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81 Introduction

In the paper we completely describe connected subgroup schemes of a re-
ductive group that contain a split maximal torus over an arbitrary field. This
description is stated in purely combinatorial terms and depends only on the cor-
responding root system. This is a decisive step towards a description of all (not
necessarily connected) subgroup schemes containing a torus. We intend to return
to this problem in a subsequent paper.

The main theorem is a broad generalization of classical results describing al-
gebraic subgroups of a split reductive group (see A. Borel’s and J. Tits’s paper [1]
and Séminaire de Géométrie Algébrique [5]). In context of our problem, algebraic
subgroups correspond to reduced subgroup schemes. We briefly recall the results
on algebraic subgroups in Section §5.

These results were generalized to groups over some classes of rings, including
semi-local ones, by Z. Borewicz, N. Vavilov, and others. On the other hand, over
a finite field G. Seitz described overgroups of all not necessarily split maximal



tori. Surveys of research in these directions and further references can be found
in the papers [9, 10].

In the present paper we generalize in a different direction. Namely, we include
not necessarily reduced subgroup schemes. Recall that by Cartier’s theorem (see,
for example, [12] 11.4) any affine group scheme over a field of characteristic zero
is reduced. But in positive characteristic, subgroup schemes of a reductive group
are not exhausted by reduced ones.

Non-reduced subgroup schemes of reductive groups were considered, in par-
ticular, by C. Wenzel (see [13, 14]) and F. Knop (see [4]). Namely, in the special
case of parabolic subgroup schemes, an analogous problem was addressed by
Ch.Wenzel. He gave a complete description of parabolic subschemes under some
mild restriction on characteristic. Futhermore, F. Knop for [4] described all sub-
group schemes of SL,. One of our initial motivations was exactly to generalize
these results.

In the preceding paper [6] we classified all (not necessarily reduced) overgroup
schemes of a maximal torus in GL,. The result of the present paper generalizes
simultaneously the classical result on reduced subgroup schemes, the result by
Ch. Wenzel on parabolic schemes, and the above result for GL,,. In the proof we
develop the approach applied to the case of GL,, in [6]. The proof uses standard
technics and tools from algebraic geometry: reduction to an algebraically closed
field, Frobenius morphism, functorial properties. But the most difficult step,
Main Lemma 16, concerns groups over rings and involves ideas from the works
by Z. Borewicz and N. Vavilov [2], [8].

The rest of the article is organized as follows. In Section 2, we fix notation
and recall some results on the structure of reductive groups. In Section 3, we
formulate the main theorem. In Section 4, we discuss the concept of quasi-closed
sets. Section 5 contains a review of the description of connected intermediate
algebraic subgroups in a reductive group. In Section 6, we discuss a Frobenius
morphism. In Section 7, we specialize and start proving Theorem 1, namely,
we construct all connected intermediate group schemes. In Section 8, we reduce
Theorem 1 to the case of an algebraically closed field. In Section 9, we consider
the reduced subscheme of an intermediate group scheme. Finally, in Section 10,
we prove Main Lemma on intermediate subgroups in the group of R-points of a
reductive group and complete the proof of Theorem 1.
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82 Preliminaries

In this section we fix notation and recall necessary results concerning reductive
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groups. We follow the books [3], [7], and [5] Exp. XXII.

Let GG be a reductive group containing a split maximal torus 7" over a field K.
Let (X, ®, X", ®") be the root data of (G,T). In particular, X is the character
group of T', X~ is the cocharacter group of T, i.e. the group of all homomor-
phisms from G,, to T, and the groups X and X~ are in duality by a pairing
(,): X xX —Z. For any root § € ®, any K-algebra R, and any element
t € T(R) we have by definition

(=8)(t) = ()"

Consider an adjoint representation of G' on its Lie algebra L. The T-module
L admits a decomposition

L=Ly®(® L
0 (ﬁ@ s)

Each root subspace Lj has dimension 1.

For each root 3 € ® there is a homomorphism z3 : G, — G such that the
corresponding tangent map induces an isomorphism of the Lie algebra of G, onto
Lg. Any element ¢ of the torus T'(R) acts on the root subgroup corresponding to
a root (3 by

trg(a)t™ = x5(8(t)a).
In particular, for ¢ = A(g), where ) is a cocharacter and ¢ is an invertible element
of R, we have

Me)zg(a)\(e) ™! = xz(ePNa).

Such a root homomorphism is unique up to multiplication by an element of K*.
For each root # we fix a homomorphism zg that comes from a homomorphism
over Z.

Fix a Weyl basis {eg, 5 € ®,hy,1 <X < dimT} in L, where {eg, 3 € O} is a
Chevalley system in L. Then the adjoint action of a root subgroup z,(G,) on a
basis element eg with 3 # —a is given by

Ad(za(a))es = €5+ Y Moga"€rass,
r>0
where Mg, are integral coefficients.
For root subgroups corresponding to roots a and 3 with 5 # —a«, we have the
Chevalley commutator formula

[za(a), z5(b)] = H Tratsp(Naprsa'b®),

r,s>0

where N,g,s are integral coefficients. We take the values of Mg, and N,gz,s from
the paper [11].
In case of § = —a, but one of a and b is nilpotent, we use the formula

To(a)r_o(b) = 2_4( )

(see [5] Exp.XX 2.1).

