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2 JEAN FASEL

1 INTRODUCTION

Let A be a commutative noetherian ring of Krull dimension n and P a projective
A-module of rank d. One can ask the following question: does P admit a free
factor of rank one? Serre proved a long time ago that the answer is always
positive when d > n. So in fact the first interesting case is when P is projective
of rank equal to the dimension of A. Suppose now that X is an integral smooth
scheme over a field k of characteristic not 2. To deal with the above question,
Barge and Morel introduced the oriented Chow groups cH’ (X) of X (see
[BM]) and associated to each vector bundle E of rank n an Euler class ¢, (FE)
in CH" (X). Morel proved recently that if X = Spec(A) we have ¢,(P) =0
if and only if P ~ Q @ A given n = 2 or n > 4 (see [Mo] or [Fa] for the case
n = 2). It is therefore important to provide more tools, such as a ring structure,
to compute the oriented Chow groups and the Euler classes.

To define CH p(X ) consider the fibre product of the complex in Milnor K-theory

0= KEME(X) = @ Khk@) . D KLk))
b z1eX™ T, €X (M)

and the Gersten-Witt complex restricted to the fundamental ideals

0 — IP(k(X)) — B rox.) ... . P ""(Oxa,)

reX @) T €X (1)

over the quotient complex

0— DI (X)) = — D I Oxa)
z,eX (M)

The group CH p(X ) is defined as the p-th cohomology group of the fibre prod-
uct. Roughly speaking, an element of CH p(X ) is the class of a sum of varieties
of codimension p with a quadratic form defined on each variety. We oviously
have a map CA’I;VP(X) — CHP(X).

Using the functoriality of the two complexes we see that the oriented Chow
groups satisfy good functorial properties (see [Fa]). For example, we have a
pull-back morphism f* : CH’ (X)— CH ! (Y) associated to each flat morphism
f:Y — X and a push-forward morphism g, : CH’ (Y,L) — @J—H(X)
associated to each proper morphism g : Y — X, where r = dim(X) — dim(Y)
and L is a suitable line bundle over Y. Provided this functorial behaviour, it is

possible to produce an oriented intersection theory. This is what we do in this
paper using the usual strategy (see for example [Fu] or [Ro]). First we define
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an exterior product

——itj

CH (X)x CH (V) — CH (X x Y)

———d ——d
and then a Gysin-like homomorphism i' : CH (X) — CH (Y) associated to a
closed embedding i : Y — X of smooth schemes. The product is then defined
as the composition

i i ——itj A i
CH (X)xCH (X)—>CH (X xX)—=CH "(X)

where A : X — X x X is the diagonal embedding. To define the exterior
product, we first note that Rost already defined an exterior product on the
homology of the complex in Milnor K-theory ([Ro]). Thus it is enough to
define an exterior product on the homology of the Gersten-Witt complex and
show that both exterior products coincide over the quotient complex. We use
the usual product on derived Witt groups ([GN]) and show that this product
passes to homology using the Leibnitz rule proved by Balmer (see [Ba3]).

The definition of the Gysin-like map is done by following the ideas of Rost
(JRo]). It uses the deformation to the normal cone to modifiy any closed em-
bedding to a nicer closed embedding and uses also the long exact sequence
associated to a triple (Z, X, U) where Z is a closed subset of X and U = X \ Z.
The product that we obtain has the meaning of intersecting varieties with
quadratic forms defined on them. It is therefore not a surprise that the natural

map CH tOt(X ) — CH®"!(X) turns out to be a ring homomorphism. There
is however a surprise: the product that we obtain is neither commutative nor
anticommutative. This comes from the fact that the product of triangulated
Grothendieck-Witt groups GW* x GWJ — GWtJ does not satisfy any com-
mutativity property.

The organization of this paper is as follows: In section 2, we recall some basic
results on triangulated Witt groups. This includes the construction of the
Gersten-Witt complex, and some results on products and consanguinity. In
section 3, we construct the oriented Chow groups, recall some results and prove
some basic facts. The definition of the exterior product takes place in section
4 and the definition of the oriented Gysin map in section 5. In this part, we
also prove the functoriality of this map. Finally we put all the pieces together
in section 6 and prove some basic results in section 7.

1.1 CONVENTIONS

All schemes are smooth and integral over a field k of characteristic different
from 2, or are localizations of such schemes. For any two schemes X and Y we
will always denote by X x Y the fibre product X Xgpec(x) Y-
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2 PRELIMINARIES

2.1  WITT GROUPS

We recall here some basic facts on Witt groups of triangulated categories fol-
lowing the exposition of [Ba3]. We suppose that for any triangulated category
C and any objects A, B of C the group Hom (A, B) is uniquely 2-divisible. We
also suppose that all triangulated categories are essentially small.

DEFINITION 2.1. Let C be a triangulated category. A duality on C is a triple
(D,d,w) where 6 = +1, D : C — C is a d-exact contravariant functor and
w : 1 ~ D? is an isomorphism of functors satisfying D(wa)owpa = idpa
and T'(wa) = wra for all A € C. A triangulated category C with a duality
(D, d,w) is written (C, D, §, w).

Ezample 2.2. Let X be a regular scheme and P(X) the category of locally free
coherent O x-modules. Let D*(P(X)) be the triangulated category of bounded
complexes of objects of P(X). Then the usual duality ¥ on P(X) defined by
PV = Homg, (P,Ox) induces a l-exact duality on D*(P(X)). We also denote
this derived duality by V. Moreover, the canonical isomorphism ev : P — PVV
for any locally free module P induces a canonical isomorphism @ : 1 —VV
in D°(P(X)). More generally, if L is any invertible module over X, then the
duality Homoe, (_, L) on P(X) also induces a duality on D?(P(X)).

DEFINITION 2.3. Let (C, D, d,w) be a triangulated category with duality. For
any i € Z, define (D®,§%) w®) by DO =To D, 6@ = (-1)i and w® =
§%(—1)10+D/25. Tt is easy to check that (D §() () is a duality on C. It
is called the i*"-shifted duality of (D, 6, w).

DEFINITION 2.4. Let (C, D, 4, w) be a triangulated category with duality, A € C
and i € Z. A morphism ¢ : A — D@ A is i-symmetric if the following diagram
commutes:

A4¢>D(i)A

(i)
W;L

(D9)2(4) 557 DOA.

The couple (A4, ¢) is called an i-symmetric pair.

DEFINITION 2.5. We denote by Symm®(C) the monoid of isometry classes of
i-symmetric pairs.

DEFINITION 2.6. An i-symmetric form is an i-symmetric pair (4, ¢) where ¢
is an isomorphism.

THEOREM 2.7. Let (C,D,d,w) be a triangulated category with duality and let
(A, ¢) be an i-symmetric pair. Choose an exact triangle containing ¢
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Ao pivg—2ec-Lorpa

Then there exists an (i + 1)-symmetric isomorphism ¢ : C — DUTVC such
that the following diagram commutes

A—" o pog—2 : TA
|
“mt " lTWu)
@) (p@ i . @) (p©)
D (D A) D(i)¢ D(z)Aé(iJrl)D(i+1)BD(Z+1)C D+, T(D (D A))

where the rows are exact triangles and the second one is the dual of the first.
Moreover, the (i + 1)-symmetric form (C,) is unique up to isometry. It is
denoted by cone(A, ¢).

Proof. See [Ba2], Theorem 1.6. O

Ezample 2.8. Let P € C. For any i, the morphism 0 : P — D@ P is symmetric
and then cone(P,0) is well defined.

COROLLARY 2.9. The above construction gives a well defined homomorphism
of monoids d - Symm(C) — Symm+D(C) such that d''d = 0.

DEFINITION 2.10. Let (C, D, §, w) be a triangulated category with duality. The
Witt group W¢(C) is defined as Ker(d")/Im(d*™!). Remark that Ker(d") is just
the monoid of isometry classes of i-symmetric forms.

DEFINITION 2.11. Let (C, D, §, w) be a triangulated category with duality. The
Grothendieck-Witt group GW?(C) is defined as the quotient of Ker(d’) by the
submonoid generated by the elements cone(A4, ¢) — cone(A, 0) where A € C and
¢ is (i — 1)-symmetric (0 is also seen as an (i — 1)-symmetric morphism).

