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Abstract. Let K be a field of arbitrary characteristic and q be a prime number different from
the characteristic of K. If A is a central simple algebra over K whose index is a power of q,
we show the triviality of the Whitehead groups SK1(A) and USK1(A) when the cohomological
q-dimension of K is at most 2. We give a global version of this result and indicate what can
be done in the case where the index of the algebra is a power of the characteristic of the field.
Triviality results of the Whitehead group K1Spin(A) are easily derived.
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1 Introduction

Let K be a field of arbitrary characteristic. If A is a (finite dimensional) central simple algebra
over K and if NrdA/K is the reduced norm map from A to K, we set

SL1(A) = {a ∈ A∗ | NrdA/K(a) = 1},

and we denote by [A∗, A∗] the commutator subgroup of A∗. By definition, the reduced Whitehead
group of A is the factor group

SK1(A) = SL1(A)/[A∗, A∗].

It was conjectured (independently) by Tannaka and Artin that SK1(A) = 1 when A is different
from M2(F2) and M2(F3). This conjecture is part of a more general conjecture due to Kneser and
Tits concerning simply connected algebraic groups: more precisely, Tannaka-Artin’s Conjecture
is equivalent to Kneser-Tits’s Conjecture for algebraic groups of type An, see [17]. It turns out
that these conjectures are false in general by results of Platonov in [11]. In a series of papers
(see references (8) to (14) in Yanchevskĭı’s paper [21]), Platonov consequently builds a reduced
K-theory and highlights important connections between reduced Whitehead groups and algebraic
groups. However, the reduced Whitehead group is trivial in many cases and it is still interesting to
find sufficient conditions over K or over A to guarantee this triviality. For example, an important
result due to Yanchevskĭı asserts that SK1(A) is trivial whenever the base field is a C0

2 -field (see
Theorem 2.6).
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Since 1973, Platonov and Yanchevskĭı have been developing a reduced unitary K-theory in
which the central object is the reduced unitary Whitehead group USK1(A). This group is an
analog of the reduced Whitehead group for central simple algebras endowed with an unitary
involution and its triviality is equivalent to Kneser-Tits’s Conjecture for unitary groups. In [12],
they show that this group is not always trivial. Nevertheless, Yanchevskĭı proves that this group
is trivial if the center of A is a C0

2 -field (see Theorem 2.11).
In the case where the central simple algebra is endowed with a symplectic involution, the ana-

log of the reduced Whitehead group is the group K1Spin(A). In [9], Monastyrny̆ı and Yanchevskĭı
show that this group is not trivial in general even if it is still the case over C 0

2 -fields.
Many results concerning these three types of Whitehead groups are available in the literature

and some of them are recalled in Section 2.
In [15, §24], as a consequence of their works about norm residue homomorphisms, Merkurjev

and Suslin prove that the cohomological p-dimension of a field K is at most 2 if and only if K is
a C0

2 -field locally at p, if p is different from the characteristic of the field (see Theorem 3.1). In
particular, if F is a perfect field, the cohomological dimension of F is at most 2 if and only if F
is a C0

2 -field (see Corollary 3.2). Section 3 is dedicated to the recall of these results and focuses
on a proof of this last fact.

All these results allow us to think that there are local cohomological criteria for the above
Whitehead groups to be trivial. Our main result asserts that this is true modulo a restriction on
the index of the algebras:

Theorem 1.1. Let K be a field of characteristic p (which can be zero) and q be a prime number
different from p. Suppose that cdq(K) ≤ 2 and that A is a central simple algebra over K whose
index is q-primary. Then the Whitehead groups SK1(A) and USK1(A) are trivial.

In Section 4, we prove preliminary results. First we are interested in scalar extension results
(see Lemma 4.3). Then we adapt a result given by Bayer-Fluckiger and Serre in [2] to construct
a perfect field satisfying certain properties starting from any field and from any prime number
different from the characteristic of the field (see Proposition 4.4). In Section 5, we give the proof
of Theorem 1.1. As a consequence, we obtain a triviality result for the group K1Spin(A) stated
as Corollary 5.2.

