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§ 1 Introduction


In the paper we completely describe connected subgroup schemes of a re-
ductive group that contain a split maximal torus over an arbitrary field. This
description is stated in purely combinatorial terms and depends only on the cor-
responding root system. This is a decisive step towards a description of all (not
necessarily connected) subgroup schemes containing a torus. We intend to return
to this problem in a subsequent paper.


The main theorem is a broad generalization of classical results describing al-
gebraic subgroups of a split reductive group (see A. Borel’s and J. Tits’s paper [1]
and Séminaire de Géométrie Algébrique [5]). In context of our problem, algebraic
subgroups correspond to reduced subgroup schemes. We briefly recall the results
on algebraic subgroups in Section § 5.


These results were generalized to groups over some classes of rings, including
semi-local ones, by Z. Borewicz, N. Vavilov, and others. On the other hand, over
a finite field G. Seitz described overgroups of all not necessarily split maximal
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tori. Surveys of research in these directions and further references can be found
in the papers [9, 10].


In the present paper we generalize in a different direction. Namely, we include
not necessarily reduced subgroup schemes. Recall that by Cartier’s theorem (see,
for example, [12] 11.4) any affine group scheme over a field of characteristic zero
is reduced. But in positive characteristic, subgroup schemes of a reductive group
are not exhausted by reduced ones.


Non-reduced subgroup schemes of reductive groups were considered, in par-
ticular, by C. Wenzel (see [13, 14]) and F. Knop (see [4]). Namely, in the special
case of parabolic subgroup schemes, an analogous problem was addressed by
Ch.Wenzel. He gave a complete description of parabolic subschemes under some
mild restriction on characteristic. Futhermore, F. Knop for [4] described all sub-
group schemes of SL2. One of our initial motivations was exactly to generalize
these results.


In the preceding paper [6] we classified all (not necessarily reduced) overgroup
schemes of a maximal torus in GLn. The result of the present paper generalizes
simultaneously the classical result on reduced subgroup schemes, the result by
Ch. Wenzel on parabolic schemes, and the above result for GLn. In the proof we
develop the approach applied to the case of GLn in [6]. The proof uses standard
technics and tools from algebraic geometry: reduction to an algebraically closed
field, Frobenius morphism, functorial properties. But the most difficult step,
Main Lemma 16, concerns groups over rings and involves ideas from the works
by Z. Borewicz and N. Vavilov [2], [8].


The rest of the article is organized as follows. In Section 2, we fix notation
and recall some results on the structure of reductive groups. In Section 3, we
formulate the main theorem. In Section 4, we discuss the concept of quasi-closed
sets. Section 5 contains a review of the description of connected intermediate
algebraic subgroups in a reductive group. In Section 6, we discuss a Frobenius
morphism. In Section 7, we specialize and start proving Theorem 1, namely,
we construct all connected intermediate group schemes. In Section 8, we reduce
Theorem 1 to the case of an algebraically closed field. In Section 9, we consider
the reduced subscheme of an intermediate group scheme. Finally, in Section 10,
we prove Main Lemma on intermediate subgroups in the group of R-points of a
reductive group and complete the proof of Theorem 1.
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§ 2 Preliminaries


In this section we fix notation and recall necessary results concerning reductive
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groups. We follow the books [3], [7], and [5] Exp. XXII.
Let G be a reductive group containing a split maximal torus T over a field K.


Let (X,Φ, X ,̌Φ )̌ be the root data of (G, T ). In particular, X is the character
group of T , Xˇ is the cocharacter group of T , i.e. the group of all homomor-
phisms from Gm to T , and the groups X and Xˇ are in duality by a pairing
〈 , 〉 : X ×Xˇ→ Z. For any root β ∈ Φ, any K-algebra R, and any element
t ∈ T (R) we have by definition


(−β)(t) = β(t)−1.


Consider an adjoint representation of G on its Lie algebra L. The T -module
L admits a decomposition


L = L0 ⊕ ( ⊕
β∈Φ


Lβ)


Each root subspace Lβ has dimension 1.
For each root β ∈ Φ there is a homomorphism xβ : Ga → G such that the


corresponding tangent map induces an isomorphism of the Lie algebra of Ga onto
Lβ. Any element t of the torus T (R) acts on the root subgroup corresponding to
a root β by


txβ(a)t−1 = xβ(β(t)a).


In particular, for t = λ(ε), where λ is a cocharacter and ε is an invertible element
of R, we have


λ(ε)xβ(a)λ(ε)−1 = xβ(ε〈β,λ〉a).


Such a root homomorphism is unique up to multiplication by an element of K∗.
For each root β we fix a homomorphism xβ that comes from a homomorphism
over Z.


Fix a Weyl basis {eβ, β ∈ Φ, hλ, 1 ≤ λ ≤ dimT} in L, where {eβ, β ∈ Φ} is a
Chevalley system in L. Then the adjoint action of a root subgroup xα(Ga) on a
basis element eβ with β 6= −α is given by


Ad(xα(a))eβ = eβ +
∑


r>0


Mαβra
rerα+β,


where Mαβr are integral coefficients.
For root subgroups corresponding to roots α and β with β 6= −α, we have the


Chevalley commutator formula


[xα(a), xβ(b)] =
∏


r,s>0


xrα+sβ(Nαβrsa
rbs),


where Nαβrs are integral coefficients. We take the values of Mαβr and Nαβrs from
the paper [11].


