g < [n/2] — s, W, is given by the same formulas as above, and for
g = [n/2] — s, we have extra terms pr(v° - Ty, /o) + 2 - (something). Thus, in
this case, modulo 2, a = S7(Z°) + 7° - T}, 9. ]

By Lemma 3.2, pr(°) is exactly 7. It remains to take z = Pr(Tpnyg)-
Clearly, Z = (my), o pr(hl"/? . 7).



Theorem 3.1 is proven.
J

Remark: If one does not mind moding out also a 2-torsion in the Chow
groups, one can get similar result just with the help of the usual Landweber-
Novikov operations. Here instead of using Propositions 2.3 and 2.4, one
should apply multiplicative properties of the Landweber-Novikov operations.
But to obtain the “clean” statement as above, the use of the symmetric
operations is essential.

Corollary 3.5 Under the conditions of Theorem 3.1:
(1) Form < [n+1/2], 7 is defined over k;

(2) Form = [n+1/2|, either § is defined over k, or Q|iy) is completely
split.

Proof: Take j = 0, and use the fact that S® = id. In (2) observe, that

.hIn/2]
either Z is zero, or the composition CH" /A (Q x Y)/2 R CH"(Q x

v)/2 ™ CHY)/2 = CH(YI;)/2 = 2/2 is onto, and thus Qi) is
completely split.
L]

If one does not impose any conditions on the quadric @), as well as on
the relation between codimension of the cycle and the dimension of Y, the
boundary in the Corollary 3.5 is optimal.

Let @ be a generic quadric of dimension n (that is, quadric given by the
form (ai,...,a,42) over F' = k(ay,...,a,42)), Y be the last grassmannian
G([n/2],Q) of @, and m = [n + 1/2]. Using the restriction to the field
of power series, and the results of Springer, one easily gets: degree of any
finite extension E/F which splits @ completely is divisible by 2**2/2 in
other words, the image of CHy(G([n/2],Q)) — CHy(G([n/2],Q)|z) = Z is
contained in 2"+2/2 . 7.

Let [; be fixed projective plane of dimension i on )|F. Remind that for
0 < i< [n+1/2], elementary class Zp1/9-i € CHMYA7(G([n/2],Q)|F)
is given by the locus of [n/2]-dimensional planes on @ intersecting [; - see
[10]. For ¢ = 0 and n - even, Z, can be chosen as one of the families of
middle-dimensional planes. Let z; denotes Z; (mod2) € CH'/2.
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Statement 3.6 If Q is generic, then none of z; € CHY(G([n/2],Q)|F)/2 is
defined over F.

Proof: If n is even, the cycle z;, 7 > 0 is defined on G(n/2,Q) over
F if and only if the cycle z; is defined on G(n/2 — 1, P) over F(y/det(Q)),
where P C @ F(\/20Q) is any smooth subquadric of codimension 1 - see [10,

Definition 5.11]. Since ) was generic, we can take such P to be generic too,
and the problem is reduced to the case n - odd.

Cycles of the type 2Z; € CHI(G((n — 1/2),Q)), 1 < j < (n+1/2)
are always defined over F', since they are the Chern classes of tautolog-
?cal bundle - see [10, Thef)rem 2.5]. On the other hand, H1<i<(@+1/2) Z;
is a class of a rational point. And any other product of Z;’s which is a
zero-cycle has nesessarily degree divisible by 2 - see [10, Proposition 3.1].
Thus, if z, would be defined over F', that is, over F' would be defined
AZ, + (something), where A\ is odd and (something) is a polynomial in
Zy, b # a, then the cycle 2("~1/2) [osai<ocnriyz 2o (AZa + (something)) =
2(n=1/2) \ [Ticostninjoy Zo (mod 2(+1/2)) would be defined over F. Thus on
G((n —1/2),Q) there would be a 0-cycle of degree not divisible by 2+1/2),
This contradicts to the fact that () is generic.

]

The needed example is provided by the following

Statement 3.7 Let Q) be generic quadric of dimensionn, Y be G([n/2],Q),
m = [n+1/2], and§ = z, € CH™(Y|p)/2. Then Y|pgy is defined over
F(Q), but g is not defined over F.

Proof: It follows from the Statement 3.6 that ¥ is not defined over F.
On the other hand, @|r() has a rational point, and so not just z,,, but even
Zm is defined over F(Q) by the very definition.