Example 2.12. Let (D*(P(X)),Y,1,w) be the triangulated category with du-
ality defined in the example 2.2. Its Witt groups are the Witt groups W*(X)
of the scheme X as defined in [Bal].

2.2 ProbucTs

Provided a pairing ® : C x D — M of triangulated categories with duality and
assuming that this pairing satisfies some nice conditions, the authors of [GN]
define a pairing of Witt groups. We briefly recall some definitions (see 1.2 and
1.11 in [GN]):

DEFINITION 2.13. Let C,D and M be triangulated categories. A product
between C and D with codomain M is a covariant bi-functor

Q:CxD—-M
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exact in both variables and satisfying the following condition: the functorial
isomorphisms r4 p: AQTB~T(A®B) and lap: TA® B ~T(A® B) make
the diagram

1
TA®TB —"%T(A® TB)

""TA,B\L \LT("'A,B)

skew-commutative.

DEFINITION 2.14. Let C,D and M be triangulated categories with dualities.
Where there is no possible confusion, we drop the subscripts for D, and w.
A dualizing pairing between C and D with codomain M is a product ® with
isomorphisms

nap:DA® DB~ D(A® B)
natural in A and B which make the following diagrams commute

1.

wARWR

A®B——— D?A® D?’B

wA@Bl \LWDA,DB

D*(A® B)D—>)D(DA ® DB)

NA,B

IpTa,DB TDA,DTB T
— 1

T(DTA® DB)<—— DA® DB DA®TDB)
5c5MT(77TA,B)l "A«Bl \L(sL(sMT(UA,TB)

D(A® B)

(A,B) TA,B

TD(TA® B) TD(A® TB).

THEOREM 2.15. Let C,D and M be triangulated categories with duality. Let
®:CxD — M be a dualizing pairing between C and D with codomain M.
Then ® induces for all i,j € 7 a pairing

*: WHC) x WI(D) — W (M).
Proof. See [GN], thm 2.9. O

Ezample 2.16. Let (D*(P(X)),", 1, @) be the triangulated category with dual-
ity defined in example 2.2. The usual tensor product induces a dualizing pairing
of triangulated categories and then a product W*(X) x WJ(X) — W' (X).
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Suppose that L and N are invertible modules over X. Then Homo,(_,L)
Homo, (_,N) and Homp, (_,L ® N) give dualities ¥, ¥ and * on D*(P(X))
The tensor product gives a dualizing pairing

7

® : (D*(P(X)),},1, @) x (D*(P(X)),},1,w) — (D*(P(X)),’,1,w).

2.3 SUPPORTS

We briefly recall the notion of triangulated category with supports following
[Ba3].

DEeFINITION 2.17. Let X be a topological space. A triangulated category de-
fined over X is a pair (C,Supp) where C is a triangulated category and Supp
assigns to each object A € C a closed subset Supp(A) of X such that the
following rules are satisfied:

(S1)

(S2) Supp(A @ B) = Supp(A) U Supp(B).
(S3) Supp(A) = Supp(T'A).
(S4)

S4) For every distinguished triangle

A B C TA

we have Supp(C') C Supp(A) U Supp(B).

When 7 is a saturated triangulated subcategory of C and S is the multiplicative
system of morphisms whose cone is in Z, then we can construct a support on
the category S~!C. This is done in [Bad] when C has a tensor product. However
we will only need some basic facts, so we prove the following lemma:

LEMMA 2.18. let C be a triangulated category defined over a topological space
X. Let T be a triangulated subcategory of C and let Supp(T) = UsczSupp(A).
Suppose that Supp(A) C Supp(Z) implies A € IT. Let S be the multiplicative
system in C of morphisms [ such that cone(f) € T and let

I—C—=S5"1C
be the exact sequence of triangulated categories obtained by inverting S. Then

S~1C is a triangulated category defined over X' = X\ Supp(Z) (with the induced
topology).

Proof. Tt is easy to see that the rules (S1), (S2) and (S3) are satisfied. We only
have to prove (S4).
First observe that if s : A — B is a morphism in S and

S

A B c TA
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is an exact triangle in C containing s, then Suppg(A4) = Suppg(B) (use (S4) for
the category C). This shows that Suppg(A4) = Suppg(A4’) if A ~ A" in S7IC.
Now observe that any exact triangle

(03

A B C TA

in S~!C is isomorphic to the localization of an exact triangle in C. This shows
that Suppg(C) C Suppg(A4) U Suppg(B).

O

Ezample 2.19. Let D*(P(X)) be the usual triangulated category. Define the
support of an object P € D’(P(X)) as the union of the support of all the
cohomology groups of P, i.e

Supp(P) = USupp(Hi(P))-

Then it is easy to see that (D?(P(X)),Supp) is a triangulated category with
support. Denote by D?(P(X))®*) the full subcategory of D’(P(X)) of objects
whose support is of codimension > k. Then D’(P(X))*) is a triangulated
category and the following sequence

D*(P(X))¥ — D"(P(X)) — D"(P(X))/D"(P(X))"W
satisfies the conditions of Lemma 2.18. So D*(P(X))/D*(P(X))™® is a trian-
gulated category over X' = {z € X | codim(z) < k — 1}.
The following definitions are also due to Balmer (see [Ba3]):

DEFINITION 2.20. Let (C, Supp) be a triangulated category over X and assume
that C has a structure of triangulated category with duality (C, D, §, w). Then
we say that C is a triangulated category with duality defined over X if

(S5) Supp(A) = Supp(DA) for every object A.
DEFINITION 2.21. Let (C, Suppc), (D, Suppp) and (F, Supp £) be triangulated
categories defined over X. Suppose that
®:CxD—F
is a pairing of triangulated categories. The pairing ® is defined over X if
(S6) Suppy(A® B) = Suppc(A) N Suppp(B).

Ezample 2.22. The triangulated category D*(P(X)) with the support defined
in the example 2.19 and the pairing of example 2.16 satisfy the condition (S5)
and (S6).

DEFINITION 2.23. The degeneracy locus of a symmetric pair (A, «) is defined
to be the support of the cone of a:

DegLoc(a)) = Supp(cone(a)).
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DEFINITION 2.24. Let (C, Supp) be a triangulated category with duality defined
over X. The consanguinity of two symmetric pairs o and [ is defined to be
the following subset of X:

Cons(«, 3) = (Supp(«) N DegLoc(3)) U (DegLoc(a)) N Supp(3)).
We are now ready to state the Leibnitz formula:

THEOREM 2.25 (LEIBNITZ FORMULA). Assume that we have a dualizing pairing
® : C x D — F of triangulated categories with dualities over X. Let a and (8
be two symmetric pairs such that DegLoc(a)) N DegLoc(3) = 0. Then we have
an isometry

O0F -d(ax ) =0dc-d(a)*x B+ dp - axd(f)
where ¢, dp, dx are the signs involved in the dualities of C,D and F.

Proof. See [Ba3], Theorem 5.2. O

3 ORIENTED CHOW GROUPS

Let (D°(P(X)),",1,w) be the triangulated category with the usual duality
of example 2.2 and consider its full subcategory D’(P(X))® of objects with
supports of codimension > 4 (here we use the support defined in example
2.19). Then the duality on D(P(X)) induces dualities on D*(P(X))® for any
i ([Ba2]). It is also clear that D*(P(X))(+1) ¢ D(P(X))® for any i.

DEFINITION 3.1. For all i € N, denote by D?(X) the triangulated category
D*(P(X))® /Db (P(X))+D.

Suppose that (A4,q) is an i-symmetric form in D?(X). Then there exists an
i-symmetric pair (B, 3) such that the localization of (B, 3) is (4, «) (by local-
ization we mean the map Symm®(D?(P(X))®) — Symm*(D?(X)) induced by
the functor D*(P(X))® — D’(X)). Applying 2.7, we get an (i + 1)-symmetric
form (C, ). By construction, C € D*(P(X))(*1. Localizing this form we get
a form (C,v) in WT(DP,,(X)). At first sight, this construction depends on
some choices but in fact this is not the case (see [Ba2], Corollary 4.16). Hence
we get a well defined homomorphism

d: WHDY(X)) — WHL(DY, (X)).

