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Abstract

We calculate the Witt groups of the spheres up to 2-primary torsion.

1 Introduction

Let A be a Gorenstein ring of finite Krull dimension with 1
2 ∈ A. Denote the

coordinate ring of the n-sphere over A by

Sn
A := A[X1, . . . , Xn+1]/(X

2
1 + · · · +X2

n+1 − 1),

and let
PSn

A := ProjA[X0, . . . , Xn+1]/(X
2
0 + · · · +X2

n −X2
n+1)

be the corresponding projective scheme.
We are interested in determining the (total) coherent Witt groups of these

varieties, in terms of the Witt groups of the base A. As a first step we obtain
the following two theorems, but we hope to determine soon also the 2-primary
torsion. We abbreviate:

W
i
(X) := W̃i(X) ⊗ Z[1/2], W

tot
(X) :=

⊕

0≤i≤3

W
i
(X).

Theorem 1.1. We have isomorphisms

W
i
(Sn

A) ≃ W
i
(PSn

A) ≃ W
i
(A) ⊕ W

i−n
(A)

for all i.

If the base A is regular, then Sn
A is also regular and its coherent and derived

(locally free) Witt groups coincide. The tensor product induces a natural
structure of Z/4-graded rings on Wtot(A) and Wtot(Sn) (denote it by ⋆). If
q : SpecSn → SpecA denotes the canonical projection, then q∗ makes Wtot(Sn)

into a Z/4-graded Wtot(A)-algebra. All this remains true of course for W
tot

.
Our geometric proof of Theorem 1.1 lets us easily find this multiplicative structure:

Theorem 1.2. Let moreover A be regular. Then

W
tot

(Sn
A) ≃ W

tot
(A)[α]/(α2),

with α sitting in degree n.
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Remarks. (a) Theorem 1.1 follows also from the general results of G.W.Brumfiel
in [Br1] and [Br2], even in greater generality (i.e., for any commutative ring
A with 1

2 ∈ A). In loc. cit. Brumfiel sketches the developement of a theory

KO−n(SperA) inspired by the usual (real) topological K-theory of spaces, and
which depends only on the real spectrum SperA (equipped with its sheaf of
abstract semi-algebraic functions). One of the main results of Brumfiel is that
there are natural isomorphisms

WK
n (A) ⊗ Z[1/2] ≃ KO−n(SperA) ⊗ Z[1/2] (n ≥ 0),

where WK
n are Karoubi’s Witt groups. By identifying W

n
(A) ≃ WK

n (A)⊗Z[ 12 ]
on the left hand side ([HS, LemmaA.3]), and by reducing Brumfiel’s theory
to the usual K-theory of some space on the right hand side, one can use
topological results to calculate Balmer-Witt groups tensored with Z[ 12 ]. We can
avoid all this, our approach here being much simpler and completely geometric
in nature. Our main tools will be the (12-periodic) localization long exact
sequence, homotopy invariance and dévissage (recalled in Theorem A.13).

(b) By Proposition 2.1 below, we see that our calculation produces non-
trivial groups only when the base ring A has characteristic 0 (i.e., when Z ⊂ A).

(c) In an Appendix at the end of the paper it is shown how to construct
a canonical injective resolution of OX , for any Gorenstein scheme X . As a
consequence, one can define coherent Witt groups which depend only on the
scheme X , independently of any choice (Definition A.4). Similarly, one can
define canonical transfers (push-forwards) for finite morphisms (Theorem A.10) .
Moreover if X is regular, we will have canonical isomorphisms Wi(X) ≃ W̃i(X)
between derived and coherent Witt groups (Theorem A.8).

Acknowledgements. The authors sincerely thank Paul Balmer, Stefan Gille
and Burt Totaro for careful reading and useful comments.