In [6], Gille defines the separable p-dimension of a field based on the notion of p-dimension
initially defined by Kato. Using this notion, he completes Merkurjev and Suslin’s result above in
the case where the degree of the algebra is a power of the characteristic of the field (see Theorem
5.4). In the last part of Section 5, we indicate that, consequently to Gille’s result, Theorem 1.1
is still true when q = p = char(F ) if we suppose that the separable p-dimension of F is at most
2 (see Corollary 5.5). Finally, we obtain the following global result:

Corollary 1.2. (1) Suppose that K is a field whose separable dimension is at most 2. Then for
any central simple algebra A over K, the Whitehead groups SK1(A) and USK1(A) are trivial.
(2) Suppose that K is a field whose separable 2-dimension is at most 2. Then for any central
simple algebra A over K, the Whitehead group K1Spin(A) is trivial.

2



2 Whitehead groups

This Section presents some basic properties and triviality results for the Whitehead groups
under study. Other standard facts and results about the reduced Whitehead group can be found
in [5, §23] or in [13, Chapter 4, §2]. Concerning reduced unitary Whitehead groups, we refer to
[21], [22], [23], [12] or [13, Chapter 4, §3] for more precise statements. Standard references for
the group K1Spin(A) are [9] and [23].

2.1 The group SK1(A)

Basic properties

Let K be a field and A be a central simple algebra over K. From now on, GK will denote the
absolute Galois group of K. If p is a prime number, cdp(K) is the cohomological p-dimension of
GK and cd(K) is the cohomological dimension of GK . We refer to [14, Chapitre I, §3] for precise
results about Galois cohomology.

Recall that the reduced Whitehead group SK1(A) is the abelian group SL1(A)/[A∗, A∗]. For
split algebras, this group is known:

Proposition 2.1 (Wang). Let n ≥ 1 and suppose that n 6= 2 in the case where K = F2 or
K = F3. Then we have SK1 (Mn(K)) = 1.

Proof. See [5, §20, Theorem 4] for a more general result.

Remark 2.2. We easily show that SK1 (M2(F2)) is a cyclic group of order 2 and that SK1 (M2(F3))
is a cyclic group of order 3.

Convention 2.3. From now on, when speaking about the reduced Whitehead group of A, we
will always implicitly assume that A 6= M2(F2), M2(F3).

By means of the theory of Dieudonné’s determinants, one proves that the reduced Whitehead
group of A only depends on the Brauer class of A in Br(K) (see [5, §20] or [13, Chapter 2, §4]).
Indeed

SK1 (A) ' SK1(D), (1)

where D is a division algebra Brauer-equivalent to A. Consequently, the exponent of SK1(A) is
the same as the exponent of SK1(D). It can be shown that the exponent of SK1(A) divides the
index of A (apply Lemma 4.1 to a maximal commutative subfield of D). Moreover, every division
algebra D of degree

∏n
i=1 p

ni
i (where the pi’s are distinct prime numbers) can be decomposed as

D = D1 ⊗K · · · ⊗K Dn where each Di is a division algebra of degree pnii (see [5, §9, Corollary
11]). With the same notations,

SK1(D) '
n∐

i=1

SK1(Di) (2)

(see [5, §23, Lemma 6] or [13, Chapter 4, §2.2, Theorem 1]) hence it suffices to study reduced
Whitehead groups of division algebras whose degree is p-primary where p is a prime number.
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Triviality results

Whereas the reduced Whitehead group is not always trivial, this result is true over a great
number of fields. Examples of such fields are p-adic fields by a result of Nakayama and Matsushima
(see [10]) and algebraic number fields by a result due to Wang (see [18, Theorem p. 329]). These
two results contributed to the fact that people expected Tannaka-Artin’s conjecture to be true.
In this context C0

2 -fields are of great importance:

Definition 2.4. A field K is a C0
2 -field if for any finite field extension E/K and for any finite-

dimensional division algebra D with center E, the reduced norm map NrdD/E : D∗ → E∗ is
surjective.

Remark 2.5. One can see that C2-fields are C0
2 -fields (see [13, Chapter II, §4.3]). The class of

C0
2 -fields is strictly bigger that the class of C2-fields as it contains the field Q2 which is not a

C2-field by a result of Terjanian (see [14, p. 98]).

An important triviality result is the following:

Theorem 2.6 (Yanchevskĭı). If K is a C0
2 -field, then SK1(A) = 1.

