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Abstract. Let k be a real field. We show that every non-negative homoge-

neous quadratic polynomial f(x1, . . . , xn) with coefficients in the polynomial
ring k[t] is a sum of 2n · τ(k) squares of linear forms, where τ(k) is the supre-
mum of the levels of the finite non-real field extensions of k. From this result
we deduce bounds for the Pythagoras numbers of affine curves over fields, and
of excellent two-dimensional local henselian rings.

Introduction

Let A be a commutative ring with unit. We consider quadratic forms with
coefficients in A, that is, homogeneous polynomials of degree two

f = f(x1, . . . , xn) =

n∑

i,j=1

aij xixj

with aij ∈ A. If such f is a sum of squares of linear forms, one may ask for the
minimal number of squares needed to represent f . So we write

`(f) := inf
{
r : there are linear forms h1, . . . , hr ∈ A[x1, . . . , xn] with f =

r∑

i=1

h2
i

}

(with the convention `(f) = ∞ if f is not a sum of squares of linear forms), and
put

gn(A) := sup
{
`(f) : f is a sum of squares of linear forms in A[x1, . . . , xn]

}
.

For n = 1, g1(A) is nothing but the Pythagoras number of the ring A, usually
denoted p(A): Every sum of squares of elements of A is a sum of p(A) squares, and
p(A) is the minimal number with this property (or p(A) =∞).

Our primary interest is in Pythagoras numbers for certain classes of rings. How-
ever, by an elementary observation originally due to Pfister, bounds for the gn-
invariants of a ring A give bounds for the Pythagoras numbers of finite A-algebras
(Lemma 2.3 below). This led us to the study of the invariants gn.

Our main result concerns the case where A = k[t], the polynomial ring in one
variable over a real field k. Let

τ(k) := sup
{
s(E) : E/k finite, non-real

}
,

where s(E) denotes the level of the field E, i.e. the smallest number n such that
−1 is a sum of n squares in E. Since the level of a non-real field is a power of 2,
according to Pfister’s famous theorem, the invariant τ(k), if finite, is a power of 2
as well. It was first proved by Pfister that

1 + τ(k) ≤ p(k(t)) ≤ 2τ(k)

(see [L] p. 397). Cassels’ theorem implies p(k[t]) = p(k(t)), and so this gives
g1(k[t]) = p(k[t]) ≤ 2τ(k). We will prove that

gn(k[t]) ≤ 2n · τ(k)
1
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holds for all n (Theorem 1.2). Also, we show that every positive semidefinite
quadratic form over k[t] is a sum of squares of linear forms. (See 1.1 for the notion
of positive semidefiniteness.)

For k = R (or more generally, for k a real closed field), the bound gn(k[t]) ≤ 2n
had been proved around 1970 by Jakubović [J] and by Rosenblum and Rovnyak
[RR] (note that τ(k) = 1 in this case). Different proofs were later given by Djoković
[D] and by Choi, Lam and Reznick [CLR]. More recently, the first of us [F1]
extended the result to the case where k = QuotR{x}, the quotient field of the ring
of convergent power series in one variable (again, τ(k) = 1 in this case). While the
proof in [F1] was inspired by Djoković’s ideas from [D], our proof of the general
case takes up the approach of [CLR].

Our main result, together with its proof, is presented in Section 1. Section 2
contains several applications. An immediate one is to Pythagoras numbers of affine
curves (2.4). Somewhat less obvious is the application to the Pythagoras numbers of
two-dimensional excellent local henselian rings. Indeed, assuming that the residue
field k of such a ring A is real, we show gn(A) ≤ 2n ·τ(k) if A is regular (Proposition
2.7). Without any regularity assumption, this gives p(A) <∞ whenever τ(k) <∞
(Theorem 2.9). We do not know whether conversely p(A) <∞ implies τ(k) < ∞,
but at least we can show that p(A) <∞ implies τ(k′) <∞ for some finite real field
extension k′ of k (2.11). The essential tool for the proofs of these results, apart
from our main theorem, is the Artin approximation theorem. Finally, we discuss
the lines between our results and the well-known weak and strong questions from
[CDLR].