2 Proof of Theorem 1.1

The case n = 0 is trivial. We have isomorphisms

SpecS0 ≃ ProjA[X0, X1]/(X
2
0 −X2

1 ) ≃ Spec(A×A)

and thus W̃i(S0) ≃ W̃i(PS0) ≃ W̃i(A) ⊕ W̃i(A).
For the rest of the proof we can assume n ≥ 1. The following Proposition is

the main component of our calculation.

Proposition 2.1. Let X be a finite dimensional Gorenstein scheme with 1
2 ∈

OX(X), such that none of its residue fields admits a total ordering (i.e., it has
no ‘real points’). Let L be a line bundle over X. Then all the coherent Witt
groups W̃i(X,L) of X with values in L are 2-primary torsion groups.

Proof. For any field K, the classical Pfister local-global principle implies that
W(K) is 2-primary torsion iff K is nonreal (i.e., iff K doesn’t admit a total
ordering, iff −1 is a sum of squares in K). Therefore, with the above hypothesis
the first page of the Gersten-Witt spectral sequence for (X,L) (see Balmer-
Walter [BW, Thm. 7.2], Gille [Gi1, Thm. 3.14]) contains only 2-primary torsion
groups, because the latter are sums of Witt groups W(k(x)) of the residue fields
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of X . But the spectral sequence converges to the groups W̃i(X,L) because X
is finite dimensional.

Corollary 2.2. Let X be a finite dimensional Gorenstein scheme, and let XQ :=
X×SpecZSpec Q. Then the canonical projection XQ → X induces isomorphisms

W
i
(X) ≃ W

i
(XQ) for all i.

Proof. Let first X = SpecR be affine. Notice that a ring R satisfies the non-
reality hypothesis of Proposition 2.1 if −1 is a sum of squares in R. Thus we can
assume that the characteristic of R is 0, the other case being trivial. Consider
for m ≥ 2 the localization long exact sequence

· · · −→ W̃i
(m)(A) −→ W̃i(A) −→ W̃(A[1/m]) −→ · · · .

By dévissage and Proposition 2.1 we have W
i

(m)(A) ≃ W
i
(A/m) ≃ 0, so we

obtain W
i
(A) ≃ W

i
(A[1/m]). Now A ⊗ Q ≃ colimmA[1/m] and Witt groups

commute with filtering colimits ([Gi2, Thm. 1.6]), therefore W
i
(A) ≃ W

i
(A⊗Q).

The global case is obtained with Mayer-Vietoris, or can be done directly with
the same reasoning as above.

Notation. In the following, we will write

Cn = Cn
A :=

A[X1, . . . , Xn]

(1 +X2
1 + · · · +X2

n)
.

An immediate corollary of Proposition 2.1 is that W
i
(Cn) ≃ 0 for all i.

Now, the intersection of the projective sphere PSn = V (ΣkX
2
k − X2

n+1) ⊂
Pn+1 with the affine open D(Xn+1) = {Xn+1 6= 0} ⊂ Pn+1 is isomorphic to the
affine sphere SpecSn. We have

Lemma 2.3. The open immersion SpecSn ≃ D(Xn+1) →֒ PSn induces isomorphisms

W
i
(PSn) ≃ W

i
(Sn).

Proof. We have a localization sequence

· · · // W̃i
(Xn+1)

(PSn) // W̃i(PSn) // W̃i(Sn) // · · · . (1)

Denote by PCn the closed projective subscheme V (Xn+1) ⊂ PSn, i.e. PCn =
V (X2

0 + · · · +X2
n) ⊂ Pn. By dévissage we have isomorphisms

W̃i
(Xn+1)(PS

n) ≃ W̃i−1(PCn,Ln), (2)

where Ln is some line bundle over PCn (n ≥ 1). On the affine opens D(Xi) =
{Xi 6= 0} (i = 0, . . . , n), the scheme PCn is isomorphic to Cn; thus PCn clearly

satisfies the hypothesis of Proposition 2.1 and therefore W
i
(PCn,Ln) = 0. Then

the exactness of (1) implies the claim.