Proof. See [20, Theorem p. 492].

As a consequence, the reduced Whitehead group of any central simple algebra over an algebraic
function field is trivial (such a field is a C2-field, see [14, Chapitre II, §4.5]). From the previous
results, it follows that this property also holds over global fields.

By a theorem of Wang, SK1(A) is trivial if the index of A is squarefree (see [18]). This result
is no longer true if the index of the algebra is not squarefree: from a field K of characteristic
different from 2 containing a primitive fourth root of unity, one can construct another field (of
cohomological dimension strictly greater than 3) over which there exists a biquaternion algebra
A with SK1(A) 6= 1 (see [7, Example 17.23]). Note thatThis construction Platonov’s original
counterexample to Tannaka-Artin’s conjecture was built from a biquaternion algebra over a field
K satisfying cd(K) ≥ 4. However,

Theorem 2.7 (Rost). If cd(K) ≤ 3, then SK1(A) = 1 for any biquaternion algebra A over K.

Proof. See [7, Chapter 17] or Merkurjev’s proof in [8, Corollary p.76].

More generally, in [16], Suslin conjectures the following:

Conjecture 2.8 (Suslin). If cd(K) ≤ 3, SK1(A) = 1.
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2.2 The group USK1(A)

In this Subsection, we suppose that A is endowed with an unitary involution σ. In this case,
we will always denote by F the subfield of central invariant elements under σ.

Basic properties

The reduced unitary Whitehead group of A is, by definition

(USK1)σ(A) = Σ′σ(A)/Σσ(A),

where Σσ(A) (resp. Σ′σ(A)) is the subgroup of A∗ generated by the elements that are symmetric
(resp. that have symmetric reduced norm) with respect to σ. One can define an equivalence
relation ∼ on the set of unitary involutions over A by putting σ ∼ θ ⇐⇒ σ|K = θ|K . We easily
see that the definitions of (USK1)σ(A), Σσ(A) and Σ′σ(A) only depend on the class of σ modulo
the relation ∼, see [19, Lemma 1]. From now on, these groups will then be respectively denoted
by USK1(A), Σ(A) and Σ′(A).

It turns out that the reduced unitary Whitehead group of A has many properties in common
with the reduced Whitehead group. For example, properties (1) and (2) are still true when
replacing SK1 by USK1 (see [19, Lemma2, Lemma 3] and [21, Proposition 2.7]) and its exponent
still divides the index of A. Again, it suffices to study the reduced unitary Whitehead groups of
divison algebras whose degree is p-primary where p is a prime.

We have:

Proposition 2.9 (Yanchevskĭı). [A∗, A∗] ⊆ Σ(A).

Proof. See [19, Lemma 2].

This result implies that the group USK1(A) is abelian but can also be used to deduce a link
between SK1(A) and USK1(A) as we now show. If x ∈ Σ′(A), then we can write x = σ(x)a where
a ∈ SL1(A). Thus, by Proposition 2.9, the canonical surjection from SL1(A) to SK1(A) induce a
group homomorphism Φ : USK1(A) → SK1(A) : x 7→ σ(x)−1x. This homomorphism is of great
importance when proving triviality results:

Lemma 2.10 (Yanchevskĭı). The exponent of ker Φ divides 2. In particular, if the index of A
is odd, Φ is injective.

Proof. The proof can be found in [21, Lemma p. 183]. Suppose that x ∈ Σ′(A) and write
x = σ(x)a where a ∈ SL1(A). If x ∈ ker Φ then a ∈ [A∗, A∗]. By Proposition 2.9,

x2 = xσ(x)a ∈ Σ(A).

As the exponent of USK1(A) is odd, we obtain that x ∈ Σ(A).

Triviality results

The reduced unitary Whitehead group of a central simple algebra is not trivial in general
(this was first proved by Platonov and Yanchevskii, see [12]). However, one can show that this
group is trivial over any global field (see [12]), when the index of A is a prime number (see [19,
Lemma 5] or [4, Théorème p. 66] for a more general result) and that Theorem 2.6 has an analog:
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Theorem 2.11 (Yanchevskĭı). If K is a C0
2 -field, then USK1(A) = 1.

Proof. See [19, Theorem 1].