1. The main result

1.1. Let A be a commutative ring with unit. See the introduction for basic notation.
An element a in A is called positive semidefinite (or psd, for short), if ϕ(a) ≥ 0
holds for every homomorphism ϕ from A into an ordered field. In particular, this
notion applies to polynomials over A. Using the Artin-Lang theorem from real
algebra, one can rephrase the condition as follows: A polynomial f in A[x1, . . . , xn]
is psd if and only if, for every homomorphism ϕ : A→ R into a real closed field R,
the polynomial fϕ over R (obtained by applying ϕ to the coefficients of f) takes
non-negative values on Rn.

We will prove:

Theorem 1.2. Let k be a real field. Then the bound

gn(k[t]) ≤ 2n · τ(k)

holds for all n. Moreover, every psd quadratic form over k[t] is a sum of squares
of linear forms.

Remark 1.3. For k = R, the theorem says gn(R[t]) ≤ 2n. As mentioned before,
this has been proved by several authors, and some of these approaches were even
constructive ([D] and [CLR], see also [L] XIII.5). In [CDLR] (p. 50) the authors
remark that the proof from [CLR] is valid as long as k is a real closed field, but that
it does not seem to generalize to other ground fields. In particular, they mention
the case where k is hereditarily pythagorean (this is equivalent to τ(k) = 1), and
they are speculating that the bound gn(k[t]) ≤ 2n should remain valid in this case.

In [F1], the bound gn(k[t]) ≤ 2n was proved for k = QuotR{x}. The approach
of this paper can be adjusted to work for any hereditarily pythagorean field k,
which settles the guess from [CDLR]. The basic idea in [F1] was to enlarge the
polynomial ring k[t] to k(

√
−1)[t], and to factor matrices over this larger ring, in

order to produce the desired sums of squares decompositions. This was inspired by
[D], and it used Djoković’s theorem on dominant diagonalization.
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It is possible to carry this method one step further: One can employ the poly-
nomial ring D[t] over D = (−1,−1)k, the skew field of quaternions over k, and in
this way prove the bound gn(k[t]) ≤ 4n for all fields k satisfying τ(k) ≤ 2. Indeed,
Djoković’s construction for dominant diagonalization works for matrices over D[t].

One might speculate to stretch the method even more, and use polynomials
over octonions to arrive at a bound gn(k[t]) ≤ 8n for τ(k) ≤ 4. However, serious
difficulties arise in this case caused by the lack of associativity, and it is not clear
how to overcome them. At any rate, this case would definitely mean the end of this
line, since it is well known that there are no composition algebras beyond dimension
eight.

The proof given here works uniformly for any k, regardless of what τ(k) is, by
reconsidering the approach from [CLR]. We point out that our proof is completely
constructive as well, if one assumes that polynomials in k[t] can be factored and
that sums of squares decompositions of psd polynomials in k[t] can be found.

1.4. For the proof of the theorem, we work with symmetric matrices instead of
quadratic forms. Given a commutative ring A containing 1

2 , we associate to any
symmetric matrix S ∈ Mn(A) the quadratic form (homogeneous polynomial of
degree two)

FS = FS(x1, . . . , xn) = xtSx,

where x = (x1, . . . , xn)t. In this way we identify quadratic forms in n variables
with symmetric n× n-matrices. A sums of squares representation

FS = h2
1 + · · ·+ h2

N

with linear forms h1, . . . , hN ∈ A[x1, . . . , xn] corresponds to a product decomposi-
tion

S = T t · T
of the coefficient matrix S, with T ∈ MN×n(A) (the i-th row of T consists of the
coefficients of the linear form hi). We will always write

`(S) := inf
{
N : there is T ∈ MN×n(A) with S = T tT

}

for the sums of squares length of the quadratic form FS . Our proof makes use of
some basic facts from quadratic form theory, such as Witt decomposition and the
basic theory of Pfister forms. For all this we refer to [L].

