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Abstract. A field E is said to be NKNT if for any noncommutative division algebra D
finite dimensional over E ⊆ Z(D) = F with index ind(D), Nrd(D∗)/F ∗ind(D) is nontrivial.
It is proved that if E is a field finitely generated but not algebraic over some subfield then
E is NKNT. As a consequence, if F = Z(D) is finitely generated over its prime subfield or
over an algebraically closed field, then CK1(D) = Coker(K1F → K1D) is nontrivial.

Let D be a division algebra over its center F of index n. Denote by D∗ and F ∗ the
multiplicative group of D and F respectively. Let NrdD : D∗ → F ∗ be the reduced norm
map, D(1) the kernel of this map and D′ the commutator subgroup of D∗. The inclusion map
F ↪→ D induces a homomorphism K1(F ) = F ∗ → K1(D) = D∗/D′. Consider the group

CK1(D) = Coker(K1F → K1D) ∼= D∗/F ∗D′ .

Since x−nNrd(x) ∈ D(1) and the reduced Whitehead group SK1(D) = D(1)/D′ is n-torsion
(by [3], p. 157, Lemma 2), it follows that CK1(D) is an abelian group of bounded exponent
n2 (In fact one can show that the bound is n, see the proof of Lemma 4, p. 154 in [3]
or pp. 579–580 in [5]). Thus, by the Prüfer-Baer theorem CK1(D) ∼=

⊕
Zki where each

ki | n (see [11], p. 105). Therefore if CK1(D) is nontrivial then D∗ has a (normal) maximal
subgroup. The question of whether D∗ has a maximal subgroup seems to remain open and
thus by the above observation is limited to the case when CK1(D) is trivial. In [4], Th. 2.12
it was proved that if D is a tensor product of cyclic algebras then CK1(D) is trivial if and
only if D is a quaternion division algebra (−1,−1

F
) where F is a real Pythagorean field (see

also [8]). It has been conjectured in [6] that if CK1(D) is trivial then D is a quaternion
division algebra.

The group CK1 has been computed in [5] for certain division algebras, and its connection
with SK1 was also studied. But, CK1(D) is often difficult to work with. We will focus here on
a related invariant, NK1(D), which is sometimes more tractable, and can yield information
about CK1(D). Define

NK1(D) = D∗
/
F ∗D(1) ∼= Nrd(D∗)

/
F ∗ind(D)

(with the isomorphism given by the reduced norm map). Observe that NK1(D) is a homo-
morphic image of CK1(D) and that whenever SK1(D) = 1, we have CK1(D) = NK1(D).
(Recall that SK1(D) = 1 whenever ind(D) is square-free, or the center F of D is a local or a

Date: 31 jan 06.
1



2 ROOZBEH HAZRAT AND ADRIAN WADSWORTH

global field, by [3], p. 164, Cor. 4, Th. 3, p. 165, (17), p. 166, (18).) For example, if Q = ( a,b
F

)
is a quaternion division algebra with char(F ) 6= 2, we have

CK1(Q) = NK1(Q) ∼=
(
{r2 − as2 − bt2 + abu2 | r, s, t, u ∈ F}\{0}

)/
F ∗2.

From this formula, it is immediate that CK1(Q) is trivial iff F is a real Pythagorean field
and Q ∼= (−1,−1

F
).

Observe that the condition that NK1(D) be trivial for a noncommutative division ring D
is an extremely strong one. Indeed, if ind(D) = d then NK1(D) = 1 iff NrdD(D∗) = F ∗d =
NrdD(F ∗), which holds iff for every maximal subfield L of F , NL/F (L∗) = F ∗d = NL/F (F ∗).
It was shown in [4] that if C is a noncommutative cyclic algebra with NK1(C) = 1, then
C ∼= (−1,−1

F
) with F a Pythagorean field. We will show here that NK1(D) is nontrivial for a

great many other noncommutative division algebras D. Of course, whenever NK1(D) 6= 1,
we also have CK1(D) 6= 1.

Definition. A field E is said to be NKNT (for NK1 nontrivial) if for any noncommutative
division algebra D finite dimensional over E (and not necessarily central over E), NK1(D)
is nontrivial.

