
REDUCED K-THEORY OF AZUMAYA ALGEBRAS

R. HAZRAT

Abstract. In the theory of central simple algebras, often we are dealing
with abelian groups which arise from the kernel or co-kernel of functors
which respect transfer maps (for example K-functors). Since a central
simple algebra splits and the functors above are “trivial” in the split
case, one can prove certain calculus on these functors. The common
examples are kernel or co-kernel of the maps Ki(F ) → Ki(D), where
Ki are Quillen K-groups, D is a division algebra and F its centre, or
the homotopy fiber arising from the long exact sequence of above map,
or the reduced Whitehead group SK1. In this note we introduce an
abstract functor over the category of Azumaya algebras which covers all
the functors mentioned above and prove the usual calculus for it. This,
for example, immediately shows that K-theory of an Azumaya algebra
over a local ring is “almost” the same as K-theory of the base ring.

The main result is to prove that reduced K-theory of an Azumaya
algebra over a Henselian ring coincides with reduced K-theory of its
residue central simple algebra.

The note ends with some calculation trying to determine the homo-
topy fibers mentioned above.

1. Introduction

In the theory of central simple algebras, often we are dealing with abelian
groups which arise from the kernel or co-kernel of functors which respect
transfer maps (for example K-functors). Since a central simple algebra splits
and the functors above are “trivial” in the split case, the abelian groups are
n torsion (annihilated by a power of n) where n is the degree of the algebra.
This immediately implies that extensions of degree relatively prime to n and
decomposition of the algebra to its primary components are “understood” 1

by these groups.
For example consider a division algebra D with centre F . Let Ki(D) for

i ≥ 0 denote the Quillen K-groups. The inclusion map id : F→D gives rise
to the long exact sequence

(1) Fi→Ki(F )→Ki(D),

in K-theory where Fi are the homotopy fibers. If ZKi(D) and CKi(D) are
the kernel and co-kernel of Ki(F ) → Ki(D) respectively, then

(2) 1 → CKi+1(D) → Fi → ZKi(D) → 1.

Date: September 13, 2005.
1This terminology is used by van der Kallen
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The functors CKi, Fi and ZKi are all examples of the abelian groups
mentioned above. From (2) it is clear that computation of CKi and ZKi

leads us to the determination of the long exact sequence of K-theory. Let
i = 0. Since K0(F ) ∼= K0(D) = Z, one can immediately see from (2)
that the homotopy fibre F0

∼= CK1(D) ∼= D∗/F ∗D′. On the other hand
ZK1(D) = D′∩F ∗ = Z(D′) which is the centre of the commutator subgroup
D′. In [8] Valuation theory of division algebras is used to compute the
group CK1 for some valued division algebras. For example this group is
determined for totally ramified division algebras and in particular for any
finite cyclic group G, a division algebra D such that CK1(D) = G or G×G
is constructed. It seems computation of the group CK2 is a difficult task.
It is very desirable to relate the group CKi(D) to CKi(D̄), where D is a
valued division algebra and D̄ is its residue division algebra.

On the other hand, since splitness characterises Azumaya algebras, one
can work in the category of Azumaya algebras. Thus in Section 2 we de-
fine an abstract functor D which captures the properties of the functors
mentioned above. We show that D-functors are n2 torsion. As the first
application, this immediately implies that K-theory of an Azumaya alge-
bra over a local ring is very close to the K-theory of the base ring itself
(Corollary 2.3).

Another example of D-functors are the reduced Whitehead groups which
brings us to the main section of this note. In Section 3 we attempt to inves-
tigate the behaviour of the reduced Whitehead group SK1(A), where A is
an Azumaya algebra over a commutative ring R. Beginning with the work
of V. Platonov, who answered the Bass-Tannaka-Artin problem (SK1(D) is
not trivial in general) there have been extensive investigation both on func-
torial behaviour and computational aspect of this group over the category of
central simple algebras. On the other hand study of Azumaya algebras over
commutative rings and extending some theorems from the theory of cen-
tral simple algebras to Azumaya algebras, has shown that in certain cases
these two objects behave similar (although there are also essential points of
difference).

Here we initiate a study of the functor SK1 over the category of Azumaya
Algebras. We recall a construction of reduced norm in this setting. Let A be
an Azumaya algebra over a commutative ring R. A commutative R-algebra
S is called a splitting ring of A if there is a finitely generated faithfully
projective S-module P , such that A ⊗R S ≃ HomS(P,P ). S is called a
proper splitting ring if R ⊆ S. The existence of a proper splitting ring in
general seems to be an open question. Let A be an Azumaya R-algebra with
a proper splitting ring S, and consider A⊗R S ≃ HomS(P,P ). Then for any
a ∈ A,

NrdA(a) = detP (a ⊗ 1)

TrdA(a) = trp(a ⊗ 1)
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where NrdA and TrdA are called the reduced norm and the reduced trace of A
respectively (see [3]). Now consider the kernel of the reduced norm SL(1, A)
and form the reduced Whitehead group SK1(A) = SL(1, A)/A′ where A′ is
the derived subgroup of A∗, invertible elements of A.

