A short proof of Klyachko's theorem about rational algebraic tori

Mathieu Florence

Abstract

In this paper, we give another proof of a theorem by Klyachko ([Kl]), which asserts that Zariski's conjecture holds for a special class of tori over an arbitrary ground field.

1 Introduction

The main purpose of this paper is to give a much simpler proof of a theorem due to Klyachko ([Kl]; see also [Vo], chap. 2, 6.3), which is here theorem 2.4. To achieve this, we first prove a generalization of a theorem due to Voskresenskii ([Vo], chap. 2, 5.1, corollary). To be more precise, we show stable rationality for a certain class of algebraic tori over a given field k, strictly containing the cyclotomic ones. What is more, we give an effective way of presenting the character module of these tori as the kernel of a surjection between permutation modules (that is, lattices that contain a basis which is permuted by the action of the absolute Galois group of k). Recall that, according to $loc.\ cit.$, chap. 2, 4.7, theorem 2, the existence of such a surjection is a necessary and sufficient condition for a torus to be stably rational. All the basic material concerning algebraic tori and rationality questions related to these is contained in $loc.\ cit.$, chap.2; we shall assume that the reader is familiar with this reference.

In the following section, the symbol \otimes alone means $\otimes_{\mathbb{Z}}$. If k is a field with separable closure k_s , we denote by Γ_k the profinite group $\operatorname{Gal}(k_s/k)$. Let Γ be a profinite group. By a Γ -lattice, we mean a free \mathbb{Z} -module of finite rank, endowed with a continuous action of Γ . We will say simply 'exact sequence' instead of 'exact sequence of Γ -lattices'.

2 Stably rational and rational algebraic tori

To begin this section, we prove an elementary but crucial lemma.

Lemma 2.1 Let Γ be a profinite group. Let A_i, B_i, C_i , i = 1, 2 be Γ -lattices, fitting into two exact sequences

$$0 \longrightarrow A_i \xrightarrow{j_i} B_i \xrightarrow{\pi_i} C_i \longrightarrow 0.$$

Assume we are given $s_i: C_i \longrightarrow B_i$, and d_1, d_2 two coprime integers, such that $\pi_i \circ s_i = d_i Id$, i = 1, 2. Let

$$A_3 = A_1 \otimes A_2$$

$$B_3 = (B_1 \otimes B_2) \oplus (C_1 \otimes C_2),$$

and

$$C_3 = (C_1 \otimes B_2) \oplus (B_1 \otimes C_2).$$

Then there is an exact sequence

$$0 \longrightarrow A_3 \xrightarrow{j_3} B_3 \xrightarrow{\pi_3} C_3 \longrightarrow 0,$$

together with a morphism $s_3: C_3 \longrightarrow B_3$, satisfying $\pi_3 \circ s_3 = d_1 d_2 Id$.

Proof. We have an exact sequence

$$0 \longrightarrow A_1 \otimes A_2 \longrightarrow B_1 \otimes B_2 \stackrel{(\pi_1 \otimes Id) \oplus (Id \otimes \pi_2)}{\longrightarrow} (C_1 \otimes B_2) \oplus (B_1 \otimes C_2) \stackrel{\pi}{\longrightarrow} C_1 \otimes C_2 \longrightarrow 0,$$

where $\pi = Id \otimes \pi_2 - \pi_1 \otimes Id$.

Select integers u, v such that $vd_2 - ud_1 = 1$. Then the map

$$s: C_1 \otimes C_2 \longrightarrow (C_1 \otimes B_2) \oplus (B_1 \otimes C_2),$$

$$c_1 \otimes c_2 \mapsto (vc_1 \otimes s_2(c_2), us_1(c_1) \otimes c_2)$$

is a splitting of π . Hence we have an exact sequence

$$0 \longrightarrow A_3 \stackrel{j_3}{\longrightarrow} B_3 \stackrel{\pi_3}{\longrightarrow} C_3 \longrightarrow 0$$

as stated, where

$$\pi_3: (B_1 \otimes B_2) \oplus (C_1 \otimes C_2) \stackrel{((\pi_1 \otimes Id) \oplus (Id \otimes \pi_2), s)}{\longrightarrow} (C_1 \otimes B_2) \oplus (B_1 \otimes C_2).$$