Fix an arbitrary ordering on ® that is compatible with root heights, i.e. if
ht(a) < ht(B), then a goes before 3. When we consider a product like [];cq, We
take the factors in this order.

a
1+ ab)re(——
1—i—ab)a( +ab) <1+ab



83 Statement of main results

In this section we formulate a main result of the paper.
Let K be a field of characteristic p > 0. Let ® be a root system, G(®) be a
reductive group of type ® over the field K, T' be a split maximal torus in G(®P).

Theorem 1. There is a one-to-one correspondence between all connected sub-
group schemes of G(®) that contain T, and all functions ¢ : & — N U {0,000}
satisfying

p(ra+ sf) > min(p(a) —log,r, ¢(3) —log, s) (+)
for any roots o, B, ra+ s € ® such that p fNogys.

Remark. Suppose that the following restriction on characteristic holds:

o if ® O By, then p > 2;

e if § DO Gy, then p > 3.
Then p [Nup11 for any two roots o and [ such that o+ (3 is a root. So in this
case the condition (x) is equivalent to the following one:

o(a+ £) > min(p(a), ¢(F))

for any roots o, # € ® such that a + g € .

Examples. 1. A function ¢ satisfying () corresponds to a reduced subgroup
scheme if and only if all values of ¢ are zero and infinity. In the notation of
Section §5, the function ¢ corresponds to the scheme G(S), where S is a quasi-

closed set, if and only if
oo, if B €5,
p(8) = {

0, otherwise.

2. The product of the torus T and the kernel Ey of the N-th power of a
Frobenius morphism is a non-reduced connected subgroup scheme. All values of
the corresponding function are equal to N.

3. Suppose that ® = A,, 1, G = GL,, and T is the group of diagonal matrices.
GL, is represented by K[GL,| = Klz11,...,%Tnn,t]/(tdet(z;;) = 1). In this case
the subscheme corresponding to a function ¢ : A,_1 — NU{0, 0o} is represented
by K[GLH]/(SCP?(U) = 0), where ¢(ij) = ¢(e; —e;). See [6] for details.

v]

84 Quasi-closed sets of roots

In this section we introduce and discuss a notion of quasi-closed sets of roots,
and an equivalent definition of the property (x). The notion of quasi-closed set
is taken from the paper [1] by A. Borel and J. Tits, but the definition we use is
distinct from the initial one.

Definition. Let S be a subset of a root system ®. Suppose that for any two
roots & and 3 in S and positive integers r and s such that ra+ sf3 is a root and
P [/ Nagrs, the root ra + s lies in S. Then the subset S is called quasi-closed.
Remark. Any closed set of roots is quasi-closed. Conversely, any quasi-closed
set is closed under the restriction



o if ® O By, then p > 2;
o if & D Gy, then p > 3.

Lemma 2. Let ® be a root system, p be a prime number.
1. The condition (x) is equivalent to the following one:

p(ra+0) > min(p(a) —log,r, (7)) (%)

for any roots o, B, ra+ 5 € © such that p fMagp,.

2. A set S is quasi-closed if and only if the following condition holds: for
any two roots a and B in S and positive integer r such that ra+ (3 is a root and
p [ Mug,, the root ra+ (3 lies in S.

Proof. 1. If s = 1, then Nyg,s = M,p, and the conditions (%) and (xx) are the
same. The case r = 1is similar. The only case, when r, s > 1 and ra+s( is a root,
is as follows: « and (3 are simple roots of G, 7 = 2, and s = 3 (or, symmetrically,
r =3 and s = 2). In this case we have N,g31 = 1 and N3ny511 = 1 (see [11]), so

¢(3a +28) > min(p(3a + B), ¢(#)) > min(p(a) — log, 3, ¢(3))
> min(p(a) — log, 3, ¢(8) — log, 2).

2. The condition holds if and only if the function ¢g satisfies (*x), where

if S
ws(ﬁ):{ o0, B €5

0, otherwise.

The set S is quasi-closed if and only if the function ¢g satisfies (x). Apply the
first assertion of the lemma to the function ¢g. O

§5 Connected smooth subgroup schemes
containing a torus

This section is based on [5] Exp. XXII. In this section we consider connected
smooth subgroup schemes containing a torus and show that they correspond to
quasi-closed subsets of roots.

Definition.([5] Exp. XXII 5.2.1) Let X be a prescheme, G be a smooth finitely
represented group X-prescheme with connected fibres, H be a subgroup prescheme
of G. We say that H is of type (R) if the following conditions hold:

1. H is smooth finitely represented X-prescheme with connected fibres;

2. for any x € X, H; contains a Cartan subgroup of G.