In case of β = −α, but one of a and b is nilpotent, we use the formula


xα(a)x−α(b) = x−α(
b


1 + ab
)α (̌1 + ab)xα(


a


1 + ab
)


(see [5] Exp.XX 2.1).
Fix an arbitrary ordering on Φ that is compatible with root heights, i.e. if


ht(α) < ht(β), then α goes before β. When we consider a product like
∏


β∈Φ, we
take the factors in this order.
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§ 3 Statement of main results


In this section we formulate a main result of the paper.
Let K be a field of characteristic p > 0. Let Φ be a root system, G(Φ) be a


reductive group of type Φ over the field K, T be a split maximal torus in G(Φ).


Theorem 1. There is a one-to-one correspondence between all connected sub-
group schemes of G(Φ) that contain T , and all functions ϕ : Φ → N ∪ {0,∞}
satisfying


ϕ(rα + sβ) ≥ min(ϕ(α)− logp r, ϕ(β)− logp s) (∗)
for any roots α, β, rα + sβ ∈ Φ such that p 6 |Nαβrs.


Remark. Suppose that the following restriction on characteristic holds:
• if Φ ⊇ B2, then p > 2;
• if Φ ⊇ G2, then p > 3.


Then p 6 |Nαβ11 for any two roots α and β such that α + β is a root. So in this
case the condition (∗) is equivalent to the following one:


ϕ(α + β) ≥ min(ϕ(α), ϕ(β))


for any roots α, β ∈ Φ such that α+ β ∈ Φ.
Examples. 1. A function ϕ satisfying (∗) corresponds to a reduced subgroup
scheme if and only if all values of ϕ are zero and infinity. In the notation of
Section § 5, the function ϕ corresponds to the scheme G(S), where S is a quasi-
closed set, if and only if


ϕ(β) =


{
∞, if β ∈ S;


0, otherwise.


2. The product of the torus T and the kernel EN of the N -th power of a
Frobenius morphism is a non-reduced connected subgroup scheme. All values of
the corresponding function are equal to N .


3. Suppose that Φ = An−1, G = GLn, and T is the group of diagonal matrices.
GLn is represented by K[GLn] = K[x11, . . . , xnn, t]/(tdet(xij) = 1). In this case
the subscheme corresponding to a function ϕ : An−1 → N∪{0,∞} is represented


by K[GLn]/(xp
ϕ(ij)


ij = 0), where ϕ(ij) = ϕ(ei − ej). See [6] for details.


§ 4 Quasi-closed sets of roots


In this section we introduce and discuss a notion of quasi-closed sets of roots,
and an equivalent definition of the property (∗). The notion of quasi-closed set
is taken from the paper [1] by A. Borel and J. Tits, but the definition we use is
distinct from the initial one.
Definition. Let S be a subset of a root system Φ. Suppose that for any two
roots α and β in S and positive integers r and s such that rα+ sβ is a root and
p 6 | Nαβrs, the root rα+ sβ lies in S. Then the subset S is called quasi-closed.
Remark. Any closed set of roots is quasi-closed. Conversely, any quasi-closed
set is closed under the restriction
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• if Φ ⊇ B2, then p > 2;
• if Φ ⊇ G2, then p > 3.


Lemma 2. Let Φ be a root system, p be a prime number.
1. The condition (∗) is equivalent to the following one:


ϕ(rα + β) ≥ min(ϕ(α)− logp r, ϕ(β)) (∗∗)


for any roots α, β, rα + β ∈ Φ such that p 6 |Mαβr.
2. A set S is quasi-closed if and only if the following condition holds: for


any two roots α and β in S and positive integer r such that rα+ β is a root and
p 6 | Mαβr, the root rα + β lies in S.


Proof. 1. If s = 1, then Nαβrs = Mαβr and the conditions (∗) and (∗∗) are the
same. The case r = 1 is similar. The only case, when r, s > 1 and rα+sβ is a root,
is as follows: α and β are simple roots of G2, r = 2, and s = 3 (or, symmetrically,
r = 3 and s = 2). In this case we have Nαβ31 = 1 and N3α+β,β11 = 1 (see [11]), so


ϕ(3α + 2β) ≥ min(ϕ(3α+ β), ϕ(β)) ≥ min(ϕ(α)− logp 3, ϕ(β))


≥ min(ϕ(α)− logp 3, ϕ(β)− logp 2).


2. The condition holds if and only if the function ϕS satisfies (∗∗), where


ϕS(β) =


{
∞, if β ∈ S;


0, otherwise.


The set S is quasi-closed if and only if the function ϕS satisfies (∗). Apply the
first assertion of the lemma to the function ϕS.


§ 5 Connected smooth subgroup schemes


containing a torus


This section is based on [5] Exp. XXII. In this section we consider connected
smooth subgroup schemes containing a torus and show that they correspond to
quasi-closed subsets of roots.
Definition.([5] Exp. XXII 5.2.1) Let X be a prescheme, G be a smooth finitely
represented groupX-prescheme with connected fibres, H be a subgroup prescheme
of G. We say that H is of type (R) if the following conditions hold:


1. H is smooth finitely represented X-prescheme with connected fibres;
2. for any x ∈ X, Hx̄ contains a Cartan subgroup of Gx̄.
Assume now that G = G(Φ) is a split reductive group over a field. In this case


any connected subgroup scheme containing a maximal torus T is of type (R) if
and only if the scheme is smooth. By [5] Exp. XXII 5.4.1, any subgroup scheme
of type (R) containing T is uniquely determined by its Lie algebra, which has a
form


LS = L0 ⊕ ( ⊕
β∈S


Lβ)


5







for some subset S of Φ.
Definition.([5] Exp. XXII 5.4.2) A subset S of Φ is called a set of type (R) if
LS is the Lie algebra of a subgroup scheme of type (R) containing T .


By G(S) denote the subgroup scheme of type (R) uniquely determined by the
set S.


Lemma 3.


xβ(Ga) ∩G(S) =


{
xβ(Ga), if β ∈ S;


1, otherwise.