The last assertion is obvious: if $r_i: B_i \longrightarrow A_i$ (i = 1, 2) are such that $r_i \circ j_i = d_i I d$, then

$$r_3 := (r_1 \otimes r_2, 0) : B_3 \longrightarrow A_3$$

satisfies $r_3 \circ j_3 = d_1 d_2 I d. \square$

From this we can derive the following

Theorem 2.2 Let k be a field, and $X_1, ..., X_r$ be finite Γ_k -sets. For i = 1, ..., r, denote by J_i the kernel of the canonical surjection $\mathbb{Z}^{X_i} \xrightarrow{\pi_i} \mathbb{Z}$. Let $J = \otimes_i J_i$. If the orders of the X_i are two by two coprime, then we have an exact sequence

$$0 \longrightarrow J \longrightarrow \bigoplus_{I \in \mathcal{I}_0} \mathbb{Z}^{\Pi_{i \in I} X_i} \stackrel{\pi}{\longrightarrow} \bigoplus_{I \in \mathcal{I}_1} \mathbb{Z}^{\Pi_{i \in I} X_i} \longrightarrow 0,$$

where \mathfrak{I}_i is the set of subsets of $\{1,...,r\}$ whose cardinality is congruent to r-i mod 2. In particular, a k-torus with character module isomorphic to J is stably rational over k. What is more, let d denote the product of the orders of the X_i , i=1,...,r. Then there exists

$$s:\bigoplus_{I\in \mathfrak{I}_1}\mathbb{Z}^{\Pi_{i\in I}X_i}\longrightarrow\bigoplus_{I\in \mathfrak{I}_0}\mathbb{Z}^{\Pi_{i\in I}X_i}$$

such that $\pi \circ s = dId$.

Proof. For i = 1, ..., r, we have a canonical map

$$s_i: \mathbb{Z} \longrightarrow \mathbb{Z}^{X_i},$$

$$1 \mapsto \sum_{x \in X_i} x,$$

which satisfies $\pi_i \circ s_i = d_i I d$, where d_i is the order of X_i . The proof is then an easy induction using the previous lemma and the obvious isomorphism $\mathbb{Z}^X \otimes \mathbb{Z}^Y \simeq \mathbb{Z}^{X \times Y}$, for any two finite sets X and Y. \square

As a particular case of this theorem, we recover a result due to Voskresenskii ([Vo], chap. 2, 5.1 corollary).

Corollary 2.3 Let k be a field, and l/k a Galois extension with cyclic Galois group G of order $n = p_1...p_r$, where the p_i are prime numbers. Let σ be a generator of this Galois group, and T/k the n^{th} cyclotomic torus, i.e. the torus with character group isomorphic to $\mathbb{Z}[X]/\phi_n(X)$, where $\phi_n(X)$ is the n^{th} cyclotomic polynomial, the action of σ being given by multiplication by X (in other words, the character group of T is isomorphic to the ring of integers of the n^{th} cyclotomic extension of \mathbb{Q} , with the action of σ being given by multiplication by a primitive n^{th} root of unity). Then T is stably rational over k.

Proof. For i=1,...,r, let X_i be the unique quotient of G isomorphic to \mathbb{Z}/p_i . With the notations of the preceding theorem, the Γ_k -module J is isomorphic to the character module of T (this is just the fact that the ring of integers of the n^{th} cyclotomic extension of \mathbb{Q} is naturally isomorphic to the tensor product of the rings of integers of the p_i^{th} cyclotomic extensions of \mathbb{Q}), whence the claim. \square

We are now able to give a simple proof of the following theorem.

Theorem 2.4 (Klyachko) Let k be a field, and X, Y two finite Γ_k -sets, of coprime orders p and q, respectively. Consider the two basic exact sequences

$$0 \longrightarrow J_X \longrightarrow \mathbb{Z}^X \longrightarrow \mathbb{Z} \longrightarrow 0,$$

$$0 \longrightarrow J_Y \longrightarrow \mathbb{Z}^Y \longrightarrow \mathbb{Z} \longrightarrow 0.$$

Then, a k-torus T with character module isomorphic to $J := J_X \otimes J_Y$ is rational over k.