Assume now that G = G(®) is a split reductive group over a field. In this case
any connected subgroup scheme containing a maximal torus T is of type (R) if
and only if the scheme is smooth. By [5] Exp. XXII 5.4.1, any subgroup scheme
of type (R) containing 7' is uniquely determined by its Lie algebra, which has a
form

Ls=Ly® (DL
s = Lo (ﬁes 3)



for some subset S of ®.
Definition.([5] Exp. XXII 5.4.2) A subset S of ® is called a set of type (R) if
Lg is the Lie algebra of a subgroup scheme of type (R) containing 7.

By G(S) denote the subgroup scheme of type (R) uniquely determined by the
set S.

Lemma 3.
13(Ga), if B € S;

1, otherwise.

25(Ga) N G(S) = {

Proof. See [5] Exp. XXII 5.4.3. O

Lemma 4. Any quasi-closed set is of type (R). And conversely, any set of type
(R) is quasi-closed.

Proof. We show first that any set of type (R) is quasi-closed. By Lemma 2 it is
enough to check that for any two roots o and 3 in S and positive integer r such
that ra + (3 is a root and p [ M,ga,, the root ra + 3 lies in S.

Since a € S and § € S, we have eg € Lg and 2,(G,) C G(S) by Lemma 3.
Therefore the element Ad(z.(a))es = eg+ ), Mapra”erqp lies in Lg for any a.
Since Lg = Lo @ (ﬁ?SLB) and p [ M,g,, we conclude L,,i3 C Lg, and therefore

the root ra + ( lies in S.

Now we need to prove the converse. The assertion that any closed set is of
type (R) is established in Theorem [5] Exp. XXII 5.4.7. In fact, the proof of this
theorem uses only properties of quasi-closed sets and is therefore a valid proof for
our assertion. U

The above lemmas imply the following corrolary.

Corollary 5. The correspondence S — G(S) gives a bijection between all quasi-

closed subsets of ® and all connected smooth subgroup schemes containing the
torus T in G(P).

§6 Frobenius morphism

In this section we discuss a Frobenius morphism and introduce a scheme Ey.
Let G be an affine scheme over a perfect field K. Consider a Frobenius
morphism F': G — F(G) corresponding to the natural embedding

K[F(Q)] = K[G] — K[G).

Lemma 6. Let H and H' be closed subschemes of any algebraic affine scheme G
over a perfect field K. If the subschemes FN(H) and FN(H') of FN(G) coincide,
then the schemes H,oq and H'..q coincide.

Proof. Let the scheme G be represented by K[G], and let the subschemes H and
H' be represented by K[G]/I and K[G]/I' for some ideals I and I’ respectively.
Then the subscheme FN(H) (respectively FV(H')) is represented by the algebra
(K[G)/I)P" = K[G]P" /(K[G]P" N I) (respectively K[G]P" /(K[G]?" N T")). Since
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the subscheme F(H) equals to the subscheme F'V(H'), the corresponding ideals
K[G]P" N1 and K[G]?" NI’ coincide. So we get "VI = *VT, and therefore the
ideals v/T and v/T' coincide. Thus we conclude

K[H.q) = K[G]/VI = K[G]/VI = K[H',od]
and Hred = leed- O

Let FN : G(®) — FN(G(®)) be the N-th power of a Frobenius morphism.
Denote the kernel of FN by Ely.

Lemma 7. Ey =Ty [[5c4 2s(apn),
where Ty = Ker(FN)NT, and this product is direct.

Proof. See [3], I1.3.2. O

Lemma 8. G(S) N Ex = Tn [[5egzs(apy),
where Ty = Ker(FN) N'T, and this product is direct.

Proof. Since the group schemes G(S) and Ey contain Ty and zg(a,~) for each
B € S, the intersection G(S)NEy contains the right-hand member of the equality.
So it is enough to prove the other inclusion.

By Lemma 7, for any K-algebra R and any element g € G(S, R) N Ex(R)
there is an fppf R-algebra R’ such that g = t[];.q ¥5(ag), where t € Tn(R')
and ag € R’ with agN = 0. Since t lies in G(S, R') N Ex(R’), the intersection
G(S, R') N Ex(R') contains the product [];.4 s(as).

Note that G(S, R') N Ex(R') is a subgroup of G(®, R') and contains T'(R).
So we may apply Main Lemma 16, which is proven in Section §10. Thus we get
zg(ag) € G(S, R') for each § € . Lemma 3 implies ag = 0 for each 3 ¢ S, and
this completes the proof. O

§7 Construction of H,

In this section we construct a subgroup scheme H,, corresponding to a function
¢ that satisfies the inequality (x).
For a given function ¢ : ® — N U {0, 00} define a subset

S={8e®| (3 =}

of ®. If the function ¢ satisfies the condition (x), then the set S is quasi-closed
by definition. Fix any positive integer N such that N > max{p(f3) | ¢(3) < oc}.

