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1 Introduction


Let Y be smooth variety defined over the field k. In many situations, one
needs to know, if some class of rational equivalence of cycles on Y |k is defined
over the base field k. In particular, this happens when one computes so-
called “generic discrete invariant of a quadric” - see Introduction of [10]. It
occurs, that often it is sufficient to check this property not over k, but over
some bigger field k(Q)/k, where everything could be much simpler. The
case of zero cycles modulo some prime l is already quite classical. It is a
standard application of the Rost degree formula that if Q is a νn-variety, and
dim(Y ) < dim(Q) = ln−1− 1, then the 0-cycle of degree prime to l exists on
Y if and only if it exists on Y |k(Q) (see [7],[8]). For the case, where Q is a
quadric, this gives: if dim(Q) > 2r − 1 > dim(Y ), then the existence of zero
cycle of odd degree on Y is equivalent to the existence of such cycle on Y |k(Q).
If Y is quadric as well, we get the well-known Theorem of D.Hoffmann ([2]).
Finally, if one knows more about the quadric Q, not just it’s dimension, there
is stronger result of N.Karpenko-A.Merkurjev (see [3]), saying that the same
holds if dim(Q)− i1(Q) > dim(Y ).


In the current article we address mentioned question for cycles of arbitrary
dimension, l = 2, Q - quadric. The principal result (Corollary 3.5) says that
for class y ∈ CHm(Y |k)/2, for m < [dim(Q)+1/2], y is defined over k if and
only if y|k(Q) is defined over k(Q). If one does not impose any restrictions


on Q and Y , the above condition on m can not be improved (Statement
3.7). The stronger result (Theorem 3.1) claims that if y|k(Q) is defined over


k(Q), and m − [dim(Q) + 1/2] < j, then Sj(y) is defined over k, where S∗
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is a Steenrod operation (see [1], [14]). This statement is very useful for the
computation of the generic discrete invariant of quadrics. The proof is based
on the so-called “symmetric operations” - see [9].


In the end we formulate the Conjecture which is an analogue of the
Karpenko-Merkurjev Theorem for cycles of positive dimension.


The methods and results of the current paper serve as a main tool in the
uniform construction of fields with all known u-invariants. This construction
gives the new values of the u-invariant: 2r + 1, r > 3 - see [12].


This research was done while I was visiting Institute des Hautes Études
Scientifiques, and I would like to thank this institution for the support, ex-
cellent working conditions and very warm atmosphere.


2 Symmetric operations


Everywhere below we will assume that all our fields have characteristic zero.
For a smooth variety X, M.Levine and F.Morel have defined the ring of
algebraic cobordisms Ω∗(X) with a natural surjective map pr : Ω∗(X) →
CH∗(X). It is an analogue of the complex-oriented cobordisms in topology.
In particular, one has the action of the Landweber-Novikov operations there
([6]). In [9, 11] the author constructed some new cohomological operations
on Algebraic Cobordisms, so-called, symmetric operations. In the questions
related to 2-torsion these operations behave in a more subtle way than the
Landweber-Novikov operations. This article could serve as a demonstration
of this feature. Symmetric operations Φtr : Ωd(X)→ Ω2d+r(X), for r > 0 are


defined in the following way. For a smooth morphism W → U , let �̃(W/U)
denotes the blow-up of W ×U W at the diagonal W . For a smooth variety
W denote: �̃(W ) := �̃(W/ Spec(k)). Denote as C̃2(W ) and C̃2(W/U) the


quotient variety of �̃(W ), respectively, �̃(W/U) by the natural Z/2-action.
These are smooth varieties. Notice that they have natural line bundle L,
which lifted to �̃ becomes O(1) - see [7]. Let ρ := c1(L−1) ∈ Ω1(C̃2).


If [v] ∈ Ωd(X) is represented by v : V → X, then v can be decomposed as


V
g→ W


f→ X, where g is a regular embedding, and f is smooth projective.
One gets natural maps:


C̃2(V )
α→֒ C̃2(W )


β←֓ C̃2(W/X)
γ→ X.
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Now, Φtr([v]) := γ∗β
∗α∗(ρ


r). Denote as φtr([v]) the composition pr ◦Φtr([v]).
As was proven in [11, Theorem 2.24], Φtr gives a well-defined operation
Ωd(X)→ Ω2d+r(X).