Lemma 2.4. Write f := 1 + X2
1 + · · · + X2

n ∈ A[X1, . . . , Xn], and denote by
An

f the corresponding open in the affine plane. Then we have isomorphisms
Sn

1−Xn+1
≃ An

f .

3



Proof. The isomorphism is given by the stereographic projection. Indeed, writing
U := Sn

1−Xn+1
and V := A[Y1, . . . , Yn]1+Y 2

1
+···+Y 2

n
for the localized rings, we

define a morphism V → U by

Yℓ 7→
Xℓ

1 −Xn+1
(ℓ = 1, . . . , n).

Its inverse is given by

Xn+1 7→
ΣkY

2
k − 1

ΣkY 2
k + 1

, Xℓ 7→
2Yℓ

ΣkY 2
k + 1

(ℓ = 1, . . . , n).

(Recall that 2 is invertible in A.)

Lemma 2.5. The projection p : An
f → SpecA induces an isomorphism p∗ :

W
i
(A) ≃ W

i
(An

f ).

Proof. We use the localization long exact sequence:

. . . // W
i

(f)(A
n) // W

i
(An) // W

i
(An

f ) // . . . .

Since f = 1 +X2
1 + · · · +X2

n is a regular element, by dévissage we have

W
i

(f)(A
n) ≃ W

i
(Cn).

Because of Proposition 2.1, the latter is zero. Now we use homotopy invariance
of coherent Witt groups to conclude.

Lemma 2.6. There are split short exact sequences

0 // W
i

1−Xn+1
(Sn) // W

i
(Sn) // W

i
(A) // 0.

Proof. Consider the long exact sequence associated to the localization Sn →
Sn

1−Xn+1
:

. . . // W
i

(1−Xn+1)(S
n) // W

i
(Sn) // W

i
(Sn

1−Xn+1
) // W

i+1

(1−Xn+1)(S
n) // . . . ,

and consider the projection q : SpecSn → SpecA. We then have a commutative
diagram

SpecSn

q
''N

N

N

N

N

N

N

N

N

N

N

N

SpecSn
1−Xn+1

ioo

p

��
SpecA

where i is the inclusion. Using Lemma 2.5 and the fact that SpecSn
1−Xn+1

≃ An
f

(Lemma 2.4), we obtain a commutative diagram

4



W
i
(Sn)

i∗ // W
i
(An

f )

W
i
(A)

p∗ ≃

OO

q∗

ddI
I

I

I

I

I

I

I

I

The above long exact sequence yields finally the split sequences

0 // W
i

1−Xn+1
(Sn) // W

i
(Sn) // W

i
(A) // 0.

Corollary 2.7. For any i, we have W
i
(Sn) ≃ W

i
(A) ⊕ W

i

1−Xn+1
(Sn).

Next we compute W
i

(1−Xn+1)(S
n). In order to do this, we introduce some

more notation:

Notation.

Bn = Bn
A :=

A[X1, . . . , Xn]

(X2
1 + · · · +X2

n)
.

Thus we have isomorphisms Sn/(1 −Xn+1) ≃ Bn. For n ≥ 1, the element
1 −Xn+1 ∈ Sn is regular and we can use dévissage to obtain:

W̃i
(1−Xn+1)(S

n) ≃ W̃i−1(Bn). (3)

Notice en passant that the rings Bn are singular. This makes the use of coherent
(rather that derived) Witt groups necessary for our calculation, even when A is
regular.

Lemma 2.8. For n ≥ 1 and any i, we have W
i
(Bn) ≃ W

i−n+1
(A).

Proof. We will exploit the recursive property Bn/(Xn) ≃ Bn−1. Consider the
long exact sequence

· · · // W̃i
(Xn)(B

n) // W̃i(Bn) // W̃n(Bn
Xn

) // · · ·

associated to the localization Bn → Bn
Xn

. Notice that Bn
Xn

≃ Cn−1[Xn, X
−1
n ].