]

Remark: Clearly, in the example above one could as easily take any
quadric @ such that zp,41/9(Q) is not defined over the base field, in other
words, [n+ 1/2] € J(Q) (see [10, Definition 5.11}).

Moreover, the converse is true as well. As a supplement to Corollary 3.5
one can show the following;:



Statement 3.8 Under the conditions of Theorem 3.1, let [n+1/2] € J(Q).
Then, for m < [n+ 1/2], ¥ is defined over k.

We will need some preliminary facts.

Proposition 3.9 Let ) be smooth quadric, and

a 8
f:G@Q.[n/2]) = F(Q,0,[n/2]) = Q
be the natural correspondence. Suppose zj,41/9) is defined.

Let t € CHppy1/9(G(Q,[n/2]))/2 be such that f.(t) = 1 € CH(Q)/2.
Then f, (t . Z[n+1/2}) = l[n/g] S CH[n/g](Q)/Q.

Proof: Really, by the definition, zp41/99 = f*(lo) = a.*(lo). By the
projection formula, fi(t- 2pni1/2]) = Be (L Zint1/2) = Bea o (a*(t) - *(lo)).
Again, by the projection formula, g, (a*(t) - 8*(lp)) = lp. Thus, a*(t) - 8*(lo)
is a zero-cycle of degree 1 on F/(Q,0,[n/2]), and a.(a*(t) - 5*(ly)) is a zero
cycle of degree 1 on G(Q, [n/2]). Proposition follows. O

Let x € CH™(Y x Q)/2 be some element. Then
T=Y (T -h+T; ).

Statement 3.10 Suppose that zp.1/2(Q) is defined. Then for any x €
CHM"™YA(Y x Q)/2, there exists u € CHMV2(Y x Q)/2 such that @° = 7°,
and Ulp 2] = 0.

Proof: If 7,/ = 0, there is nothing to prove. Otherwise, the class
liny2) € CHp 9 (Qlk(yvy)/2 is defined. Indeed, let

px : CHY(Y x X)/2 = CH*(X|y))/2

be the natural restriction. Then pg(D) = l,/9 plus A - h"/?if n is even
(notice, that Zp,/2) € CH’). Anyway, this implies that over k(Y the variety
G(Q,[n/2]) has a zero-cycle of degree 1, and thus, a rational point. Let
s € CHaim(v)(G(@Q, [n/2]) x Y)/2 be arbitrary lifting of the class of a point
on G(Q, [n/2])|ky) With respect to pe(q,m/2)). Let

f:G@Q [n/2) & F(Q,0,[n/2]) % Q
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be the natural correspondence. Consider the element v’ := (f x id).(s) €
CH™Y4(Q x Y)/2. Proposition 3.9 implies that the (defined over k) class

u’ =y (my ) (B2 X 1y) - (f X id)u(s - 2ny12(Q)))

satisfy: o = UO, and (evidently) W[n/g} = 0. Since U[n/Q] =1 =T}, it
remains to take: v =z —u +u”. ]

Proof of Statement 3.8: If m < [n + 1/2], the statement follows from
Corollary 3.5. Form = [n+1/2], let y' € CH™(Y|x(q))/2 be such element that
Y'lray = Ulwgy- Let us lift y' via surjection CH'(Y x Q)/2 — CH"(Y[k(q))/2
to some element z. Then it follows from the Statement 3.10 that z can be
chosen in such a way that Zp, /5 = 0. It remains to apply Proposition 3.3.

The Statement 3.8 extends Corollary 3.5 in the direction of the following
conjecture, which serves as an analogue of the Karpenko-Merkurjev Theorem
for the cycles of positive dimension.

To introduce the Conjecture we will need first to define some objects.

Let 0 < 7 < [n/2], and G(Q,4) be the Grassmannian of i-dimensional
projective subspaces on (). For the standard correspondence

i GQ,) & F(Q,0,4) %,

n—i

i—[n/2 .
denote as z the class (f;)*(lo) € CH"(G(Q,1)|z)/2. In particular, in

—[n/2]
this notations, Zft1/2] will be our class zp,41/2]. Notice also, that z is

the class of a point on )|z, and z;—

n—i

is defined if and only if ) posses the

is defined

Rost projector. For i < 7, 2 is defined over k = 2,—;

over k (see [12]).

i—[n/2
1s defined over k. Then for

n—i

Conjecture 3.11 Suppose, the class z
allm<n—1,

Ylrgy 15 defined over k(Q) < Y is defined over k.
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