2.3 The group K1Spin(A)

In this Subsection, the central simple algebra A is supposed to be endowed with a symplectic
involution σ. Let

R(A) = {a ∈ A∗ | NrdA/K(a) ∈ F ∗2}.
The involution σ being symplectic, Σσ(A) ⊂ R(A) (see [7, Proposition 2.9]) thus we may define

K1Spin(A) = R(A)/Σσ(A)[A∗, A∗].

This group does not depend on the choice of σ, is 2-torsion abelian and is not trivial in general
(see [9]). However, this group is trivial if degA ≤ 4 by a result of Yanchevskĭı (see [7, Proposition
17.28]) or if K is a C0

2 -field (see Corollary 5.2 for a similar proof).

3 About a result of Merkurjev and Suslin

The purpose of this Section is to give a proof of Corollary 3.2 which is a consequence of the
following deep result of Merkurjev and Suslin.

Theorem 3.1 (Merkurjev-Suslin). Let K be a field and p be a prime number different from
the characteristic of K. Then the following are equivalent:
(1) cdp(K) ≤ 2.
(2) For any finite field extension E/K and for any central simple algebra A over E, if the degree
of A is a power of p then the reduced norm map NrdA/K : A∗ → E∗ is surjective.

Proof. See [15, Theorem 24.8].

The following Corollary was also stated by Merkurjev and Suslin and will be a main tool in the
proofs of our results:

Corollary 3.2 (Merkurjev-Suslin). If K is a perfect field, the following are equivalent:
(1) cd(K) ≤ 2.
(2) K is a C0

2 -field.

Proof. This Corollary is stated in [15, Corollary 24.9] as a direct consequence of Theorem 3.1.
We give a proof of this fact.

Suppose first that K is a C0
2 -field. Let p be a prime number different from char(K), E/K be

a finite field extension and A be a central simple algebra over E whose degree is a power of p.
By Wedderburn’s Theorem, one can identify A and Mn(D) where D is a division algebra over
E. As K is a C0

2 -field, the map NrdD/E : D∗ → E∗ is surjective hence also NrdA/E : A∗ → E∗

using Dieudonné’s determinant (see [5, §22, Theorem 3]). By Theorem 3.1, cd(K) ≤ 2.
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Suppose now that cd(K) ≤ 2 and consider a finite field extension E/K and a division algebra
D over E. One can decompose D as follows

D ' D1 ⊗E · · · ⊗E Ds,

where the Di’s are division algebras over E with deg(Di) = pi
fi such that the pi’s are distinct

prime numbers and deg(D) =
∏s
i=1 pi

fi . We claim that NrdDi/E : Di
∗ → E∗ is surjective for all

i’s. If pi 6= char(K), this follows from Theorem 3.1 and if pi = char(K), this is guaranteed by the
perfectness of E. If e ∈ E∗ then, for any 1 ≤ j ≤ s, there exists dj ∈ Dj

∗ with NrdDj/E(dj) = e

hence, by [5, §22, Theorem 3]), e
Q
i6=j p

fi
i ∈ NrdD/E(D∗). As pgcd (

∏
i6=j p

fi
i , 1 ≤ j ≤ s) = 1 there

exist λ1, · · · , λs ∈ Z such that

λ1

∏

i6=1

pfii + · · · + λs
∏

i6=s
pfii = 1

and
NrdD/E(dλ1

1 ⊗ · · · ⊗ dλss ) = e

thus finishing the proof.

Remarks 3.3. (1) In Corollary 3.2, (2)⇒ (1) is true in general. We thus have:

K is a C2-field⇒ K is a C0
2 -field⇒ cd(K) ≤ 2⇒ cd2(K) ≤ 2⇒ I3(K) = 0

where I(K) is the fundamental ideal of the Witt ring of K and I 3(K) := (I(K))3
.

(2) Theorem 3.1 and Corollary 3.2 have many important consequences. For example, Theorem
3.1 shows that Serre’s Conjecture II is true for special linear groups and Corollary 3.2 has been
used by Bayer-Fluckiger and Parimala to show this Conjecture for special unitary groups, see [1,
Theorem 5.1.2]).

4 Preliminary results

4.1 Scalar extension

In this Subsection, D denotes a division algebra over K. We state preliminary results with
respect to scalar extension to a field.