It was proven in [9] that the Chow-trace of Φ is the half of the Chow-trace
of certain Landweber-Novikov operation.


Proposition 2.1 ([9, Propositions 3.8, 3.9], [11, Proposition 3.14])


(1) 2φtr([v]) = pr((−1)r+1Sr+d
L−N ([v])), for r > 0;


(2) 2φt0([v]) = pr(�− Sd
L−N([v])),


where Sr
L−N is the Landweber-Novikov operation corresponding to the char-


acteristic number cr.


The additive properties of φ are given by the following:


Proposition 2.2 ([11, Proposition 2.8])


(1) Operation φtr is additive for r > 0;


(2) φ1(x + y) = φ1(x) + φ1(y) + pr(x · y).


Let [v] ∈ Ω∗(X) be some cobordism class, and [u] ∈ L be class of some
smooth projective variety U over k of positive dimension. We will use the


standard notation η2(U) for the Rost invariant
−deg(cdim(U)(−TU ))


2
∈ Z (see [7]).


Proposition 2.3 ([11, Proposition 3.15]) In the above notations, let r =
(codim(v)− 2dim(u)). Then, for any i > max(r; 0),


φti−r


([v] · [u]) = (−1)i−rη2(U) · (pr ◦ Si
L.−N.)([v]).


The following proposition describes the behavior of Φ with respect to
pull-backs and regular push-forwards. For q(t) ∈ CH∗(X)[[t]] let us define
φq(t) :=


∑
i>0 qiφ


ti . For a vector bundle V denote c(V)(t) :=
∏


i(t+λi), where
λi ∈ CH1 are the roots of V.


Proposition 2.4 ([11, Propositions 3.1, 3.4]) Let f : X → Y be some mor-


phism of smooth quasiprojective varieties.


(1) f ∗φq(t)([v]) = φq(t)(f ∗[v]);


(2) If f is a regular embedding, then φq(t)(f∗([w])) = f∗(φ
q(t)·c(Nf )(t)([w])),


where Nf is a normal bundle of the embedding.
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3 Results


We say that an element of CH∗(Y |F )/2 is defined over F , if it belongs to the
image of the restriction map ac : CH∗(Y |F )/2→ CH∗(Y |F )/2.


Theorem 3.1 Let k be a field of characteristic 0. Let Y be a smooth quasipro-


jective variety, Q be a smooth projective quadric of dimension n, and y ∈
CHm(Y |k)/2 be some element. Suppose that y|k(Q) is defined over k(Q).
Then:


(1) For all j > m− [n + 1/2], Sj(y) is defined over k;


(2) For j = m − [n + 1/2], Sj(y) + z · y is defined over k, for some z ∈
im(ac ◦ (πY )∗ ◦ (·h[n/2]) : CHm(Q× Y )/2→ CHj(Y |k)/2).


Proof: Since y|k(Q) is defined over k(Q), there exists x ∈ CHm(Q×Y )/2


such that y|k(Q) = i∗(x) ( mod 2), where i : Spec(k(Q))× Y → Q × Y is the
embedding of the generic fiber.


Over k, quadric Q becomes a cellular variety, with the basis in Chow ring
given by the classes {hi, li}06i6[n/2] of plane sections and projective subspaces.
Hence,


CH∗(Q× Y |k) =
[n/2]


⊕
i=0


(π∗
Q(hi) · π∗


Y CH∗(Y |k)⊕ π∗
Q(li) · π∗


Y CH∗(Y |k)),


and


x =


[n/2]∑


i=0


hi · xi +


[n/2]∑


i=0


li · xi,


for certain unique xi ∈ CHm−i(Y |k)/2 and xi ∈ CHm−n+i(Y |k)/2.


Lemma 3.2 x0 = y.


Proof: Clearly, x0|k(Q) = y|k(Q). But for any field extension E/F with


F algebraically closed, the restriction homomorphism on Chow groups (with
any coefficients) is injective by the specialization arguments.


Proposition 3.3 Let x ∈ CHm(Q×Y )/2 be some element, and xi, xi be it’s


coordinates as above. Then
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(1) For j > m− [n + 1/2], Sj(x0) is defined over k.