A question naturally arises here is the following: What is the relation
of the reduced Whitehead group of an Azumaya algebra to the reduced
Whitehead groups of its extensions. In particular what is the relation of SK1

of an Azumaya algebra to SK1 of its residue central simple algebras. To be
precise, let A be an Azumaya algebra over R and m a maximal ideal of R.
Since NrdA/R(a) = NrdĀ/R̄(ā) where R̄ = R/m and Ā = A/mA, it follows

that there is a homomorphism SK1(A) → SK1(Ā). On the other direction,
if S is a multiplicative closed subset of R, since the reduced norm respects
the extension, there is a homomorphism SK1(A) → SK1(A ⊗R S−1R). In
particular if R is an integral domain then SK1(A) → SK1(AK) where K
is a quotient field of R and AK is the central simple algebra over K. The
question arises here is, under what circumstances these homomorphisms
would be mono or isomorphisms. The following observation shows that
even in the case of a split Azumaya algebra, these two groups could differ:
consider the split Azumaya algebra A = Mn(R) where R is an arbitrary
commutative ring. In this case the reduced norm coincide with the ordinary
determinant and SK1(A) = SLn(R)/[GLn(R),GLn(R)]. There are examples
of an integral domain R (even Dedekind domain) such that SK1(A) 6= 1. But
in this setting, obviously SK1(Ā) = 1 and SK1(AK) = 1 (for some examples
see [21], Chapter 2).

In Section 3 we study this question. We shall show that over a Henselian
ring R, SK1 of an Azumaya algebra coincides with SK1 of its residue central
simple algebra. Section 4 focuses on the functors CKi. We will proide some
examples where CKi’s are trivial and compute some K-sequences of these
examples.

2. K-theory of Azumaya algebras

Definition 2.1. Let R a the category of rings, with morphisms as follow.
Let A and B be two rings with centres R and S respectively such that S is
an R-algebra (or R ⊆ S). Then an R-algebra homomorphism f : A → B is
considered as a morphism of the category. Let G : R → Ab be an abelian
group valued functor such that

(1) (Determinant Property) For any natural number m, there is a ho-
momorphism dm : G(Mm(A)) → G(A) such that dmim = ηm where
im : G(A) → G(Mm(A)) induced by the natural embedding A →
Mm(A).

(2) (Torsion Property) For any a ∈ Ker(dm), am = 1.
(3) (Transfer Map) For any ring A with centre R and any commutative

R-algebra S free over R of rank [S : R], there is a homomorphism t :
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G(A⊗R S) → G(A) such that ti = η[S:R] where i : G(A) → G(A⊗R S)
induced by the natural embedding A → A ⊗R S.

(4) For any commutative ring R, G(R) = 1.

Then G is called a D-functor.

Let A be a ring with centre R. Consider the Quillen K-groups Ki(A)
for i ≥ 0. Let P(A) and P(Mm(A)) be categories of finitely generated
projective modules over A and Mm(A) respectively. The natural embedding
A→Mm(A) induces

P(A)−→P(Mm(A))
p 7→ Mm(A) ⊗A p.

Furthermore, if

P(Mm(A))−→P(A)
q 7→ Am ⊗Mm(A) q

then one can see that the above maps induces the sequence

Ki(A)−→Ki(Mm(A))
∼=−→ Ki(A)

of K-groups where the composition is ηm. On the other hand the inclusion
map id : R → A gives the following exact sequence

(3) 1 → ZKi(A) → Ki(R) → Ki(A) → CKi(A) → 1

where ZKi(A) and CKi(A) are the kernel and co-kernel of Ki(R) → Ki(A)
respectively. The following diagram is commutative

1 // ZKi(Mm(A)) //

²²

Ki(R) //

ηm

²²

Ki(Mm(A)) //

∼=
²²

CKi(Mm(A)) //

²²

1

1 // ZKi(A) // Ki(R) // Ki(A) // CKi(A) // 1

which shows that Ki functors and therefore CKi functors satisfy the first
condition of D-functors.

Condition (2) follows from chasing the element a ∈ Ker(CKi(Mm(A)) →
CKi(A)) in the diagram, and using the fact that Ki(Mm(A)) → Ki(A) is an
isomorphism.

Since S is a free R-module, the regular representation r : S → EndR(S) ∼=
Mn(R) where [S : R] = n and thus the commutative diagram

Ki(A) //

&&M

M

M

M

M

M

M

M

M

M

Ki(A ⊗R S)

1⊗r
²²

Ki(Mn(A))

implies that Ki and therefore CKi satisfy the condition (3) of D-functors.
Therefore the functors CKi and ZKi are D-functors (we shall later show

that the reduced Whitehead group SK1 is also a D-functor on the category
of Azumaya algebras over local rings).
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In the rest of this section we assume that the functor G is a D-functor.
Our aim is to show that if a ring A splits, then G(A) is torsion of bounded
exponent. Thus from now on, we shall restrict the category to the category
of Azumaya algebras over local rings Az.