Proof. See [5] Exp. XXII 5.4.3.


Lemma 4. Any quasi-closed set is of type (R). And conversely, any set of type
(R) is quasi-closed.


Proof. We show first that any set of type (R) is quasi-closed. By Lemma 2 it is
enough to check that for any two roots α and β in S and positive integer r such
that rα+ β is a root and p 6 | Mαβr, the root rα + β lies in S.


Since α ∈ S and β ∈ S, we have eβ ∈ LS and xα(Ga) ⊆ G(S) by Lemma 3.
Therefore the element Ad(xα(a))eβ = eβ+


∑
r>0 Mαβra


rerα+β lies in LS for any a.
Since LS = L0 ⊕ ( ⊕


β∈S
Lβ) and p 6 | Mαβr, we conclude Lrα+β ⊆ LS, and therefore


the root rα+ β lies in S.
Now we need to prove the converse. The assertion that any closed set is of


type (R) is established in Theorem [5] Exp. XXII 5.4.7. In fact, the proof of this
theorem uses only properties of quasi-closed sets and is therefore a valid proof for
our assertion.


The above lemmas imply the following corrolary.


Corollary 5. The correspondence S 7→ G(S) gives a bijection between all quasi-
closed subsets of Φ and all connected smooth subgroup schemes containing the
torus T in G(Φ).


§ 6 Frobenius morphism


In this section we discuss a Frobenius morphism and introduce a scheme EN .
Let G be an affine scheme over a perfect field K. Consider a Frobenius


morphism F : G→ F (G) corresponding to the natural embedding


K[F (G)] = K[G]p ↪→ K[G].


Lemma 6. Let H and H ′ be closed subschemes of any algebraic affine scheme G
over a perfect field K. If the subschemes FN(H) and FN(H ′) of FN(G) coincide,
then the schemes H red and H ′red coincide.


Proof. Let the scheme G be represented by K[G], and let the subschemes H and
H ′ be represented by K[G]/I and K[G]/I ′ for some ideals I and I ′ respectively.
Then the subscheme FN(H) (respectively FN(H ′)) is represented by the algebra
(K[G]/I)p


N
= K[G]p


N
/(K[G]p


N ∩ I) (respectively K[G]p
N
/(K[G]p


N ∩ I ′)). Since
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the subscheme FN(H) equals to the subscheme FN(H ′), the corresponding ideals


K[G]p
N ∩ I and K[G]p


N ∩ I ′ coincide. So we get pN
√
I = pN


√
I ′, and therefore the


ideals
√
I and


√
I ′ coincide. Thus we conclude


K[Hred] = K[G]/
√
I = K[G]/


√
I ′ = K[H ′red]


and Hred = H ′red.


Let FN : G(Φ) → FN(G(Φ)) be the N -th power of a Frobenius morphism.
Denote the kernel of FN by EN .


Lemma 7. EN = TN
∏


β∈Φ xβ(αpN ),


where TN = Ker(FN) ∩ T , and this product is direct.


Proof. See [3], II.3.2.


Lemma 8. G(S) ∩ EN = TN
∏


β∈S xβ(αpN ),


where TN = Ker(FN) ∩ T , and this product is direct.


Proof. Since the group schemes G(S) and EN contain TN and xβ(αpN ) for each
β ∈ S, the intersection G(S)∩EN contains the right-hand member of the equality.
So it is enough to prove the other inclusion.


By Lemma 7, for any K-algebra R and any element g ∈ G(S,R) ∩ EN(R)
there is an fppf R-algebra R′ such that g = t


∏
β∈Φ xβ(aβ), where t ∈ TN(R′)


and aβ ∈ R′ with ap
N


β = 0. Since t lies in G(S,R′) ∩ EN (R′), the intersection
G(S,R′) ∩ EN (R′) contains the product


∏
β∈Φ xβ(aβ).


Note that G(S,R′) ∩ EN (R′) is a subgroup of G(Φ, R′) and contains T (R).
So we may apply Main Lemma 16, which is proven in Section § 10. Thus we get
xβ(aβ) ∈ G(S,R′) for each β ∈ Φ. Lemma 3 implies aβ = 0 for each β /∈ S, and
this completes the proof.


§ 7 Construction of Hϕ


In this section we construct a subgroup scheme Hϕ corresponding to a function
ϕ that satisfies the inequality (∗).


For a given function ϕ : Φ→ N ∪ {0,∞} define a subset


S = {β ∈ Φ | ϕ(β) =∞}


of Φ. If the function ϕ satisfies the condition (∗), then the set S is quasi-closed
by definition. Fix any positive integer N such that N > max{ϕ(β) | ϕ(β) <∞}.


Assume at first that the field K is perfect. Set ψ(β) = min(ϕ(β), N). Obvi-
ously if ϕ satisfies the condition (∗) then ψ satisfies too. Consider a subscheme
Eϕ,N = TN


∏
β∈Φ xβ(αpψ(β)) of EN .


Lemma 9. If ϕ satisfies (∗), then Eϕ,N is a subgroup scheme.
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Proof. To prove this lemma it is enough to check that for any k-algebra R the
set Eϕ,N(R) is a subgroup of G(Φ, R). Obviously Eϕ,N(R) contains a unit, and
for any t ∈ TN(R) we have t−1 ∈ TN(R), and xβ(a)−1 = xβ(−a). So it is enough
to show that an arbitrary product of elements of TN (R) and xβ(αpψ(β)(R)) can be


written in the form t
∏


β∈Φ xβ(aβ), where t ∈ TN(R) and each ap
ψ(β)


β = 0.
Consider an element h of G(Φ, R), which is equal to a product of elements


ti ∈ TN (R) and xβ(aβ,j) with ap
ψ(β)


β,j = 0 in some order. Let I be the ideal of R
generated by all aβ,j. The ideal I is finitely generated and is contained in the
nilradical Nil(R), so we have IM = 0 for some positive integer M . We prove that
h modulo Ir can be written in the required form, by induction. Obviously the
case r = M completes the proof.