THEOREM 3.2. Let X be a reqular scheme of dimension n. Then we have a
complex

0 —— WO(DY(X)) —2> WH(DL(X)) —2> - —L> wn(DY (X)) — 0.

Proof. See [BW], Theorem 3.1 and paragraph 8. O
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Let A be a regular local ring. We denote by W/!(A) the Witt group of finite
length modules over A (see [QSS] for more informations about Witt groups of
finite length modules). The following proposition holds:

PROPOSITION 3.3. We have isomorphisms
WH(DYX)) ~  W/(Ox.).

zeX @
Proof. See [BW], Theorem 6.1 and Theorem 6.2. O
Remark 3.4. Since we use the isomorphism of the above proposition, we briefly
recall how to obtain a symmetric complex from a finite length module. For more
details, see [BW] or [Fa| (chapter 3). Choose a point 2 € X, a finite length
Ox ;-module M and a symmetric isomorphism ¢ : M — Exty, (M, Ox.).

Let P, be a resolution of M by locally free coherent Ox ,-modules. Then P,
can be chosen of the form

0 P Py M 0.

Dualizing this complex and shifting 7 times gives the following diagram

0 Pi PO M 0
| |
=l El d)l
Y \ .
0 PO\/ PZ.V EXtEQXx(M, OX,z)—>O-

Using ¢ we get a symmetric morphism ¢ : P, — (P,)Y. Thus we have con-

structed an i-symmetric pair in the category D®(P(Ox ..)) from the pair (M, ¢).

Since DY (X) ~ H DY(P(Ox..)) (IBW], Proposition 7.1), we can see the pair
zeX ()

(Ps, ) as a symmetric pair in D?(X).

DEFINITION 3.5. The complex

0 — WH(k(X)) — P WOox.) ... D W (Ox.e,)

X @) ., €X (1)

is called the Gersten-Witt complex of X. We denote it by C(X, W).

This complex is obtained by using the usual duality ¥V on the triangulated
category D®(P(X)) (example 2.2). For any invertible module L over X, we
have a duality derived from the functor f = Homo, ,(_,L) and we can apply
the same construction to get a Gersten-Witt complex.

DEFINITION 3.6. Let X be a regular scheme and L an invertible Ox-module.
We denote by C(X, W, L) the Gersten-Witt complex obtained from the duality
f,
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THEOREM 3.7. Let A be a regular semi-local k-algebra and X = Spec(A). Then
for any i > 0 we have H'(C(X,W)) = 0.

Proof. See [BGPW], Theorem 6.1.
([l

Let A be a regular local ring of dimension n. Denote by F' the residue field
of A. Then any choice of a generator £ € Ext’y(F, A) gives an isomorphism
ag : W(F) — WZL(A). Recall that I(F) is the fundamental ideal of W (F). If
n <0, put I"(F) = W(F).

DEFINITION 3.8. For any n € Z let I};(A) be the image of I"(F) by a.

Remark 3.9. It is easily seen that I7;(A) does not depend on the choice of the
generator £ € Ext'y (F, A).

ProrosITION 3.10. The differential d of the Gersten-Witt complex satisfies
d(I(Ox.2)) C I}?fl(Ony) foranym e Z, z € X® and y € X0,

Proof. See [Gi3], Theorem 6.4 or [Fa|, Theorem 9.2.4. O

DEFINITION 3.11. Let L be an invertible Ox-module. We denote by
C(X,I% L) the complex

d—1 d—n
0 — 1% (k(X)) — D 157 Oxe) ... P IT(Ox) oy,
z1eX™ T, €X (M)

Remark 3.12. In particular, we have C(X, I°, L) = C(X, W, L).

THEOREM 3.13. Let A be a regular local k-algebra. Then for any i > 0 we have
H{(C(X, 1) =0.

Proof. See [Gi3], Corollary 7.7. O

Of course, there is an inclusion C(X, 19! L) — C(X, I, L) and therefore we
get a quotient complex.

DEFINITION 3.14. Denote by C(X,T%) the complex C'(X, I, L)/C(X, I+, L).

Remark 3.15. For any invertible module L the complexes C(X, I?)/C(X, I%+?!)
and C(X,I¢ L)/C(X, 19! L) are canonically isomorphic (see [Fa], Corollary
E.1.3), so we can drop the L in C(X,T%).

Remark 3.16. The complex C(X,T") is of the form

0 — I, (k(XO)/ 17 (k(X)) = @ 157 (Oxe) [ T(Oxa) .
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Remark 3.17. As a consequence of Theorem 3.13, we immediately see that
HY(C(X, Td)) = 0 for ¢ > 0 if X = Spec(A) where A is a regular local k-
algebra.

Let F be a field and denote by K (F) the i-th Milnor K-theory group of F.
If i < 0 it is convenient to put KM (F) = 0.

CONSTRUCTION 3.18. Let X be a scheme. Then for any d we have a complex

0> KM(k(X) > D Kihk@) ... D Kil.(kz))
¢ z1€X ™) zp€X (M)

We denote it by C(X, K}7).
Proof. See [Ro], paragraph 3 or [Fa| chapter 2. O

We also have the exactness of this complex when X is the spectrum of a smooth
semi-local k-algebra:

THEOREM 3.19. Let A be a smooth local k-algebra. Then for all i > 0 we have
H(C(X, K))) =0,

Proof. See [Ro|, Theorem 6.1. O
If F is a field, recall that we have a homomorphism
s: KM(F) — I(F)/PT(F)

given by s({a1,...,q;}) =< 1,—a1 > ®...® < 1,—a; >. The following is
true:

LEMMA 3.20. The homomorphisms s induce a morphism of complezes

s: O(X, KMy - (X, T%.
Proof. See [Fa], Proposition 10.2.5. O
DEFINITION 3.21. Let C(X,GY L) be the fibre product of C(X,K}) and
C(X, 1% L) over C(X,T%):

C(X,G4 L) —=CO(X,I¢L)
C(X, K} —— c(x,T%).

DEFINITION 3.22. Let X be a smooth scheme and L an invertible O x-module.

The j-th oriented Chow group cH’ (X,L) of X twisted by L is the group
H/(C(X,G',L)).



THE ORIENTED CHOW RING 13

Remark 3.23. Denote by GW7(DY(X)) the j-th Grothendieck-Witt group of
the category D}(X) with the duality derived from Homo, (_, L) (see definition
2.11). By definition, the complex C(X,G7, L) is

&7

== C(X, G, L)j-1 —= GW/(D}(X)) == W/H(D}, (X)) — -

Hence CH (X, L) is a quotient of Ker(d?).
We also have the exactness of the complex C(X,G? L) in the local case:

THEOREM 3.24. Let A be a smooth local k-algebra and X = Spec(A). Then
HY(C(X,G7)) =0 for all j and all i > 0.

Proof. As C(X,G7) is the fibre product of the complexes C(X, K ") and

C(X, 1) over C(X, Tj), we have an exact sequence of complexes

0 — C(X,G7) — C(X, ') & C(X, M) — (X, ) — 0

inducing a long exact sequence in cohomology. It follows then from Theorems
3.13 and 3.19 that H(C(X,G7)) = 0if i > 1. For i = 1, we have an exact
sequence

HO(C(X, 1)) & HO(C(X, K M) — Ho(C(X, T)) = H'(C(X, &) — 0.
The exact sequence of complexes
0—C(X, I+ —=C(X, ) —= o(X,T) —>0

shows that H°(C/(X, I7)) maps onto HO(C(X,T’)). O

DEFINITION 3.25. Let X be a smooth scheme and L an invertible Ox-module.
We define the sheaf G on X by G} (U) = H°(C(U,G, L)).

We have:

THEOREM 3.26. Let X be a smooth scheme of dimension n. Then for any i
we have . ‘ ' |
Hy, (X,G1)~ H'(C(X,G’,L)).