Proposition 2.2. Let A be an Azumaya algebra over a local ring R of rank

n2. Then G(A) is a torsion group of bounded exponent n2.

Proof. Since R is a local ring, there is a faithfully projective R-algebra S of
rank n which splits A (e.g. S could be a maximal commutative subalgebra
of A separable over R, see [12] Lemma 5.1.17). Since G is a D-functor,

there is a sequence G(A)
i→ G(A ⊗R S)

t→ G(A) such that ti(x) = xn. But
A ⊗R S ≃ EndS(Sn). Conditions 2 and 4 of being a D-functor force that
G(EndS(Sn)) to be a torsion group of exponent n. Now from the sequence
above the assertion of the theorem follows. ¤

Corollary 2.3. Let A be an Azumaya algebra over a local ring R of rank

n2. Then Ki(R) ⊗ Z[n−1] ∼= Ki(A) ⊗ Z[n−1], i ≥ 0.

Proof. Since ZKi and CKi are D-functors, from Proposition 2.2 follows that
these groups are n2-torsion. Tensoring the exact sequence (3) with Z[n−1]
the result follows. ¤

Remark 2.4. Corollary 2.3 implies that for a finite dimensional division alge-
bra D over its centre F with index n, Ki(F )⊗Z[n−1] ∼= Ki(D)⊗Z[n−1], i ≥ 0
(Compare this with [10]).

Corollary 2.5. Let A be an Azumaya algebra over a local ring R of rank

n2 and S a projective R-algebra such that (n2, [S : R]) = 1. Then G(A)
i→

G(A ⊗R S) is a monomorphism.

Proof. From 2.2 and Condition 2 of 2.1 the kernel of the map i is simulta-
neously n2 and [S : R] torsion. Since these numbers are relatively prime it
follows that the kernel is trivial. ¤

Let A and B be R-Azumaya algebras where B has constant rank [B : R].
Consider the regular representation B → EndR(B) and the sequence,

G(A) → G(A ⊗R B) → G(A ⊗R EndR(B))
d→ G(A).

The composition of the above homomorphisms is η[B:R]. If we further assume
that R is a local ring then G(A) and G(B) are torsion of exponent [A : R] and
[B : R] respectively. Therefore if [A : R] and [B : R] are relatively prime,
we can prove that G has a decomposition property similar to the reduced
Whitehead group SK1 for central simple algebras. The proof follows the
same pattern as the one for SK1 for central simple algebras.

Theorem 2.6. Let A and B be Azumaya algebras over a local ring R such

that (i(A), i(B)) = 1. Then G(A ⊗R B) ≃ G(A) × G(B).
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Proof. By Corollary 2.2, G(A⊗F B) is a torsion group of bounded exponent
mn where m = [A : R] and n = [B : R]. From the theory of torsion abelian
groups, one can write G(A ⊗F B) ≃ K × H, where K and H are torsion
abelian groups such that exp(K)|m and exp(H)|n. We shall prove that
G(A) ≃ K and G(B) ≃ H.

Consider the sequence of R-homomorphisms

(4) A −→ A ⊗R B −→ A ⊗ B ⊗ Bop ≃−→ A ⊗ Mn(R)
≃−→ Mn(A)

and apply the functor G to the sequence to get

(5) G(A)
φ−→ G(A ⊗R B)

ψ−→ G(A ⊗ B ⊗ Bop)
θ−→ G(A)

so that θψφ = ηn by the property (1) of D-functors. Then G(A) = ηnηn(G(A)) =
ηnθψφ(G(A)) ⊆ θψηn(K × H) = θψ(K) ⊆ G(A). This clearly shows that
θψ|K : K −→ G(A) is surjective. We need to show that θψ|K is injective.
Consider the sequence (4) above and replace Bop with its regular represen-
tation Bop −→ Mn(R) as follows

G(A ⊗F B)
ψ−→ G(A ⊗ B ⊗ Bop)

ψ′

−→ G(A ⊗ B ⊗ Mn(R))
θ′−→ G(A ⊗ B)

where θ′ is provided by the first property of D-functor and thus θ′ψ′ψ = ηn.
Now let w ∈ G such that w 6= 1. Then θ′ψ′ψ(w) = ηn(w) = wn 6= 1 implying
that ψ|K is injective. Rewrite the sequence (5) as follows:

G(A ⊗ B)
ψ−→ G(A ⊗ B ⊗ Bop)

≃−→ G(Mn(A))
dn−→ G(A).

Let x ∈ K such that θψ(x) = 1. The above sequence and the property (3)
of D-functors show that ψ(x)n = 1. Since ψ|K is injective, it follows that
xn = 1. Since m and n are relatively prime, x = 1. This shows that θψ is an
isomorphism and so G(A) ≃ K. Similarly, it can be shown that G(B) ≃ H.
This completes the proof. ¤

Example 2.7. SK1 is Morita equivalent

Consider a local ring A with more than two elements. For any integer
m, one can see that GLm(A) = Em(A)δ(A∗) where δ(A∗) are matrices with
elements of A∗ in a11-position, units in the rest of diagonal, and zero else-
where. Plus Em(A)∩ δ(A∗) = δ(A′) (These all follow from the fact that the
Dieudonné determinant extends to local rings ([21], §2.2)).