(2) For j = m− [n + 1/2], Sj(x0) + x0 · x[n/2] is defined over k.


Proof:
We have the natural map pr : Ω∗ → CH∗ which is surjective by the


result of M.Levine-F.Morel (see [6, Theorem 14.1]). Thus, there exists v ∈
Ωm(Q× Y ) such that pr(v) = x.


Again, since over k, quadric Q becomes a cellular variety,


Ω∗(Q× Y |k) = ⊕
β∈B


π∗
Q(fβ) · π∗


Y Ω∗(Y |k),


where {fβ}β∈B can be any set of elements such that {pr(fβ)}β∈B form a Z-
basis of CH∗(Q|k) - see Section 2 of [13]. In particular, we can take the set
{hi, li}06i6[n/2], where h is a (cobordism-) class of a hyperplane section, and
li is a class of a projective plane of dimension i on Q. Thus,


v =


[n/2]∑


i=0


hi · vi +


[n/2]∑


i=0


li · vi,


for certain vi ∈ Ωm−i(Y |k) and vi ∈ Ωm−n+i(Y |k), which satisfy: pr(vi) = xi,
pr(vi) = xi.


Let n = 2r − 1 + s, where 0 6 s < 2r. Let us denote n − s = 2r − 1
as d. Let emb : P ⊂ Q be a (smooth) subquadric of codimension s, and
embg : P ⊂ Pg be embedding of codimension g into any (smooth) quadric.


Consider ug := (embg)∗(emb)∗(v) ∈ Ωm+g(Pg × Y ). Then


ug =


[n/2]∑


i=0


hi+g · vi +


[n/2]−s∑


i=0


li · vi+s.


We will obtain the needed cycle Sj(x0) as a linear combination of certain
symmetric operations applied to ug and (πY )∗(ug).


For 0 6 g 6 [n/2]− s, consider


wg := ((πY )∗ ◦ φtj+d−m−g − φtj+2d−m ◦ (πY )∗)(ug),


where φta : Ωb(X) → CH2b+a(X) - symmetric operation defined in [11].
Remind, that operations φta are defined only for a > 0. This condition
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is satisfied in our case, since (j + d) − (m − d) > (j + d) − (m + g) >


m− [n + 1/2] + n− s−m− g = [n/2]− s− g > 0.
For j > m− [n + 1/2], by Propositions 2.2, the operations we are consid-


ering are additive, and wg is the Chow-trace of


[n/2]∑


i=0


((πY )∗ ◦ φtj+d−m−g − φtj+2d−m ◦ (πY )∗)(h
i+g · vi)+


[n/2]−s∑


i=0


((πY )∗ ◦ φtj+d−m−g − φtj+2d−m ◦ (πY )∗)(li · vi+s).


By Proposition 2.4, the Chow-trace of (πY )∗ ◦ φtj+d−m−g
(hi+g · vi) is equal


to the Chow-trace of (πY )∗ ◦ φtj+d−m−ghi+g(t+h)i+g
((πY )∗vi), which is equal to


the Chow-trace of 2
(


i+g
d−i


)
φtj+2i−m


(vi) and is 0 modulo 2.


By Proposition 2.3, the Chow-trace of (φtj+2d−m ◦(πY )∗)(h
i+g ·vi) is equal,


modulo 2, to the Chow-trace of (−1)j−m+1
(
−(d−i+2)


d−i


)
Si+j


L.−N.(v
i), and modulo


2 this is equal to
(
−(d−i+2)


d−i


)
Si+j(pr(vi)). By dimensional reasons, the second


multiple is zero, if m− j < 2i. Otherwise, 2i < [n+1/2], and i < 2r−1. Since(
−(a+2)


a


)
is odd only for a = 2p − 1, for some p, we get: modulo 2, the only


nontrivial term corresponds to i = 0 and is equal to Sj(pr(v0)).
Hence, modulo 2, the Chow trace of