Proof. Define sheaves C; by C;(U) = C(U,G’, L), for any | > 0. It is clear that
the C; are flasque sheaves. We have a complex of sheaves over X

0 Gl Co G e Cn 0.

Theorem 3.24 shows that this complex is a flasque resolution of gi. Thus the

theorem is proved.
O
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Suppose that f : X — Y is a flat morphism. Since it preserves codimensions,
it induces a morphism of complexes
0,67 L) — O(X, 67, f* L)

for any j € N and any line bundle L over Y ([Fa], Corollary 10.4.2). Hence we
have:

THEOREM 3.27. Let f : X — Y be a flat morphism and L a line bundle over
Y. Then, for any i,j we have homomorphisms

f*HY(C(Y,G, L)) — H'(C(X, &7, f*L)).
In particular, if E is a vector bundle over Y and m : E — Y is the projection,
we have isomorphisms

©  HY(C(Y,, L)) — H'(C(E, 69, 7" L)).

Proof. We have a morphism of complexes f* : C(Y,G7,L) — C(X,G’, f*L)
which gives the induced homomorphisms in cohomology. For the proof of ho-
motopy invariance, see Corollary 11.3.2 in [Fa). O

PROPOSITION 3.28. Let f: X — Y and g : Y — Z be flat morphisms. Then
(9f) = [f"g"
Proof. See [Fa], Proposition 3.4.9. O

Suppose that f : X — Y is a finite morphism with dim(Y") — dim(X) = r.
Consider the morphism of locally ringed spaces f : (X,0x) — (Y, f.Ox)
induced by f. If X is smooth, then L = f Ext} (f.Ox,Oy) is an invertible
module over Y ([Gi2], Corollary 6.6) and we get a morphism of complexes (of
degree r)

[« 1 C(X,G'",L® f*N) - C(Y,G’,N)
for any invertible module N over Y ([Fa], Corollary 5.3.7).

PropPOSITION 3.29. Let f : X — Y be a finite morphism between smooth
schemes. Let dim(Y) — dim(X) = r and N be an invertible module over Y.
Then the morphism of complexes f. induces a homomorphism

fo t H7"(C(X, G977, L ® f*N)) — H(C(Y,G7, N)).
In particular, we have ([Fa], Remark 9.3.5):

PROPOSITION 3.30. Let f : X — Y be a closed immersion of codimension r
between smooth schemes. Then f induces an isomorphism

fo : H"(C(X,G'"", L ® f*N)) — HL(C(Y,G’,N))

for any i,j and any invertible module N over Y.
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Important remark 3.31. If f : X — Y is a closed immersion, then f, will always
be the map with support:

fo HT(C(X, G777 L® f*N)) — Hy (C(Y,G7, N))
The transfer for finite morphisms is functorial ([Fa], proposition 5.3.8):

PROPOSITION 3.32. Let f: X =Y and g:Y — Z be finite morphisms. Then
gefs = (9f)-

Remark 3.33. Let X be a smooth scheme and D be a smooth effective Cartier
divisor on X. Let i : D — X be the inclusion and L(D) be the line bundle
over X associated to D. Then there is a canonical section s € L(D) (see [Fu],
Appendix B.4.5) and therefore an exact sequence

0 Ox ——= L(D) 1+Op 0.

Applying Home, (_, L(D)) and shifting, we obtain the following diagram

0 Ox > L(D) 1+Op 0

o

I
I
A
0 Homo, (L(D), L(D)) + Homo, (Ox, L(D)) = Exto, (ix:Op, L(D)) =0

which shows that Ext¢, (i.Op,Ox) ® L(D) ~ i,0p. Proposition 3.30 shows
that we then have an isomorphism

i HY(C(D,G'7 1, i*L(D))) — H5(C(X,GY)).

LEMMA 3.34. Let g : X — Y be a flat morphism and f : Z — Y a finite
morphism. Consider the following fibre product

v L. X
4 b
Z —f> Y.
Then (f')«(9")" = 9" f-
Proof. See [Fa], Corollary 12.2.8. O

Remark 3.35. Of course, in the above fibre product we suppose that V' is also
smooth and integral. Such a strong assumption is not necessary in general, but
this case is sufficient for our purposes.

Remark 3.36. It is possible to define a map f, when the morphism f is proper
(see [Fa]) but we don’t use this fact here.



16 JEAN FASEL

4 THE EXTERIOR PRODUCT

Let X and Y be two schemes. The fibre product X x Y comes equipped with
two projections p; : X XY - X andps : X xY — Y.

LEMMA 4.1. For any i,j € N, the pairing

X:DY(X) x DY) — D}

i (X xY)

given by PX Q = pi P ® p5Q is a dualizing pairing of triangulated categories
with duality.

Proof. Straight verification. O
COROLLARY 4.2. For any i,j € N, the pairing

X: DYX) x DY(Y) — D?
i J

iy (X xY)

induces a pairing

*: WHDL (X)) x W/(DY(Y)) — W (D}

i+j(X xY)).

Proof. Clear by Theorem 2.15. O
COROLLARY 4.3. Let ¢ € W/(D%(Y)). Then we have a homomorphism

py s W(DP(X)) — WH(DP (X x Y))
given by py(p) = o .
Recall that we have isomorphisms W#(D!(X)) ~ @ W/ (Ox,.) (Proposi-

reX (1)
tion 3.3).

DEFINITION 4.4. Denote by I*(D?(X)) the preimage of @ 1$,(Ox,.;) under
reX (@)

the above isomorphism.
PRrROPOSITION 4.5. For any m,p € N the product
*: WHDE (X)) x WI(DJ(Y)) — W (DY (X x Y))

induces a product

* 1 I™(DY (X)) x I™M(D%(Y)) — 1™ (D}

i (X X Y)).
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Proof. Let z € X and y € YY), Tt is clear that the product can be computed
locally (use [GN], theorem 3.2). So we can suppose that X = Spec(4) and
Y = Spec(B) where A and B are local in = and y respectively. Recall that we
have the following diagram

Xxy—2 oy

|

X — Spec(k).

Let P be an A-projective resolution of k(x) and @ be a B-projective resolution
of k(y). Consider a symmetric form p : k(z) — Ext’ (k(z), A) and a symmetric
form p : k(y) — Ext%;(k(y), B). Then pi(p) is a symmetric isomorphism sup-
ported by the complex P® B and p3(u) is a symmetric isomorphism supported
by the complex A ® Q. Clearly, the complex P ® B ® A ® @ has its homology
supported in degree 0, and this homology is isomorphic to k(x) ® k(y). Let u
be a point of Spec(k(x) @ k(y)). Then the restriction of pip ® piu to u is a
finite length module M whose support is on u with a symmetric form

M — Ext( o (M, (A® B).).

Taking its class in the Witt group, we obtain a k(u)-vector space V with a

symmetric form ¢ : V — ExtzZéB)u(V, (A® B),). Now choose a unit a €

k(xz)*. Consider the image a, of a under the homomorphism k(z) — k(u).
The class of pj(ap) ® p5(u) is the symmetric form
a,: V = Extiil g (V. (A® B).).

As the same property holds for any unit b € k(y)*, we conclude that

i<l —a1 >®..0 <1,—ap, >p)@p5(<1,—b1 >®...0 <1,—by, > p)

isequal to < 1,—(a1)y > ®...0 < 1, —(bm)y > .
O

Recall that for any scheme X we have a Gersten-Witt complex (Definition 3.5)

dy
CX,W): = W(DY(X)) —= WD) (X)) —= -
and a complex C(X, I4):

—r d—r—1
e @ I}il (OX,IT)_> @ Ifl (OX,JCT+1)_>....

z,€X() Trp1€X D)

The above proposition gives:
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COROLLARY 4.6. The product
*: C(X,W)x C(Y,W) - C(X xY,W)
induces for any r,s € N a product
*x:C(X,I") x C(Y,I*) — C(X x Y, I""%).

Now we investigate the relations between x and the differentials of the com-
plexes.