Lemma 4.1 (Wang). Let L/K be a field extension of degree m. If α ∈ D is such that α⊗ 1 ∈
[(D ⊗K L)∗, (D ⊗K L)∗] then αm ∈ [D∗, D∗].

Proof. See [18, Lemma 3].

Suppose now that D is endowed with an unitary involution σ and that F is, as usual, the
subfield of K fixed by σ. The following Lemma is an analog of Lemma 4.1 for USK1.

Lemma 4.2 (Yanchevskĭı). Let L/K be a field extension of degree m containing an element
a such that L = K(a) and [L : F (a)] = 2. If β ∈ Σ′(D) is such that β ⊗ 1 ∈ Σ(D ⊗K L) then
βm ∈ Σ(D).
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Proof. See [19, Lemma 4].

As a consequence, we obtain:

Lemma 4.3. Let H/F be a field extension of degree m which is linearly disjoint from the extension
K/F and let L be the composite of K and H. If β ∈ Σ′(D) is such that β ⊗ 1 ∈ Σ(D⊗K L) then
βm ∈ Σ(D).

Proof. There exist a1, · · · , an such that H = F (a1, · · · , an) and L = K(a1, · · · , an). For i =
1, · · · , n, write Hi = F (a1, · · · , ai) and Li = K(a1, · · · , ai). As K and H are linearly disjoint
over F , [Li : Ki] = [K : F ] = 2 (see [3, Chapitre V, §2, no 3, Proposition 6]). Consequently,
the field extensions Li/Ki are Galois. The central simple L-algebra D⊗K L is endowed with the
unitary involution σ⊗θ, where θ is the nontrivial automorphism of L over H. If D ′ = D⊗KLn−1,
there is an L-algebra isomorphism D⊗K L ' D′⊗Ln−1 L. Note that, by definition of θ, θ|Ln−1 is
the nontrivial automorphism of Ln−1 over Kn−1. If σ′ = σ⊗θ|Ln−1 , σ′⊗θ is an unitary involution
over D′ ⊗Ln−1 L. Now β ∈ Σ′(D′) and β ⊗ 1 ∈ Σ(D′ ⊗Ln−1 L). By Lemma 4.2, it follows that

(β ⊗ 1)[L:Ln−1] ∈ Σ(D′) = Σ(D ⊗K Ln−1).

By induction over n, we get that βm ∈ Σ(D) where m = [L : Ln−1] · · · [L1 : K] = [L : K].

4.2 Construction of fields satisfying certain conditions

In this Subsection, we are interested in constructing fields satisfying certain properties starting
from any field. Fix K an algebraic closure of K and Ksep a separable closure of K. If char(K) =
p 6= 0, recall that the radicial closure of K in K is the subfield of K of radicial elements over K
denoted by Kp−∞. More precisely, Kp−∞ =

⋃
e∈NK

p−e where x ∈ Kp−e if and only if xp
e ∈ K :

see [3, Chapitre V, §8] for more details.

Proposition 4.4. Let K be a field and q be a prime number different from char(K) = p (p can
possibly be zero). There exists an algebraic extension K ′/K having the following properties:
(1) K ′ is a filtered union of field extensions of K whose degree is prime to q.
(2) K ′ is a perfect field.
(3) GK′ is a pro-q-group.
Moreover cd(K ′) = cdq(K).

Proof. When q = 2, this result is due to Bayer-Fluckiger and Serre in [2, Proposition 2.3.1]. The
general case comes from the same kind of arguments which we are going to detail.

Denote by Sq(GK) a q-Sylow of GK (which exists in accordance with [14, Chapitre I, §1,
Proposition 3]) and by Kq the subfield of Ksep fixed by Sq(GK). Then Kq =

⋃
x∈Kq K(x). The

field extension Kq/K is thus a union of field extensions of K whose degree is prime to q. The
Theorem of the Primitive Element implies that this is a filtered union. If char(K) = 0, we choose
K ′ = Kq.