It is a result of Gille that W̃i(R[T, T−1]) ≃ W̃i(R) ⊕ W̃i(R) for R a finite
dimensional Gorenstein ring (see [Gi1, Thm. 5.6]). Thus we have

W
i
(Bn

Xn
) ≃ W

i
(Cn−1) ⊕ W

i
(Cn−1) = 0,

where the vanishing due to Proposition 2.1. For n ≥ 2, the element Xn ∈ Bn is
regular, so dévissage yields

W̃i
(Xn)(B

n) ≃ W̃i−1(Bn/Xn) = W̃i−1(Bn−1).

Altogether, we obtain the formula W
i
(Bn) ≃ W

i−1
(Bn−1) (n ≥ 2). We finish

the proof by remarking that W̃j(B1) ≃ W̃j(A) for all j. (For example, one
can use the generalization of affine dévissage to zero dimensional ideals, see
[Gi2, Thm. 3.5]: W̃j(A[X ]/X2) = W̃j

(X)(A[X ]/X2) ≃ W̃j((A[X ]/X2)/X) =

W̃j(A).)
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Finally, we have W
i
(Sn) ≃ W

i
(A) ⊕ W

i

1−Xn+1
(Sn) by Corollary 2.7 and

W
i

1−Xn+1
(Sn) ≃ W

i−n
(A) by (3) and the last Lemma. Together with Lemma 2.3,

this ends to proof of Theorem 1.1.

3 Proof of Theorem 1.2

From now on, the base A and thus also Sn
A will be assumed to be regular rings.

We will still denote by q : SpecSn → SpecA the structure morphism.
For any ring R, we will denote by eR ∈ W0(R) the multiplicative unit of

Wtot(R); this is just the diagonal form < 1 >= [id : R → R] (we make the usual
identification R = R∨). In this proof we will also abbreviate

P := Sn/(X1, . . . , Xn)

n := (Xn+1 − 1) s := (Xn+1 + 1),

so that P/n ≃ A and P/s ≃ A are the North Pole and the South Pole of the
sphere. Write iP , iN and iS for the corresponding closed immersions. We will
further write

αN := iN ∗(eA/n
) ∈ Wn(Sn), αS := iS∗(eA/s

) ∈ Wn(Sn),

and we will keep the same notation for the images in W
n
(Sn) of these forms.

The next Lemma is just a corollary of the proof of Theorem 1.1.

Lemma 3.1.

W
tot

(Sn) = W
tot

(A) · eSn ⊕ W
tot

(A) · αN

Proof. From the proof of Lemma 2.6 we see that q∗ : W
tot

(A) → W
tot

(Sn)
is injective. Since q∗(eA) = eSn , we recognize the first direct summand. By
the proof of Lemma 2.8 and functoriality of the transfer (Remark A.12, see
also Remark A.14), we see that the other summand is the image of iN∗ :

W
tot

(P/n) → W
tot

(Sn). This image is W
tot

(A) · αN by the following Lemma.

Lemma 3.2. Let i : SpecA →֒ SpecSn be the closed immersion of an A-point,
let i∗ : W0(A) → Wn(Sn) be the induced transfer morphism. Then for every
form β ∈ W0(A):

i∗(β) = q∗(β) ⋆ i∗(eA) ∈ Wn(Sn).

Proof. This follows from the projection formula for coherent Witt groups (Gille
[Gi3, Thm. 5.2]), applied to the morphism i:

i∗(β) = i∗(i
∗q∗

︸︷︷︸

id

(β) ⋆ eA) = q∗(β) ⋆ i∗(eA).

Proposition 3.3. The relation αN = −αS holds in Wn(Sn).
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As an immediate consequence of this, the form α2
N = −αN ⋆αS is supported

on the intersection of the North and the South Poles, which is empty: SpecP/n∩
SpecP/s = ∅; so it is trivially equal to zero.