1.5. We now take up the proof of Theorem 1.2. So let k be a real field. We always
abbreviate A := k[t]. For the proof we will assume that τ := τ(k) is finite, and
will later show how the same arguments can be used for the qualitative part of the
theorem disregarding the τ -invariant. Here we know that every psd element of A
is a sum of 2τ squares of elements of A. Note that this fact corresponds precisely
to the statement of the theorem in case n = 1. We use it as the starting point for
an induction on n.

Let n > 1, and fix a psd symmetric matrix S ∈ Mn(A). Write S as a block
matrix

S =

(
a ut

u S′

)

with a ∈ A, u ∈ An−1 (vectors are columns) and a symmetric matrix S ′ ∈ Mn−1(A).
If a = 0 then u = 0, and we are done by induction. So assume a 6= 0. The
polynomial a ∈ A = k[t] is psd.

The discriminant of fS with respect to the variable x1 is a quadratic form
in (x2, . . . , xn), which corresponds to the symmetric matrix D := aS ′ − uut ∈
Mn−1(A). Since S is psd, D is psd as well. By the inductive hypothesis, `(D) ≤
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2(n− 1)τ . Completing the square we see that the quadratic form aFS is a sum of
1 + `(D) ≤ 2nτ squares:

aS =

(
0 0t

0 D

)
+

(
a

u

)(
a ut

)
.

Writing m := 2nτ from now on, we have seen that there is an identity aS = U tU
where U ∈ Mm×n(A).

To prove the theorem, we have to find an identity S = T tT with T ∈ Mm×n(A).
This will be done by induction on the degree of a. If a ∈ k∗, then a is a sum of
p(k) ≤ p(k(t)) ≤ 2τ(k) =: 2r squares in k. So the Pfister form ϕ := <1, 1>⊗r

represents a, hence aϕ ∼= ϕ and a(n × ϕ) ∼= n × ϕ. As m = 2rn, we conclude
that there is C ∈ GLm(k) with aI = CCt. Consequently, aS = U tU implies
S = (C−1U)t(C−1U). Let now deg(a) ≥ 1, and let f be a monic irreducible
polynomial dividing a. If the field k[t]/(f) is real, then reduction of the identity
aS = U tU modulo (f) shows that the matrix U is (coefficient-wise) divisible by f .
Since a, being psd, is divisible by f2, we may therefore cancel a factor f 2 in this
case.

This leaves us with the case where the field k[t]/(f) is nonreal. This is the main
step of the proof. Note that f is a sum of squares in this case, and more precisely, of
2τ squares of elements of A. We will show that there exists a product decomposition
U = BW with B ∈ Mm(A) and W ∈ Mm×n(A), such that BtB = fI . Once this is
known we are done, since combining it with aS = U tU gives aS = fW tW , and we
can cancel f .

1.6. So let f be a monic irreducible polynomial in A = k[t], and let U ∈ Mm×n(A)
such that U tU is divisible by f . We identify matrices with linear maps, where
matrices act on column vectors from the left. The submodule im(U) of Am is totally
isotropic modulo f , in the sense that f divides 〈x, x〉 =

∑m
j=1 x

2
j for every x ∈ im(U).

Let M be a submodule of Am which contains im(U) and which is maximal with
respect to being totally isotropic modulo f . It suffices to find B ∈ Mm(A) with
im(B) = M and BtB = fI . Indeed, this will give a factorization U = BW as
desired. So it is enough to prove:

Proposition 1.7. Let k be a real field, let f ∈ A = k[t] be a monic irreducible
polynomial which is a sum of 2r squares, and let m be a multiple of 2r. For any
submodule M of Am which is totally isotropic modulo f and which is maximal with
respect to this property, there exists a matrix B ∈ Mm(A) with im(B) = M and
BtB = fI.