Suppose now that char(K) = p 6= 0 and denote by K ′ = Kp−∞
q . Then

K ′ =
⋃

L∈J
L, (3)
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where J is the set of finite degree field extensions L/K such that there exist e ∈ N and x ∈ Kq

with L ⊂ (K(x))p
−e

. This union is a filtered union. Let L/K ∈ J . Then, there exist x ∈ Kq and

e ∈ N such that L ⊂ (K(x))p
−e

. As x ∈ Kq, [K(x) : K] and q are coprime. Moreover, the field
extension LK(x)/K(x) is radicial and, by [3, Chapitre V, §8, Proposition 6], its degree is a power
of p. Consequently [L : K] and q are coprime hence K ′ satisfies condition (1). By definition, K ′

is the smallest perfect subfield of Kq containing Kq so it satisfies condition (2).
By [14, Chapitre II, §4.1], GK′ can be identified to a subgroup of GKq and its index is equal

to the separability degree [K ′ : Kq]s = 1. Thus, GK′ = GKq = Sq(GK) is a pro-q-group and
condition (3) follows. Finally, cd(K ′) = cdq(K) by [14, Chapitre I,§3.3, Corollaire 1].

5 Proofs of the triviality results

5.1 Case where the index is prime to the characteristic

We now come to the proof of Theorem 1.1.

Theorem Let K be a field of characteristic p (which can be zero) and q be a prime number
different from p. Suppose that cdq(K) ≤ 2 and that A is a central simple algebra over K whose
index is q-primary. Then the Whitehead groups SK1(A) and USK1(A) are trivial.

Proof. It suffices to prove the statement for division algebras of q-primary degree (see Section 2).
Suppose that D is such an algebra.

We first show that the reduced Whitehead group of D is trivial. Let b ∈ SL1(D). By
Proposition 4.4, there exists a perfect field L which is a filtered union of field extensions whose
degree is prime to q and such that cd(L) ≤ 2. By Corollary 3.2, L is thus a C 0

2 -field. By Theorem
2.6, as b⊗1 ∈ SL1(D⊗KL), one deduce that b⊗1 ∈ [(D⊗KL)∗, (D⊗KL)∗]. We can suppose that
b⊗1 ∈ [(D⊗KKi)

∗, (D⊗KKi)
∗] where [Ki : K] and q are coprime. On the one hand, by Lemma

4.1, it follows that b[Ki:K] ∈ [D∗, D∗]. On the other hand, bdegD ∈ [D∗, D∗] (see Subsection 2.1).
Finally, the degree of D being q-primary, b ∈ [D∗, D∗], thus proving that SK1(D)=1.

Next we show that the reduced unitary Whitehead group of D is trivial. Let σ be an unitary
involution over D. If q is odd, USK1(D) ↪→ SK1(D) by Lemma 2.10, so USK1(D) = 1. Suppose
now that q = 2 and that p = char(K) 6= 2. Again, we apply Proposition 4.4 to find a perfect field
L which is a filtered union of field extensions of F of odd degree with cd(L) ≤ 2. Let L =

⋃
i∈I Fi

be such that [Fi : F ] is odd. For i ∈ I, let Ei = KFi and E =
⋃
i∈I Ei. Thus [Ei : Fi] = 2 and

[Ei : K] is odd for every i ∈ I which means that E is also a filtered union of field extensions of K
of odd degree. Moreover E/L is a quadratic field extension with nontrivial automorphism τ and
D ⊗K E is a central simple algebra over E which is endowed with the unitary involution σ ⊗ τ .
Let a ∈ Σ′(D). Then a⊗ 1 ∈ Σ′(D ⊗K E). The field L is a C0

2 -field by Corollary 3.2, so we can
apply Theorem 2.11 to obtain that a⊗ 1 ∈ Σ(D ⊗K E). We can suppose that there exists j ∈ I
such that a⊗ 1 ∈ Σ(D ⊗K Ej) and, by Lemma 4.3, we deduce that a[Ej :K] ∈ Σ(D). Last, let

b = adegD(NrdD/K(a))−1
.

One checks that b ∈ SL1(D) so bdegD ∈ [D∗, D∗]. By Proposition 2.9, [D∗, D∗] ⊂ Σ(D) and

adegD2 ∈ Σ(D). The degree of D being even, USK1(D) = 1.
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Remark 5.1. The proof of the previous Theorem for USK1(A) in the case where q 6= 2 can be
obtained independently from considerations about SK1(A) by applying Lemma 4.3.