To prove Proposition 3.3, we first recall straight from [Gi3, § 9] some facts
about forms on Koszul complexes. For any ring R and any regular sequence
(x1, . . . , xn) in R, we will denote by K•(x1, . . . , xn) the Koszul complex for this
sequence, and we set it in (homological) degrees from n to 0. We are interested
in the situation when R is an S-algebra S → R over some other ring S, and
the sequence is such that R/(x1, . . . , xn) ≃ S. (Below we will specialize to the
P -algebra Sn and the regular sequence (X1, . . . , Xn) in Sn.) For 1 ≤ i ≤ n
and any unit r ∈ R×, the complex K•(xi) can be equipped by the following
symmetric 1-form:

K•(xi) :

ℓr:=

��

· · · // 0

��

// R
·xi //

·r

��

R //

·(−r)

��

0

��

// · · ·

K•(xi) : · · · // 0 // R
·(−xi) // R // 0 // · · ·

For any choice of n units in R, the product (K•(x1), ℓr)⋆ · · · ⋆ (K•(xn), ℓr) is
a symmetric n-space on the complex K•(x1, . . . , xn) ≃ K•(x1) ⊗ · · · ⊗K•(xn).
We denote its form by ℓr1·...·rn .

By displaying an explicit Lagrangian, it is easy to see that [K•(xi), ℓri ] = 0 ∈
Wn(R), and therefore [K•(x1, . . . , xn), ℓr1·...·rn ] = 0 ∈ Wn(R) for all symmetric
spaces as above.

Lemma 3.4. If φ : K•(x1, . . . , xn) → HomR(K•(x1, . . . , xn), R)[n] is a quasi-
isomorphism of complexes, then there exists a unit r ∈ R× such that ℓr·1·...·1 is
chain homotopic to φ.

Proof. This is a slight generalization of [Gi3, Lemma 9.1]. The same proof goes
through.

We have an isomorphism W0(P ) ≃ W0(P/n) ⊕ W0(P/s), induced by P ≃
P/n × P/s, which identifies eP with (eN , eS). Under this isomorphism, the
transfer iP ∗ : W0(P ) → Wn(Sn) identifies with (iN ∗, iS∗), and in particular

αN + αS = iN∗(eN) + iS∗(eS) = iP ∗(eP ).

But the last term is zero in Wn(Sn). In fact, iP ∗(eP ) can be represented by
(F•, ψ), where F• is a projective resolution of the Sn-module P = Sn/(X1, . . . , Xn),
and where ψ is a symmetric quasi-isomorphism between F• and its n-shifted
dual, lying above the morphism id : A → A. Since (X1, . . . , Xn) is a regular
sequence in Sn, we can take F• to be the Koszul complex for this sequence. By
the above Lemma (or by direct inspection) we have iA∗(eA) = [K•(X1, . . . , Xn), ℓ1] =
0 ∈ Wn(Sn).
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A Appendix: The canonical injective resolution

A.1 The local case

We first recall some basic facts about injective modules. Our source here is
[Bou].

Let A be a ring and consider the module F = HomZ(A,Q/Z). Then F is an
injective A-module ([Bou, Corollary 1]). If M is any A-module, then we have a
canonical homomorphism

eM : M → FHomA(M,F )

given by eM (m) = (φ(m))φ∈HomA(M,F ). Observe that FHomA(M,F ) is injective

and eM is injective ([Bou, Corollary 2]). Let I0(M) := FHomA(M,F ), L0(M) :=
Coker(eM ) and qM : I0(M) → L0(M) be the canonical projection. By definition,
we obtain an exact sequence

0 // M
eM // I0(M)

qM // L0(M) // 0.

We define inductively I−n(M) by I0(L−n+1(M)), L−n(M) by L0(L−n+1(M))
and homomorphisms δM

−n : I−n(M) → I−n−1(M) by







δM
−n = 0 if n < 0
δM
0 = eL0(M) ◦ qM if n = 0
δM
−n = eL−n(M) ◦ qL−n+1(M) if n > 0.