Now assume that A is a local Azumaya algebra. Since the splitting ring of
A, is a splitting ring for the matrix algebra Mm(A), one can easily see that
NrdMm(A)(δ(a)) = NrdA(a). This immediately implies that SK1 is Morita
equivalent for local Azumaya algebras. On the other hand over a Henselian
ring, any Azumaya algebra is a full matrix algebra over a local Azumaya
algebra ([2], Theorem 26). Thus it follows from the above argument that
over Henselian rings, SK1 is Morita equivalent.
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Example 2.8. SK1 as D-functors

Recently Vaserstein showed that the analogue of the Dieudonné deter-
minant exists for a semilocal ring A which is free of M2(Z2) components
and have at most one copy of Z2 in the decomposition into simple rings in
A/J(A) [25]. Using this result, one can extend Example 2.7 to all Azumaya
algebras A over local rings (R,m) such that either R/m 6= Z2 or rankA > 2.

Now consider the full subcategory of Azumaya algebras over local rings of
Az and exclude the exceptional cases above. As the determinant is present
in this category, take dm just the usual determinant for semi local rings. It
is then easy to see that the group SK1 satisfy all the conditions of being a
D-functor.

3. SK1 of Azumaya algebras over Henselian rings

The aim of this section is to show that the reduced Whitehead group SK1

of a tame Azumaya algebra over a Henselian ring coincides with the SK1

of its residue division algebra. As indicated in Example 2.7, the reduced
Whitehead group is Morita equivalent for Azumaya algebras over Henselian
rings. Thus it is enough to work with local Azumaya algebras. Therefore
throughout this section we assume the ring R is local with maximal ideal m
and A is a local Azumaya algebra, i.e., Ā = A/mA is a division ring unless
stated otherwise. The index of A is defined to be the square root of the rank
of A over R.

Theorem 3.1. Let A be a local Azumaya algebra over a local ring R of rank

n2. Consider the sequence

K1(A)
NrdA−→ K1(R)

i−→ K1(A).

Then i ◦ NrdA = ηn where ηn(a) = an.

Proof. Since A is an Azumaya algebra over a local ring R, there exist a
maximal commutative subalgebra S of A which splits A as follows A⊗R S ≃
Mn(S) (see Lemma 5.1.13 and 5.1.17 and their proofs in [12]). Consider the
sequence of R-algebra homomorphism

φ : A −→ A ⊗R S
≃−→ Mn(S) →֒ Mn(A)

and also the embedding i : A → Mn(A). For any Azumaya algebra over a
semi-local ring the Skolem-Noether theorem is valid, i.e. if B is an Azumaya
subalgebra of A, then any R-algebra homomorphism φ : B → A can be
extended to an inner automorphism of A. Thus there is a g ∈ GLn(A) such
that φ(x) = gi(x)g−1 for any x ∈ A. Now taking the Dieudonné determinant
from the both sides of the above equality, we have NrdA/R(x) = xndx where
dx ∈ A′. This completes the proof. ¤

Corollary 3.2. Let A be a local Azumaya algebra over a local ring R. Then

for any x ∈ A∗, xn = NrdA/R(x)dx where n2 is the rank of A over R and

dx ∈ A′. In particular the reduced Whitehead group SK1(A) is torsion of

bounded exponent n.



8 R. HAZRAT

In order to establish a relation between SK1 of an Azumaya algebra to
that of a central simple algebra, we need a version of Platonov’s congruence
theorem in the setting of Azumaya algebras. The original proof of congru-
ence theorem is quite complicated and seems to be not possible to adopt it in
the setting of Azumaya algebras. It is now two short proofs of the theorem
in the case of a tame division algebra available, one due to Suslin (buried
in [23]) and one due to the author [7]. Here it seems the Suslin proof is
the suitable one to adopt for this category. Before we state the congruence
theorem we establish some useful facts needed later in this note.

From now on we assume that the base ring is Henselian. Recall that a
commutative local ring R is Henselian if f(x) ∈ R[x] and f̄ = g0h0 with g0

monic and g0 and h0 coprime in R̄[x], then f factors as f = gh with g monic
and ḡ = g0, h̄ = h0. Here R̄ = R/m and f̄ is the reduction of f(x) with
respect to m. (see §30, [17]). Now let A be an Azumaya algebra over R.
Thus A = Mm(B) where B is a local Azumaya algebra. We say A is tame

if Char R̄ does not divide the index of B.

Proposition 3.3. Let A be a tame local Azumaya algebra of rank n2 over

a Henselian ring R with maximal ideal m. Then

1. The map ηn : 1+m −→ 1+m where ηn(x) = xn is an automorphism.

2. NrdA(1 + mA) = 1 + m.

3. 1 + mA is a n-divisible group.