If r is equal to 1, this is trivial, because aβ,j ∈ I. Now we prove that the case
r imlies the result for r + 1.


First of all we note that we anytime can permute any element ti with any
element of xβ(aβ,j), because xβ(aβ,j)ti = tixβ(β(t−1


i )aβ,j).
Suppose that h is equal to a product of ti and xβ(aβ,j) with the following


property: if we omit the factors xβ(aβ,j) with aβ,j ∈ Ir, then we get a product
like t


∏
β∈Φ xβ(aβ). Consider an omitted factor xα(a′α) with a′α ∈ Ir\Ir+1. We can


permute it with t, with xβ(aβ,j), where β 6= ±α, and with x−α(a−α,j), as follows.
When we permute xα(a′α) and t, we use the formula


xα(a′α)t = txα(α(t−1)a′α).


When we permute xα(a′α) and xβ(aβ,j), where β 6= ±α, we use the Chevalley
commutator formula


xα(a′α)xβ(aβ,j) = xβ(aβ,j)xα(a′α)
∏


r,s>0


xrα+sβ(Nαβrsa
′
α
r
asβ,j).


By the inequality (∗), we have (Nαβrsa
′
α
rasβ,j)


pψ(rα+sβ)
= 0. So each new factor


xγ(a
′
γ) satisfies a′γ


pψ(γ)


= 0 and a′γ ∈ Ir+1.
When we permute xα(a′α) and x−α(a−α,j), we use the formula


xα(a′α)x−α(a−α,j) = x−α(
a−α,j


1 + a′αa−α,j
)α (̌1 + a′αa−α,j)xα(


a′α
1 + a′αa−α,j


)


for a homomorphism αˇ : Gm → T (see [5] Exp.XX 2.1). Obviously we have
α (̌1 + a′αa−α,j) ∈ TN (R).


Using these permutations, we put xα(a′α) near the factor xα(aα) and eliminate
the former by the formula


xα(aα)xα(a′α) = xα(aα + a′α).


Proceeding this process for each omitted factor xα(a′α) with a′α ∈ Ir\Ir+1, we
get a required product modulo Ir+1.


Lemma 10. G(S) normalizes Eϕ,N .
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Proof. Let us show that conjugation by G(S) leaves TN inside Eϕ,N . In particular,
then conjugation by xγ(Ga) leaves TN inside Eϕ,N for any γ ∈ S. Since G(S)
contains T and since EN is a normal subgoup scheme of G(Φ), we have the
inclusion


T
G(S)
N = (T ∩ EN )G(S) ⊆ G(S) ∩ EN .


Using Lemma 8, we conclude


T
G(S)
N ⊆ TN


∏


β∈S
xβ(αpN ) ⊆ Eϕ,N .


Let us show that the commutator of subgroup schemes xβ(αpψ(β)) and xγ(Ga)
with γ ∈ S lies inside Eϕ,N . Suppose that γ 6= −β. Then by the Chevalley
commutator formula we have


[xβ(αpψ(β)), xγ(Ga)] ⊆
∏


r,s>0


xrβ+sγ(Nβγrs(αpψ(β))r).


By the inequality (∗∗), if p 6 |Nβγrs, then


ϕ(rβ + sγ) ≥ min(ϕ(β)− logp r, ϕ(γ)− logp s)


= min(ϕ(β)− logp r,∞) = ϕ(β)− logp r,


and therefore ψ(rβ + sγ) ≥ ψ(β)− logp r. So we have the inclusion


Nβγrs(αpψ(β))r ⊆ αpψ(rβ+sγ),


and therefore the following inclusion holds:


[xβ(αpψ(β)), xγ(Ga)] ⊆ TN
∏


β∈Φ


xβ(αpψ(β)) ⊆ Eϕ,N .


Now suppose that γ = −β. Then by the commutation formula


[xβ(a), x−β(b)] = xβ(a)x−β(b)xβ(−a)x−β(−b)


= xβ(a)xβ(− a


1− ab)β (̌1− ab)x−β(
b


1− ab)x−β(−b)


= xβ(a
−ab


1− ab)β (̌1− ab)x−β(b
ab


1− ab),


where a is nilpotent, we get the inclusion


[xβ(αpψ(β)), x−β(Ga)] ⊆ xβ(αpψ(β)) · TN · x−β(αpN ) ⊆ Eϕ,N .


Since Eϕ,N is a product of subgroups TN and xβ(αpψ(β)), the above assertions
imply that each root subgroup xγ(Ga) with γ ∈ S normalizes Eϕ,N . Obviously T
also normalizes TN and xβ(αpψ(β)), so T normalizes the whole Eϕ,N .


Since G(Φ) is a group scheme over a field, the normalizer of the subgroup
scheme Eϕ,N in G(Φ) is an affine subgroup scheme (see [5] Exp. VIII 6.7). The
reduced subscheme of the normalizer is a closed subgroup of G(Φ) and contains
T and xγ(Ga) with γ ∈ S. On the other hand, the product T


∏
γ∈S xγ(Ga) is


an open dense set in G(S) (see [5] Exp. XXII 5.4.4). Thus the whole G(S) is
contained in the normalizer, i.e. G(S) normalizes Eϕ,N .
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Define a scheme Hϕ as a productG(S)Eϕ,N . Since the scheme G(S) normalizes
Eϕ,N by Lemma 10, Hϕ is a group scheme. Since Hϕ is defined as a product of
subgroup schemes, we can consider Hϕ as a functor on k-algebras given by


Hϕ(R) = {g ∈ G(Φ, R) | there are an fppf R-algebra R′ and elements


h ∈ G(S,R′), f ∈ Eϕ,N(R′) with hf = g in G(Φ, R′)}.