1.8. Let ϕ denote the quadratic form <1, 1>⊗r over k (“sum of 2r squares”).
Write L := k[t]/(f) in the following. Since the level of L satisfies s(L) ≤ 2r−1, the
quadratic form ϕL over L is hyperbolic. Since m is a multiple of 2r, say m = 2rn,
the form m × <1>L = n × ϕL is hyperbolic over L as well. The reduction M of
M modulo (f) is a maximal totally isotropic subspace of Lm (with respect to the
form n× ϕL). Hence its dimension is dimL(M) = m

2 .
We need the following easy lemma, whose proof will be supplied later.

Lemma 1.9. Let A be a principal ideal domain, and let m 6= (0) be a prime ideal
of A. Let M be a free A-module of finite rank, and let V be a subspace of the
A/m-vector space M = M/mM . Then there exists a direct summand P of M with
P = V .

1.10. By this lemma we find a direct sum decomposition Am = P⊕Q of A-modules
with M = P . Since M is maximal with respect to being totally isotropic modulo f ,
it follows that M = P ⊕ fQ. ¿From dimL(M) = m

2 we see rk(P ) = rk(Q) = m
2 .
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Let G ∈ Mm(A) be the matrix which acts as the identity on P and as multiplica-
tion by f on Q. Then det(G) = fm/2 and im(G) = M . Since M is totally isotropic
modulo f , the product GtG is divisible by f , say GtG = fV with V ∈ Mm(A).
Comparing determinants gives det(V ) = 1, and in particular, V ∈ GLm(A). On
the other hand, V is symmetric (and psd). Now we need to know that such V can
be diagonalized over A:

Theorem 1.11 (Harder, Djoković). For any symmetric and invertible matrix V ∈
GLm(k[t]), there exists an invertible matrix Q ∈ GLm(k[t]) such that QtV Q has
coefficients in k.

Proof. This result appears as Theorem 13.4.3 in Knebusch’s paper [K] and is at-
tributed to Harder. An elementary proof (by “Hermite’s method”) can be found in
[S] (Thm. 6.3.3). A constructive proof is due to Djoković ([D] Prop. 4). His method
provides an algorithm for diagonalizing V . ¤

1.12. Let us come back to the situation in 1.10. From Theorem 1.11 we get Q ∈
GLm(A) such that QtV Q = D lies in GLm(k) (and is diagonal, if we want). The
matrix B := GQ satisfies therefore im(B) = im(G) = M and BtB = fD.

Let ψ denote the quadratic form over k which is represented by D (of dimension
m = 2rn). By specializing at one point, we see that actually ψ ∼= n × ϕ. Indeed,
substitute the value t := 0 in the identity BtB = fD. Since f(0) 6= 0, we see
B(0) ∈ GLm(k), and so f(0) · ψ ∼= n× ϕ (over k). Since ϕ is a Pfister form which
represents f(0), it follows that ϕ ∼= f(0) · ϕ, hence ψ ∼= n× ϕ, as we claimed.

This means that there exists a matrix C ∈ GLm(k) with D = CtC. Combining

this with BtB = fD we get fI = B̃tB̃, where B̃ = BC−1. Since im(B̃) = M , this
finishes the proof of Theorem 1.2 in the case τ(k) <∞. See 1.14 below for the case
where τ(k) =∞.

1.13. Proof of Lemma 1.9. We may assume M = An and 0 < dim(V ) < n. The
proof is by induction on dim(V ). First assume dim(V ) = 1 (and n ≥ 2). We are
given x = (x1, . . . , xn) ∈ An with x /∈ mAn, and may assume x1 /∈ m. Let p1, . . . , pr
be those prime ideals of A which contain x1. Choosing b ∈ m for which x2 + b /∈ pi
for i = 1, . . . , r, the vector x′ = (x1, x2 + b, . . . ) is unimodular.