Proof. 1. Take a ∈ 1 + m. Since R is Henselian and Char R̄ does not divide
n, the polynomial xn − a has a simple root in R̄[x], hence a simple root b
for xn −a. This shows ηn is epimorphism. But if 1+a′ ∈ (1+m)∩SL(1, A)
then (1 + a′)n = 1. Since R is local and Char R̄ ∤ n, it follows that a = 0
and this shows that ηn is also monomorphism.

2. This follows from the fact that NrdA/R(a) = NrdĀ/R̄(ā) and the first
part of this Proposition.

3. We shall show that for any a ∈ 1+mA, there is a b ∈ 1+mA such that
a = bn. Since A is finite over its centre R, any element of A is integral over
R. Take a ∈ 1 + mA. Consider the ring R[a] generated by a and R. R[a] is
a local ring. In general any commutative subalgebra S of A is a local ring.
For consider the R/m subalgebra S/(mA ∩ S) of A/mA. Since A/mA is a
division ring, mA∩S is a maximal ideal of S. But any element of mA∩S is
quasi-regular in A and therefore in S (see [2], Corollary to Theorem 9). It
follows that mA∩S is a unique maximal ideal of S. So the ring R[a] is local
and finitely generated as a R-module. Since any local ring which is integral
over a Henselian ring R is Henselian ([17] Corollary 43.13), it follows that
R[a] is Henselian. Now because a ∈ 1 + mA, thus a ∈ 1 + mR[a] where
mR[a] is a unique maximal ideal of R[a]. The first part of this Proposition
guarantee an element b ∈ 1 + mR[a], such that bn = a. From this it follows
that 1 + mA is a n-divisible group. ¤
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Consider the commutative diagram

1 // SK1(A) //

²²

K1(A)
NrdA

//

²²

K1(R) //

²²

SH0(A) //

²²

1

1 // SK1(Ā) // K1(Ā)
NrdĀ

// K1(R̄) // SH0(Ā) // 1

where the vertical maps are canonical epimorphism and SH0 are the cokernel
of the reduced norm maps.

Theorem 3.4. Let R be a Henselian ring and A a tame Azumaya algebra

over R. Then SH0(A) ≃ SH0(Ā).

Proof. Since the image of the reduced norm is Morita equivalent (see Exam-
ple 2.7), it is enought to prove the theorem for A a local Azumaya algebra.
The canonical homomorphism

R∗/NrdA(A∗) → R̄∗/NrdĀ(Ā∗)

is clearly an epimorphism. Let a ∈ R∗ such that ā ∈ NrdĀ(Ā∗). Thus there
is a b̄ in Ā∗ such that NrdA(b)a−1 ∈ 1 + m where m is the maximal ideal of
R. Now by Part one of the Proposition 3.3, there is an c ∈ 1 + m such that
NrdA(bc−1) = a. This completes the proof. ¤

Theorem 3.5. (Congruence Theorem). Let A be a tame local Azumaya

algebra over a Henselian ring R. Then (1 + mA) ∩ SL(1, A) ⊆ A′.

Proof. Let a ∈ (1 + mA) ∩ SL(1, A). By the third part of the Proposition
3.3 there is a b ∈ 1 + mA such that bn = a. Now NrdA/R(b)n = 1, so by the
first and second part of the Proposition, NrdA/R(b) = 1. Thus b ∈ SL(1, A).
But by Corollary 3.2, SK1(A) is n-torsion, thus a = bn ∈ A′. ¤

Now we are ready to state our main theorem.

Theorem 3.6. Let R be a Henselian ring and A a tame Azumaya algebra

over R. Then for any ideal I of R, SK1(A) ≃ SK1(A/IA). In particular

SK1(A) ≃ SK1(Ā).

Proof. We can assume that A is a local Azumaya algebra (see Example 2.7).

It is enough to prove the theorem for I = m. Since NrdA/R(a) = NrdĀ/R̄(ā),

the restriction of the reduction map to SL(1, A) gives the well define homo-
morphism SL(1, A) −→ SL(1, Ā), a 7→ ā. This map is epimorphism. For if

ā ∈ SL(1, Ā) then NrdA/R(a) = 1. Thus NrdA/R(a) ∈ 1 + m. From the sec-
ond part of the Proposition 3.3 follows that there is a b ∈ 1 + mA such that
NrdA/R(a) = NrdA/R(b). Therefore ab−1 7→ ā. Thus we have the following
isomorphism,

SL(1, A)/(1 + mA) ∩ SL(1, A) −→ SL(1, Ā).

Now since A is local, A′ = Ā′, and the Congruence Theorem implies that
SK1(A) ≃ SK1(Ā). ¤
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Example 3.7. Let D be a division algebra over its centre F such that
CharF does not divide the index of D. Consider the Azumaya algebra
D ⊗F F [[x]] over the Henselian ring F [[x]]. Then Theorem 3.6 guarantees
that SK1(D[[x]]) ≃ SK1(D).