See [3], I.6.2 for details.
This construction is invariant under field extension, so we can define Hϕ over


any (not necessarily perfect) field K as usual by K[(Hϕ)K ] = K ⊗ Fp[(Hϕ)Fp],
since any field K of characteristic p is an extension of the perfect field Fp. This
new definition is compatible with the previous one.


Lemma 11. The scheme Hϕ does not depend on the choice of N and satisfies
all the conditions of Theorem 1, i.e. it is a connected subgroup scheme of G(Φ)
containing T . Moreover (Hϕ)red = G(S).


Proof. Let us show that Hϕ does not depend on the choice of N . Let N ′ be
greater than N , N > max{ϕ(β) | ϕ(β) =∞}. Obviously Eϕ,N ′ contains Eϕ,N , so
we get the inclusion G(S)Eϕ,N ′ ⊇ G(S)Eϕ,N . On the other hand TN is contained
in G(S), xβ(αpN′ ) is contained in G(S) for β ∈ S, and xβ(αpϕ(β)) is contained in
Eϕ,N for β /∈ S. Thus we get the inclusion


Eϕ,N ′ = TN ′
∏


β∈Φ


xβ(αpmin(ϕ(β),N′)) ⊆ G(S)Eϕ,N ,


and therefore G(S)Eϕ,N ′ ⊆ G(S)Eϕ,N . So the group schemes G(S)Eϕ,N ′ and
G(S)Eϕ,N coincide, and Hϕ does not depend on the choice of N .


Let us prove that the reduced subscheme of the scheme Hϕ is equal to G(S).
Assume at first that the field K is perfect. By definition we get FN(Hϕ) =
FN(G(S)). So by Lemma 6 we get (Hϕ)red = G(S). Any field extension preserves
this equality, so it holds for any (not necessarily perfect) field K.


To prove that the scheme Hϕ is connected it is enough to check that (Hϕ)red


is connected, because for any non-trivial idempotent f ∈ K[Hϕ] the element
f̄ ∈ (K[Hϕ]/Nil) is also a non-trivial idempotent. But the subscheme (Hϕ)red is
equal to G(S) and therefore is connected.


Since the subscheme (Hϕ)red contains the torus T , the scheme Hϕ does.


Lemma 12. xβ(Ga) ∩Hϕ = xβ(αpϕ(β)).
In particular, all schemes Hϕ are distinct.


Proof. Assume at first that the field K is perfect.
Suppose that ϕ(β) =∞. Then β lies in S by definition, and by Lemma 3 we


get the inclusion xβ(Ga) ⊆ G(S). So xβ(Ga) ⊆ Hϕ and xβ(Ga) ∩Hϕ = xβ(Ga).
If ϕ(β) <∞, then ϕ(β) < N by the choice of N . So we have


xβ(αpϕ(β)) = xβ(αpmin(ϕ(β),N)) ⊆ Eϕ,N ⊆ Hϕ.
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We know that FN(Eϕ,N) = 1, so FN(Hϕ) = FN(G(S)). Since ϕ(β) is finite,
β /∈ S, and by Lemma 3 we have xβ(Ga) ∩ G(S) = 1. Since F preserves root
data, we get


FN(xβ(Ga) ∩Hϕ) ⊆ FN(xβ(Ga)) ∩ FN(Hϕ)


= FN(xβ(Ga)) ∩ FN(G(S)) = FN(xβ(Ga) ∩G(S)),


i.e. FN(xβ(Ga) ∩Hϕ) = 1, so xβ(Ga) ∩Hϕ ⊆ xβ(αpN ).
Consider an element xβ(a) ∈ Hϕ(R). By definition of Hϕ there exist an


fppf R-algebra R′, an element g ∈ G(S,R′), and an element h ∈ Eϕ,N(R′)


such that xβ(a) = gh. We know that ap
N


= 0, so FN(xβ(a)) = 1. Also we
know that FN(h) = 1. Thus FN(g) = 1, or, in other words, the element g
lies in the intersection G(S,R′) ∩ EN (R′). By Lemma 8, we have the inclu-
sion G(S,R′) ∩ EN (R′) ⊆ Eϕ,N(R′). So we get xβ(a) ∈ Eϕ,N(R′), and therefore
xβ(a) ∈ Eϕ,N(R). By the uniqueness of the decomposition in Lemma 7 and by
definition of Eϕ,N(R) we get a ∈ αpϕ(β)(R), so xβ(Ga) ∩Hϕ ⊆ xβ(αpϕ(β)).


We proved the assertion for a perfect field K. Since any field extension pre-
serves the equality required, it holds for an arbitrary field K.


§ 8 Reduction to an algebraically closed field


Now to prove Theorem 1 it is enough to show that any connected subgroup
scheme H of G(Φ) containing T over K is a scheme Hϕ for some function ϕ
satisfying the inequality (∗). In this section we reduce the general situation to
the case of an algebraically closed field K.


Let H be a connected intermediate group scheme T ≤ H ≤ G(Φ). Let HK be
the scheme over the algebraic closure K represented by K[H] = K⊗K[H]. Then
HK is a subgroup scheme of G(Φ)K containing the split maximal torus TK . The
scheme HK is also connected, because field extension preserves connectedness of
group schemes, see [5], exp. VIa 2.4.


Any subgroup scheme of a given group scheme is closed (see [5] Exp. VIb
1.4.2).