Assume at first that the field K is perfect. Set ¥(8) = min((3), N). Obvi-
ously if ¢ satisfies the condition (x) then 1 satisfies too. Consider a subscheme
E%N = TN HBECD l‘ﬁ(apw(g)) Of EN.

Lemma 9. If ¢ satisfies (x), then E, n is a subgroup scheme.



Proof. To prove this lemma it is enough to check that for any k-algebra R the
set E, n(R) is a subgroup of G(®, R). Obviously E, n(R) contains a unit, and
for any t € Ty(R) we have t™! € Ty (R), and z5(a)~' = z5(—a). So it is enough

to show that an arbitrary product of elements of Ty (R) and xg(c,u (R)) can be

written in the form ¢ [],.q 25(ap), where t € Ty(R) and each alﬁ’d}(m = 0.

Consider an element h of G(®, R), which is equal to a product of elements

t; € Tn(R) and zg(ag;) with agf;ﬂ) = 0 in some order. Let I be the ideal of R

generated by all ag;. The ideal I is finitely generated and is contained in the
nilradical Nil(R), so we have I = ( for some positive integer M. We prove that
h modulo I" can be written in the required form, by induction. Obviously the
case r = M completes the proof.

If r is equal to 1, this is trivial, because ag; € I. Now we prove that the case
r imlies the result for r + 1.

First of all we note that we anytime can permute any element ¢; with any
element of x5(ag ), because z5(as;)t; = tixg(B(t; ag,).

Suppose that h is equal to a product of t; and xg(ag;) with the following
property: if we omit the factors x3(ag;) with ag; € I", then we get a product
like ¢ [] 5 #5(ap). Consider an omitted factor x,(af,) with af, € I"\I"*'. We can
permute it with ¢, with z3(ag;), where 5 # +o, and with z_,(a_,,;), as follows.

When we permute z,(a’,) and ¢, we use the formula

To(al)t = trg(a(t™1)d).

When we permute z,(al,) and xzg(as;), where 3 # o, we use the Chevalley
commutator formula

ralay)zs(ag,) = zp(ag;)ralal) ] ravss(Nagrsal aj).
r,s>0

pr(ratss)

By the inequality (*), we have (Nag.sa,"aj ;) = 0. So each new factor

: v
x,(a.) satisfies a/”" " =0 and d, € I"*L.
When we permute z,(a),) and z_,(a_q,;), we use the formula

a/

— 7% (1 " Q)T (——2——
1 +a/aa_a7j)o{ ( +aaa’ 7])x (1 +a//aa_a7j)

Tal)2-a(a-0y) = o

for a homomorphism o™ : G,, — T (see [5] Exp.XX 2.1). Obviously we have
a’(l+aa_n,;) € Ty(R).

Using these permutations, we put x,(al,) near the factor z,(a,) and eliminate
the former by the formula

Tolaa)To(al) = xo(aq + al,).

Proceeding this process for each omitted factor z,(al,) with a/, € I"\I"™!, we
get a required product modulo "+, O

Lemma 10. G(S) normalizes E,, v



Proof. Let us show that conjugation by G(5) leaves Ty inside E,, y. In particular,
then conjugation by x,(G,) leaves Ty inside E, n for any v € S. Since G(95)
contains 7" and since Ey is a normal subgoup scheme of G(®), we have the
inclusion

TS = (T N EN)%®) € G(S) N Ey.

Using Lemma 8, we conclude
TV € Ty [[ zs(apn) € B
BeS

Let us show that the commutator of subgroup schemes x5(cu(s)) and 2. (G,)
with v € S lies inside E, x. Suppose that v # —3. Then by the Chevalley
commutator formula we have

[25(), 24(Ga)l € [T @rpray (Nogrs(cpu)").

rs>0
By the inequality (sx), if p fNgy.s, then
p(rf + sv) = min(p(8) —log, 7, ¢(7) — log, s)
= min(p(B) — log, 7, 00) = ¢(fB) —log, 7,
and therefore ¢ (r3 + sv) > ¥(8) — log, r. So we have the inclusion
Nayrs(apu)" C uueptsy,
and therefore the following inclusion holds:
[2(apu®), 14(Ga)] € T H ra(aue) C BN
ped

Now suppose that v = —3. Then by the commutation formula
[z5(a), z-5(b)] = zg(a)z_p(b)zs(—a)z_p(—b)
a’ ~
= xﬁ(a)xﬁ(__iab)ﬁ (1 —ab)z_s(

1

—ab ab
(1 —ab)z_z(b
1_ab)ﬁ( ab)x ﬁ(l_ab

where a is nilpotent, we get the inclusion

(D)

1—a

),

= wp(a

[2a(pum ), 2-(Ga)] S za(aum) - T - w-plapn) S Ep x.

Since E, v is a product of subgroups Ty and zs(a,u» ), the above assertions
imply that each root subgroup z,(G,) with v € S normalizes E,, x. Obviously T
also normalizes Ty and x5(,us ), so T' normalizes the whole E, x.