PROPOSITION 4.7. Let ¢ € WI(D5(Y)) be such that d) (¢) = 0. Then the
following diagram commutes

Wi(Db(X)) WDy, (X))

(Uﬁwl l“w

Witi(DY, /(X x Y)) — WiHIHL(DY, (X % Y)).
X XY

Proof. Let o € W¥(D?(X)). Let X;+1 be the set of points of X of codimension
> i+ 1, Y;41 the set of point of Y of codimension > j + 1 and (X X Y);t,41
the set of points of X x Y of codimension > i + j + 1. By Lemma 2.18,
the triangulated categories DY(X), D}(Y) and D}, ;(X x Y) are defined over
the topological spaces X \ X;41, Y\ Y41 and (X x Y)\ (X X Y);1+;41. Let
a € Symm*(D*(P(X))®) and 3 € Symm? (D*(P(Y))Y)) be symmetric pairs
representing ¢ and v. By definition, we have DegLoc(a) € Db(P(X))(+D),
DegLoc(3) € DY(P(Y))U+D) and df is neutral. It is easily seen that
Supp(dpia) NSupp(dps3) = 0 in the topological space (X x Y)\ (X XY )iqjt1.
Theorem 2.25 implies that

(—1)Hd(piaxp3B) = (—1)'dpja*p3B + (—1) pja * dp3p.

Using Theorem 2.15, we see that we have in W*7 (D}, ;(X x Y)) the equality

(1Y d5y (i x pi) = pidiy (@) % P

The following corollary is obvious.

COROLLARY 4.8. Let ¢ € I™(DYY)) be such that d} () = 0. Then the
following diagram commutes
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P(D(X)) ———— 1" (D} (X))

[PH (DY, (X X Y)) —— I[Pt 1(DY

it P (X X Y).

We now have to deal with the complex in Milnor K-theory. Let C(X, KM),
C(Y,KM)and C(X xY, KM ) be the complexes in Milnor K-theory associated
to X,Y and X x Y. In [Ro], the author defines a product

©: C(X, KM x O(Y,KM) — C(X x Y, K} )"

as follows: Let u € (X xY)+9) 2z € X® ¢ € Y be such that = and y are the
projections of u. Let p = {a1,...,a,—;} € KM (k(x)) and pu = {by,...,bs—;} €
KM (k(y)). Then

(P © p)u = U(k(2) @k k(y))u){(@1)us - (@d—i)u, (b1)us -, (bs—j)u}
where the (a;),, and (b:), are the images of the a; and b; under the inclusions
k(x) — k(u) and k(y) — k(u), and I((k(x) ®k k(y)).) is the length of the
module k(z) ®j k(y) localized in w.

LEMMA 4.9. For any p € C(X,KM)" and u € C(Y, KM)J we have

d(p© p) =d(p) © p+ (1) p © d(p).
Proof. See [Ro], 14.4, p 391. O

COROLLARY 4.10. Let € C(Y, KM)J be such that du = 0. Then the following
diagram commutes:

d

C(X, KM C(X, KMy

o] |o

C(X xY,KM )i — C(X x Y, KM )yitith,

Proof. Obvious. O

Now we compare the products x and ©.

PROPOSITION 4.11. The following diagram commutes:

O(X, KM)i 5 O(Y, kM) —2» C(X x Y, KM )i+i

8(r—i) Xs(sj)l J{%Hi;‘)

C(X,T) xC,T) C(X x Y, T T%)iti,
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Proof. Let {a1,...,a,—;} € KM, (k(x)) and {b1,...,bs—;} € KM (k(y)). Let
o’ be a symmetric isomorphism

o k(z) — Extsz’x(k(z), Ox.)

and y/ a symmetric isomorphism

W k(y) — Bxt, | (k(y), Oy,y).

We then have s(,_;({a1,...,a,—i}) =< 1,-a1 > ®...® < 1,—a,_; > p :==p
and s(,_j({b1,...,0s—j}) =<1,-b1 > ®...® < 1,-bs_; > p’ := p. Choose
a point u in (X x Y)(+9) lying over = and 3. The proof of Proposition 4.5
shows that

(P* M)u = S(TJrsfifj)({(a’l)ua R (aT—i)u’ (bl)u’ R (bs—j)U})(p

where ¢ : M — Extg}f XYU(M ,Oxxyu) is a symmetric isomorphism and M

is a k(u)-vector space. But dimy, M = I((k(z) ® k(y)).) (mod 2) where [

denotes the length. So we have in C(X x Y,TTJFS)”J' the equality

(p*u)u = S(TJFS,Z;]‘)({(al)ua ERR) (ar—i)ua (bl)ua SRR (bs—J)U})l((k(x) ® k(y))u)

The right hand term is equal to s(,4s—;—j({a1,...,ar—i} © {b1,...,bs_;}) by
definition. 0

COROLLARY 4.12. The products
*x: C(X, I") x C(Y,I°) - C(X x Y, I""%)
and
©: C(X,EM) x O(V, KM) — C(X x Y. KM)
give a product
o:C(X,G") x C(Y,G*) — C(X xY,G"*%).

COROLLARY 4.13. Let p € C(Y,G*)? such that diypu = 0. Then u induces a
product

_op: H(C(X,G")) — HM(C(X x Y,G"t)).

Proof. This a direct consequence of Proposition 4.11, Corollary 4.8 and Corol-
lary 4.10. |

Next we have to check that o pu is well defined on the cohomolgy class of p.

LEMMA 4.14. Let v € O(Y,G*) ! and p=d} "y. Then _opu=0.
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Proof. Suppose that « is such that di,a = 0. By Corollaries 4.8 and 4.10 we

have up to signs di;i;,l(a 0y) = aodly = aopu. So aop is trivial in
HH(C(X x Y,G)). O
Finally:

THEOREM 4.15. Let X and Y be smooth schemes. Then for any i,j,r,s € N
the product

o: O(X,G") x O(Y,G®) — O(X x Y,G""%)
induces an exterior product
x : H(C(X,G")) x H(C(Y,G*)) — H (C(X xY,G"%)).

This exterior product can also be defined with complexes twisted by invertible
modules.

THEOREM 4.16. Let X and Y be smooth schemes. Let L and N be invertible
modules over X and Y respectively. For any i,j,7,s € N, the pairing

0:C(X,G",L)x C(Y,G*, N) — C(X x Y,G""* pi L@ p3N)

induces an exterior product

x : H(C(X,G", L)) x H(C(Y,G*,N)) — H (C(X xY,G™**, pj L psN)).
Proof. Left to the reader. O
If i = d and j = s, we obtain the following corollary:

COROLLARY 4.17. Let X and Y be smooth schemes. Then for any i,j € N the
product

o1 C(X,G") x C(Y,G*) — C(X x Y,G")

gives an exterior product

—i —j it

x:CH (X)x CH (Y) - CH (X xY).
Next we prove some properties of this exterior product:
PROPOSITION 4.18. The exterior product X is associative.

Proof. Tt clearly suffices to prove that the exterior products * and © are asso-
ciative. For x this is clear because of the associativity of the tensor product
(up to isomorphism). For the second, see (14.2) in [Ro]. O

Now we deal with the commutativity. Let X and Y be smooth schemes and
let 7: X XY — Y x X be the flip. We have:
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LEMMA 4.19. Let p € H'(C(X,KM)) and n € H/(C(Y,K})). Then we have
T ©p) = ()CIED(pon).

Proof. This is clear from the definition. O

LeEMMA 4.20. Let p € H'(C(X,I")) and n € H/(C(Y,I°)). Then we have
T p) = (=1)Y ().

Proof. It is clear by the skew-commutativity of the product of Witt groups
(JGN], Theorem 2.9). O

Remark 4.21. Of course, the associativity and the anticommutativity of the
exterior product are also true for the twisted product of Theorem 4.16.

5 INTERSECTION WITH A SMOOTH SUBSCHEME

5.1 THE ORIENTED GYSIN MAP

The goal of this section is to define for any closed embedding i : Y — X of
smooth schemes an oriented Gysin map i' : H"(C(X,G?)) — H"(C(Y,G7)). In
order to define such a map, we slightly adapt the ideas of Rost ([Ro], paragraph
11).