Suppose now that Theorem 1 is proved in the case of an algebraically closed
field. Then the following lemma implies Theorem 1 in the general case.


Lemma 13. Let H and H ′ be closed subschemes of any algebraic affine scheme G
over a field K. If the schemes HK and H ′


K
coincide as subschemes of the scheme


GK over the algebraic closure K, then the schemes H and H ′ coincide.


Proof. Let the scheme G be represented by K[G], and let the subschemes H and
H ′ be represented by K[G]/I and K[G]/I ′ for some ideals I and I ′ respectively.
Then the subscheme HK is represented by K ⊗ (K[G]/I) = K[G]/K[G]I, and
similarly the subscheme H ′


K
is represented by K[G]/K[G]I ′. Since the schemes


HK and H ′
K


coincide, we get K[G]I = K[G]I ′. Thus we can conclude


I = K[G] ∩K[G]I = K[G] ∩K[G]I ′ = I ′,


because the embedding K[G] ↪→ K[G] is faithfully flat.
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Now we may assume the field K is algebraically closed in the proof of Theo-
rem 1.


§ 9 Reduced subscheme


In this section we assume that the field K is algebraically closed.
Let H be a connected subgroup scheme of G(Φ) containing a split maximal


torus T over an algebraically closed field K. Consider the reduced subscheme
Hred. It is represented by K[H]/Nil(K[H]). The scheme H red contains the torus
T , because the torus T is reduced. The reduced subscheme of a group scheme over
a perfect (e.g. over an algebraically closed) field is a group scheme (see [5] Exp.
VIa 0.2). The reduced subscheme of a connected group scheme is also connected.
Any reduced group scheme over an algebraically closed field is smooth (see [12]
11.6). So Hred is a connected smooth subgroup scheme of G(Φ) containing the
torus T . By Corollary 5, the scheme H red is equal to G(S) for some quasi-closed
subset S of Φ.


Consider a nilradical Nil(K[H]) of the algebra K[H]. It is a finitely generated
nilpotent ideal, so there is a positive integer N such that Nil(K[H])p


N
= 0.


Obviously we have FN(H) = FN(Hred) = FN(G(S)).
Consider any K-algebra R and any element g ∈ H(R). Since the element


FN(h) lies in the group FN(G(S))(R), there is an fppf R-algebra R′ such that
FN(g) = FN(h) for some element h ∈ G(S,R′). Then the element f = h−1g
satisfies FN(f) = 1, and therefore f ∈ EN(R′). Thus the element h is equal to
the product hf , where h ∈ G(S,R′) and f ∈ EN(R′). By definition this means
that H is a subscheme of G(S)EN . The inclusions G(S) ⊆ H ⊆ G(S)EϕN imply
H = G(S) · (H ∩ EN).


The above assertions establish the following lemma.


Lemma 14. Let H be a connected subgroup scheme of G(Φ) containing T over
an algebraically closed field K. Then the following assertions hold.


1. Hred = G(S) for some quasi-closed set S;
2. FN(Hred) = FN(G(S)) for some positive integer N ;
3. H = G(S)(H ∩ EN), where S and N as above.


§ 10 Subgroups of reductive groups over rings


In this section we prove Main Lemma 16, which is a useful technical result
concerning overgroups of the maximal torus in G(Φ, R).


Let G be any affine scheme over a field K, R any K-algebra, I any ideal in
R, h and h′ elements of G(R). We write h ≡ h′ mod I, if the images of h and
h′ under the natural map G(R) → G(R/I) coincide. Obviously this gives an
equivalence relation on G(R), and if G is a group scheme, then multiplication
preserves the relation.


Lemma 15. xα(a)xβ(b) ≡ xβ(b)xα(a) mod ab.
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Proof. It is enough to prove Lemma for the algebra K[a, b], because we can apply
the functor G to the commutative diagram


K[a, b] −−−→ K[a, b]/(ab)y
y


R −−−→ R/(ab),


and if the images of the left and right parts of the equivalence coincide in
K[a, b]/(ab), then they coincide in R/(ab).


The ideals (a) and (b) are coprime in K[a, b], i.e. the product (a)(b) is equal
to the intersection (a) ∩ (b). Therefore the natural map


K[a, b]/(ab)→ K[a, b]/(a)⊕K[a, b]/(b)


is injective. So the map


G(K[a, b]/(ab))→ G(K[a, b]/(a)⊕K[a, b]/(b))


is injective, and it is enough to prove that the images of xα(a)xβ(b) and xβ(b)xα(a)
in G(K[a, b]/(a)⊕K[a, b]/(b)) = G(K[a, b]/(a))×G(K[a, b]/(b)) coincide. In other
words, it is enough to check that xα(a)xβ(b) is equal to xβ(b)xα(a) modulo a and
modulo b, that is obvious.


Main Lemma 16. Let R be a K-algebra, where K is an algebraically closed field.
Let H be a subgroup of G(Φ, R) containing T (R), h be an element of H such that
h =


∏
β∈Φ xβ(aβ), where aβ ∈ Nil(R). Then for each root β the element xβ(aβ)


lies in the group H.


To prove Main Lemma 16 we use several sublemmas.


Sublemma 16.1. For any element ε ∈ K∗ and any root β ∈ Φ there is an
element t ∈ T (K) such that β(t) = ε.


Proof. Since 〈 , 〉 is non-degenerated, we can choose a cocharacter λ such that


〈β, λ〉 6= 0. Set t = λ(ε
1
〈β,λ〉 ).


Sublemma 16.2. Let α and γ be non-collinear roots. Then there is an element
t ∈ T (K) such that α(t) 6= 1, γ(t) = 1.