Since G(®) is a group scheme over a field, the normalizer of the subgroup
scheme E, ny in G(®) is an affine subgroup scheme (see [5] Exp. VIII 6.7). The
reduced subscheme of the normalizer is a closed subgroup of G(®) and contains
T and z,(G,) with v € S. On the other hand, the product T[] g2+(G,) is
an open dense set in G(S) (see [5] Exp. XXII 5.4.4). Thus the whole G(S) is
contained in the normalizer, i.e. G(S) normalizes E, y. O
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Define a scheme H,, as a product G(S)E, y. Since the scheme G(S) normalizes
E, ny by Lemma 10, H, is a group scheme. Since H,, is defined as a product of
subgroup schemes, we can consider H, as a functor on k-algebras given by

H,(R) = {g € G(®, R) | there are an fppf R-algebra R’ and elements
heG(S,R), f e E,n(R) with hf = g in G(?,R)}.

See [3], 1.6.2 for details.

This construction is invariant under field extension, so we can define H, over
any (not necessarily perfect) field K as usual by K[(H,)x| = K @ F,[(H,)w,),
since any field K of characteristic p is an extension of the perfect field F,. This
new definition is compatible with the previous one.

Lemma 11. The scheme H, does not depend on the choice of N and satisfies
all the conditions of Theorem 1, i.e. it is a connected subgroup scheme of G(®)
containing T'. Moreover (Hy)rea = G(5).

Proof. Let us show that H, does not depend on the choice of N. Let N’ be
greater than N, N > max{¢(8) | ¢(8) = co}. Obviously E, s contains E,, y, so
we get the inclusion G(S)E, n 2 G(S)E, y. On the other hand T is contained
in G(S), w5(a,n) is contained in G(S) for § € S, and zg(a,e@ ) is contained in
E, n for B ¢ S. Thus we get the inclusion

Eonr =Ty H xﬁ@pmi“(@(ﬁw’)) C G(S)E, N,
pBed

and therefore G(S)E, n+ C G(S)E,n. So the group schemes G(S)E, y and
G(S)E, n coincide, and H,, does not depend on the choice of N.

Let us prove that the reduced subscheme of the scheme H,, is equal to G(S).
Assume at first that the field K is perfect. By definition we get FV(H,) =
FN(G(S)). So by Lemma 6 we get (H,)rea = G(S). Any field extension preserves
this equality, so it holds for any (not necessarily perfect) field K.

To prove that the scheme H,, is connected it is enough to check that (H,).eq
is connected, because for any non-trivial idempotent f € K[H,| the element
f € (K[H,]/Nil) is also a non-trivial idempotent. But the subscheme (H,)yeq is
equal to G(S) and therefore is connected.

Since the subscheme (H),eq contains the torus 7', the scheme H, does. [

Lemma 12. xg(Ga) N H(p = xg(apw(@)).
In particular, all schemes H, are distinct.

Proof. Assume at first that the field K is perfect.
Suppose that ¢(/3) = co. Then 3 lies in S by definition, and by Lemma 3 we
get the inclusion z3(G,) € G(5). So x5(G,) € H, and 23(G,) N H, = 23(G,).
If p(B) < oo, then ¢(F) < N by the choice of N. So we have

xﬁ(apcp(ﬁ)) = xﬁ(apmin(w(ﬁ),N)) - Ecp,N - H<p~

10



We know that FN(E, y) = 1, so FN(H,) = FN(G(S)). Since () is finite,
B ¢ S, and by Lemma 3 we have z3(G,) N G(S) = 1. Since F preserves root
data, we get

F¥(25(G) 0 H,) € F(25(Ga)) 0 FY(H,)
= FV(@p(Ga) N FN(G(S)) = FY (24(Ga) N G(S)).

Le. FN(z3(G,) N Hy) =1, 50 25(G,) N Hy C zg(cr,n).

Consider an element zg(a) € H,(R). By definition of H, there exist an
fopf R-algebra R’, an element g € G(S,R’'), and an element h € E, y(R)
such that z5(a) = gh. We know that a?” = 0, so FN(zz(a)) = 1. Also we
know that FY(h) = 1. Thus F¥(g) = 1, or, in other words, the element g
lies in the intersection G(S,R') N Ex(R'). By Lemma 8, we have the inclu-
sion G(S,R')NEn(R') C E,n(R'). So we get zg(a) € E, n(R'), and therefore
zg(a) € E, n(R). By the uniqueness of the decomposition in Lemma 7 and by
definition of E, x(R) we get a € a,ee) (R), so 23(Ga) N H, C 25(0pme0)).

We proved the assertion for a perfect field K. Since any field extension pre-
serves the equality required, it holds for an arbitrary field K. O

§ 8 Reduction to an algebraically closed field

Now to prove Theorem 1 it is enough to show that any connected subgroup
scheme H of G(®) containing 7" over K is a scheme H, for some function ¢
satisfying the inequality (). In this section we reduce the general situation to
the case of an algebraically closed field K.