First we briefly recall the properties of the deformation to the normal cone.
For more details, see [Fu] (chapter 5) or [Ro] (chapter 10). Let Y be a closed
subscheme of a smooth scheme X. Then there is a smooth scheme D(X,Y), a
closed imbedding j : Y x Al — D(X,Y) and a flat morphism p : D(X,Y) — Al
such that the following diagram commutes

Y x Al == D(X,Y)

b

Al
and

(1) p~*(A'—0) = X x (Al —0) and the restriction of j is the closed imbedding
ix1:Y % (Al —0) = X x (Al —0).

(2) p~1(0) = Ny X, where Ny X is the normal cone to Y in X and the re-
striczion of j is the embedding as the zero section sp : Y — Ny X

The scheme D(X,Y") can be obtained as follows: Consider the blow-up M of
X x A! along Y x 0 and the blow-up X of X x 0 along Y x 0. Then define
D(X,Y) tobe M\ X.

If Y is smooth in a smooth scheme X, then it is locally of complete intersection
and Ny X is a vector bundle over Y of rank dim(X) —dim(Y’). Moreover, Ny X
is Cartier divisor on D(X,Y’). We denote by L(N) the associated line bundle.
A straight computation shows that the restriction of L(N) to Ny X is trivial.
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Let U = A! — 0 and consider the form

<1,—t>: 0} — OF

in WO(D®(U)). Now let X be a smooth scheme and consider the projection
n: X xU — U. Then n*(< 1,—t >) € W(D?(X x U)) and we also denote
it by < 1,—t >. Since the support of this form is X x U, the tensor product
gives a functor

<1,-t>® :DYX xU)— DY(X xU).
Using the fact that < 1, —¢ > is symmetric, we see that this functor is duality
preserving (see [GN], Definition 1.8 and Lemma 1.14) and therefore induces for
any ¢ a homomorphism

<l,-t>® :W{D)YX xU))— Wi D)X x U)).

For some sign reasons that will be made clearer in Lemma 5.10, we will in fact
consider for any 7 the homomorphism

me s WHDY(X x U)) — WHDYX x U))
defined by my(a) = (1) < 1,—t > ®a.

LEMMA 5.1. For any i,j € N the homomorphism m; induces a homomorphism

FP(DYX x U)) — PHHDYX x U))

and the following diagram commutes

F(DYX x U)) —Z= [I=1(DY, (X x U))

Wl lmt

I (DYX % U)) ——= P(Dlyy (X x 1),

Proof. The first assertion is clear. Now < 1, —t > is a global isomorphism and
we can use Theorem 2.10 in [GN] (or Theorem 2.25 in the present paper) to
see that

di(<1,—t>®a) =<1,-t > ad'a

for any o € I (DY(X x U)). The first term is (—1)**1d’(m;()) and the second
one is (—1)"2my(d'a). O
Now consider t € O% ;. For any i and any x € X xU, we have a multiplication
by t:

ne s K (k(2)) — KM, (k(2))
defined by n.({a1,...,a;}) ={t,a1,...,a;}.
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LEMMA 5.2. For any i,j € N the following diagram commutes

C(X, KMy —T o o(x, KM)+!

O, KMy) —— C(X KM,

j+1
Proof. See [Ro], Proposition 4.6. O

COROLLARY-DEFINITION 5.3. The homomorphisms m; and n; induce for any
i,7 € N a homomorphism

{t}: H(C(X x U,GY)) — H(C(X x U,GIT1)).
We call this homomorphism multiplication by t.

Proof. Tt suffices to show that m; and n; give the same operation on C(X, Tj).
It is straightforward. O

We will need the following lemma:

LEMMA 5.4. Let f : X — Y be a flat morphism of smooth schemes. Then for
any i,j the following diagram commutes

H(C x U,G) — 2 Hi(CY x U,Gi+Y)

(fxl)*l l(fxl)*

H{(C(X xU,G7)) THi(C(X x U, GITLY).
Proof. First observe that (f x 1)*(< 1,—t >) =< 1,—t > by definition. Then
for any a € I"(D%(X)) we have (f x 1)*(msa) = mu((f x 1)*a) (use [GN],
Theorem 3.4). On the other hand, we have (f x 1)*(n;(a)) = n((f x 1*)cv)
for any o € KM (k(y)) ([Ro], Lemma 4.3). Putting this together, we get the
conclusion. O

Let Y — X be a closed embedding of smooth schemes and consider the defor-
mation to the normal cone space D(X,Y). Then Ny X is a Cartier divisor and
its complement in D(X,Y") is X x U. We have a long exact sequence associated
to this triple ([Fa], Corollary 10.4.9):

HI(C(D(X,Y),G+1)) = HI(C(X x U,Gi+1)) £ Hif L (C(D(X,Y), Git))

Because the restriction to Ny X of its associated line bundle is trivial, we also
have an isomorphism (Remark 3.33)
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kit H(C(Ny X,G7)) — H{ ' (C(D(X,Y),G7H)).

Let ¢ : Ny X — Y and 7 : X x U — X be the projections and consider the
following composition:

H(C(X x U,G)) —m HY(O(X X U, GI*)) —— HY(C(Ny X, GY).

DEFINITION 5.5. Let Y be a smooth subscheme of a smooth scheme X with
inclusion i : Y — X. We denote by i' : H"(C(X,G7)) — H"(C(Y,G7)) and
call oriented Gysin map the composition (¢*)~!(k.)L10{t}r*.

Remark 5.6. Let i : Y — X be a closed immersion of smooth schemes and let
L be an invertible Ox module. Then we have a twisted version of the oriented
Gysin map:

i H"(C(X,G7, L)) — H"(C(Y, G i*L)).

5.2 FUNCTORIALITY

The goal of this section is to prove that for any inclusions of smooth schemes

7 —>y —L> X we have (ji)' = i'j'. The strategy is not new. We follow
the exposition of the sections 11, 12 and 13 in [Ro]. First we prove some
lemmas:

LEMMA 5.7. Leti : Y — X be a closed immersion and g : V — X be a flat
morphism. Consider the following fibre product

W V
4
Y X.

-/
2
-

R

Then we have (¢')*i' = (i')'g*.

Proof. Let D(X,Y) be the deformation to the normal cone associated to @ :
Y — X and D(V,W) be the deformation associated to i’ : W — V. Let
U = A' — 0. Because of the universal properties of blow-ups, we see that ¢
and ¢’ give a morphism D(g) : D(V,W) — D(X,Y) such that the following
diagram commutes:
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DV,W)<“—V x U

D(.‘?)\L lgxl

D(X,)Y)<=—— X xU

where ¢+ and ' are the inclusions of the respective open subsets. We also get a
morphism N(g) : NwV — Ny X such that these diagrams commute:

NV — = NwV —" D(V, W)
N(g)l lg’ N(g)l lD(g)
NyX ——>Y NyX —= D(X,Y).

Now use Propositions 3.28 and 3.34, Lemma 5.4 and the diagram

’

W<t Ny V s DV, W) L=V x U v

e R M

Y < Ny X ——=D(X,Y)<— X xU —> X

to conclude (observe that D(g) and N(g) are flat because of [Ro|, Remark
10.1).
O

LEMMA 5.8. Let Z->Y —j>X be inclusions of smooth schemes. Then we
have inclusions a : NzY — NzX, ¢ : i*NyX — Ny X and isomorphisms
N(i*NyX)(NYX) ~NzY &1*Ny X ~ N(Nzy)(NzX).

Proof. The first two assertions are trivial. The relation (2.1) in [Ne| shows that
we have canonical isomorphisms

N(i*NyX)(NYX) ~NzY ©i*Ny X ~ N(Nzy)(NzX).