[n/2]∑


i=0


((πY )∗ ◦ φtj+d−m−g − φtj+2d−m ◦ (πY )∗)(h
i+g · vi)


is equal to Sj(pr(v0)).
Let now 0 6 i 6 [n/2] − s. Again, it follows from Proposition 2.4 that


the Chow trace of ((πY )∗ ◦ φtj+d−m−g
(li · vi+s) is equal to the Chow-trace of


(πY )∗φ
tj+d−m−g li(t+h)d+g−i+1


((πY )∗(vi+s)), which is equal to the Chow-trace of(
d+g−i+1


i


)
φtj−m+2d−2i+1


(vi+s). Notice, that j −m + 2d− 2i + 1 > −[n + 1/2] +


2d−2i+1 = ([n/2]−s− i)+(d− i+1) > 0. Let us denote φtj−m+2d−2i+1
(vi+s)


as εi.
By Proposition 2.3, the Chow-trace of φtj+2d−m◦(πY )∗(li ·vi+s), for i > 0, is


equal to (−1)j−m+1 1
2


(
−(i+1)


i


)
·pr(Sj+n−s−i


L−N (vi+s)), and modulo 2 this is equal to
1
2


(
−(i+1)


i


)
·Sj+n−s−i(pr(vi+s)), which is zero, since j+n−s−i > codim(vi+s) =


m− n + i + s. For i = 0, the above Chow-trace is equal to ε0.
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Putting things together, we get:


wg = Sj(pr(v0)) +
∑


0<i6[n/2]−s


(
n− s + g − i + 1


i


)
εi.


Consider α :=
∑


06g6[n/2]−s


(
[n/2]−s+1


g+1


)
wg. Then


α =






∑


06g6[n/2]−s


(
[n/2]− s + 1


g + 1


)
 Sj(pr(v0))+


∑


0<i6[n/2]−s


εi


∑


06g6[n/2]−s


(
n− s + g − i + 1


i


)(
[n/2]− s + 1


g + 1


)
.


Lemma 3.4 (a) The number
∑


06g6[n/2]−s


(
[n/2]−s+1


g+1


)
is odd.


(b) The number
∑


06g6[n/2]−s


(
n−s+g−i+1


i


)(
[n/2]−s+1


g+1


)
is even.


Proof: Let d = [n/2]− s, k = g + 1.
a) The sum is equal to


∑d+1
c=1


(
d+1


c


)
, which is 2d+1 − 1.


b) The sum here is equal to
∑d+1


k=1


(
n−s+k−i


i


)(
d+1
k


)
. Since


(
n−s−i


i


)
=


(
2r−1−i


i


)


is even, the sum is equal (modulo 2) to
∑d+1


k=0


(
n−s+k−i


i


)(
d+1
k


)
. The latter


expression is equal (modulo 2) to
∑d+1


k=0


(
d+1


d+1−k


)(
−(i+1)


n−s+k−2i


)
=


(
d−i


d+1+n−s−2i


)
.


Since (d− i) > 0, and (d+1+n−s−2i)− (d− i) = n−s+1− i = 2r− i > 0,
we get 0 (modulo 2).


It follows from Lemma 3.4 that (modulo 2) α = Sj(pr(v0)) = Sj(x0).
But wg and thus α are defined over the base field k. Then so is Sj(x0).


For j = m− [n + 1/2], (j + 2d − m) is always greater than zero, and
(j + d−m− g) is greater than zero, except for the case g = [n/2]− s. Thus,
for 0 6 g < [n/2] − s, wg is given by the same formulas as above, and for
g = [n/2]− s, we have extra terms pr(v0 · v[n/2]) + 2 · (something). Thus, in
this case, modulo 2, α = Sj(x0) + x0 · x[n/2].


By Lemma 3.2, pr(v0) is exactly y. It remains to take z = pr(v[n/2]).
Clearly, z = (πY )∗ ◦ pr(h[n/2] · v).
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Theorem 3.1 is proven.


Remark: If one does not mind moding out also a 2-torsion in the Chow
groups, one can get similar result just with the help of the usual Landweber-
Novikov operations. Here instead of using Propositions 2.3 and 2.4, one
should apply multiplicative properties of the Landweber-Novikov operations.
But to obtain the “clean” statement as above, the use of the symmetric


operations is essential.


Corollary 3.5 Under the conditions of Theorem 3.1:


(1) For m < [n + 1/2], y is defined over k;


(2) For m = [n + 1/2], either y is defined over k, or Q|k(Y ) is completely


split.