We then obtain an injective resolution of M :

0 // M
eM // I0(M)

δM
0 // I−1(M)

δM
−1 // I−2(M) // . . .

This resolution is called canonical injective resolution of M . Suppose now that
M is of (finite) injective dimension n. Then using [Bou, Proposition 11], we
see that L−n+1(M) is an injective module. Therefore we have the following
definition:

Definition A.1. Let M be an A-module of injective dimension n. Then the
injective resolution

0 // M
eM // I0(M)

δM
0 // . . .

δM
−n+2 // I−n+1(M)

qL−n+2// L−n+1(M) // 0

is called canonical finite injective resolution of M .

Example 1. Suppose that A is a Gorenstein ring. Then by definition, A is of
finite injective dimension (equal to the Krull dimension of the ring) and therefore
has a canonical finite injective resolution. Any invertible A-module L is also of
finite injective dimension.
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A.2 The global case

Let X be a scheme. Consider the constant sheaf (of abelian groups) Q/Z. Then
F := Hom(OX ,Q/Z) is a sheaf of OX -modules over X .

Lemma A.2. The sheaf F is injective in the category Mqc of quasi-coherent
OX-modules.

Proof. We consider a covering ofX by open connected affine subscheme SpecAi.
Since the restriction of Hom(OX ,Q/Z) to SpecAi is Hom(Ai,Q/Z) and the
latter is an injective module by the above section, we see that Hom(OX ,Q/Z)
is injective.

Let M be a quasi-coherent OX -module. Consider HomOX (M,F) and F as
sheaves of sets. Then the sheaf HomShSets(HomOX (M,F),F) of morphisms of
sheaves of sets can be seen as an OX -module (since F is an OX -module). We
put FHomOX

(M,F) := HomShSets(HomOX (M,F),F). Then we have a canonical
homomorphism

eM : M → FHomOX
(M,F)

defined over an open U by eM(U) = eM(U). As in the local case, observe that

FHomOX
(M,F) is an injective OX -module and that eM is injective. Mimicking

the construction of the local case, we obtain an injective resolution of M

0 // M
eM // I0(M)

δM

0 // I−1(M)
δM

−1 // I−2(M) // . . .

called canonical injective resolution of M. If M is of (finite) injective dimension
n, we see that L−n+1(M) := Coker(δM−n+2) is also injective. To avoid overloading
the notations, we put I−j := I−j(M) and δM−j := δ−j for any j ≤ n− 1; we also
put I−n := L−n+1(M) and qLM

−n+2
:= δ−n+1. We have:

Definition A.3. Let X be a scheme and M a quasi-coherent OX -module of
injective dimension n. Then the injective resolution

0 // M
eM // I0

δ0 // . . .
δ−n+2 // I−n+1

δ−n+1 // I−n
// 0

is called canonical finite injective resolution of M.

Example 2. If X is a Gorenstein scheme, then OX has a canonical finite
injective resolution. Any invertible OX -module has the same property.

A.3 Coherent Witt groups

Our main references for this section are [Bal] and [Gi1].
Let X be an n-dimensional Gorenstein scheme such that 2 is a global unit

over X . Let Db
c(Mqc) be the triangulated category of bounded complexes of

quasi-coherent OX -modules whose homology sheaves are coherent. Let L be an
invertible OX -module and

0 // L
eL // I0 // . . . // I−n

// 0
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be the canonical finite injective resolution of L. For any M• ∈ Db
c(Mqc), we

have a dual complex HomOX (M•, I•) whose groups are

HomOX (M•, I•)i :=
⊕

j∈Z

HomOX (M−i−j , I−j)

and differentials are given by f 7→ fdM−i−j+1+(−1)i+1dI
−jf . There is a canonical

homomorphism ̟M•
of M• to its bidual for any M•, and it turns out that it is

an isomorphism ([Gi1, Theorem 2.6.4]). Therefore (Db
c(Mqc),HomOX ( , I•), 1, ̟)

is a triangulated category with duality in the sense of Balmer ([Bal, Definition
4.1]) and one can define the Witt groups of this category ([Bal, Definition 4.3]).