O

LEMMA 5.9. Let Z->Y > X be inclusions of smooth schemes. Let a :
NzY — NzX, c: "Ny X — Ny X be the inclusions and and ¢ : Ny X — Y,
A NzX — Z, S1 - N(z*NyX)(NYX) — i*NyX, S92 N(NZY)(NZX) — Nzy
the projections. Then we have (s1)*c'q*j' = (s2)*a'r*(ji)'

Proof. Consider the deformation to the normal cone spaces D(Y,Z) and
D(X,Z). Using the universal property of blow-ups, we get a map D(Y, Z) —
D(X, Z) such that the following diagram commutes
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Ny —2 > N, X

L

D(Y,Z) —= D(X, Z)

|

Y xU X xU

jx1

where the top vertical maps are inclusions of the exceptional fiber in the de-
formation to the normal space and the bottom vertical maps are inclusions of
open subsets. It is easy to check that the map D(Y,Z) — D(X, Z) is a closed
immersion. Let D(X,Y, Z) be the deformation to the normal cone space associ-
ated to this closed immersion. Using again the universal property of blow-ups,
we see that the above diagram gives a sequence

D(NzX,N;Y)——= D(X,Y,Z) ~<— D(X,Y) x U

where the first map is a closed immersion and the second one is an open im-
mersion. Consider now the space D(X,Y,Z). We have an open immersion
D(X,Y,Z) — D(X,Z) x U and a closed immersion (as the special fiber)
Npw,z)D(X,Z) — D(X,Y,Z). In fact, this exceptional fiber is isomorphic
to D(Ny X,i*Ny X) (see [Ne], paragraph 3.2). So we get a diagram

K

Ny X

DX, Y)=~—"—— X xU—T"—>X

Ny X xU i D(X,Y) xU

D(NyX,i*NyX) —" = D(X,Y,Z) < D(X, Z) x U —> D(X, Z)

K K K K

N(i*NyX)NYXT>D(NzX, N2Y) <~ NzX x U Nz X

s
where all the lines are deformations to the normal cone, the first, third and
fourth columns are also deformations to the normal cone. This diagram is
commutative (see [Ne], paragraph 3.2). The maps x denote inclusions of special
fibers, « denote the inclusions of the complement of these special fibers and 7
denote the projections. The map ¢*j' is obtained by composing the operations
(in cohomology) of the top row and sib' is obtained by working with the left
column. Similarly, 7*(ji)' and sja' are deduced from the right column and the
bottom row. Now all the squares appearing in this diagram are commutative
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and give commutative diagrams in cohomology (Proposition 3.28, Proposition
3.32 and Lemma 3.34). Using this and Lemma 5.4, we get the result.
O

LEMMA 5.10. Let V, X and W be smooth schemes. Consider the following
commutative diagram

where p,p’ are flat and i is a closed immersion. Suppose that the composition

*

NwV — W — X is of the same relative dimension as 7. Then i'p* = (p')*.

Proof. Let D(V, W) be the deformation to the normal cone associated to i and
b: D(V,W) — V xA! be the blow-down map. We have a commutative diagram

W <" Ny W —= D(V,W) —2o 1 x a1 2% x w Al

V———X.

By definition, i'p* = (¢*)~!(k.) " '0{t}7*p*. Using Lemma 3.28, we get i'p* =
(q*) " H(ke)TLO{t}(p x 1)*(")*. By 5.4, this gives

(@)~ ()T {tHp x 1) (7)) = (¢") 7 () 710 x 1) {t}(r)".

Using Remark 10.1 in [Ro], we see that f := (p x 1)b is flat. We have a
commutative diagram

HI(C(X x AL, GY)) — H(C(X x U,G¥)) L HIF(C(X x A, GI)) —>

‘| - /|

HI(C(D(V, W), G7)) — HI(C(V x U, G7)) — Hihy (C(D(V.W), %)) —
where the first line is the localization long exact sequence associated to the
triple (X x U, X x A, X x 0) and the second line is the one associated to the
triple (V' x U, D(V,W), Ny W). Then

(q) " (k) TrOp x D{tH(r')" = (¢") 7 (k) T O {tH ()"
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Consider next the fibre product

NyW —== D(V, W)

J ]

Xl%[)>X><A1

where iy : X — X x Al is the inclusion in 0. Using Lemma, 3.34, we finally find
i'p* = (p')* (i) 0’ {t}(x")*. Tt remains to show that (ig);'9'{t}(7')* = Id to
finish the proof. At the level of Milnor K-theory, this is Lemma 4.5 in [Ro].
Thus we only have to prove this result at the level of the Witt groups. Let o €
WH(D?(X)) be such that do = 0 € W (Db, | (X)). Now DegLoc((n")*a) N
Degloc(< 1,—t >) is a closed subset of X x A! of codimension > i + 2.
Therefore we can use 2.25 to compute

(-Did(<1,-t>®a)=d(<1,~t >)@a+ (-1)" < 1,—t > ®da.

As « is a cycle, we have da = 0 and then
(—D)id(< 1,~t > ®a) =d(< 1,~t >) @ a = —dt ® a.

By definition of m;, we find d(m:(«)) = dt ® a. The latter is precisely (ig).c
(see [GH], Lemma 2.8).
O

Now we have all the tools to prove the following theorem:

THEOREM 5.11. Let Z ->Y —> X be inclusions of smooth schemes. Then
(i)' = i%".

Proof. Let ¢ : NyX — Y, p: NzY — Z and r : NzX — Z be the
projections. Consider also the projections s1 : N ny x)(Ny X) — *Ny X
and So N(NZY)(NZX) — NZy Denote by a Nzy — NzX and
c:i*Ny X — Ny X the inclusions. We also have a fibre product

i*Ny X —> Ny X

Z4i>Y.

Then

(51)*(ql)*i!j! —_ (Sl)*c!q*j! _ (82)*(1!7"*(].7:)! —_ (52)*1)*(]1)’
where the first equality is due to Lemma 5.7, the second is due to Lemma 5.9
and the third to Lemma 5.10. As (s2)*p* induces an isomorphism in cohomol-
ogy and ¢'s; = psa, we get the result. O
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6 THE RING STRUCTURE

Let X be a smooth scheme and let A : X — X x X be the diagonal inclusion.
For any i, j,7, s we have an exterior product (Theorem 4.15)

H'(C(X,G")) x H(C(X,G®)) — H(C(X x X,G"))
and an oriented Gysin map (definition 5.5)
A HH(C(X x X,G")) — HH (C(X,GH)).
DEFINITION 6.1. We denote by - the composition A' o x.

Remark 6.2. If X is a smooth scheme and L, N are invertible Ox-modules,
then using Theorem 4.16 and Remark 5.6 we see that there is a product

- HY(C(X,G", L)) x H(C(X,G7,N)) — H(C(X,G",L® N)).
Remark 6.3. In particular, we have for any i,r € N a product

- HY(C(X,GY) x HI(C(X,G7)) — H™ (C(X,G™))

which by definition is a product @l(X) X CA‘I;Tj (X) — CA’I?H(X).

Remark 6.4. Tt is clear from our construction that we also can define a product

L HYC(XKM) x H(C(X,KM) — HH(O(X,KM).

This product coincide with the one defined by Rost ([Ro], chapter 14) and the
natural projections 7 : C(X,G?) — C(X, K}') give a commutative diagram

H'(C(X,G")) x H(C(X,G*)) H™ (C(X, Gr))

HY(C(X, K}M)) x H(C(X, KM)) —— H' (C(X, K]1,)).

Remark 6.5. Our technique provides also a product on the cohomology of the
Gersten-Witt complex of a scheme. That is, we have a product

HY(C(X, W) x HI(C(X,W)) — H™(C(X,W)).
Now we prove the associativity of the product we have defined.
PROPOSITION 6.6. The product - is associative.

Proof. First note that the exterior product is associative (Proposition 4.18).
We consider the following fibre product diagram
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XXX —XxX xX.
Ax1

We see that ((1xA)A)' = ((Ax1)A)'. Theorem 5.11 shows that we have in fact
A1 xA) = A(Ax1). Since (1x A)' is clearly 1 x A' and (A x 1) = Al x 1,
the associativity is proved. |

Remark 6.7. In general, the product is not commutative. This is due to the
fact that x and x do not commute with the flip 7: X x X — X x X (see 4.19
and 4.20). Moreover, the product is not anticommutative because the signs in

4.19 and 4.20 are not compatible. However, let o € CA’I?(X) and 3 € cH’ (X).