As an application, we obtain the following triviality result for K1Spin:

Corollary 5.2. Let K be a field of characteristic different from 2 satisfying cd2(K) ≤ 2. If A is
a central simple algebra over K, then K1Spin(A) = 1.

Proof. This proof is analog to the case where the field is supposed to be a C 0
2 -field. Suppose that

σ is a symplectic involution over A. In this case, it is well-known that the index of A must be
a power of 2 (see [7, Corollary 2.8]). Let a ∈ R(A) and NrdA/K(a) = α2, α ∈ K∗. By Theorem
3.1, there exists b ∈ A∗ such that NrdA/K(b) = α and we can write a = b2c with c ∈ SL1(A). By
Theorem 1.1, c ∈ [A∗, A∗]. It suffices to show that b2 ∈ Σ(A)[A∗, A∗]. By [7, Proposition 4.17],
there exists g ∈ A∗ such that the involution Int(g) ◦ σ leaves b invariant. Finally

bσ(b) = b2(b−1gbg−1) ∈ [A∗, A∗],

thus K1Spin(A) = 1.

5.2 Case where the index is a power of the characteristic

We want to state analogs of Theorem 1.1 and Corollary 5.2 in the case where the index of A
is a power of the characteristic of K. To do this, we need the notion of separable p-dimension
introduced by Gille and refer to [6] for precise results. This notion is a separable version of the
p-dimension initially defined by Kato. More precisely:

Definition 5.3. Let p be a prime number. The separable p-dimension of K denoted by dimsep
p (K)

is defined as follows. If p 6= char(K), then dimsep
p (K) = cdp(K). If p = char(K) then

dimsep
p (K) = inf{r ≥ 0 | Hr+1

p (K ′) = 0 for every finite separable field extension K ′/K},

where Hr+1
p (K ′) is the corresponding Kato cohomology group of K ′. The supremum of the

separable p-dimensions of K where p runs over all prime numbers is called the separable dimension
of K.

The following Theorem extends Merkurjev and Suslin’s result 3.1 to every prime number:

Theorem 5.4 (Gille). Let K be a field and p be a prime number. Then, the following are
equivalent:
(1) dimsep

p (K) ≤ 2.
(2) For any finite separable field extension E/K and for any central simple algebra A over E, if
the degree of A is a power of p then the reduced norm map NrdA/K : A∗ → E∗ is surjective.

Proof. See [6, Theorem 7].

We can now be more precise about the missing cases in Theorem 1.1 and Corollary 5.2:
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Corollary 5.5. (1) Let K be a field of characteristic p 6= 0. Suppose that dimsep
p (K) ≤ 2 and

that A is a central simple algebra over K whose index is p-primary. Then the Whitehead groups
SK1(A) and USK1(A) are trivial.
(2) Let K be a field of characteristic 2. Suppose that dimsep

2 (K) ≤ 2 and that A is a central
simple algebra over K. Then K1Spin(A) = 1.

Proof. (1) The result is obtained by mimicking Yanchevskĭı‘s proofs of these facts over C 0
2 -fields

(see [20] and [19]) and using Theorem 5.4.
(2) The proof is analog to Corollary 5.2 using (1) and Theorem 5.4.

5.3 Global results

We can globalize all the previous results by stating:
Corollary (1) Suppose that K is a field whose separable dimension is at most 2. Then for any
central simple algebra A over K, the Whitehead groups SK1(A) and USK1(A) are trivial.
(2) Suppose that K is a field whose separable 2-dimension is at most 2. Then for any central
simple algebra A over K, the Whitehead group K1Spin(A) is trivial.

Proof. It comes from Theorem 1.1 and Corollary 5.5.

Remarks 5.6. (1) Note that, in (1), the assertion is still true under the weaker hypothesis that
cd(K) ≤ 2 if we suppose further that the index of A is prime to the characteristic of K.
(2) In [24], Yanchevskĭı has proved that if char(K) = 0 and if vcd(K) := cd (K(

√
−1)) ≤ 2 then

SK1(A) = USK1(A) = K1Spin(A) = 1 for every central simple algebra A over K.
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[4] P. K. Draxl : Corps gauches à involution de deuxième espèce, SMF Astérisque 61 (1979),
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