Definition A.4. Let OX be a Gorenstein scheme, L an invertible OX -module
and I• be the canonical finite injective resolution of L. Then the coherent Witt
groups W̃i(X,L) of X are defined to be the groups

W̃i(X,L) := Wi(Db
c(Mqc),HomOX ( , I•), 1, ̟).

In the case where L = OX , we put W̃i(X) := W̃i(X,OX).

Remark A.5. The original definition of coherent Witt groups is due to Gille
([Gi1, Definition 2.6.10]), who chooses a finite injective resolution J• of L and
puts

W̃i(X,L) := Wi(Db
c(Mqc),HomOX ( , J•), 1, ̟

J•).

It is clear that this definition depends on the choice of a finite injective resolution
of L. Since we have defined a canonical finite injective resolution, Definition A.4
does not depend on any choice.

Remark A.6. If

0 // L
j // J0

// J−1
// . . . // J−n

// 0

is any finite injective resolution of L, then there is a unique quasi-isomorphism
ϕ : I• → J• making the following diagram commutative

0 // L
eL // I•

ϕ

��
0 // L

j
// J•.

This quasi-isomorphism induces an isomorphism of Witt groups

ϕ : W̃i(X,L) → Wi(Db
c(Mqc),HomOX ( , J•), 1, ̟

J•).

Suppose now that X is a regular scheme (and 2 is a global unit over X).
Consider the triangulated categoryDb(P(X)) of bounded complexes of coherent
locally free OX -modules. The usual duality HomOX ( ,L) induces a 1-duality on
Db(P(X)) and there is a canonical natural isomorphism̟P•

: P• → HomOX (HomOX (P•,L),L)
for any P• ∈ Db(P(X)). One can check that (Db(P(X)),HomOX ( ,L), 1, ̟) is
a triangulated category with duality in the sense of [Bal, Definition 4.1]. Thus
we have the following definition (see [Bal]):
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Definition A.7. Let X be a regular scheme, L an invertible OX -module. The
derived Witt groups of X are defined to be the groups

Wi(X,L) := Wi(Db(P(X)),HomOX ( ,L), 1, ̟).

When L = OX , we simply put Wi(X) := Wi(X,OX).

In particular, a regular scheme is Gorenstein. Hence there is a canonical
quasi-isomorphism eL : L → I•. This quasi-isomorphism and the inclusion
Db(P(X)) ⊂ Db

c(Mqc) yield isomorphisms Wi(X,L) → W̃i(X,L) ([Gi1, Corollary
2.6.11]). Thus we get the following result:

Theorem A.8. Let X be a regular scheme and let L be a line bundle over X.
Then we have canonical isomorphisms Wi(X,L) ≃ W̃i(X,L).

A.4 Transfers

The reference here is [Gi3]. Let X and Y be Gorenstein schemes. For simplicity,
we assume that they are connected. Suppose that f : X → Y is a finite
morphism and let d = dim(Y ) − dim(X). Let f : (X,OX) → (Y, f∗OX)
be the morphism of locally ringed space induced by f . If M is a quasi-
coherent OY -module, then HomOY (f∗OX ,M) is a quasi-coherent f∗OX -module

and f
∗
HomOY (f∗OX ,M) is a quasi-coherent OX -module. In particular, if

0 // L
eOY // I0 // I−1

// . . . // I−n
// 0

is the canonical finite injective resolution of an invertible OY -module L then
f
∗
HomOY (f∗OX , I•) is a complex of quasi-coherent OX -modules. Moreover,

for any i the module J−i := f
∗
HomOY (f∗OX , I−i) is injective ([Gi3, Chapter

4]). Now consider the complex (where d = dim(Y ) − dim(X)):

0 // Ker(δ−d)
ι // J−d

// J−d−1
// . . . // J−n

// 0.