Proof: Take j = 0, and use the fact that S0 = id. In (2) observe, that


either z is zero, or the composition CH [n+1/2](Q × Y )/2
·h[n/2]


→ CHn(Q ×
Y )/2


(πY )∗→ CH0(Y )/2
ac∼= CH0(Y |k)/2 = Z/2 is onto, and thus Q|k(Y ) is


completely split.


If one does not impose any conditions on the quadric Q, as well as on
the relation between codimension of the cycle and the dimension of Y , the
boundary in the Corollary 3.5 is optimal.


Let Q be a generic quadric of dimension n (that is, quadric given by the
form 〈a1, . . . , an+2〉 over F = k(a1, . . . , an+2)), Y be the last grassmannian
G([n/2], Q) of Q, and m = [n + 1/2]. Using the restriction to the field
of power series, and the results of Springer, one easily gets: degree of any
finite extension E/F which splits Q completely is divisible by 2[n+2/2], in
other words, the image of CH0(G([n/2], Q)) → CH0(G([n/2], Q)|F ) = Z is
contained in 2[n+2/2] · Z.


Let li be fixed projective plane of dimension i on Q|F . Remind that for
0 6 i < [n + 1/2], elementary class Z[n+1/2]−i ∈ CH [n+1/2]−i(G([n/2], Q)|F )
is given by the locus of [n/2]-dimensional planes on Q intersecting li - see
[10]. For i = 0 and n - even, Z0 can be chosen as one of the families of
middle-dimensional planes. Let zi denotes Zi ( mod 2 ) ∈ CH i/2.
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Statement 3.6 If Q is generic, then none of zj ∈ CHj(G([n/2], Q)|F )/2 is


defined over F .


Proof: If n is even, the cycle zj , j > 0 is defined on G(n/2, Q) over


F if and only if the cycle zj is defined on G(n/2 − 1, P ) over F (
√


det(Q)),
where P ⊂ Q|


F (
√


det(Q))
is any smooth subquadric of codimension 1 - see [10,


Definition 5.11]. Since Q was generic, we can take such P to be generic too,
and the problem is reduced to the case n - odd.


Cycles of the type 2Zj ∈ CHj(G((n − 1/2), Q)), 1 6 j 6 (n + 1/2)
are always defined over F , since they are the Chern classes of tautolog-
ical bundle - see [10, Theorem 2.5]. On the other hand,


∏
16i6(n+1/2) Zi


is a class of a rational point. And any other product of Zi’s which is a
zero-cycle has nesessarily degree divisible by 2 - see [10, Proposition 3.1].
Thus, if za would be defined over F , that is, over F would be defined
λZa + (something), where λ is odd and (something) is a polynomial in
Zb, b 6= a, then the cycle 2(n−1/2)


∏
b6=a,16b6(n+1/2) Zb · (λZa + (something)) ≡


2(n−1/2)λ
∏


16b6(n+1/2) Zb ( mod 2(n+1/2)) would be defined over F . Thus on


G((n− 1/2), Q) there would be a 0-cycle of degree not divisible by 2(n+1/2).
This contradicts to the fact that Q is generic.


The needed example is provided by the following


Statement 3.7 Let Q be generic quadric of dimension n, Y be G([n/2], Q),
m = [n + 1/2], and y = zm ∈ CHm(Y |F )/2. Then y|F (Q) is defined over


F (Q), but y is not defined over F .


Proof: It follows from the Statement 3.6 that y is not defined over F .
On the other hand, Q|F (Q) has a rational point, and so not just zm, but even
Zm is defined over F (Q) by the very definition.


Remark: Clearly, in the example above one could as easily take any
quadric Q such that z[n+1/2](Q) is not defined over the base field, in other
words, [n + 1/2] 6∈ J(Q) (see [10, Definition 5.11]).


Moreover, the converse is true as well. As a supplement to Corollary 3.5
one can show the following:
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Statement 3.8 Under the conditions of Theorem 3.1, let [n + 1/2] ∈ J(Q).
Then, for m 6 [n + 1/2], y is defined over k.


We will need some preliminary facts.


Proposition 3.9 Let Q be smooth quadric, and


f : G(Q, [n/2])
α← F (Q, 0, [n/2])


β→ Q


be the natural correspondence. Suppose z[n+1/2] is defined.