Let H be a connected intermediate group scheme 7' < H < G(®). Let Hy be
the scheme over the algebraic closure K represented by K[H] = K ® K[H]. Then
Hy is a subgroup scheme of G(®)z containing the split maximal torus T%. The
scheme Hy is also connected, because field extension preserves connectedness of
group schemes, see [5], exp. VIa 2.4.

Any subgroup scheme of a given group scheme is closed (see [5] Exp. VIb
1.4.2).

Suppose now that Theorem 1 is proved in the case of an algebraically closed
field. Then the following lemma implies Theorem 1 in the general case.

Lemma 13. Let H and H' be closed subschemes of any algebraic affine scheme G
over a field K. If the schemes Hy and H’? coincide as subschemes of the scheme

Gz over the algebraic closure K, then the schemes H and H' coincide.

Proof. Let the scheme G be represented by K[G], and let the subschemes H and
H' be represented by K[G]/I and K[G]/I" for some ideals I and I’ respectively.
Then the subscheme Hg is represented by K ® (K[G]/I) = K[G]/K[G]I, and
similarly the subscheme H7- is represented by K|[G]/K[G]I'. Since the schemes
Hy and HY. coincide, we get K[G]I = K[G]I'. Thus we can conclude

I = K[GINK[G)I = K[GINK[G|I' =T,
because the embedding K[G] — K|[G] is faithfully flat. O

11



Now we may assume the field K is algebraically closed in the proof of Theo-
rem 1.

89 Reduced subscheme

In this section we assume that the field K is algebraically closed.

Let H be a connected subgroup scheme of G(®) containing a split maximal
torus T over an algebraically closed field K. Consider the reduced subscheme
Heq. 1t is represented by K[H|/Nil(K[H]). The scheme H,q contains the torus
T, because the torus T is reduced. The reduced subscheme of a group scheme over
a perfect (e.g. over an algebraically closed) field is a group scheme (see [5] Exp.
VIa 0.2). The reduced subscheme of a connected group scheme is also connected.
Any reduced group scheme over an algebraically closed field is smooth (see [12]
11.6). So H,eq is a connected smooth subgroup scheme of G(®) containing the
torus 7. By Corollary 5, the scheme H 4 is equal to G(S) for some quasi-closed
subset S of ®.

Consider a nilradical Nil(K[H]) of the algebra K[H|. It is a finitely generated
nilpotent ideal, so there is a positive integer N such that Nil(K[H ])pN = 0.
Obviously we have FN(H) = FN(H,oq) = FY(G(9)).

Consider any K-algebra R and any element g € H(R). Since the element
FY(h) lies in the group FY(G(S))(R), there is an fppf R-algebra R’ such that
FN(g) = FN(h) for some element h € G(S,R'). Then the element f = h~lg
satisfies FV(f) = 1, and therefore f € Enx(R’). Thus the element & is equal to
the product hf, where h € G(S,R') and f € Enx(R'). By definition this means
that H is a subscheme of G(S)Ey. The inclusions G(S) C H C G(S)E,, imply
H=G(S) - (HNEy).

The above assertions establish the following lemma.

Lemma 14. Let H be a connected subgroup scheme of G(®) containing T over
an algebraically closed field K. Then the following assertions hold.

1. Hyeq = G(S) for some quasi-closed set S;

2. FN(H,eq) = FN(G(S)) for some positive integer N;

3. H=G(S)(HNEy), where S and N as above.

8§10 Subgroups of reductive groups over rings

In this section we prove Main Lemma 16, which is a useful technical result
concerning overgroups of the maximal torus in G(®, R).

Let G be any affine scheme over a field K, R any K-algebra, I any ideal in
R, h and A’ elements of G(R). We write h = A’ mod I, if the images of h and
R’ under the natural map G(R) — G(R/I) coincide. Obviously this gives an
equivalence relation on G(R), and if G is a group scheme, then multiplication
preserves the relation.

Lemma 15. z,(a)z3(b) = z3(b)zo(a) mod ab.

12



Proof. Tt is enough to prove Lemma for the algebra Kla, b], because we can apply
the functor G to the commutative diagram

Kla,b] —— K]Ja,b]/(ab)

| |

R ——  R/(ab),

and if the images of the left and right parts of the equivalence coincide in
Kla,b]/(ab), then they coincide in R/(ab).

The ideals (a) and (b) are coprime in Kla,b|, i.e. the product (a)(b) is equal
to the intersection (a) N (b). Therefore the natural map

Kla,b]/(ab) — Kla,b]/(a) ® K]|a,b]/(b)
is injective. So the map
G(K[a,b]/(ab)) — G(Kla,b]/(a) & Kla, b]/(b))

is injective, and it is enough to prove that the images of z,(a)x3(b) and x3(b)z,(a)
in G(K][a,b]/(a)®K]a,b]/(b)) = G(K][a,b]/(a))xG(K]a,b]/(b)) coincide. In other
words, it is enough to check that z,(a)xs(b) is equal to z5(b)x,(a) modulo a and
modulo b, that is obvious. O

Main Lemma 16. Let R be a K-algebra, where K is an algebraically closed field.
Let H be a subgroup of G(®, R) containing T(R), h be an element of H such that
h = [lgeq Tslas), where ag € Nil(R). Then for each root 3 the element x5(ap)
lies in the group H.