It seems that in the above example the condition CharF ∤ i(D) is not
necessary. This suggest that there might be a weaker condition for being
tame as it is available for valued division algebras observed by Ershov in [4].

We can obtain one of the functorial properties of the reduced Whitehead
group, namely the stability of SK1 under the reduction for unramified divi-
sion algebra from the Theorem above.

Example 3.8. Let D be a tame unramified division algebra over a Henselian
field F . Jacob and Wadsworth observed that VD is an Azumaya algebra over
its centre VF (Example 2.4 [11]). Since D∗ = F ∗UD and VD ⊗VF

F ≃ D,
it can be seen that SK1(D) = SK1(VD). On the other hand our main
Theorem 3.6 states that SK1(VD) ≃ SK1(D̄). Comparing these, we conclude
the stability of SK1 under reduction, namely SK1(D) ≃ SK1(D̄) (compare
this with the original proof, Corollary 3.13 [18]).

Example 3.9. Let F be a Henselian and discrete valued field and VF its
valuation ring. It is known that any Azumaya algebra A over VF is of the
form Mr(VD) where VD is a valuation ring of D, a division algebra over
F . It follows that D is an unramified division algebra over F . Thus from
Example 2.7 and Example 3.8 it follows that if Char F̄ is prime to index of
D then SK1(A) ≃ SK1(VD) ≃ SK1(D̄) ≃ SK1(D).

Let A be a local Azumaya algebra over a local ring R. Consider Rh

the Henselisation ring of R and the extension φ : SK1(A) → SK1(A ⊗R

Rh). Since A ⊗R Rh is an Azumaya algebra over the Henselian ring Rh, by

Theorem 3.6, SK1(A ⊗R Rh) ∼= SK1(A ⊗R Rh) and we have the following

SK1(A)
φ−→ SK1(A ⊗R Rh) ∼= SK1(A ⊗R Rh) ∼= SK1(Ā).

The following example shows that φ is not injective in general and in
particular Theorem 3.6 does not hold if the base ring R is not Henselian. I
learned this example from David Saltman.

Example 3.10. Consider a field F with p2-th primitive root of unity ρ and
a, b, c, d ∈ F such that (a, b)(F,p) ⊗F (c, d)(F,p) is a cyclic division algebra,
where (a, b)(F,p) is a symbol algebra, i.e., an algebra generated by sym-
bols α and β subjected to the relations, αp = a, βp = b and βα = ρpαβ.
Consider the polynomial ring F [x1, x2, x3, x4] where xi are indeterminant,
the local ring R = F [x1, x2, x3, x4](x1−a,x2−b,x3−c,x4−d) and function field
L = F (x1, x2, x3, x4). Now the Azumaya algebra

A = (x1, x2)(R,p) ⊗R (x3, x4)(R,p)

is contained in the central simple algebra

D = (x1, x2)(L,p) ⊗L (x3, x4)(L,p).



REDUCED K-THEORY OF AZUMAYA ALGEBRAS 11

The algebra D is well understood (see [22], Example 3.6). In particular one

knows that NrdD(ρ) = ρp2

= 1 but ρ is not in derived subgroup D′. That
is ρ is a non trivial element of SK1(D). Since A ⊆ D, ρ 6∈ A′. Consider the
residue central simple algebra Ā which is (a, b)(F,p) ⊗F (c, d)(F,p). Since Ā

is cyclic, ρ̄ is in Ā′, and this shows that the map SK1(A) → SK1(Ā) and in
particular φ is not injective.

For i = 1 one has the following commutative diagram,

1 // A′ ∩ R∗ //

²²

K1(R)
i

//

²²

K1(A) //

²²

CK1(A) //

²²

1

1 // Ā′ ∩ R̄∗ // K1(R̄)
i

// K1(Ā) // CK1(Ā) // 1

where the vertical maps are canonical epimorphisms. In Section 4 we shall
compute the groups CKi for certain Azumaya algebras. Here we show that
following the same pattern as SK1, the group CK1(A) also coincides with
its residue division algebra. Note that CK1(A) = A∗/R∗A′. The conjecture
that CK1 of a division algebra D is not trivial if D is not a quaternion
algebra still remains open. This has connections with the study of normal
and maximal subgroups of D∗ (see [9] and references there).

Theorem 3.11. Let R be a Henselian ring and A an Azumaya algebra over

R of rank n2. If Char R̄ does not divide n, then CK1(A) ≃ CK1(Ā).

Proof. First assume that A is a local Azumaya algebra. Thus A is tame.
We show that 1 + mA ⊆ (1 + m)A′. Let a ∈ 1 + mA. By part 2 of
Proposition 3.3, NrdA/R(a) = b ∈ 1 + m. Since 1 + m is n-divisible, there

is a c ∈ 1 + m such that b = cn. It follows that NrdA/R(ac−1) = 1. Thus

ac−1 ∈ SL(1, A) ∩ (1 + mA). Now by the congruence Theorem ac−1 ∈ A′

and the claim follows. Now consider the following sequence

Ā∗ ≃−→ A∗/(1 + mA) −→ A∗/(1 + m)A′ −→ A∗/R∗A′.