Then « - 3 is an element of CH " (X) and is therefore represented by a sum
> (Ps,9s) € Ker(d't7) where

At GW™ (D}

i+j(X)) - Wi+j+1(Df+j+1(X))

(see Remark 3.23). Using 4.19 and 4.20, we see that 3-a = > (Ps, (—1)¥y).
For a more precise statement, the reader is referred to Theorem 7.6.

—0
Now remark that there is a canonical class 1y in CH (X) given by the sym-
metric form < 1 > in GW (k(X)).

PROPOSITION 6.8. The class 1x is a left and right unit for the product -.

Proof. Let ps : X x X — X be the second projection and consider the following
commutative diagram

By Lemma 5.10, we see that N'(p2)* = (Id)* = Id. Consider p €
H'(C(X,G7)). It is clear that 1x x u = (p2)* (1) and then 1x-u = u. Replacing
p2 by p1 shows that 1x is also a right unit. O

Hence we have:

THEOREM 6.9. Let X be a smooth scheme and let CA‘I;T*(X) be the total oriented

Chow group of X. Then the product - turns CH *(X ) into a graded associative
ring with unit.

Taking the twists into account, we get the following theorem:
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THEOREM 6.10. Let X be a smooth scheme and let @ CA‘I;T*(X, L) be
LEPic(X)/2

the total twisted oriented Chow group of X. Then the product - turns this group

into a graded associative ring with unit.

DEFINITION 6.11. Let X be a smooth scheme. We call oriented Chow ring the
ring CH (X) and twisted oriented Chow ring the ring @ CH (X,L).
LEPic(X)/2

The following proposition is obvious:

PROPO/SEI*ON 6.12. Let X be a smooth scheme. Then the natural homomor-
phism CH (X) — CH*(X) is a ring homomorphism.

Remark 6.13. The same methods show that the product of Remark 6.5 gives
a graded associative anticommutative ring structure on the total cohomology
group H*(C(X,W)) of the Gersten-Witt complex associated to X.

7 BASIC PROPERTIES

We first show that the oriented Chow ring is a functorial construction.

DEFINITION 7.1. Let X and Y be smooth schemes and f : X — Y a morphism.
Consider the graph morphism v : X — X x Y. We define

FLCH (Y) - CH (X)
by f'(y) =}(1x x y) for any y € CH ().

PROPOSITION 7.2. The map f' : C/'\ﬁ*(Y) — C/'\I-/I*(X) is a ring homomor-
phism.

Proof. We only have to check that f'(y-z) = f(y)-f'(z) for any y, z € CH (V).
Consider the following commutative diagram:

x—Y o xxy

Axl lAXxY

XxX—(XxY)x (X xY).
VEXVf
Theorem 5.11 shows that 7} Aly .y = Aly (5 xv7)'. Applying this to the cycle
1x Xy X 1x X z, we obtain the result. O

Remark 7.3. The proposition shows that CH (_) is a functor from the category
of smooth schemes to the category of rings. It is clear that the homomorphisms

CA‘I;T*(X) — CH*(X) give a natural transformation ﬁ*(_) — CH*(_).
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In the case where f : X — Y is a flat morphism, we can identify f' more
precisely.

PROPOSITION 7.4. Let f: X — Y be a flat morphism. Then f' = f*.

Proof. Consider the following commutative diagram:

where p : X XY — Y is the projection. Lemma, 5.10 implies that ’y!fp* = f*.
Since p*3 = 1x x (8 for any oriented cycle on Y, the result is proved. |

Let Z C X be a closed subset of pure codimension i. As D% (X) C D*(X)®,
we have a homomorphism GW}(X) — GW*(D*(X)®). Composing with the
localization, we obtain a homomorphism GW}(X) — GW?(D%(X)). As the
composition GW(D*(X)®) — GW¥(DY(X)) — WHH(DP(X)(+D) is zero
(see [Ba2|), we finally obtain a homomorphism (Remark 3.23):

az: GWL(X) — CH (X).

Remark 7.5. Let f: X — Y be a flat morphism and Z C Y be a closed subset
of pure codimension i. The definitions of f* for the Grothendieck-Witt group
and the definition of f* for the oriented Chow groups show that the following
diagram commutes (see [Fa|, Theorem 3.2.2 and Corollary 10.4.2):

az

GWL(Y) —2=CH'(v)

T

GWi,(X) —= CH'(X).

Y (f-12)
The next theorem shows that our intersection product is the expected one:

THEOREM 7.6. Let Z, T C X be closed subschemes of respective pure codi-
mension i and j. Suppose that Z N'T is of pure codimension i + j. Then the
following diagram commutes

GW4(X) x GWH(X) ——= GWr(X)

azxaTl laZﬂT

——itj

CH'(X)x CH (X) —=CH " (x).
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Proof. Let v € GW}(X) and § € GWZ.(X). Consider the deformation to the
normal cone space D(X x X, X) and the blow down map b: D(X x X, X) —
X x X x A'. We have the following commutative diagram

X=————X
q A

Ny(X x X) —Y o~ x x x

K i
D(XxX,X)—b>X><X><A1L>X><X (1)
XXX xU——XxXxU

where i is the inclusion in 0, ¢ is the projection and the two bottom squares
are fibre products. By definition, we have

az(y) - ar(8) = (¢*) (k) T Ot} (az(y) x ar(d)).

Let F =b"'(7')" (p;'Z Npy'T) in D(X x X, X). By commutativity of the
above diagram and Remark 7.5, we have (note that b* is defined at the level
of the Grothendieck-Witt groups, but not at the level of the oriented Chow

groups):
T (az(y) x ar(d)) = a,-1p (0 (1) (17 ® p30)) = Far(b™(7')" (p1y ® P59)).

We have to compute (k.) 10{t}7*(az(v) x ar(d)). By definition of 9, we have
to consider any element v € C(D(X x X, X), G +1), . having the property
that *v = {t}7*(az(y) x ar(d)) and then compute d¢(v) where

dg : C(D(X x X, X),GHh), — C(D(X x X, X),GI), iy
is the differential of the complex C(D(X x X, X), G*+3+1). Consider the com-

mutative diagram

D(X x X, X) —2> X x X x Al —2> !

4 | A

X xXxU X x X xU.

This shows that Nx (X x X) is the principal Cartier divisor in D(X x X, X)
defined by f := b*pr*(¢t). Diagram (1) gives

FOANx(XxX)=s'F=x"" ) (p' Znp;'T)= ¢ H(ZNT).
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As ZNT is of codimension i + j in X and ¢ is flat, ¢=1(Z N T) is also of
codimension ¢ + j in Nx (X x X) and hence is of codimension i + j + 1 in
D(X x X, X). Using this, it is not hard to see that F' is of codimension i + j
in D(X x X, X).

Consider the form b*(7')*(pjy ® p30). Its support is F. Localizing at the
generic points of F, we obtain a form v in Wit (D}, ;(D(X x X, X))). We

also obtain an element 74 in @ Ky(k(x)). The above computation shows

zeF(0)
that f is a unit in k(z) for any generic point « of F. We get an element

vi= ()" <1, —f > @up, {f} - 11) € C(D(X x X, X),GHTh), .

which satisfy *v = {t}n*(az(vy) x ar(d)). A straightforward computation
(use 2.25 again) shows that dg(v) = df ® b*(n')*(piy ® p3d) in the group
f =

GWHITY (DY, b*dt and

(D(X x X, X))). But
brdt @ b* (1) (piy ® p3d) = b*(dt @ (') (p1y ® p59))

(IGN], Theorem 3.2). Since dt ® (7')*(piy @ p3d) = (i0)«(PTy ® p3d) (JGH],
Lemma 2.8), we finally obtain

(k) TrO{t}m* (az () x ar(8)) = apany (xxx) (B)* (pTy ® P39)).

We have a commutative diagram

Nx (XXX)—>X><X
X.

Now A=Y p;'ZNpy'T) = ZNT and using the diagram, we see that

az(y) - ar(B) = azar (A" (piy @ p39)).

Hence it only remains to show that A*(pjvy ® p5d) = v x4 to finish the proof.
This is clear by [GN], Theorem 3.2.
(|
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