It turns out that Ker(δ−d) = f
∗
ExtdOY

(f∗OX ,L) and that J• is a finite injective
resolution of this OX -module, which is invertible ([Gi3, Corollary 6.3]). The
following theorem is due to Gille:

Theorem A.9 (Transfer). Let X and Y be connected Gorenstein schemes and
let f : X → Y be a finite morphism of relative dimension d. Then the functor
f∗ : Db

c(Mqc(X)) → Db
c(Mqc(Y )) induces homomorphisms

TrX/Y : Wi(Db
c(Mqc(X)),HomOX ( , J•), 1, ̟

J•) → W̃i+d(Y,L).

Proof. See [Gi3, Theorem 6.4].

Now f
∗
ExtdOY

(f∗OX ,L) is an invertible OX -module and therefore it admits
a canonical finite injective resolution

0 // f
∗
ExtdOY

(f∗OX ,OY )
e // I0 // . . . // I−n+d

// 0.
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By Remark A.6, there are canonical isomorphisms

ϕ : W̃i(X, f
∗
ExtdOY

(f∗OX ,L)) → Wi(Db
c(Mqc(X)),HomOX ( , J•), 1, ̟

J•).

We finally have the following result:

Theorem A.10 (Canonical transfer). Let X and Y be connected Gorenstein
schemes and L an invertible OY -module. Let f : X → Y be a finite morphism
and d = dimY − dimX. Then the functor f∗ : Db

c(Mqc(X)) → Db
c(Mqc(Y ))

induces canonical homomorphisms

f∗ : W̃i(X, f
∗
Extd

OY
(f∗OX ,L)) → W̃i+d(Y,L).

Proof. The canonical transfer is defined to be the composition

W̃i(X, f
∗
ExtdOY

(f∗OX ,OY ))
ϕ //

f∗ ++W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

Wi(Db
c(Mqc(X)),HomOX ( , J•), 1, ̟

J•)

TrX/Y

��
W̃i+d(Y )

Remark A.11. In a recent preprint, Nenashev announced a canonical transfer
associated to any inclusion Y →֒ X of smooth schemes ([Ne, Definition 4.1]).
It would be interesting to compare his canonical transfer with the one defined
above.

Remark A.12. LetX,Y, Z be connected Gorenstein schemes and X
f // Y

g // Z
be finite morphisms. Then using the fact that TrY/Z ◦ TrX/Y = TrX/Z for
some good choices of injective resolutions (see [Gi1]) it is not hard to see that
(gf)∗ = g∗f∗. Thus the canonical transfer is functorial.

The following theorem is also useful:

Theorem A.13 (Dévissage). Let Y be a connected Gorenstein scheme and
j : X →֒ Y be a connected closed subscheme of Y of codimension d. Then the
canonical transfer gives canonical isomorphisms

j∗ : W̃i(X, j
∗
ExtdOY

(j∗OX ,OY )) → W̃i+d
X (Y ).

Proof. See [Gi4, Theorem 3.2].

Remark A.14. It happens sometimes that j
∗
ExtdOY

(j∗OX ,OY ) is isomorphic
to OY , e.g. when Y = SpecA is affine and j : SpecA/I → SpecA is a
closed immersion whose defining ideal I can be given by a regular sequence
(a1, ..., ad) in A. Every choice of a sequence gives an isomorphism OY ≃
j
∗
Extd

OY
(j∗OX ,OY ) and therefore an isomorphism of Witt groups

φ : W̃i(X) → W̃i(X, j
∗
Extd

OY
(j∗OX ,OY )).

One would usually make this choice tacitly and will still write f∗ : W̃i(X) ≃
W̃i

X(Y ) for the composite isomorphism f∗ ◦ φ.
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