For the inductive step let V1 ⊂ V be a one-dimensional subspace, and let P1 be
a direct summand of M such that P 1 = V1. Choose a decomposition M = P1⊕Q1,
and choose a subspace V2 of Q1 such that V = V1⊕V2. By the inductive hypothesis
there is a direct summand P2 of Q1 for which V2 = P 2. So P := P1⊕P2 is a direct
summand of M , and P = V .

1.14. Proof of the qualitative part of Theorem 1.2. This asserts that every psd
quadratic form over A = k[t] is a sum of squares of linear forms. The arguments
from the proof for τ(k) <∞ essentially carry over, as we briefly indicate:

The proof is again by induction on the number n of variables. Given a psd
quadratic form F = F (x1, . . . , xn) over A, we can assume as in 1.5 that there exists
a psd polynomial 0 6= a ∈ A for which aF is a sum of squares. Choose m to be a
power of 2 which is so large that, on the one hand, aF is a sum of m squares, and
on the other hand, the leading coefficient of a as well as every monic irreducible
psd polynomial dividing a is a sum of m squares. (It is well known that this last
condition is equivalent to a itself being a sum of m squares, but we do not need
this.) With this choice of the number m, the proof goes through as before, showing
that F itself is a sum of m squares.
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2. Applications

In this section, we assemble a series of examples, remarks and applications, in
particular to Pythagoras numbers.

Example 2.1. If A = k is a field, quadratic forms can be diagonalized, and this
gives the bound gn(k) ≤ n · p(k) (which was originally observed by Pfister). For
many fields, though, much better bounds are available [BLOP].

We mention here another easy case, the ring of formal power series A = k[[x]]
over a real field k. As said above, one has gn(k((x))) ≤ n ·p(k((x))) = n ·p(k). On the
other hand, one gets immediately gn(k[[x]]) = gn(k((x))) by clearing denominators.
(This is actually part of a more general statement for arbitrary real valuations, see
Lemma 2.8.) Together this gives gn(k[[x]]) ≤ n · p(k).

Remark 2.2. For fields of finite transcendence degree over their prime field or over
a real closed field, upper bounds for τ(k) are available, although they may not
always be sharp. For example, if k is a real number field then τ(k) = 4 if there
is a dyadic place v for which [kv : Q2] is odd; otherwise, τ(k) = 2. (See [L],
loc. cit.) If k has transcendence degree d over Q then τ(k) ≤ 2d+2, using the
Milnor conjecture as proved by Voevodsky. The better bound τ(k) ≤ 2d+1 holds
for d ≥ 2 if Kato’s cohomological Hasse principle is true. (See [Sch] 5.26 for a more
detailed discussion.)

If k has transcendence degree d over a real closed field, then τ(k) ≤ 2d by a
theorem of Pfister (see [L] XI.4.10).

Generally, the Milnor conjecture implies for any field k that τ(k) ≤ 2d, where
d = vcd2(k) = cd2 k(

√
−1) is the virtual cohomological 2-dimension of k.

It is an open problem whether p(k) < ∞ implies p(k(t)) < ∞ (or equivalently,
τ(k) <∞) for every (real) field k.

Our applications of Theorem 1.2 are based on the following elementary lemma:

Lemma 2.3. Let A be a ring, and let B be an A-algebra which is generated by n
elements as an A-module. Then p(B) ≤ gn(A).

The proof is straightforward, see [CDLR] §2. From this lemma and Theorem 1.2
we immediately get:

Theorem 2.4. Let k be a real field with τ(k) < ∞. Then p(A) < ∞ holds for
every one-dimensional k-algebra A of finite type.

Proof. By Noether normalization, A is a finite k[t]-algebra. ¤

Remarks 2.5. 1. For the record we note that if there is a homomorphism k[t]→ A by
which A is generated by n elements as a k[t]-module, then the bound p(A) ≤ 2n·τ(k)
holds.

2. A related kind of application of Theorem 1.2 is this: Let f ∈ A[x1, . . . , xn] be
a form which is a sum of squares of forms of degree d. Then f can be written as a
sum of gN (A) such squares, where

N =

(
n+ d− 1

d

)

(see [CDLR] p. 51).