Proof. Since 〈 , 〉 is non-degenerated, we can choose a cocharacter λ such that
〈α, λ〉 6= 0 and 〈γ, λ〉 = 0. Set t = λ(ε), where ε〈γ,λ〉 6= 1.


Sublemma 16.3. In the settings of Main Lemma 16 let I ≤ Nil(R) be an ideal.
Suppose that aα ∈ Ir for some root α, and aβ ∈ Is for β 6= α, 1 ≤ r ≤ s.
Then there is an element h′ in H such that h′ =


∏
β∈Φ xβ(a′β), where a′α ≡ aα


mod Ir+1, a′−α ∈ Is+1, and a′β ∈ Is for β 6= ±α.


Proof. Since the field K is algebraically closed, there are elements ε and ξ in K∗


such that ε + ξ + 1 ∈ K∗ and ε−1 + ξ−1 + 1 = 0. By Sublemma 16.1, there are
t1, t2, t3 ∈ T (K) such that α(t1) = ε, α(t2) = ξ, and α(t3) = (ε+ ξ + 1)−1.
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Since h ≡ 1 mod Nil(R), we have t3((t1ht
−1
1 )(t2ht


−1
2 )h)t−1


3 ≡ 1 mod Nil(R),
so the element t3((t1ht


−1
1 )(t2ht


−1
2 )h)t−1


3 lies in Ker(FM : G → FM(G))(R) for
some M . Then, by Lemma 7, the element t3((t1ht


−1
1 )(t2ht


−1
2 )h)t−1


3 lies in the big
cell, and therefore we have a decomposition


t3((t1ht
−1
1 )(t2ht


−1
2 )h)t−1


3 = t4
∏


β∈Φ


xβ(a′β)


for some t4 ∈ T (R) and a′β ∈ R. Consider an element


h′ = t−1
4 t3((t1ht


−1
1 )(t2ht


−1
2 )h)t−1


3 =
∏


β∈Φ


xβ(a′β).


It lies in the group H, because H contains h and T (R). On the other hand, we
have


h′ = t−1
4 t3((t1ht


−1
1 )(t2ht


−1
2 )h)t−1


3


= t−1
4


∏


β∈Φ


xβ(β(t1t3)aβ)
∏


β∈Φ


xβ(β(t2t3)aβ)
∏


β∈Φ


xβ(β(t3)aβ)


≡ t−1
4


∏


β∈Φ


xβ(β(t3)(β(t1) + β(t2) + 1)aβ) mod Ir+s


by Lemma 15. Since Gauss decomposition is unique for the big cell of the group
G(Φ, R/Ir+s), we have a′β ≡ β(t3)(β(t1) + β(t2) + 1)aβ mod Ir+s for each root
β. In particular, since Ir+1 ⊆ Ir+s and Is+1 ⊆ Ir+s, we have a′α ≡ aα mod Ir+1,
a′−α ∈ Is+1, and a′β ∈ Is for each β 6= ±α.


Sublemma 16.4. Under the assumptions of Sublemma 16.3, there is an element
h′ in H such that h′ =


∏
β∈Φ xβ(a′β), where a′α ≡ aα mod Ir+1 and a′β ∈ Is+1 for


β 6= α.


Proof. By Sublemma 16.3, we may assume that a−α ∈ Ir+1.
Fix any root γ 6= ±α. By Sublemma 16.2, there is an element t1 ∈ T (K) such


that γ(t1) = 1 and α(t1) = η 6= 1. Since (1 − η) ∈ R∗, Sublemma 16.1 gives an
element t2 ∈ T (K) such that α(t2) = (1− η)−1.


Since h ≡ 1 mod Nil(R), we have t2[h, t1]t−1
2 ≡ 1 mod Nil(R), so the element


t2[h, t1]t−1
2 lies in the big cell, and therefore we have a decomposition


t2[h, t1]t−1
2 = t3


∏


β∈Φ


xβ(a′′β)


for some t3 ∈ T (R) and a′′β ∈ R. Consider an element


h′′ = t−1
3 t2[h, t1]t−1


2 =
∏


β∈Φ


xβ(a′′β).


It lies in the group H, because H contains h and T (R). On the other hand, we
have


h′′ = t−1
3 t2[h, t1]t−1


2 = t−1
3 (t2ht


−1
2 )(t1t2h


−1t−1
2 t−1


1 )


= t−1
3


∏


β∈Φ


xβ(β(t2)aβ)
∏


−β∈Φ


xβ(−β(t1t2)aβ)


≡ t−1
3


∏


β∈Φ


xβ(β(t2)(1− β(t1))aβ) mod Ir+s
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by Lemma 15. Since Gauss decomposition is unique for the big cell of the group
G(Φ, R/Ir+s), we have a′′β ≡ β(t2)(1 − β(t1))aβ mod Ir+s for each root β. In
particular, since Ir+1 ⊆ Ir+s and Is+1 ⊆ Ir+s, we have a′′α ≡ aα mod Ir+1,
a′′γ ∈ Is+1, and if aβ ∈ Is+1, then a′′β ∈ Is+1.


Proceeding this argument for all roots γ such that γ 6= ±α, we obtain an
element h′ required.


Sublemma 16.5. Under the assumptions of Sublemma 16.3, suppose that the
ideal I is finitely generated. Then there is an element a′α ∈ R such that aα ≡ a′α
mod Ir+1 and xα(a′α) ∈ H.


Proof. This follows from Sublemma 16.4 by induction on s, since some power of
the ideal I is equal to zero.


Sublemma 16.6. Under the assumptions of Sublemma 16.3, suppose that the
ideal I is finitely generated and r = s. Then for any positive integer q there is an
element a′α ∈ R such that aα ≡ a′α mod Ir+q and xα(a′α) ∈ H.