It is clear from the definition that if a field E is NKNT then so is every finite degree field
extension of E. Here are some examples of NKNT fields: Clearly a finite field is NKNT;
so is any algebraically closed field; so also is any field of transcendence degree 1 over an
algebraically closed field, by Tsen’s Theorem. Since every division algebra over a global field
is a cyclic algebra, the result quoted above shows that every global field is NKNT. Likewise,
every nonreal local field is NKNT. However the field of real numbers R is not NKNT, since R
is a real Pythagorean and thus CK1(HR) = 1, but the rational function field R(t) is NKNT.
This is a consequence of our main theorem below. But we can see it directly as follows: If
L is a finite degree extension of R(t) and D is an L-central noncommutative division algebra,
then by Tsen’s Theorem, D is split by L(

√
−1), so D is a quaternion algebra; but NK1(D)

is then nontrivial because L is not Pythagorean.

In this note our main result is:

Theorem. Let F be a field which is finitely generated but not algebraic over some subfield F0.
Then, F is NKNT.

Let D be a division algebra with center F . In showing that NK1(D) is nontrivial, Lemma 1
below allows us to reduce to the case where ind(D) is a prime power. Our arguments then
divide into two cases depending on whether ind(D) is a power of char(F ). Lemma 2 and its
Corollary handle the first case:

Lemma 1. Let D1, . . . , Dk be division algebras with center F such that gcd(ind(Di), ind(Dj)) = 1
whenever i 6= j.Then,

NK1(D1 ⊗F D2 ⊗F . . .⊗F Dk) ∼= NK1(D1)× . . .× NK1(Dk) .
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Proof. It suffices by induction to prove the result for k = 2. This can be done the same way
as the corresponding result for CK1 was proved in [5], Th. 2.8. ¤

Lemma 2. Let D be a noncommutative division algebra similar to a cyclic algebra A. In
each of the following cases NK1(D) is nontrivial:

(1) F contains a square root of −1;
(2) The characteristic of F is 2;
(3) The degree of A is odd.

Proof. Since the primary components of D are similar to tensor powers of A which are similar
to cyclic algebras, it suffices by Lemma 1 to consider the case when ind(D) is a power of a
prime. Thus, assume ind(D) = pc, where p is a prime number and c ≥ 1 and D is similar
to a cyclic algebra A = (E/F, σ, a). Choose A of minimal degree. Then, deg(A) = pe and
a /∈ F ∗p; for, if a = bp, then A is Brauer equivalent to (E0/F, σ, b), where [E : E0] = p,
contradicting the minimality of deg(A).

Let d = pe = deg(A). Let α be the standard generator of A with αd = a. Since the
powers of α up to the d-th are part of a base of A over F , they are F -linearly independent.
Therefore, the minimal polynomial of α over F is xd − a. If M is any splitting field of A,
then for α⊗1 ∈ A⊗FM , the minimal polynomial of α⊗1 over M is again xd − a. Since
the characteristic polynomial of α⊗1 has degree d, this polynomial is also xd − a. Hence,
NrdA(α) = det(α⊗1) = (−1)d−1a. So, if p is odd, or char(F ) = 2, or F contains a square
root of −1, then NrdA(α) /∈ F ∗p. But thanks to the Dieudonné determinant, NrdA(A∗) =
NrdD(D∗). Thus NrdA(α) ∈ NrdD(D∗)\F ∗pe, so NK1(D) is nontrivial. ¤

Recall that a p-algebra is a central simple algebra of degree a power of the prime p over a
field of characteristic p. Albert’s main theorem in the theory of p-algebras states that every
p-algebra is similar to a cyclic p-algebra (see [1], p. 109, Th. 31). Combining this with the
Lemma above, we obtain:

Corollary 3. Let D be a noncommutative p-division algebra. Then NK1(D) is nontrivial.

Remark. Let G(D) = D∗
/

Nrd(D∗)D′, which is a bigger group than CK1(D) in general. It
is much easier to see that G(D) 6= 1 for every noncommutative p-division algebra D. Indeed,
if G(D) = 1 then Nrd(D∗) = Nrd(D)∗p

n
where ind(D) = pn. So, for F = Z(D),

F ∗p
n ⊆ Nrd(D∗) = Nrd(D)∗p

n

= Nrd(D)∗p
2n ⊆ F ∗p

2n

.