To prove Main Lemma 16 we use several sublemmas.

Sublemma 16.1. For any element ¢ € K* and any root 3 € ® there is an
element t € T(K) such that 3(t) = €.

Proof. Since ( ,) is non-degenerated, we can choose a cocharacter A such that

(B,\) #£ 0. Set t = MNeT™). 0

Sublemma 16.2. Let o and v be non-collinear roots. Then there is an element
t € T(K) such that o(t) # 1, y(t) = 1.

Proof. Since ( ,) is non-degenerated, we can choose a cocharacter A such that
{a, Ay # 0 and {7,\) = 0. Set t = \(¢), where eV #£ 1. O

Sublemma 16.3. In the settings of Main Lemma 16 let I < Nil(R) be an ideal.
Suppose that a, € I" for some root o, and ag € I° for B # o, 1 < r < s.
Then there is an element h' in H such that i = []scq x5(aj), where a, = aq
mod I"*, o', € I*™, and ajy € I* for § # +a.

—Q

Proof. Since the field K is algebraically closed, there are elements € and £ in K*
such that e + £+ 1€ K* and e ™' + ' +1 = 0. By Sublemma 16.1, there are
t1,t9,t3 € T(K) such that a(t;) =€, a(ty) =&, and a(ts) = (e + &+ 1)1

13



Since h = 1 mod Nil(R), we have t3((t;ht;")(t2ht; )h)ts' =1 mod Nil(R),
so the element t3((tiht; ) (t2hty )h)tz! lies in Ker(FM : G — FM(G))(R) for
some M. Then, by Lemma 7, the element t5((t;ht; ) (t2ht; ')h)t; ! lies in the big
cell, and therefore we have a decomposition

ts((tahty ") (tahty YD)t " =ty [ | 2(aly)
Bed
for some t, € T(R) and aj; € R. Consider an element
B =ty ts((thty ) (tahty )t = [ 2s(a)).
Be®
It lies in the group H, because H contains h and T'(R). On the other hand, we

have
B =t s ((tht ) (tahty V) R)ts

= t1" [[ 2s(B(trts)ag) [ [ ws(B(tats)ag) [ | wa(B(ts)as)

Bed BeED Bed
=t," H z5(B(t3)(B(t1) + B(t2) + 1)ag) mod I™**
Bed®

by Lemma 15. Since Gauss decomposition is unique for the big cell of the group
G(®, R/I™*?), we have a = B(t3)(B(t1) + B(t2) + 1)ag mod I""* for each root
. In particular, since I"** C I""* and I**! C I"™ we have a/, = a, mod ["*!,

€ I*™, and aj; € I°® for each 3 # *a. O
Sublemma 16.4. Under the assumptions of Sublemma 16.3, there is an element
W in H such that ' = []ecq v5(ajy), where ay, = ao mod I and ajy € I°*! for

B#a.

Proof. By Sublemma 16.3, we may assume that a_, € "1,

Fix any root v # +a. By Sublemma 16.2, there is an element t; € T'(K) such
that y(¢1) = 1 and a(t;) = n # 1. Since (1 —n) € R*, Sublemma 16.1 gives an
element ty € T(K) such that a(ty) = (1 —n)~"

Since h =1 mod Nil(R), we have t5[h, ,]t;* = 1 mod Nil(R), so the element
to[h, 1]ty " lies in the big cell, and therefore we have a decomposition

tolh, ]ty " =t [ [ walal)
Bed
for some ¢3 € T(R) and a3 € R. Consider an element
W' =ty bttt = [ [ zs(aj
ped
It lies in the group H, because H contains h and T'(R). On the other hand, we

have

R = t3 a[h, t]tyt =t (tahty V) (titah My 1Y)

=t;! H zg(B(t2)as) H x(—PB(tita)ag)

ped —pBed
=t5" [ za(5( B(t1))ag) mod I"**
ped
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by Lemma 15. Since Gauss decomposition is unique for the big cell of the group
G(®, R/I"**), we have aj = B(t2)(1 — B(t1))ag mod I"** for each root 3. In
particular, since "' C ™" and I*™' C ["** we have a/ = a, mod ["!
af € I**!, and if ag € I*", then afy € I**.

Proceeding this argument for all roots v such that v # 4«, we obtain an
element A’ required. O

Sublemma 16.5. Under the assumptions of Sublemma 16.3, suppose that the
ideal I is finitely generated. Then there is an element a!, € R such that a, = a.,
mod I"™! and x,(al,) € H.