Proof. Let us prove the sublemma by induction on q. Sublemma 16.5 implies the
assertion for q = 1. Suppose now that the assertion holds for q and for each root
α, and prove it for q + 1.


The element h =
∏


α∈Φ xα(aα) lies in H, and for each root α there is an
element a′ ∈ R such that a ≡ a′ mod Ir+q and xα(a′) ∈ H. Consider an
element (


∏
α∈Φ xα(aα))(


∏
α∈Φ xα(a′α))−1. For each root α we have aα ∈ Nil(R)


and a′α ∈ Nil(R), so this element lies in the big cell, and therefore we have a
decomposition


(
∏


α∈Φ


xα(aα))(
∏


α∈Φ


xα(a′α))−1 = t
∏


α∈Φ


xα(bα)


for some t ∈ T (R) and a′α ∈ R. Consider an element


h′ = t−1(
∏


α∈Φ


xα(aα))(
∏


α∈Φ


xα(a′α))−1 =
∏


α∈Φ


xα(bα).


It lies in the group H, because H contains h, T (R), and xα(a′) for each root α.
On the other hand, we have


h′ = t−1(
∏


α∈Φ


xα(aα))(
∏


α∈Φ


xα(a′α))−1 ≡ t−1
∏


α∈Φ


xα(aα − a′α) mod I2r+q


by Lemma 15, because xα(aα)xα(a′α)−1 = xα(aα − a′α), and we permute only
elements of type xα(aα−a′α), where aα−a′α ∈ Ir+q, and elements of type xα(a′α),
where a′α ∈ Ir. Since Gauss decomposition is unique for the big cell of the
group G(Φ, R/I2r+q), we have bα ≡ aα − a′α mod I2r+q for each root α, and, in
particular, bα ≡ aα − a′α mod Ir+q+1 and bα ∈ Ir+q. Apply Sublemma 16.5 to
the element h′. Then for each root α there is an element a′′α such that a′′α ≡ bα
mod Ir+q+1 and xα(a′′α) ∈ H. Thus we have


xα(a′α + a′′α) = xα(a′α)xα(a′′α) ∈ H
with a′α + a′′α ≡ aα mod Ir+q+1.


Proof of Main Lemma 16. This follows from Sublemma 16.6 for r = s = 1, I =
〈aα | α ∈ Φ〉, and for q large enough, because some power of I is equal to zero.
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§ 11 Determining of a function ϕ


In this section we determine a function ϕ corresponding to a given connected
subgroup scheme H in G(Φ) that contains T and check that ϕ satisfies the con-
dition (∗).
Lemma 17. Under the assumptions of Lemma 14, the following equality holds:
H = G(S)


∏
β∈Φ(H ∩ xβ(αpN )).


Proof. By Lemmas 14 and 7, it is enough to prove the equality


H ∩ (TN
∏


β∈Φ


xβ(αpN )) = TN
∏


β∈Φ


(H ∩ xβ(αpN )),


which follows immediately from Main Lemma 16.


Any subgroup scheme of the scheme αpN is a scheme αpM for some M ≤ N .
Define a function ϕ : Φ→ N ∪ {0,∞} as follows:


if β ∈ S, set ϕ(β) =∞;
otherwise ϕ(β) is determined by H ∩ xβ(αpN ) = xβ(αpϕ(β)).


Lemma 18. xβ(Ga) ∩H = xβ(αpϕ(β)).


Proof. The inclusion xβ(Ga) ∩H ⊇ xβ(αpϕ(β)) is obvious. Let us prove the other
inclusion. The case β ∈ S (in other words, ϕ(β) =∞) is trivial, because we have
the inclusions xβ(Ga) ⊆ G(S) ⊆ H.


Assume that β /∈ S. We have FN(xβ(Ga) ∩ H) ⊆ FN(H) = FN(G), so
FN(xβ(Ga) ∩ H) ⊆ FN(G) ∩ FN(xβ(Ga)). Since F preserves root data and
β /∈ S, we have FN(G) ∩ FN(xβ(Ga)) = 1. Therefore xβ(Ga) ∩ H lies in the
kernel Ker(FN : G(Φ)→ FN(G(Φ))). So xβ(Ga) ∩H ⊆ xβ(αpN ). By the setting
of ϕ, this implies xβ(Ga) ∩H = xβ(αpϕ(β)).


Lemma 19. The function ϕ satisfies the inequality (∗).


Proof. Consider the K-algebra R = K[a, b]/(ap
ϕ(α)


, bp
ϕ(β)


). Elements xα(a) and
xβ(b) lie in H(R). Since H(R) is a group, the commutator


[xα(a), xβ(b)] =
∏


r,s≥1


xrα+sβ(Nαβrsa
rbs)


lies in H(R). By Main Lemma 16, we have xrα+sβ(Nαβrsab) ∈ H(R) for any
positive integers r ans s such that rα + sβ ∈ Φ. By Lemma 18, this means that
(Nαβrsab)


pϕ(rα+sβ)
= 0. Obviously, this is equivalent to the condition (∗).


Proof of Theorem 1. In Section § 7 we defined a scheme Hϕ that corresponds to a
function ϕ satisfying (∗). In Lemma 11 we prove that the schemes Hϕ satisfies all
the conditions of Theorem 1. Lemma 12 shows that all schemes Hϕ are distinct.
It remains to prove that any scheme H satisfying the conditions of Theorem 1
is a scheme Hϕ for an appropriate function ϕ satisfying (∗). By Lemma 13, we
may assume K is algebraically closed. In Section § 11 we determine a function
ϕ corresponding to a given scheme H. In Lemma 19 we prove that the function
ϕ satisfies (∗). By the definition of ϕ we have H = Hϕ, and this completes the
proof.
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