Hence, F ∗p
n

= F ∗p
2n

. Since char(F ) = p, this implies F ∗ = F ∗p, i.e., F has no proper purely
inseparable extensions. But one knows by [1], p. 104, Th. 21, that any p-algebra has a purely
inseparable splitting field; hence, D = F , a contradiction. (Compare this argument with
[8], Th. 2).

In order to prove the main Theorem, we need two propositions.
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Proposition 4. Let F ⊆ L be fields with [L :F ] = d <∞ such that NL/F (L∗) = F ∗d. If V is

a discrete valuation ring of F with residue field V , and if the integral closure of V in L is a
finite V -module, then V has a unique extension to a DVR W of L, and [W :V ] = [L :F ].

Proof. Let v be the normalized discrete valuation on F corresponding to the valuation ring V .
“Normalized” means that the value group v(F ∗) = Z. Let v1, . . . , vs be all the (inequivalent)
extensions of v to L. Since v is discrete and the integral closure of V in L is a finite V -module,
we have

∑s
i=1 eifi = [L :F ], where ei is the ramification index of vi/v and fi is the residue

degree of vi/v ([2], VI, §8.3, Cor. 3). Since vi extends v, the value group of vi is 1
ei
Z. For

any x ∈ L, we have

(1) v(NL/F (x)) =
s∑
i=1

eifivi(x),

by, [2], VI, §8.5, Cor. 2. Now by the Approximation Theorem ([2], VI, §7.2, Cor. 1) one
can choose x ∈ L such that v1(x) = 1/e1 and vi(x) = 0 for all i > 1. Thus by (1),
v(NL/F (x)) = f1. But since NL/F (x) ∈ F ∗d, we must have d | v(NL/F (x)) = f1 ≤ d. This,
combined with

∑s
i=1 eifi = d with all ei ≥ 1 and fi ≥ 1, forces f1 = d = [L :F ] and s = 1,

as desired. ¤

Using Proposition 4, we obtain the following Theorem which provides a further class of
fields with the NKNT property which is not covered by the main Theorem 7. For example,
it shows that if F is NKNT, then so is the Laurent power series field F ((x)).

Theorem 5. Let F be a discrete valued field with residue field F such that char(F ) =
char(F ). If F is NKNT, then so is F .

Proof. Suppose there is a noncommutative division algebra D finite dimensional over F with
center K such that NK1(D) = 1. We can assume K = F . Since by Lemma 1, NK1 respects
the primary decomposition of D, it is enough to consider the case when ind(D) = pk, where
p is prime and k ≥ 1. If char(F ) = p, then D is a p-algebra and by Corollary 3, NK1(D) is
nontrivial. Thus we may assume that char(F ) 6= p. Hence, every subfield of D containing F
is separable over F .

Let d = pk = ind(D). Since NK1(D) = 1, we have NL/F (L∗) = F ∗d for every maximal
subfield L of D. Since L is separable over F , the integral closure in L of the discrete
valuation ring VF of v on F is a finitely generated VF -module. Thus by Proposition 4,
v extends uniquely to any maximal subfield of D, with no ramification. So, v extends
uniquely to any subfield of D. By the theorem of Ershov-Wadsworth (see [13], Th. 2.1 or
[12]), it follows that v extends to a valuation on D, which is denoted again by v. Furthermore
D is not ramified over F , i.e. the value group ΓD of D coincides with the value group ΓF
of F . Let D and F be the residue division algebra and the residue field of the valuations
on D and F . Since char(F ) = char(F ) does not divide ind(D), the Ostrowski theorem
for valued division algebras, [9] Th. 3, yields [D :F ] = [D :F ]

∣∣ΓD : ΓF
∣∣ = [D :F ]. Note

also that [Z(D) :F ]
∣∣ [D :F ]; hence, Z(D) is separable over F . Thus, the surjectivity of the
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fundamental homomorphism ΓD/ΓF → Gal(Z(D)/F ), together with the fact that Z(D) is
normal and separable over F and ΓD/ΓF = 1 force that Z(D) = F (see [13], Prop. 2.5 or
[7], Prop. 1.7). Hence, ind(D) = ind(D).