Proof. Select integers u, v such that up - vq = 1. Theorem 2.2 gives the following presentation of J:

$$0 \longrightarrow J \longrightarrow \mathbb{Z}^{X \times Y} \oplus \mathbb{Z} \stackrel{\pi}{\longrightarrow} \mathbb{Z}^X \oplus \mathbb{Z}^Y \longrightarrow 0,$$

where $\pi(x \otimes y, 0) = (x, y)$ and $\pi(0, 1) = (u \sum_{x \in X} x, v \sum_{y \in Y} y)$. Let E/k (resp. F/k) be the etale extension of k corresponding to X (resp. to Y). Then, in terms of tori, this exact sequence reads as

$$1 \longrightarrow \mathrm{R}_{E/k}(\mathbb{G}_m) \times \mathrm{R}_{F/k}(\mathbb{G}_m) \xrightarrow{i} \mathrm{R}_{E \otimes_k F/k}(\mathbb{G}_m) \times \mathbb{G}_m \longrightarrow T \longrightarrow 1,$$

where R denotes Weil scalar restriction. The map i is given on the k-points of the considered tori by the following formula:

$$i(x,y) = (x \otimes y, N_{E/k}(x)^u N_{F/k}(y)^v), x \in E^*, y \in F^*.$$

Thus, we have a generically free action of the algebraic k-group $H := \mathrm{R}_{E/k}(\mathbb{G}_m) \times \mathrm{R}_{F/k}(\mathbb{G}_m)$ on the k-vector space $V := (E \otimes_k F) \oplus k$, such that T is birational to the quotient V/H (of course, such a quotient is defined up to birational equivalence only).

Assume that p < q. Let G/k be the algebraic k-group $GL_k(E) \times R_{F/k}(\mathbb{G}_m)$ (E being viewed as a k-vector space). I claim that the action of H on V can be naturally extended to an action of G on V (H being viewed as a

subgroup of G the obvious way). Indeed, this new action is given on the k-points by the formula, for $g = (\phi, y) \in G(k), v = (e \otimes f, \lambda) \in V$:

$$g.v = (\phi(e) \otimes yf, \det(\phi)^u N_{F/k}(y)^v \lambda).$$

This action is generically free. Indeed, this is an easy consequence of the equality up - vq = 1 and of the following lemma.

Lemma 2.5 Let G act on $E \otimes_k F$ the obvious way. Then the stabilizer of a generic element is the subgroup \mathbb{G}_m of G given, on the level of k-points, by elements of the form $(x, x^{-1}) \in \mathrm{GL}_k(E) \times F^*$, for $x \in k^*$.

We postpone the proof until the end of this section. Assuming this lemma, we have a birational G-equivariant isomorphism $V \simeq (V/G) \times G$, where the action of G on the right is given by translation. Indeed, this is a direct consequence of Hilbert's theorem 90, asserting that $H^1(l,G) = 1$ for any field extension l of k. Hence we have birational isomorphisms

$$T \simeq V/H \simeq V/G \times G/H$$
.

It is clear that the k-variety $G/H = \operatorname{GL}_k(E)/\operatorname{R}_{E/k}(\mathbb{G}_m)$ is k-rational. As in Klyachko's original proof, the key point is here that the k-variety (defined up to birational equivalence) V/G is independent of E (seen as an etale k-algebra). Hence, the birational equivalence class of T is independent of E; we may therefore assume that E is split, i.e. that the action of Γ_k on X is trivial. But then I is isomorphic to I_Y^{p-1} , hence I is birational to $(\operatorname{R}_{F/k}(\mathbb{G}_m)/\mathbb{G}_m)^{p-1}$, which is a rational variety (it is an open subvariety of $(\mathbb{P}_k^{q-1})^{p-1}$). \square

Proof of lemma 2.5. We may assume that F is split, i.e. $F = k^q$ as an etale k-algebra. Let f_i , i = 1, ..., q denote the canonical k-basis of F. Consider an element $w = \sum_i e_i \otimes f_i \in E \otimes_k F$ in general position. Let $g = (\phi, (\lambda_1, ..., \lambda_q)) \in \operatorname{GL}_k E \times F^*$ be such that g.w = w. This amounts to saying that $\phi(e_i) = \lambda_i^{-1} e_i$ for all i. Since p < q and since w is in general position, $e_1, ..., e_p$ form a basis of E with respect to which the i'th component of e_{p+1} is non zero for all i = 1, ..., p. This readily implies that the λ_i are all equal to some scalar λ and that $\phi = \lambda^{-1} Id$, thus proving the claim. \square

References

- [Vo] V. E. VOSKRESENSKII. Algebraic Groups and their Birational Invariants, Translations of Mathematical Monographs 179 (1991), Amer. Math. Soc.
- [KI] A. A. KLYACHKO. On rationality of tori with a cyclic splitting field, Arithmetic and Geometry of Varieties, Kuibyshev Univ. Press (1988), 73-78 (russian).