Now we turn to henselian local rings. To start with, we have:

Proposition 2.6. Let A be an excellent henselian local ring. Then gn(A) = gn(Â)

holds for all n. In particular, p(A) = p(Â).
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Proof. The proof depends on the Artin approximation theorem, for which we refer

to [KPP]. Suppose first that gn(Â) = γ is finite, and let f ∈ A[x1, . . . , xn] be a
sum of squares of linear forms. Then we have

f =

γ∑

i=1

g2
i

for some linear forms gi ∈ Â[x1, . . . , xn]. Equating coefficients on both sides and
looking at the coefficients of the gi as unknowns, we have a polynomial system of

equations over A that has a solution over Â. Hence, by Artin approximation, it
has a solution over A, and we find hi ∈ A[x1, . . . , xn] such that f =

∑γ
i=1 h

2
i . We

conclude that gn(A) ≤ γ.

Conversely, suppose gn(A) = γ <∞, and let f ∈ Â be a sum of squares of linear

forms in Â, say

f =
r∑

j=1

g2
j

with linear forms gj over Â. We try to find an identity

f =

γ∑

i=1

h2
i (∗)

with linear forms hi over Â. Again, this amounts to solving a polynomial system

over Â whose unknowns are the coefficients of the hi. By Artin approximation, it
is enough to solve the system modulo m̂k for a suitable large k ≥ 1 (here m̂ denotes

the maximal ideal of Â). Choose linear forms g̃j over A such that all g̃j − gj
have coefficients in m̂k. Then f̃ :=

∑r
i=1 g̃

2
j is a sum of squares of linear forms in

A[x1, . . . , xn], and consequently, a sum of γ squares, say

f̃ =

γ∑

i=1

h̃2
i

with suitable linear forms h̃i over A. Since f̃ − f has coefficients in m̂k, this solves
(∗) modulo m̂k, as desired. We are done. ¤

Proposition 2.7. Let A be an excellent henselian local ring. Suppose that A is
regular of dimension two and has a real residue field k. Then gn(A) ≤ 2n · τ(k) for
all n.

The proof uses the following simple observation:

Lemma 2.8. Let B be a valuation ring with real residue field and with quotient
field F . Then gn(B[y]) = gn(F [y]).

Proof. It suffices to see that if B[y][x1, . . . , xn] contains a sum of squares of linear
forms from F [y][x1, . . . , xn], then B[y][x1, . . . , xn] contains the linear forms them-
selves. Looking at the coefficients of the forms involved, one sees that it suffices to
show that if f =

∑
i f

2
i ∈ B[y], with fi ∈ F [y], then each fi lies in fact in B[y].

To show this, let fi =
∑
j aijy

j ∈ F [y], and let aλµ be a coefficient with smallest

valuation. Suppose by way of contradiction that a = 1/aλµ ∈ m, where m is the
maximal ideal of B. Then afi ∈ B[y] for all i, and afλ /∈ m[y]. Since m[y] is a
real prime ideal of B[y], we conclude that a2f =

∑
i(afi)

2 /∈ m[y]. Consequently,
a /∈ m, which is the desired contradiction. ¤
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Proof of Proposition 2.7. We can assume τ(k) < ∞. By Proposition 2.6 we can
suppose A is complete, hence A = k[[x, y]]. Since clearly τ(k((x))) = τ(k) ([Sch]
5.13), our main theorem gives gn(k((x))[y]) ≤ 2n · τ(k) for all n. From the lemma
we get gn(k[[x]][y]) ≤ 2n · τ(k). We end with another application of Proposition 2.6,
since k[[x, y]] is the completion of k[[x]][y](x,y). ¤

Finally we prove:

Theorem 2.9. Let A be any excellent henselian local ring of dimension two whose
residue field k satisfies τ(k) <∞. Then the Pythagoras number p(A) is finite.