Since NK1(D) 6= 1 and ind(D) = ind(D) = d, there is a ∈ D∗ with NrdD(a) /∈ F d
. Let

a be any inverse image of a in the valuation ring VD of D, and let L be any maximal subfield
of D containing a. Let VL be the valuation ring of the restriction of v to L, and let L be the
residue field of VL. Because VL is the unique extension of VF to L, VL is the integral closure
of VF in L; hence, it is a finitely-generated VF -module. Since [D :F ] = [D :F ], we must have
[L :F ] = [L :F ], showing that L is a maximal subfield of D. If b1, . . . , bd are any F -vector
space base of L, then any inverse images b1, . . . , bd of the bi in the valuation ring VL form a
base of VL as a free VF -module. (The bi generate VL over VF by Nakayama’s Lemma, and
they are VF -independent because VF is a valuation ring and the bi are F -independent.) By
computing the norm NL/F (a) as the determinant of the F -linear map multiplication by a
using the base b1, . . . , bd, we obtain NL/F (a) ∈ VF and

NL/F (a) = NL/F (a) in F .

Because we have assumed NK1(D) = 1, we have

NL/F (a) = NrdD(a) ∈ F ∗d ∩ VF = V d
F .

Hence,

NrdD(a) = NL/F (a) = NL/F (a) ∈ V d
F = F

d
,

contradicting the choice of a. So, NK1(D) 6= 1, contradicting the choice of D. Thus, F is
NKNT. ¤
Proposition 6. Let F ⊆ F (t) ⊆ L be fields with t transcendental over F and [L :F (t)] <∞.
If L = F (t)(α) for some α, then there is a discrete valuation ring V of F (t) with F ⊆ V such
that V has an extension to a DVR W of L such that W = V . (In fact, there are infinitely
many such V .)

Proof. Let R = F [t]. We can assume that α is integral over R. Let f = xn+cn−1x
n−1+. . .+c0

be the minimal polynomial of α over F (t). The integrality of α over R (with R integrally
closed) assures that f ∈ R[x]. Let

Pf = {π ∈ F [t] | π is irreducible and monic in F [t] and π|f(r) for some r ∈ R}.
We will show that |Pf | =∞. Assume first that c0 = 1, and write f = xh(x)+1 with h ∈ R[x]
and deg(h) = n−1. Suppose |Pf | = {π1, . . . , πk}. Let s = tπ1 . . . πk. Since h has only finitely
many roots in R, there is a natural number ` with h(s`) 6= 0. Then f(s`) = s`h(s`) + 1 has
positive degree in t, so is not a unit of R. If p is an irreducible monic factor of f(s`), then
p ∈ Pf , but p - s, so p 6∈ {π1, . . . , πk}, a contradiction. Hence Pf cannot be finite if c0 = 1.

Now assume c0 6= 1. Let f(c0x) = c0g(x). So g ∈ R[x] with deg(g) = deg(f) ≥ 1, and
g has constant term 1. By the previous case, |Pg| = ∞. But sincef(c0r) = c0g(r), we have
Pg ⊆ Pf . So, |Pf | =∞, as claimed.
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Now, take any π ∈ Pf , and let V be the DVR R(π) which is the localization of R at its

prime ideal (π). Let M = πV , which is the maximal ideal of V ; so V = V/M . Assume first
that the ring V [α] is integrally closed.

Since π|f(r) for some r ∈ R, the image f of f in V [x] has a root r in V . Note that
fF (t)[x] ∩ V [x] = fV [x], by the division algorithm as f is monic in V [x]. Hence, V [α] ∼=
V [x]/fV [x] and

(2) V [α]
/
MV [α] ∼= V [x]

/
(f,M) ∼= V [x]

/
(f).

Because f(r) = 0, x− r is an irreducible factor of f in V [x]. Let N be the maximal ideal of
V [α] containing MV [α] corresponding to (x − r)/(f) in V [x]/(f) in the isomorphism given
by (2). Let W be the localization V [α]N . Then W is a DVR, as V [α] is the integral closure
of V in L. Furthermore, W ∩ F (t) = V and W ∼= V [α]/N ∼= V [x]/(x − r) ∼= V . Thus, the
desired W exists for V = R(π) whenever π ∈ Pf and R(π)[α] is integrally closed.