But the kernel of the composition of this sequence is R̄∗Ā′. Thus CK1(A) ≃
CK1(Ā). Now assume A is a matrix algebra Ms(B) where B is a local
Azumaya algebra of rank t2. Since Char R̄ does not divide t and s, it is not
hard to see (repeating the same argument with (1 + m)s = 1 + m) that also
in this setting the CK1’s coincide. ¤

Example 3.12. Let A be an Azumaya algebra (−1,x−1
F [[x]] ) where F is a formally

real Pythagorean field (i.e. F has an ordering and the sum of two square

elements is a square). Then by Theorem 3.11, CK1(
−1,x−1
F [[x]] ) ≃ CK1(

−1,−1
F ).

It is not hard to see that the latter group is trivial ([9]). Thus A∗ = F [[x]]∗A′.

On the other direction, the question of when the reduced Whitehead group
SK1(A) coincides with its extension SK1(A ⊗R K) where K is the field of
fraction of R would follow if the Gersten complex of K-groups is exact as we
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will observe below. It is a conjecture that the Gersten complex is exact for
an Azumaya algebra over a regular semilocal ring ([13] and the references
there). Thus it is plausible to make the following conjecture:

Conjecture 3.13. Let A be an Azumaya algebra over a regular semilocal ring
R. Then SK1(A) ∼= SK1(A ⊗R K) where K is the field of fraction of R.

Using results of [13], one can observe that the above conjecture holds
in the case of semilocal ring of geometric type. Recall that such a ring is
obtained by localising a finite type algebra R over a field with respect to
finitely many primes q, such that the ring Rq is regular.

In [13], Panin and Suslin prove that the following Gersten complex is
exact where R is a semilocal ring of geometric type and A an Azumaya
algebra over R:

0 → Ki(A) → Ki(A⊗RK) →
⊕

ht(p)=1

Ki−1(Ap/pAp) →
⊕

ht(p)=2

Ki−2(Ap/pAp) → · · ·

For i = 1 one arrives at

0 → K1(A) → K1(A ⊗R K) →
⊕

ht(p)=1

K0(Ap/pAp) → 0.

Considering the same exact sequence for A = R, since the reduced norm
map is compatible with the rest of maps, one gets the following commutative
diagram

1 // K1(A) //

Nrd

²²

K1(A ⊗R K) //

Nrd

²²

⊕

ht(p)=1 K0(Ap/pAp) //

Nrd
²²

1

1 // K1(R) // K1(K) //
⊕

ht(p)=1 K0(Rp/pRp) // 1

Now the snake lemma immediately gives SK1(A) = SK1(A⊗R K) thanks
to the fact that K0’s in the above sequence are Z and K0(Ap/pAp) →
K0(Rp/pRp) is injective.

4. On lower K-groups of Azumaya algebras

In the light of Theorem 3.11, in this section we try to determine the
groups CKi (and ZKi) for Azumaya algebras over fields for i = 1 and 2. It
would be interesting, among other things, to find out when these groups are
trivial.

Recall that F is real Pythagorean if −1 6∈ F ∗2 and sum of any two square
elements is a square in F . It follows immediately that F is an ordered field.
F is called Euclidean if F ∗2 is an ordering of F . Let D = (−1,−1

F ) be an
ordinary quaternion division algebra over a field F . It is not hard to see that
CK1(D) is trivial if and only if F is a real Pythagorean field (see the proof
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of Theorem 4.1). The main result of [1] is to show that CK2(D) is trivial for
a Euclidean field F . Using results of Dennis and Rehmann we can observe
that in fact CK2(D) is trivial for any ordinary quaternion division algebra
over a real Pythagorean field (Theorem 4.1). This enables one to construct
interesting examples of CK2. Before we start, let us remind a generalisation
of Matsumoto’s theorem for division rings due to Rehmann [19].

Let D be a division ring and St1(D) a group generated by {u, v} where
u, v ∈ D∗ subjected to the relations

U1 {u, 1 − u} = 1 where 1 − u 6= 0
U2 {uv,w} = {uv, uw}{u,w}
U3 {u, vw}{v,wu}{w, uv} = 1

then there is an exact sequence

1→K2(D)→St1(D)→D′→1,

where {u, v} ∈ St1(D) maps to the commutator [u, v]. Furthermore it is
observed that ([20], Proposition 4.1) for a quaternion division algebra D,
K2(D) is generated by elements of the form {u, v} where u and v commutes.
We are ready to observe,

Theorem 4.1. Let D = (−1,−1
F ) be the ordinary quaternion division algebra

over a real Pythagorean field F . Then CK2(D) = 1 and we have the following

long exact sequence of K-theory,

K2(F )→K2(D)→Z2→K1(F )→K1(D)→1.