Proof. This follows from Sublemma 16.4 by induction on s, since some power of
the ideal I is equal to zero. O

Sublemma 16.6. Under the assumptions of Sublemma 16.3, suppose that the
wdeal I s finitely generated and r = s. Then for any positive integer q there is an
element a, € R such that a, = a), mod I"™ and z,(a) € H.

Proof. Let us prove the sublemma by induction on ¢. Sublemma 16.5 implies the
assertion for ¢ = 1. Suppose now that the assertion holds for ¢ and for each root
«, and prove it for ¢ + 1.

The element i = [[,cp Za(aq) lies in H, and for each root a there is an
element ' € R such that « = ¢/ mod I""? and x,(a’) € H. Consider an
element (I],ce a(@a))(I],eq alal,))™. For each root a we have a, € Nil(R)
and a/, € Nil(R), so this element lies in the big cell, and therefore we have a

decomposition
(H xa(aa))(H xa(a;))_l =1 H Ta(ba)

acd acd acd
for some ¢t € T(R) and a/, € R. Consider an element

h' = til(H xa@@z))(H Talay)) ™t = H o (ba)-

acd acd acd

It lies in the group H, because H contains h, T'(R), and z,(a’) for each root .
On the other hand, we have

W=t"(]] zalac))(J ] zalap)) ™ =" [ ] #alta —d,) mod 1**
acd acd acd

by Lemma 15, because z,(aq)zq(al,)™ = zo(ay — @), and we permute only
elements of type x,(aq — al,), where a, —a!, € I""? and elements of type z,(a.,),
where a, € I". Since Gauss decomposition is unique for the big cell of the
group G(®, R/I**%), we have b, = a, — al, mod I**7 for each root «, and, in
particular, b, = a, — a), mod I"*%"! and b, € I"t7. Apply Sublemma 16.5 to
the element h'. Then for each root « there is an element a! such that a, = b,

mod "t and z,(a!)) € H. Thus we have :
zo(al, +al) = x,(d))z.(al) € H

with al, + a, = a, mod [T+, O

Proof of Main Lemma 16. This follows from Sublemma 16.6 for r =s =1, [ =

(aq | @ € @), and for g large enough, because some power of I is equal to zero. [
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§11 Determining of a function ¢

In this section we determine a function ¢ corresponding to a given connected
subgroup scheme H in G(®) that contains T and check that ¢ satisfies the con-
dition (x).

Lemma 17. Under the assumptions of Lemma 14, the following equality holds:
H = G(S) [Tpeq (H N 25(0)).
Proof. By Lemmas 14 and 7, it is enough to prove the equality

H(Ty [ [ wslapy) =T [](H N aslayn)),

ped BED

which follows immediately from Main Lemma 16. O

Any subgroup scheme of the scheme a,,~ is a scheme o, for some M < N.
Define a function ¢ : & — N U {0, 0o} as follows:

if €8, set () = o0;

otherwise o(f3) is determined by H N xg(ay,v) = z5(a00)).

Lemma 18. LEB(GQ) NH= Iﬁ(()ép(p(@)).

Proof. The inclusion 25(G4) N H 2 xg(ye@ ) is obvious. Let us prove the other
inclusion. The case § € S (in other words, () = 00) is trivial, because we have
the inclusions z3(G,) C G(S) C H.

Assume that ¢ S. We have FN(z5(G,) N H) C FN(H) = FN(G), so
FN(z3(G,) N H) C FN(G) N FN(z5(G,)). Since F preserves root data and
B¢ S, we have F¥(G) N FN(z3(G,)) = 1. Therefore x5(G,) N H lies in the
kernel Ker(FY : G(®) — FN(G(®))). So x5(G,) N H C xg(a,n). By the setting
of o, this implies x3(G,) N H = z(qpes). O

Lemma 19. The function ¢ satisfies the inequality (x).

Proof. Consider the K-algebra R = Kla,b]/(a®” ,5"*”). Elements z,(a) and
zg(b) lie in H(R). Since H(R) is a group, the commutator

[za(a), z5(b)] = H Tratsg(Naprsa'b®)

r,s>1

lies in H(R). By Main Lemma 16, we have ,44s3(Nagrsab) € H(R) for any
positive integers r ans s such that ra + s € ®. By Lemma 18, this means that
(Nagmab)p(p(msm = 0. Obviously, this is equivalent to the condition (). O

Proof of Theorem 1. In Section § 7 we defined a scheme H, that corresponds to a
function ¢ satisfying (*). In Lemma 11 we prove that the schemes H,, satisfies all
the conditions of Theorem 1. Lemma 12 shows that all schemes H, are distinct.
It remains to prove that any scheme H satisfying the conditions of Theorem 1
is a scheme H, for an appropriate function ¢ satisfying (x). By Lemma 13, we
may assume K is algebraically closed. In Section §11 we determine a function
@ corresponding to a given scheme H. In Lemma 19 we prove that the function
¢ satisfies (x). By the definition of ¢ we have H = H,, and this completes the
proof. O
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