To complete the proof we show that the needed integral closure property of R(π)[α] occurs
for all but finitely many π ∈ Pf . Let T be the integral closure of R in L; so T is a
finitely generated R-module ([2], V, §3.2, Th. 2). We have R[α] ⊆ T , and T and R[α] each
have quotient field L. So, T/R[α] is a finitely generated torsion R-module; hence it has
nonzero annihilator in R. Therefore, there is b ∈ R with b 6= 0 and bT ⊆ R[α]. Hence,
R[α][1/b] = T [1/b], which is integrally closed. For any monic irreducible π ∈ R, if π - b then
the DVR R(π) is a localization of R[1/b]. Hence, R(π)[α] is a localization of R[1/b][α], so
R(π)[α] is integrally closed. There are only finitely many monic irreducibles of R dividing b.
For all other π in the infinite set Pf , we have R(π)(α) is integrally closed. ¤
Remark. For the result of Prop. 6, it is not sufficient to assume that [L :F (t)] < ∞. For
example, suppose char(F ) = p 6= 0 and [F 1/p :F ] ≥ p2. Take any field K with F ⊆ K ⊆ F 1/p

and p2 ≤ [K :F ] <∞, and let L = K(t). Take any discrete valuation ring V of F (t) and any
extension of V to a DVR W of L. Identify V and K with their canonical images in W . Since
V = F (β) for some β, the Theorem of the Primitive Element shows that V ∩K = F (γ), for
some γ ∈ K. Since γp ∈ F , we have [F (γ) :F ] ≤ p < [K :F ], so V doesn’t contain all of K.
Because K ⊆ W , this shows that W 6= V .

Theorem 7. Let F be a field which is finitely generated but not algebraic over some sub-
field F0. Then, F is NKNT.

Proof. We need to show that for each finite degree extension field K of F and each noncom-
mutative finite dimensional division algebra D with center K, we have NK1(D) is nontrivial.
As in the proof of Theorem 5, we can assume that K = F and that F is a finite degree
extension of F0(t), with t transcendental over F0. Since NK1 respects the primary decom-
position of D, by Corollary 3 it suffices to consider the case where ind(D) = pk, where p is
a prime number with p 6= char(F0).

Let L be any maximal subfield of D and let S be the separable closure of F0(t) in L.
Then, S = F0(t)(α) for some α. By Proposition 6, applied to the field extension F0(t) ⊆ S,
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there is a DVR V of F0(t) (with F0 ⊆ V ) which has an extension to a DVR W of S with
V = W . Because L is purely inseparable over S, W has a unique extension to a DVR Y
of L, and Y is purely inseparable over W . Let Z = Y ∩ F , which is a DVR of F . Since
W = V ⊆ Z ⊆ Y , we have Y is purely inseparable over Z. If char(F0) = 0, it follows that
Y = Z; hence [Y : Z] = 1 6= pk = [L : F ]. If char(F0) = q 6= 0, then [Y : Z] = q` for some
` ≥ 0. Since q 6= p by hypothesis, we again have [Y : Z] 6= [L : F ].

Let VF (resp. VL) be the integral closure of V in F (resp. L), and let ZL be the integral
closure of Z in L. Because the integral closure of F0[t] in F (resp. in L) is a finitely generated
F0[t]-module, by [2], V, §3.2, Th. 2, and V is a localization of F0[t] (or F0[t−1]), VF and VL
are finitely generated V -modules, so VL is a finitely generated VF -module. Then, as Z is a
localization of VF , ZL is a finitely generated Z-module. Since the conclusion of Proposition 4

fails for Z ⊆ Y in the field extension F ⊆ L, we have F ∗p
k $ NL/K(L∗) ⊆ Nrd(D∗), showing

that NK1(D) is nontrivial. ¤

Corollary 8. If D is a noncommutative division algebra whose center is finitely gener-
ated over its prime field or over an algebraically closed field, then NK1(D) 6= 1. Hence,
CK1(D) 6= 1 and D∗ contains a maximal proper normal subgroup.

Proof. This is immediate from the Theorem and the comments in the introduction. ¤
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