Let t ∈ CH[n+1/2](G(Q, [n/2]))/2 be such that f∗(t) = 1 ∈ CH0(Q)/2.
Then f∗(t · z[n+1/2]) = l[n/2] ∈ CH[n/2](Q)/2.


Proof: Really, by the definition, z[n+1/2] = f ∗(l0) = α∗β
∗(l0). By the


projection formula, f∗(t · z[n+1/2]) = β∗α
∗(t · z[n+1/2]) = β∗α


∗α∗(α
∗(t) ·β∗(l0)).


Again, by the projection formula, β∗(α
∗(t) · β∗(l0)) = l0. Thus, α∗(t) · β∗(l0)


is a zero-cycle of degree 1 on F (Q, 0, [n/2]), and α∗(α
∗(t) · β∗(l0)) is a zero


cycle of degree 1 on G(Q, [n/2]). Proposition follows.


Let x ∈ CHm(Y ×Q)/2 be some element. Then


x =


[n/2]∑


i=0


(xi · hi + xi · li).


Statement 3.10 Suppose that z[n+1/2](Q) is defined. Then for any x ∈
CH[n+1/2](Y ×Q)/2, there exists u ∈ CH[n+1/2](Y ×Q)/2 such that u0 = x0,


and u[n/2] = 0.


Proof: If x[n/2] = 0, there is nothing to prove. Otherwise, the class
l[n/2] ∈ CH[n/2](Q|k(Y ))/2 is defined. Indeed, let


ρX : CH∗(Y ×X)/2 ։ CH∗(X|k(Y ))/2


be the natural restriction. Then ρQ(v) = l[n/2] plus λ · h[n/2], if n is even
(notice, that x[n/2] ∈ CH0). Anyway, this implies that over k(Y ) the variety
G(Q, [n/2]) has a zero-cycle of degree 1, and thus, a rational point. Let
s ∈ CHdim(Y )(G(Q, [n/2]) × Y )/2 be arbitrary lifting of the class of a point
on G(Q, [n/2])|k(Y ) with respect to ρG(Q,[n/2]). Let


f : G(Q, [n/2])
α← F (Q, 0, [n/2])


β→ Q
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be the natural correspondence. Consider the element u′ := (f × id)∗(s) ∈
CH[n+1/2](Q× Y )/2. Proposition 3.9 implies that the (defined over k) class


u” := π∗
Y (πY )∗((h


[n/2] × 1Y ) · (f × id)∗(s · z[n+1/2](Q)))


satisfy: u”
0


= u′0, and (evidently) u”[n/2] = 0. Since u′
[n/2] = 1 = x[n/2], it


remains to take: u := x− u′ + u”.


Proof of Statement 3.8: If m < [n + 1/2], the statement follows from
Corollary 3.5. For m = [n+1/2], let y′ ∈ CHm(Y |k(Q))/2 be such element that
y′|k(Q) = y|k(Q). Let us lift y′ via surjection CH∗(Y ×Q)/2 ։ CH∗(Y |k(Q))/2
to some element x. Then it follows from the Statement 3.10 that x can be
chosen in such a way that x[n/2] = 0. It remains to apply Proposition 3.3.


The Statement 3.8 extends Corollary 3.5 in the direction of the following
conjecture, which serves as an analogue of the Karpenko-Merkurjev Theorem
for the cycles of positive dimension.


To introduce the Conjecture we will need first to define some objects.
Let 0 6 i 6 [n/2], and G(Q, i) be the Grassmannian of i-dimensional


projective subspaces on Q. For the standard correspondence


fi : G(Q, i)
αi← F (Q, 0, i)


βi→ Q,


denote as z
i−[n/2]


n−i the class (fi)
∗(l0) ∈ CHn−i(G(Q, i)|k)/2. In particular, in


this notations, z
0


[n+1/2] will be our class z[n+1/2]. Notice also, that z
−[n/2]


n is


the class of a point on Q|k, and z
1−[n/2]


n−1 is defined if and only if Q posses the


Rost projector. For i < j, z
i−[n/2]


n−i is defined over k ⇒ z
j−[n/2]


n−j is defined
over k (see [12]).


Conjecture 3.11 Suppose, the class z
i−[n/2]


n−i is defined over k. Then for


all m 6 n− i,


y|k(Q) is defined over k(Q) ⇔ y is defined over k.
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