Proof. Consider the long exact sequence (1). Since K0(D) ∼= K0(F ) = Z
one immediately deduce F0 ≃ CK1(D). On the other hand, since SK1(D)
is trivial, CK1(D) ∼= Nrd(D∗)/F ∗2 and the reduced norm of elements of

(−1,−1
F ) are the sum of four squares, one can easily see that F is a real

Pythagorean if and only if CK1(D) is trivial. Thus F0 is trivial. We are
left to calculate the homotopy fiber F1. K2(D) is generated by {u,v}, such
that [u,v]=1. On the other hand if E is a quadratic extension of F , one
can easily see that K2(E) is generated by {α, a} where α ∈ F ∗, a ∈ E∗.
It follows that K2(D) is generated by {α, a} where α ∈ F ∗ and a ∈ D∗.
But CK1(D) = 1 thus D∗ = F ∗D′. It follows that K2(D) is generated
by {α, β} where α, β ∈ F ∗. Thus CK2(D) = 1. One can easily see that
ZK1(D) = D′ ∩ F ∗ = Z2. Thus from (2), it follows that F1 = Z2. This
completes the proof. ¤

Remark 4.2. It is well-known that F is a real Pythagorean field if and only
if D = (−1,−1

F ) is a division algebra and every maximal subfield of D is

F -isomorphic to F (
√
−1) (see [5]). Combining this fact with the similar

argument as in Theorem 4.1, one can see that for any maximal subfield E
of D, the map K2(E)→K2(D) is an epimorphism. (compare this with §6
[15]).

Example 4.3. We are ready to present an example of a F division algebra
D which contains a F subdivision algebra A, such that CKi(D) ∼= CKi(A)
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for i = 1, 2. For this we need the Fein-Schacher-Wadsworth example of a
division algebra of index 2p over a Pythagorean field F [6]. We briefly recall
the construction. Let p be an odd prime and K/F be a cyclic extension of
dimension p of real Pythagorean fields, and let σ be a generator of Gal(K/F ).
Then K((x))/F ((x)) is a cyclic extension where K((x)) and F ((x)) are the
Laurant power series fields of K and F , respectively. The algebra

D =
(−1,−1

F ((x))

)

⊗F ((x))

(

K((x))/F ((x)), σ, x
)

was shown to be a division algebra of index 2p. Since F is real Pythagorean,
so is F ((x)). Now by Theorem 2.6,

CKi(D) ∼= CKi

(−1,−1

F ((x))

)

× CKi(A)

where A =
(

K((x))/F ((x)), σ, x
)

. By Theorem 4.1, CKi(
−1,−1
F ((x)) ) = 1 for i =

1, 2. Thus CKi(D) ∼= CKi(A). This in particular shows that the exponent
of the group CKi(D) does not follow the same pattern as exponent of D.

In the following theorem we first show that if D is a (unique) quaternion
division algebra over a real closed field (a Euclidean field such that every
polynomial of odd degree has a zero, e.g. R), then CK2(D(x)) = 1; The
first deviation from the functor CK1.

Theorem 4.4. Let D be a quaternion division algebra over F a real closed

field. Then CK2(D(x)) = 1 and we have the following long exact sequence

of K-theory,

K2(F (x))→K2(D(x))→Z2→K1(F (x))→K1(D(x))→⊕∞ Z2→1.

Proof. Consider the following commutative diagram which is obtained from
the localisation exact sequence of algebraic K-theory (see [24], Lemma 16.6),

1 // K2(F ) //

²²

K2(F (x)) //

²²

∏

p∈F [x] K1(
F [x]

p ) //

²²

1

1 // K2(D) // K2(D(x)) //
∏

p∈F [x] K1(D ⊗F
F [x]

p ) // 1

where p runs over the irreducible monic polynomial of F [x]. The snake
lemma immediately gives

CK2(D)−→CK2(D(x))−→
∏

p∈F [x]

CK1(D ⊗F
F [x]

p
)−→1.

Now, since F is real closed, in particular Euclidean, Theorem 4.1 implies
that CK2(D) = 1. Considering the fact that the irreducible polynomials
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of F [x] have either degree one or two, and the quadratic extension of F is
algebraically closed, a simple calculation shows that

∏

p∈F [x]

CK1(D ⊗F
F [x]

p
) ∼= CK1(D) ⊕ CK1(M2(F̄ )) = 1.

Thus CK2(D(x)) = 1 and F1 = D(x)′ ∩ F (x). One can easily see that
D(x)′ ∩ F (x) ∼= Z2. It remains to compute F0 = CK1(D(x)). One way to
compute this group is to consider again the commutative diagram which is
obtained from the localisation exact sequence (see [8] Theorem 2.10),

1 // K1(F ) //

²²

K1(F (x)) //

²²

∏

p∈F [x] Z //

²²

1

1 // K1(D) // K1(D(x)) //
∏

p∈F [x]
np

n Z // 1

where p runs over the irreducible monic polynomials of F [x] and np is the
index of D⊗F F [x]/p. Considering the fact that the irreducible polynomials
of F [x] have either degree one or two, the snake lemma immediately implies
that CK1(D(x)) = ⊕∞Z2. This completes the proof. ¤
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