Proof. If k is nonreal then −1 is a sum of squares in A, and the assertion is clear. So

we assume that k is real. Let Â be the completion of A. This is a complete noether-

ian local ring with dim(Â) = 2. Such a ring is known to be a finite k[[x, y]]-algebra,
essentially by the Cohen structure theorem (see [Bo] ch. IX § 3 Théorème 2). ¿From

Proposition 2.7 (and Lemma 2.3) we therefore get p(Â) < ∞, and thus p(A) < ∞
by Proposition 2.6. ¤
Remark 2.10. With this last result, the understanding of the Pythagoras numbers of
excellent local henselian rings has become quite precise. To describe the situation,
denote by dimr(A) the real dimension of A (see [FRS]). For A an excellent local
henselian ring, dimr(A) = max{dim(A/p) : p is a real prime ideal of A}. Clearly
dimr(A) ≤ dim(A), but equality need not hold in general. By the main result
of [FRS], p(A) = ∞ if dimr(A) ≥ 3. On the other hand, for studying p(A) one
can replace A by a quotient A/I with dim(A/I) = dimr(A), in such a way that
bounds for p(A/I) provide bounds for p(A) (this goes back to [CDLR], see also [F2]
p. 1910). Thus we are left with the case where dim(A) = dimr(A) is 1 or 2.

The one-dimensional case can be considered folklore: After completion, A is
a finite module over some power series ring, and the second part of Remark 2.1
applies to bound p(A) in terms of p(k). Consequently, p(A) is finite iff p(k) is
so. In the same vein, for dim(A) = 2, Theorem 2.9 shows that p(A) is bounded
in terms of τ(k). We deduce that p(A) is finite if τ(k) is so. Without going into
details we point out that these bounds can be made explicit, involving p(k) or τ(k)
and suitable multiplicities of A (see [F1]).

Conversely, if p(A) is finite then p(k) is also finite by trivial reasons. Whether
or not τ(k) is finite is not clear. Here we touch the well-known open problem of
deciding whether p(k) < ∞ implies p(k(t)) < ∞. The closest we can come to is
this:

Proposition 2.11. Let A be local henselian and excellent, with real residue field
k. If dimr(A) = 2 and p(A) < ∞, there exists a finite real extension k′ of k such
that τ(k′) <∞.

Proof. We may assume that A is a real domain of Krull dimension 2. Then there
is a sequence of quadratic transforms A→ A′ in the field of fractions K of A, such
that A′ is regular of dimension 2 and its residue field k′ is a real finite extension of
k [AR]. Clearly, p(A) <∞ implies p(K) <∞. By [Sch] 5.16(b), applied to A′, we
get p(k′(t)) ≤ p(K), and so τ(k′) <∞. ¤
Remark 2.12. Although it is quite obvious, we would like to briefly sketch the line
between our results and questions (Q1) and (Q2) from [CDLR] (p. 49), commonly
referred to as “weak question” and “strong question”. Given a ring A with p(A) <
∞ and a finite A-algebra B, the weak question asks whether p(B) is necessarily
finite. The strong question asks whether even p(B) ≤ n·p(A) holds, if B is generated
by n elements as an A-module. To our knowledge, no single counterexample is
known to date, not even to the strong question.
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It is clear that the weak question has a positive answer whenever gn(A) is finite
for all n. Thus, our results provide such a positive answer for important new classes
of rings A, in particular finitely generated k-algebras of transcendence degree one
and local excellent henselian rings of dimension ≤ 2 with residue field k, both in the
case where the field k satisfies τ(k) < ∞. For the same rings, although in general
our results do not suffice to imply a positive answer to the strong question in its
original form, they imply that this question states the correct order of magnitude
for p(B), namely up to a constant factor independent of n. For example, if A = k[t]
is the polynomial ring over a real field, with p(A) < ∞, then τ(k) < 2p(A), and
hence p(B) < 4n · p(A) whenever B is generated by n elements as an A-module.
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